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Abstracts 

I conducted integrated geophysical studies within the Fort Worth basin, Texas; 

Osage County, Oklahoma, and the Ucayali basin, Peru. My studies are directed at 

understanding the relationships or links between Precambrian basement structures and 

sedimentary structures using these three areas as case studies. Links between basement 

structure, hydrocarbon reservoirs, and sedimentary sequences are not a new concept. 

Such relationships have been documented in the Paradox, Hardeman, Anadarko, Arkoma, 

Ardmore and Williston basins among others. Structures such as fault zones that can 

influence the formation of sedimentary basins and mineral deposits are often formed by 

intraplate tectonism. 

In order to compare the relationship between the Precambrian basement structures 

and sedimentary structures, I analyzed series of derivative and filtered maps of 

aeromagnetic and gravity data, which enhance basement structures, that were integrated 

with seismic data and seismic attribute data that enhance structures within the 

sedimentary sections. Other information such as well data and geologic information etc 

were also integrated. This integrated workflow facilitates the comparison of the links or 

relationships between the two structures. 

The results of the Fort Worth basin are presented in Chapter 3. The results of this 

integrated study show that the sedimentary structures within the study area are mainly 

related to basement structures because these structures are aligned parallel to anomalies 

identified on the high-resolution aeromagnetic (HRAM) data. The northeast-southwest 

and northwest-southeast orientations of sedimentary features are consistently parallel 

with Precambrian structural fabrics that are associated with structures such as the 
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northeast trending Ouachita orogenic belt and the northwest trending Muenster Arch, 

which reactivated  a late Cambrian/Late Precambrian faults. The knowledge gained in 

this study will impact oil and gas exploration and development within the study area 

because, the orientation of the natural and induced fractures can be predicted even if 

seismic data is limited or unavailable. 

In Chapter 4, the results of an integrated analysis that includes the use of 3D 

seismic data, seismic attributes, and derivative maps from potential field data to study the 

basement, Mississippi Chert and the Arbuckle Group of Osage County, Oklahoma are 

presented. The workflow employed in this study was effective in studying and identifying 

polygonal, highly coherent, and high amplitude lineaments that strike northwesterly and 

northeasterly within these reservoirs. Basement structure lineaments are found to be 

parallel in orientation with the trend of lineaments seen within the Mississippian Chert 

and the Arbuckle Group. The northwest-striking lineaments may be related to the late-

Paleozoic tectonism that affected both the Precambrian and Paleozoic section of Osage 

County. Another part of this research investigated the large gravity and magnetic 

anomalies and their association with the Mid-Continent Rift System (MCRS). Results of 

this analysis revealed prominent northeast trending anomalies that suggest that the MCRS 

extends into northern Oklahoma. However, geochronological data for basement rocks 

suggest that this extension would have to be limited to intrusive bodies that have little or 

no subcrops. 

The integrated study conducted in the Ucayali basin of Peru revealed that the 

northwest-southeast trending lineaments interpreted as Precambrian basement structures 

are sub-parallel to the late Paleozoic fold and thrust belts that resulted from the 
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shortening associated with the formation of the Andes. These fold and thrust belts are 

reactivated along the zones of weaknesses that already existed in the Precambrian 

basement. The east-northeast lineaments are located beneath the Fitzcarrald Arch locate 

above the buoyant Nazca ridge. I interpret these east-northeast lineaments as part of the 

Ene Pisco – Abancay Fitzcarrald tectonic lineaments, which is one of the five tectonic 

domains in these region. Gravity modeling suggests that the crustal thickness and the 

subduction slab-dip beneath Peru increase from the north of the Ucayali basin towards 

the south. My 2-dimensional gravity model suggests that the crust thickness and Nazca 

plate dip increase southward within the Ucayali basin. These results also establish a 

correlation between known geologic features and the regional gravity anomalies 
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Chapter 1: Introduction 

1.0 Background, Motivations and Problem Addressed 

Basement structures due to intraplate tectonism often form structures such as fault 

zones that control sedimentary basins and mineral deposits formation (Barosh, 1995). 

Examples of basins in the United States that exhibit structural relationships between 

Paleozoic features and Precambrian basement fault patterns includes the Paradox, 

Hardeman, Anadarko, Arkoma, Ardmore basins, Fort Worth basin (Thomas and Baars, 

1992; Elebiju et al., 2008) and the Williston basins among others (Gerhard and Anderson, 

1998). The structural fabric of the Precambrian basement that underlies Phanerozoic 

basins is highly complex, and many scientists believe that an understanding of 

Phanerozoic geology hinges on adequate knowledge of the underlying basement 

structure. Gay (1995), through aeromagnetic techniques, documented how basement fault 

block pattern and basement fracture reactivation (Wilson and Berendsen, 1998) control 

structural and stratigraphic features that are important to petroleum exploration. 

Basement features can also prove insight into reservoirs, sources, traps and hydrocarbon 

migration (Carlson, 2005). 

Until relatively recently, Precambrian basement rocks had received little attention 

in the oil and gas exploration world. However, the role of basement rock as a viable 

element in an exploration strategy has changed because of a broader appreciation of 

Precambrian tectonic processes controlling the distribution of petroleum resources 

(Carlson, 2005). Production of hydrocarbons directly from the basement has also 

heightened an awareness of the need for understanding the basement (Dickas, 1992).  
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The main objective of my dissertation is to investigate and understand how 

Precambrian basement structures are influencing geologic phenomena in the younger 

Paleozoic strata such as faults, fractures, karst, collapse features, and dolomitization. This 

dissertation consists of three main chapters or paper-styled format. Each paper will be 

submitted to various leading geophysics and geology journal for publication. Paper in 

Chapter 3, which has initially been submitted to the GEOPHYSICS journal, is currently 

undergoing revisions. Chapter 4 and 5 are currently in preparation stage for submission.  

The studies in this dissertation includes an integrated geophysical analyses of 

basement structure in the Ucayali basin in Peru, the Fort Worth basin in Texas, and 

Osage County in northeast Oklahoma. Figure 1.1 shows the location of the three study 

areas. The ability to map basement features is very important to exploration because 

natural and induced fractures, like those associated with the Fort Worth basin for 

example, are believed to be related to basement structures. Consequently, understanding 

of this interaction between these structures is very important because it will influence 

prospecting in these basins. 

I develop and employ integrated geophysical and geological methodologies in 

order to address some of the issues associated with the influence of basement structures 

on Paleozoic and younger structures. This integrated approach based on several three-

dimensional (3D) seismic data supplemented by gravity, aeromagnetic high-resolution 

aeromagnetic (HRAM) and high-resolution gravity where available, drilling, and outcrop 

data provides a means to study the regional structural framework of the three study areas 

(Figure 1.1).  
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Chapter 2 reviews some of the gravity and magnetic background principles and 

recent advances in potential field enhancement and filtering techniques designed to 

highlight anomalies of interest not directly evident in the original data but potentially 

related to geologic features of interest.  

Chapter 3 present the results of using integrated seismic attributes and new 

enhancement and filtering techniques associated with HRAM data to establish links 

between Precambrian basement structures and sedimentary basin structures in the Fort 

Worth basin. The Fort Worth integrated studies was able to establish a link between 

basement structures and Paleozoic features. We also evaluate whether the HRAM data 

can be used to predict structures within the sedimentary rock in frontier areas or area 

where seismic data is limited or unavailable. 

Chapter 4 presents the results of seismic data analysis of several 3D seismic 

surveys acquired in Osage County, Oklahoma. The objective of this study is to 

understand the interaction between Precambrian basement structures and the overlying 

fractured controlled Ordovician Arbuckle dolomite, Mississippian limestone, and Chert 

reservoirs. A regional section of this study utilizes regional gravity and aeromagnetic data 

to investigate the extent of the 1100 Ma Mid-Continent Rift System (MCRS) through 

Oklahoma, toward Texas. Authors such as Jones and Lyons (1964), Nixon and Ahern 

(1988), Robbins and Keller (1990), and Adams and Keller (1994) have used gravity and 

magnetic information to suggest a possible extension of the MCRS into west Texas and 

New Mexico. We also investigated the conspicuous large Bouguer gravity anomaly, 

which is centered within the Osage County. 2). Density variation (Cook, 1956), deeper 

crustal source (Denison, 1981), thinned crust, and Moho bumps or anti-root (Roark, 
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1962) have been suggested as the cause of this anomaly because of its lack of correlation 

with regional structural geology. Could this anomaly be related to the MCRS?  

Chapter 5 focuses on improving the understanding of the structure and geometry 

of the Ucayali basin, Peru as well as the underlying basement structure and its interaction 

with Paleozoic or younger sediments. This project is an integrated geophysical and 

geological study conducted in a sparsely explored area of Peru that is occupied by 

foreland basins east of the Andes. I attempt to develop a regional geophysical cross-

section across the western Andes toward to the sub-Andean basin using all available 

resources and published information (e.g., Sobolev and Babeyko, 2005; Tassara et al., 

2006; Mamani et al., 2008). Our goal is to construct a 2D gravity model across the 

Peruvian Andes describing the major structural features and regional architecture within 

the region. I also hope to investigate the type of lithospheric-slab plate type beneath the 

study area.  
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Figure 1.1. Map showing the location of the three study areas that constitutes  
this dissertation. (1) Ucayali and Maranon Basin in Peru, (2) Fort Worth 
basin in Texas, and (3) Osage County in Oklahoma. 
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Chapter 2: Background and Methodology 

Gravity and magnetic methods have proven to be an effective method for studying 

the Precambrian basement rocks beneath sedimentary basins (Cordell and Grauch, 1985; 

Keller et al., 1985; Gay, 1995; Adams and Keller, 1996; Lyatsky et al., 2004). 

Interpretation of potential field data generally lacks uniqueness. However, the integration 

of potential field data with other available geophysical or geological information can 

reduce the interpretation risk that usually plaque utilization of potential field data alone. 

This approach can overcome the non-uniqueness problem. 

2.1 Introduction to Gravity and Magnetic Anomaly 

Gravity and magnetic anomalies reflect lateral change in density and magnetic 

susceptibility caused by structures or changes in lithology. Gravity anomalies reflect the 

difference between the observed and predicted gravity value and usually contain a 

regional effect (Dobrin, 1988; Telford et al, 1990). Such anomalies can occur below or 

above the Precambrian basement crust (Lyatsky and Dietrich, 1998). Generally, igneous 

and metamorphic rocks are denser and magnetic than sedimentary rocks but overlap does 

occur.  

 According to Sims et al. (2005), aeromagnetic anomalies consist of a complex 

integration of crustal magnetic sources, mostly originating from the Precambrian 

basement. These kinds of anomalies are devoid of large-scale regional features (Telford 

et al., 1990) and are generally associated with features from the upper crust above the 

Curie depth. The Curie depth is the depth (~ 30 km) below, which the temperature of 

rocks is above the Curie temperature, making rocks too hot to possess or retain 
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magnetization. Thus, magnetic anomalies are an indicator of the structure and distribution 

of magnetization in the basement, and variations in magnetization are usually more 

important than structures (Dobrin and Savit, 1988). As a rule-of-thumb, magnetic 

minerals, mainly magnetite, are generally more abundant in mafic igneous rocks than in 

felsic igneous rocks. A magnetic anomaly is a reflection of a susceptibility contrast, 

which is a measure of the magnetic minerals present. However, magnetite is not the only 

magnetic mineral that can produce a magnetic anomaly other minerals include those 

described in Reynolds et al. (1990) and Clark (1997). Likewise, igneous and 

metamorphic rocks are more magnetic than sedimentary rocks but metamorphism often 

reduces magnetism in rocks. 

2.2 Methodology 

The integrated nature of the three research projects presented in this dissertation 

requires similar datasets and methods of investigation. Combined public domain 

aeromagnetic, propriety high-resolution aeromagnetic and gravity data, 3D seismic data, 

well information, and geologic information were utilized to effectively characterize the 

Precambrian structures and conduct research in the three areas.  

The ability to integrate all these datasets makes this approach a viable option. 

Each dataset provide constraints on the overall solution. For example, the structural 

configuration and features of the sedimentary section can be easily mapped using seismic 

data and its attributes. The ability to map basement features on seismic data can be 

challenging because of the incoherent nature of reflectors. However, utilizing gravity and 

aeromagnetic data and their respective derivatives can compensate for such 

shortcomings. 
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The integrated approach in this study began with seismic interpretation using 

commercial available software such as IESX GEOQUEST and PETREL, which are 

Schlumberger’s interpretation tools. With the aid of the seismic data, various sedimentary 

structures were identified. Seismic attribute data enhances some of these sedimentary 

structures. Codes supplied by the Attribute-Assisted Seismic Processing and 

Interpretation (AASPI) group in the ConocoPhillips School of Geology and Geophysics 

at the University of Oklahoma, were used to compute the various seismic attributes.  

Seismic attributes visually enhance or quantitatively measure features of interest 

in a seismic data and provide an interpreter with a unique view of the data. Thus, physical 

and geometrical features, which are not easily seen in seismic data, become visible on 

images of attribute data (Chopra and Marfurt, 2005). However, it is still the interpreter’s 

job to intuitively extract geological information from these attributes data. Using a 

combined physical model such as dip and azimuth, waveform similarity or frequency 

content from adjacent seismic samples, attribute data classifies subtle features into a 

display, which is then enhanced for the human or computers  interpretation (Chopra and 

Marfurt, 2007). 

Examples of geometric attributes used in this study include coherence, volumetric 

curvatures, dip, and azimuth. These attributes are sensitive to lateral changes in the 

physical model and are generally calculated using a vertical window (Chopra and 

Marfurt, 2007). Their sensitivity to lateral changes makes them suitable to map 

sedimentary features like faults (Lawrence, 1998; Gersztenkorn et al., 1999) and fractures 

effectively (Neves et al., 2004). The application of seismic attributes to fault mapping has 

been mostly limited to sedimentary basins because basement rock lacks stratified and 
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coherent reflectors. However, some of the attributes used such as curvature, can be 

effective even with limited stratified and coherent basement reflectors. A full detailed 

description of the physics, mathematical foundation, and application of these attributes 

can be found in Chopra and Marfurt (2007). 

2.3 Potential Field Data Enhancement and Filtering Techniques  

Potential field anomalies generally contain a wide range of signals from various 

sources and depths. Short wavelength anomalies typically reflect shallow features while 

larger and broader anomalies are often indicative of deeper, regional sources. Therefore, 

anomalies of interest must be separated. Potential field enhancement and filtering 

techniques are designed to better image and delineate both regional scale anomalies 

associated with Precambrian structures and local anomalies of interest, which cannot be 

easily seen in raw data. Thus, the potential field enhancement and filtering products 

derived are similar to seismic attributes (Verduzco et al., 2004) and can often help with 

geological interpretation. However, both may target different ranges of anomaly 

wavelengths. These products facilitate the ability to relate physical properties associated 

with potential field data with geological features of interest. 

The 2-D Fourier transform allows us to easily apply most anomaly separation and 

enhancement techniques because it maps a spatial domain function, f (x, y), into a 2-D 

function of wavenumber (the reciprocal of wavelength); (kx, ky). This transformation 

allows for easy computation in the Fourier domain and yields.  

    2 ( ), x yi k x k y

x yF k k f x y e dxdy   

 
   ,     (2.1) 

where  
1

2 2
 k 2 2k + k  
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A few of the techniques that will be discussed herewith are applicable to both 

gravity and magnetic data. Others are applicable only to individual datasets. Those 

discussed below include, residual anomaly separation, upward continuation, derivatives, 

horizontal gradients, reduction-to-the pole of magnetic data, band-pass and directional 

filters; these can be used to isolate linear anomalies of interest with tectonic implication. 

2.3.1 Residual anomaly separation 

 Potential field anomalies can be due to both regional and local features. Thus, 

residual anomaly separation is a mathematically stable way of highlighting anomalies 

that are caused by upper crustal geology and subdue the effects of deeper features. For 

the purpose of this dissertation, the term ‘regional anomaly’ would refer to anomaly with 

a deep source origin, such as the deep root of the Andes Mountains. On the other hand, 

the term ‘residual anomaly’ will refer to an anomaly created by shallow to intermediate 

sources (Jacobsen 1987).  

To create a residual anomaly map, a simple subtraction method of a low-pass 

anomaly map, which highlights the regional anomaly, from the complete anomaly map 

worked effectively for our applications. More importantly, we computed the low-pass 

anomaly map from a upward continuation operator and not from a low-pass filter selected 

by trial-and-error. The upward continuation filter technique, which is a form of a low-

pass filter, is preferable to an ordinary low-pass filter because the upward continuation 

map is usually devoid of the ringing artifact or Gibbs phenomena, which is often 

characteristic of a broadband low-pass filtered map (Figure 2.1 and 2.2). The Gibbs 

phenomenon occurs on the anomaly map where the amplitude of the data is rapidly 

changing. In the frequency domain, the truncation of the frequency spectrum with a 
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rectangular window (Step function window) causes the Gibb’s effect, which is expressed 

as short wavelength ringing in the space domain data (Paoulis, 1962; Ku et al., 1971). 

Because most band-pass filters suffer from this phenomenon, smaller amplitude signals 

can be perturbed. Thus, I adopted a more stable approach of applying a low-pass filter 

without using the rectangular window. 

The anomaly separation workflow employed is discussed below using a sample of 

complete Bouguer data covering part of Texas, Oklahoma, and Kansa. At various upward 

continuation heights ranging from 10 km – 100 km, several regional anomalies or upward 

continuation maps were generated (Figure 2.3). The selection of the upward continuation 

height was geologically constrained but this can be subjective, depending on the geologic 

features that will be eventually removed when the residual is calculated. 

In the examples shown in (Figure 2.2), deep anomalies related to the northwest 

trending Southern Oklahoma aulacogen (SOA) and northeast trending Mid-Continent 

Rift System (MCRS) are the two obvious regional trend anomalies that were highlighted. 

I visually examined and compared all the upward continuation maps until there were no 

longer any noticeable changes among the subsequent upward continuation results (Figure 

2.3). At this point, an upward continuation height is defined, and the grid is selected. An 

upward continuation height of about 20 km or 30 km seemed to be appropriate in this 

case.  

Afterwards, the preferred upward continuation grid is subtracted from the original 

anomaly grid containing the regional anomaly in order to generate the residual anomaly 

grid (Figure 2.4). The subtraction of the regional anomaly map from the original anomaly 

grid is a form of high pass filter, but without the ringing effect associated with Gibb’s 
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effect. Residual grids can be generated from both gravity and magnetic grids. It also has 

the advantage of having the physical basis of the representation of the regional anomaly 

being very clear. 

2.3.2 Upward continuation 

Upward continuation of potential field data is not a new concept to potential field 

data processing. It provides the luxury of viewing a magnetic or gravity field at a 

different higher levels or lower levels (downward continuation) over an anomaly source 

and can act as a standard separation filter for potential field maps (Jacobsen, 1987). This 

method transforms anomalies measured at a particular surface into what they would have 

been if the measurement were taken at a higher surface (Blakely, 1996) provided there is 

no disturbing of mass or magnetized body (Nettleton, 1976).  

Dating back to the 1940’s, authors such as Hughes et al. (1947), Henderson and 

Zietz (1949), and Robinson (1970) have applied this method effectively to attenuate short 

wave-number noise and also to remove regional large-scale fluctuations from potential 

field grids. Robinson (1970) used upward continuation as an aid in interpreting surface 

anomaly sources. This process is a form of low pass filter that enhances long wavelength 

anomalies (regional anomalies) and attenuates short wavelength anomalies (noise or 

shallow sources) (Figure 2.3). The smoothening is done with respect to wavenumber and 

the greater the upward continuation height, the greater the smoothing (Blakely, 1996). A 

simple upward continuation filter in the Fourier domain is described mathematically as: 

                                      , , zF x y z e  k
     (2.2) 

where ( 0)z  , is the upward continuation distance and k is the wavenumber.  
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The upward continuation operator shown above has an easily comprehensible 

physical term with explicit term expressed in both space and wavenumber domain. Thus, 

upward continuation operator is numerically and physically stable (Jacobsen, 1987).  

2.3.3 Reduction-to-the-pole and/or reduction-to-the-equator 

This operation is peculiar to a magnetic anomaly because of the dependence of 

the total magnetic intensity anomaly on magnetization direction and the direction of the 

measure field. The distortion will cause anomaly to be directly centered on it causative 

source on a magnetic anomaly map. A profile-view across a total magnetic intensity 

anomaly map that has not been reduced-to-the-pole, will display an asymmetric anomaly 

whose magnetization inclination is not vertical (Figure 2.5a). 

Reduction-to-pole removes the distortion caused by the varying magnetization 

inclination and azimuth, thus, making the actual inclination vertical. It causes a phase 

shift or removes the asymmetry associated with the anomaly and centers the magnetic 

anomaly over the anomaly causative source by applying a Hilbert transform to the raw 

data (Blakely, 1996). Reduction-to-pole operation is a linear transformation that 

transforms a anomaly that would be measured at the north pole with induced 

magnetization and ambient field to be vertically pointing downward (Kis, 1990; Blakely, 

1996) (Figure 2.5b). The Reduction-to-pole filter (Grant and Dodds, 1972) is:  

 

                            
      2

1

sin cos cos
TPR

I i I D





   
    (2.3) 

where i ,  , I , and D  are the imaginary unit, wavenumber direction, magnetic 

inclination and magnetic declination of the magnetic anomaly respectively. Remanent 
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magnetization is assumed to be present and its direction is assumed to be consistent with 

the ambient field. 

In low-latitude areas, such as Peru, a magnetic anomaly grid needs to be reduced-

to-the-equator (RTE) in order to ameliorate problems that are associated with low-

latitude magnetic data. Reduction-to-the-equator in low-latitude areas is a substitute 

where two-dimension reduction-to-the-pole (RTP) would have been unstable due to its 

transfer function that has an infinite discontinuity. Reduction-to-the-pole becomes 

unstable at latitudes that are less than 15 degrees (Kis, 1990). 

The caveat of the RTE transformation is that it has the tendency to change 

anomaly sign so that a maximum will appear as a minimum. However, this typically 

occurs at 0-degree latitude. An example of a magnetic intensity map that has been 

reduced-to-the-pole is shown in Figure 2.6 

2.3.4 Pseudogravity transformation 

Pseudogravity transformation converts a magnetic anomaly into a gravity 

anomaly using a Poisson relation (Baranov, 1957) that shows a relationship between an 

anomaly caused by a uniformly dense and a uniformly magnetized body. The magnetic 

anomaly is converted to a gravity anomaly that would be observed if the magnetic source 

were replaced with an exact density source (Blakely, 1996). 

Mathematically, a pseudogravity anomaly is proportional to the reduced-to-the-

pole magnetic potential of an equivalent source (Blakely, 1996). After a pseudogravity 

transformation, broad wavelength anomalies (i.e. regional anomalies) are amplified while 

short wavelengths are attenuated (Figure 2.7). 
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Pseudogravity transformation facilitates a way of comparing magnetic and gravity 

interpretation considering that a gravity map is easy to interpret without much concern 

about the inclination and remanent magnetization problems associated with magnetic 

data. It can thus act as a quality control for both maps. 

2.3.5 Horizontal gradient magnitude 

A horizontal gradient magnitude operator estimates the location of lateral changes 

or abruptness in magnetization or density source (Blakely and Simpson, 1986). Density 

and magnetic susceptibility changes caused by features such as faults can be highlighted 

by the horizontal gradient magnitude. 

Blakely (1996) used a different terminology for the horizontal gradient while 

Grauch and Cordell (1987) referred to horizontal gradient magnitude as horizontal 

gradient maxima respectively. 

Horizontal gradient magnitude can be computed on both gravity and reduced-to-

pole magnetic data or on pseudogravity data. Horizontal gradient magnitude computed on 

pseudogravity data will reflect a magnetization boundary. 

According to Blakely (1996), the horizontal gradient magnitude of potential field 

data ( , )h x y  can be calculated via a simple finite-difference relationship:  
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    (2.4) 

             where  ,M x y  is the potential field anomaly in the x and y direction 

A gravity anomaly from a near vertical or fault-like boundary produces a horizontal 

gradient magnitude maxima reflecting the steepest horizontal gradient directly over or 
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near the top edge of a tabular body (Grauch and Cordell, 1987; Blakely, 1996 ) and zero 

over gradual varying gradient (Miller and Singh, 1994) (Figure 2.8). Horizontal gradient 

magnitude has been applied in mineral exploration (Verduzco et al., 2004), Precambrian 

basement structure mapping in the Williston basin of Canada (Lyatsky and Dietrich, 

1998), and in the Caldera boundary definition south of Italy (Florio et al., 1999). 

A word of caution, horizontal gradient magnitude and other derivatives are pretty 

much an interpretation aid tool however, the gradient maxima seen on a gradient map 

could mean different things, and therefore, it is still interpreter’s responsibility to find a 

meaningful interpretation. Another caveat of this technique is that, a non- near vertical 

boundary or when two source boundaries occur in close proximity to each other, the 

gradient maxima are offset from a position directly over the source boundary and this 

could lead to two peaks maxima, which could be interpreted as two edges (Grauch and 

Cordell, 1987). 

2.3.6 Tilt derivative and horizontal derivative of the tilt derivative 

Tilt derivative and horizontal derivative of the tilt derivative of a reduced-to-pole 

magnetic data can help determine magnetic source shape, continuity, and geologic edges. 

Both techniques excel in their ability to map subtle basement features. 

These techniques are more effective than their contemporary vertical derivatives 

because they can effectively discriminate between signal and noise in the data and 

normalize magnetic anomaly amplitude. Tilt derivative acts like an automatic-gain-

control (AGC) because, unlike other magnetic derivatives whose amplitude responses are 

linked to the total magnetic intensity amplitude (amplitude fall-off with depth), tilt 

derivative is independent of the total magnetic intensity’s amplitude. It depends on the 
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ratio between vertical derivative and the absolute value of the horizontal derivative, and 

the reciprocal of the source depth. Thus, it does not depend on its amplitude for 

resolution (Miller and Singh, 1994; Verduzco et al., 2004). That means that subtle 

basement features will have amplified amplitude and therefore will be enhanced as much 

as already amplified features. Tilt derivative also has an advantage of responding well to 

both shallow and deep sources, and the zero value of the tilt derivative is near the edges 

of the anomaly body (Figure 2.9a).  

On the other hand, the horizontal derivative of the tilt derivative preserves the 

amplified amplitude; thus, horizontal derivative magnitude has a well-defined maximum 

along the edges. For mineral exploration where remanent magnetization is not assumed, 

horizontal derivative of the tilt derivative is also very useful because it is independent of 

inclination (Verduzco et al., 2004). (See figure 2.9b) 

Tilt derivative is the arctangent of the ratio of the vertical derivative to the 

absolute value of the horizontal derivatives: 
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         Where M is the reduced-to-poles total magnetic intensity data.  ,x y  ranges between 

+90
 o

 and -90
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. 

Horizontal derivative of the tilt derivative is given as 
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2.3.7 Analytical signal 

An analytical signal can indicate where magnetization contrast occurs. It can also 

outline a magnetic source because it centers the maxima over or near where the magnetic 

susceptibility contrast occurs (Roest et al., 1992) (see Figure 2.9c and d). The analytical 

signal and horizontal derivative of the tilt derivative are independent of inclination, and 

this is one of the advantages of using these approaches to define edges of a body. It 

assumes the anomaly causative source has a vertical contact and that there is no remanent 

magnetization (Salem et al., 2007).  

Among its recent application in the potential field community, analytical signal 

and tilt-derivative have been used to compute depth-to-source, using the simple 

amplitude half-width rule to estimate source characteristics (Roest et al., 1992; Salem et 

al., 2007).  

Mathematically, analytical signal is defined as the sum of the square horizontal 

derivative in the x and y direction and the vertical derivative: 
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     (2.7) 

The absolute value of the analytical signal enables the determination of source 

characteristic without necessarily making an assumption about the direction of source 

body magnetization. 
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2.3.8 First and second vertical derivatives 

First and second vertical derivatives are a type of high-pass filter that quantifies 

gradients in the vertical direction. Vertical derivatives applied to a magnetic data are 

similar to measuring the magnetic field between two-vertically separated magnetometers 

and dividing the field strength by the distance of separation (Hood, 1965). Derivatives of 

these types enhance local short wavelength anomalies at the expense of the regional long-

wavelength anomalies (Dobrin and Savit, 1988). The first and second vertical derivatives 

enhance and sharpen shallow sources (Figure 2.10a). However, the second vertical 

derivative can help resolve the edges of a potential field source, but with noise 

amplification (Blakely, 1996). As shown in (Figure 2.10b), second derivatives amplify 

edges where individual aeromagnetic grids have been patched together. More often than 

not, a low-pass filter is applied to remove noise related signals. The first vertical 

derivative is positive over a source body, zero near its edges and negative outside them 

(Miller and Singh, 1994).  

 The nth order of vertical derivative with respect to x  and y is given by 

                   

 , nM x y
F

z

 
  

k ,       (2.8) 

2.3.9 Directional filtering 

Directional filtering allows interpreters to isolate a linear anomaly that might have 

geological or tectonic implications. This filtering technique applies a fan-like filter to the 

data in the frequency domain (2D frequency spectrum) and only rejects or passes the 

linear anomaly of interest without perturbing the location of the spatial amplitude peak 

(Thorarinsson et al., 1988). The anomalies within the pass band consist of anomalies 
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within a selected azimuth. The filtered anomaly map displays the passed lineament in the 

space domain based on specified azimuth. Such filtering must be done with proper 

attention to the geology. An example of the use of this filter is shown in Figure 2.11. The 

anomaly of interest was the northeast trending Mid-Continent Rift System (MCRS). 

2.4 Depth Estimation – Euler Deconvolution Method 

Estimation of the depth of the Precambrian basement top from seismic data can be 

difficult due to poor data quality and is often further complicated by the lack of wells 

penetrating the Precambrian basement. For this reason, estimation of Precambrian depth 

from HRAM data is beneficial. Knowledge gained from such analysis can then be 

transferred to areas where seismic data are unavailable or limited. The Euler 

deconvolution method is an automated depth estimation method (Thompson, 1982) that 

can help determine the location or depth to the shallowest or deepest reasonable magnetic 

source or edges for various geological sources such as, dikes, faults, magnetic contacts, 

and extrusives (Phillips, 2007). It utilizes the structural index (SI), which is used to 

describe the geometry of the desired geologic structure, as a geological constraint (Reid 

et al., 1990; Barbosa et al., 1999). In addition to estimating source depth, Euler 

deconvolution can delineate source type and magnetic boundary or fault trends (Reid et 

al., 1990). 

Euler deconvolution links orthogonal horizontal and vertical gradients of the total 

magnetic field to source depth using (SI) which is directly related to the nature and 

geometry of the magnetic source (Thompson, 1982; Barbosa et al., 1999). Euler 

deconvolution is based on the work of Thompson (1982) and Reid et al. (1990), and can 

be written as: 



 21

                   0 0 0

M M M
x x y y z z N R M

x y z

  
      

  
,    (2.9) 

where ( 0x , 0y , 0z ) is the magnetic source (point, magnetic dipole, etc) position observed 

at point ( , ,x y z ) with total magnetic intensity field M , whose regional background value 

is R . The right-hand-side of equation 2.9 accounts for strike, dip and amplitude (Reid et 

al., 1990). The degree of homogeneity, N, represents the type of source which best 

represents the anomaly. N is related to the structural index described by Thompson 

(1982) and Reid et al. (1990) and is a measure of anomaly gradient fall-off with distance 

of a field relative to its depth. An N of 1.0 can best be used to delineate structures such as 

dikes, edges, sills or low-displacement faults. Faults with large throw and irregular 

contacts can be delineated with an N of 0.0. An N of 0.5 is appropriate for intermediate 

cases (Thompson, 1982; Reid et al., 1990). 

Three-dimensional Euler depth estimation on a magnetic grid data will include 

selecting a desired range of structural indices (i.e. N = 0.0, 0.5, and 1.0) and an analysis 

square window size within the grids. Window size should be determined based on the 

grid size and anomaly length (Phillips, 2007). It should be large enough to contain the 

curvature of the anomaly of interest without compromising lateral resolution yet small 

enough to reduce interference from an adjacent anomaly without yielding poor results 

(Reid et al., 1999). High-frequency magnetic anomaly which reflect shallow source will 

be better imaged with small size window and vice versa for low-frequency anomalies. 

For each selected structural index, all points within the window will be used to solve the 

Euler equation (Reid et al, 1990). As this window is moved across the entire grid, several 

solutions, from which the four unknowns, are computed.  
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All the solutions from the different structural indices can be plotted effectively, 

using a circle cluster with depth proportionality indicated with the circle diameter. A plot 

of this kind can be used to delineate magnetic source boundary trends (Reid et al., 1990). 

An example of Precambrian depth estimates plotted using the circle cluster is shown in 

Figure 2.12. These plots indicate how Euler estimates can be used as a source boundary 

or type delineator. Figure 2.13 shows when the solutions are gridded to represent the 

shallowest or deepest reasonable depth to the top a magnetic edge or contacts. 

The choice of structural index controls the accuracy of depth estimation. If the 

selected structural index is too low, the depth estimation will be underestimated and vice 

versa. From the cluster plots, an incorrect structural index will produce a scattered 

solution cluster, but the general trend of boundaries can still be deciphered from the 

scattered plot (Reid et al., 1990). A detailed Euler depth analysis is provided in Phillips 

(2007). 

If the structural index is set at zero, the computed solution is the shallowest 

possible magnetic basement surface. An advantage of using a zero structural index is that 

the minimum possible depth to the top of the magnetic source is estimated (Phillips, 

2007). A common practice we adopted was to estimate the minimum, intermediate, and 

maximum possible depth to the tops of the magnetic source and then compare all the 

plots for the best clusters. 

2.5 Seismic Data and Seismic Attribute Data  

Seismic attribute data measures a characteristic of interest in the seismic data and 

can be a powerful arsenal in an interpreter’s hands. Subtle physical and geometrical 



 23

features that are not easily seen in conventional seismic data often become visible in 

attribute data (Chopra and Marfurt, 2005).  

Geometric attributes used in this study that we found most useful include 

coherence, volumetric curvatures, and dip and azimuth. These attributes are sensitive to 

lateral changes in amplitude and phase and are measured within a vertical window 

(Chopra and Marfurt, 2007). Their sensitivity to lateral changes makes them suitable to 

effectively map faults (Lawrence, 1998; Gersztenkorn et al., 1999) and fractures (Neves 

et al., 2004). A full detailed description of the physics, mathematical foundation, and 

application of these attributes can be found in Chopra and Marfurt (2007). 

2.5.1 Coherence 

The coherence attribute is a similarity measurement between waveforms. Thus, a 

highly coherent seismic waveform indicates a laterally continuous rock formation. In 

contrast, discontinuous or abrupt changes (low coherence) on seismic waveform might 

reflect faults, fractures or channels. Structural and stratigraphic information not readily 

seen in ordinary seismic data are enhanced in a coherence volume because coherence 

integrates information from adjacent traces and samples in a non –linear fashion (Chopra 

and Marfurt, 2007). Coherence volumes are more effective to view faults and fractures 

either in vertical coherence section or spatially on a time slice. Correlation of shallower 

sedimentary features to deeper basement features can be facilitated by animating through 

the coherency volume. Representative coherence slice from the Fort Worth basin is 

shown in Figure 2.14a. Trends of lineaments seen within the sedimentary features can 

then be compared with lineament seen within the crystalline basement and revealed by 

potential field derivatives and filter products. 
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2.5.2 Volumetric curvature 

This attribute measures the shape of a reflector. In 2D, synclinal reflectors will 

have a negative curvature, while anticlinal reflectors will have a positive curvature. 

Planar reflectors have zero curvature. In 3D, we have two components of curvatures. In 

this dissertation, I use the most-positive curvature Kpos and most-negative curvature, Kneg, 

where Kpos ≥ Kneg. Formal definitions can be found in Roberts (2001) and Chopra and 

Marfurt (2007). Most-positive and most-negative curvatures can be effective in 

highlighting faults, fractures, folds, and flexures. The zone of high curvature is tied to the 

flexure area because it is believed that fractures occur when rock is flexed or bent. Lisle 

(1994) correlated reflector curvature with fractures. Interpretation of curvature data needs 

to be constrained with available geologic or production data. An example of a most-

negative curvature sliced at the same time on the coherence cube shown in Figure 2.14a 

is shown on Figure 2.14b. 

 



 

 

         

Figure 2.1. (a) Upwards continuation anomaly map of the TMI. (b) TMI low pass filter map with wavelength cut-off less than 80 km. Upwards  
continuation filter techniques which is a form of a low pass is preferable because it is not plagued with noise and effect such as the Gibbs 
phenomena manifested in the low pass map as ringing artifacts. 

a) b) 
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Figure 2.2. (a) Upwards continuation anomaly map of the Bouguer gravity (b) Bouguer low pass filter map with wavelength cut-off less than 80  
km. Upwards continuation filter techniques which is a form of a low pass is preferable because it is not plaque with noise and effect such 
as the Gibbs phenomena (black arrow on Figure 2.2b) manifested in the low pass map as ringing artifacts.  

a) b) 
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Figure 2.3. Various upward continuation anomaly maps of the Bouguer gravity upward continued to (a) 10 km (b) 20 km (c) 30 km (d) 40 km (e)  
60 km (f) 80 km. Maps are not plagued with noise related to Gibbs phenomena manifested as ringing in the low pass map (See Figure 
2.2b). 

a) b) c)

d) e) f) 
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Figure 2.4. (a) Complete Bouguer anomaly map over most of Texas, Oklahoma, and Kansas. (b) Residual Bouguer anomaly map generated by  
subtracting an upward continued map of 20 km height from the complete Bouguer map shown in (a). The residual map is a form of a high 
pass filtered map because it enhances local features removing the regional features. 

a) b) 

28 



 

    

 

Figure 2.5. (a) Total magnetic intensity anomaly map that has not been reduced-to-the-pole. (b) Reduce-to-the-pole total magnetic intensity  
anomaly map. Inset box show the profile illustration of how RTP centers anomaly over its causative source, transforming the anomaly 
into what would be measure at the north-pole with induce magnetization and ambient field vertically pointing downward. 

a) b) 
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 Figure 2.6. (a) Total magnetic intensity anomaly map over Peru that has not been reduced-to-the-equator. (b) Reduce-to-the-equator total  
magnetic intensity anomaly map.  

a) b) 
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Figure 2.7. (a) Pseudogravity anomaly map of the TMI enhances broad wavelength anomalies attenuating short wavelength. (b) Horizontal  
gradient magnitude of the pseudogravity anomaly map, which locate lateral changes in anomaly and enhances source edges or anomaly 
trend directions that may correspond to faults. 

a) b) 
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Figure 2.8. (a) Residual Bouguer anomaly map with (b) its equivalent horizontal gradient magnitude plotted  
on a grey scale color. (C) Residual TMI anomaly map with (d) its equivalent horizontal gradient 
magnitude plotted on a grey scale color. 

a) b) 

c) d) 
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Figure 2.9. (a) Tilt derivative of the TMI anomaly map. (b) Horizontal derivative of the tilt derivative  

anomaly map. (c) Analytical signal of the TMI anomaly map. (d) Analytical signal of the 
pseudogravity anomaly map. 

a) c) 

b) d) 
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Figure 2.10. (a) First vertical derivative anomaly map enhances and sharpens anomalies. (b) Second vertical derivative anomaly map sharpens  
anomalies and amplifies noise. 

a) b) 
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Figure 2.11. (a) Directional filter anomaly map enhances northeast features related to the Mid-Continent Rift System, Ouachita Orogeny, and  
Central Basin platform. (b) Directional filter anomaly map enhances northwest features related to the Southern Oklahoma aulacogen (SOA). 

a) b) 
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Figure 2.12. (a) Euler deconvolution cluster plots computed using a structural index, N, of (a) 1.0 and (b)  
0.0. 
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Figure 2.13. (a) Precambrian depth estimates map gridded from the cluster plots showing the  
structural complexity associated with the basement of Fort Worth basin. The result 
shows the deepest reasonable magnetic source depth of various geological sources such 
as dikes, faults, and magnetic contacts. Cyan arrows indicate the complex northeast-
southwest and northwest-southeast structural grain of Precambrian basement beneath 
the Fort Worth basin. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.14. (a) Coherency slice seismic attributes that measures similarities between seismic waveforms. This attribute is sensitive to  
faults, fractures, and incoherent karst. (b) Most-negative curvature seismic attributes that measures seismic reflector shapes.  
Attribute is sensitive to folds, flexures, differential compaction, and collapse features. 
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Chapter 3: Investigation of linkages between Precambrian basement structure and 

Paleozoic strata in the Fort Worth Basin, Texas using high-resolution aeromagnetic data 

and seismic attributes 

3.1 Abstract 

We have integrated high-resolution aeromagnetic (HRAM) data and seismic 

attributes extracted along the Ellenburger Formation and the top of basement from the 

north-central portion of the Fort Worth basin (FWB) and found that this approach is 

effective in deciphering links between Precambrian basement structures and sedimentary 

structures. In the FWB, induced fracturing is a key part of hydrocarbon exploitation 

within the Barnett Shale. Therefore, knowledge of the nature of the induced and natural 

fractures, faults, and collapse features that may form conduits to the underlying 

Ellenburger aquifer is vital. We employed coherence and curvature seismic attributes, 

which are sensitive to faults, fractures and collapse features to map these features that 

have been suggested to be related to Precambrian basement structures. The association of 

these sedimentary structures with the Precambrian basement makes the understanding of 

the relationship between these two structures a key part of exploitation programs. To 

examine possible relationships, we analyzed a series of HRAM derivative maps that were 

designed to enhance basement structures. This allowed us to compare both individual 

structures and investigate the links between them. The results show that the sedimentary 

structures within the study area are mainly related to basement structures because these 

structures are aligned parallel to anomalies identified on the HRAM data. The northeast-

southwest and northwest-southeast orientations of sedimentary features are consistently 

parallel with Precambrian structural grains that are associated with structures such as the 

northeast trending Ouachita Orogeny and the northwest trending Muenster Arch, which 
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reactivated  a late Cambrian/Late Precambrian fault. The knowledge gained in this study 

will impact oil and gas exploration and development within the Fort Worth basin 

because, the orientation of the natural and induced fractures can be predicted even if 

seismic data is limited or unavailable.  

3.2 Introduction 

Almost all hydrocarbon production from the Barnett Shale of the Fort Worth 

basin (Figure 3.1) requires inducing fractures while avoiding natural fractures, faults and 

karst collapse features that form conduits to the underlying Ellenburger aquifer. These 

northwest striking natural fractures and the northeast trending present day stress field and 

induced fractures are sub-parallel to the Muenster Arch, which is a reactivated basement 

fault, and the northeast trending Ouachita thrust front respectively (Simon, 2005). 

Imaging the structural and stratigraphic structures or the ability to predict them has been 

the core objective of seismic programs within the Fort Worth basin (FWB). Some of 

these structural and stratigraphic features have been linked to the Precambrian basement. 

Recent efforts by Montgomery et al. (2005), Sullivan et al. (2006), Aktepe et al. (2008), 

and Elebiju et al. (2008) have suggested that the Precambrian basement structures may be 

controlling some of the overlying sedimentary features such as the structures within the 

Ellenburger Formation. Thus, it is important to understand how Precambrian basement 

structures are linked with geologic structures within the Paleozoic strata.  

The existence of links between basement structure, hydrocarbon containers, and 

structures within the sedimentary section is not a new concept (e.g., Gay, 1995; Wilson 

and Berendsen, 1998; Plotnikova, 2006; Berger et al., 2008). Such relationships can be 

seen in the Paradox, Hardeman, Anadarko, Arkoma, Ardmore basins (Thomas and Baars, 
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1992), and the Williston basins among others (Gerhard and Anderson, 1988). Structures 

such as fault zone that can influence the formation of sedimentary basins and mineral 

deposits are often formed by intraplate tectonism (Barosh, 1995) and many of these 

basement structures are very difficult to determine by seismic.  

The objective of this paper is to investigate the use of high-resolution 

aeromagnetic (HRAM) data and seismic data to map basement and sedimentary 

structures within the north central part of the FWB. We also explored the link and 

interaction between these two features. We do believe that in areas where seismic data is 

limited or unavailable, HRAM data can be used to predict the kinds of intra-sedimentary 

features that may be present.  

This paper presents the results of integrating seismic attributes and enhancement 

and filtering techniques applied to HRAM data to establish links between Precambrian 

basement structures and faults in the overlying sedimentary section. The enhancement 

methods employed were designed to highlight anomalies of potential interest not directly 

observed in the original.  

3.3 HRAM Data and Precambrian Basement 

HRAM data typically consist of data acquired at flight heights of less than ~800 

m, flight line spacing in the range of 145 - 150 m, and a sample spacing of about 15 m 

along the flight lines with an accuracy on the order of 0.1 nT (Peirce et al., 1998a). The 

aeromagnetic (e.g. HRAM) method has long been recognized as an effective tool for 

mapping structures within the Precambrian basement rocks because measured magnetic 

anomalies usually reflect magnetic susceptibility contrasts within the crystalline 

basement.  
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Applications of HRAM surveys in hydrocarbon exploration have significantly 

increased recently, and this is due to the development of magnetometers that are more 

accurate, improved aircraft positioning due to availability of high precision global 

positioning systems (GPS), and advancements in data processing (Magoon and Dow, 

1994; Glenn and Badgery 1998; Peirce et al., 1998a; Spaid-Reitz and Eick, 1998). Such 

improvements can be seen in its application to basement structure mapping (Gibson and 

Millegan, 1998) and intra-sedimentary structure mapping (Goussev et al., 1998; Peirce et 

al., 1998; Grauch et al., 2001; Berger et al. (2008). 

Many mathematical operations to extract detailed information from magnetic data 

have also gained wide acceptance in recent years (e.g., Grauch and Cordell, 1987; 

Tarlowski and Koch, 1988; Verduzco et al., 2004; Nabighian, et al., 2005; Hansen and 

deRidder, 2006; Salem et al., 2007). Modern processing techniques for aeromagnetic data 

produce a variety of derivative maps (e.g., tilt-derivative, gradients, and Euler 

deconvolution depth estimation) that extract important details from the data. Since 

interpretation of magnetic data is non-unique, interpreting HRAM data calls for an 

integrated interpretation approach that involves the calibration of data and derivative 

maps with drilling, gravity, and/or seismic data.  

Such integrated approaches have been used in the FWB to establish a link 

between Precambrian basement structures and sedimentary basin structures and features 

(Elebiju et al., 2008). Other area where such links have been established include, the 

Jonah field in the Green River basin, the Doig Sand play in the Horn River basin, and the 

Bakken play from Williston basin in Canada (Stone, 2008). HRAM surveys are gradually 

becoming a tool of choice for imaging subtle, deep Precambrian and shallow sedimentary 
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structures. In these aforementioned basins, the HRAM data and its derivatives were used 

to image shallow structures and trends not detectable by the seismic data. This 

methodology has also been used to extend interpretations beyond the limits of existing 

seismic data coverage. The author believes that, this approach would positively impact 

how unconventional plays are explored and exploited. 

3.4 General Tectonic Setting of Study Area 

The Fort Worth basin (FWB) is one of the major late Paleozoic foreland basins 

associated with the Ouachita Orogenic belt located along the southern margin of North 

America (e.g. Viele, 1989). It is an asymmetric basin whose structural axis is aligned 

parallel to the east-bounding and advancing Ouachita structural front. The FWB is 

bounded on the west by the Bend Arch, to the south by the Llano Uplift, and to the north 

and northwest by basement uplifts of the Muenster and Red River Arches, which were 

created by the reactivation of Southern Oklahoma aulacogen basement faults during the 

Ouachita orogeny (Figure 3.1) (Walper, 1982; Kruger and Keller, 1986). Deepening 

northward, the deepest part of the basin is located at its northeast corner adjacent to the 

Muenster arch, where the sediment thickness reaches about 3700 m (Montgomery et al., 

2005).  

Prior to the late Paleozoic orogeny that affected the FWB, the Grenville Orogeny 

and the Cambrian rifting affected the basement upon which the FWB is deposited 

(Mosher, 1998). This classic failed rift intersects the early Paleozoic passive continental 

margin that was stable until Mississippian time when the Ouachita orogeny began (e.g., 

Thomas, 1989).  
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The Ouachita orogeny controlled the sedimentary history and structural setting of 

the FWB. The subsidence and sedimentation from the uplifted Ouachita thrust belt 

resulted in a westward migration of the depocenter with time and the development of the 

northeast-trending faulted anticlinal flexure across the Llano uplift (Walper, 1982). These 

northeast trending features disappear to the northeast, where the FWB intersects the 

Muenster Arch.  

In the FWB region, late Paleozoic – Mississippian movements periodically 

reactivated a northeast-southwest trending Precambrian structure that was mapped across 

the Newark East field. This structure, termed the Mineral Wells fault, is important to 

exploration within the FWB because it controls sediment deposition, oil and gas 

distribution. Specifically, it prohibits gas accumulation in the Barnett Shale within the 

Newark East field, where it intercepts closed fractures (Figure 3.1). Other minor 

structures sub-parallel to the Mineral Wells faults and the Ouachita thrust front have been 

identified by Montgomery et al. (2005) and Pollastro (2007). 

3.5 Methodology 

The integrated geophysical and geological methodology employed in this study 

consisted of 3D seismic data analysis that was supplemented by HRAM data analysis. 

Figures 3.1 and 3.2 show the location of the HRAM and 3D seismic data used for the 

study. Within the study area of Fort Worth basin, we hypothesized that calibrating 

HRAM derivative images and HRAM Euler deconvolution results with scattered 3D 

seismic surveys would provide a means to accurately map and study the relationships 

between the basement structures and the overlying sedimentary structures in areas where 

seismic data are sparse.  
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3.5.1 HRAM and seismic data 

Devon Energy, as part of their Barnett Shale exploitation program, acquired the 

seismic data used for this study. Pearson, deRidder and Johnson, Inc. on behalf of 

Mitchell Energy (Devon’s Predecessor) acquired the HRAM data during January and 

February of 2000. The HRAM survey was flown at 152 m ground clearance, with an 

east-west profile separation of 402 m tied by north-south lines spaced at 805 m. 

Corrections applied to the HRAM data by Pearson, deRidder and Johnson, Inc. included 

removing the International Geomagnetic Reference Field (IGRF), leveling, and diurnal 

correction. Cultural noise was also removed.  

Seismic data 

Conventional workflows for most seismic interpreters involve the integration of 

lower vertical resolution but denser areal coverage seismic data with higher vertical 

resolution, but aerially sparse production, well log, and geologic outcrop data. By design, 

structural and stratigraphic features in the sedimentary column can be accurately mapped 

using seismic reflection data and seismic attributes. However, mapping Precambrian 

features using seismic reflection can often be a difficult task because reflections from the 

Precambrian basement are laterally discontinuous due to heterogeneities within the 

basement and poor signal strength. Wells that penetrate the Precambrian are also very 

limited. Therefore, potential field data can be used effectively to delineate Precambrian 

structures even with its lower spatial resolution. 

We adopted a conventional seismic interpretation workflow to interpret 

sedimentary structures using seismic data and seismic attributes. The seismic attributes 

were generated in-house, and we extracted the desired attributes along the Ellenburger 
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horizons and the top of basement. We found the coherence and the most-negative 

curvature attributes to be very useful. Hakami et al. (2004), Sullivan et al. (2006), and 

Aktepe et al. (2008) have effectively utilized these kinds of attributes to study the various 

sedimentary features within the FWB. The physical and geometrical features in these 

attributes use models of dip and azimuth, amplitude, frequency content, and waveform 

similarity from adjacent seismic samples (Chopra and Marfurt, 2007). 

Coherence is a measure of seismic waveform or trace similarities. This attribute is 

sensitive to lateral changes in the physical models mentioned above, and their lateral 

sensitivity makes them suitable to map features like faults (see Lawrence, 1998; 

Gersztenkorn et al., 1999) and fractures (Neves et al., 2004) effectively. 

Curvature is a measure of the deviation from a planar geometry based on a 

calculated quadratic surface derived in three dimensions (Chopra and Marfurt, 2007). 

Most-negative curvature measures synclinal reflector shapes and this attribute is effective 

in mapping subtle lineament within fault blocks (Blumentritt et al., 2006) karst features, 

fractures, and faults that appears as bowls or synclines on a carbonate surface such as the 

Ellenburger Formation (Akpete et al., 2008). 

3.5.2 HRAM data and derivative maps 

We resampled the HRAM grid to 400 m grid spacing using a minimum curvature 

algorithm available in a commercial gravity and magnetic processing and interpretation 

software package. This grid spacing is appropriate for selecting a window size for our 

Euler deconvolution depth estimation. For example, an anomaly with a width length of 

10000 m on a data that has a grid spacing of 400 m will require a window size of 25. 
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However, if a larger anomaly is the target, then the grid spacing will have to be increased 

(Phillips, 2007).  

Before any interpretation was done on the HRAM data, the data was reduced-to-

the pole (RTP) in order to remove magnetic anomaly distortion caused by varying 

magnetization inclination and azimuth (Kis, 1990).  

To highlight local anomalies, we generated a residual total magnetic intensity 

(TMI) map (Figure 3.2a) by subtracting a grid values calculated by upward continuing 

the original RTP HRAM to 5 km that represents regional anomalies (Figure 3.2b) from 

the original RTP HRAM grid. Several upward continuation height (i.e., 1 km, 10 km, 

e.t.c.) a generated and evaluated before we choose the height that best represent the 

regional anomaly. 

To highlight lateral or abrupt changes in magnetization, that can suggest faults or 

source contacts, we computed the horizontal gradient magnitude (HGM) and horizontal 

derivative of the tilt derivative from the HRAM data. These derivatives (Figure 3.3), are 

edge-detecting derivatives that enhance lateral discontinuities in a TMI grid (Grauch and 

Cordell, 1987; Roest et al., 1992; Miller and Singh, 1994; Blakely, 1996; Verduzco et al., 

2004; Li, 2006). The interpreter still has a responsibility of providing geological 

meaningful interpretation of what is seen on these maps.  

We also attempted to estimate the depth to the top of the Precambrian basement 

from the HRAM data. Depth estimates from the Euler deconvolution can be transferred to 

areas where seismic data are unavailable or limited to provide an indirect knowledge of 

overlying sediment thickness (Li, 2003).  
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We attempted to use the results of Euler deconvolution to delineate magnetic 

anomaly source type and fault trends (Reid et al., 1990). The Euler deconvolution method 

is an automated depth estimation method (Thompson, 1982) that can help determine the 

location or depth to the shallowest or deepest reasonable magnetic source or edges for 

various geological sources such as, dikes, faults, magnetic contacts, and extrusives 

(Phillips, 2007). It utilizes the structural index N, which is used to describe the geometry 

of the desired geologic structure, as a geological constraint (Reid et al., 1990; Barbosa et 

al., 1999). 

3.6 Integrated Analysis and Integrated Interpretation 

3.6.1 Seismic Survey A 

 Our integrated analysis and interpretation commenced in areas where seismic and 

HRAM data were both available (Figure 3.2). In Seismic Survey A, 3D visualization 

view of the coherence horizon slice extracted over the Ellenburger horizon and a north-

south seismic section view shows two major faults systems (orange and blue arrows) 

(Figure 3.2a). These faults that trends east-west and northeast-southwest agree with the 

interpretation of Sullivan et al. (2006). These two features were interpreted as a wrench 

fault (blue arrows) and a possible strike-slip fault (orange arrows) that penetrate the 

Precambrian basement. Wrench fault is a type of basement-involved strike-slip with near-

vertical fault surface. Circular collapse features (few location of collapse features 

indicated by yellow arrows) seen on the coherence horizon slice shows orthogonal 

northeast and northwest orientation (red-dashed lines in Figure 3.2a). The circular 

collapse features that are often associated with cockpit karst and karst collapse features 
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shows well on the most-negative curvature attribute. The most-negative curvature 

attribute enhances features with a bowl or valley shape usually exhibited by the collapse 

features. Faults interpreted in Figure 3.2a are also seen on the most-negative curvature 

(Figure 3.2b).  

In an effort to compare structures seen within the sedimentary section via seismic 

attributes with Precambrian basement structures, we generated series of derivative 

magnetic maps. Within the area occupied by Seismic Survey A, the horizontal gradient 

magnitude and the horizontal derivative of the tilt derivative anomaly map generated 

from the HRAM data (Verduzco et al., 2004) show lineament trends that are parallel to 

the wrench fault interpreted from the seismic data. The anomalies marked with blue 

arrows strike northeast-southwest and black arrows mark anomalies with northwest-

southeast trends (Figure 3.4). Termination of northwest trending anomaly marked by a 

black arrow along the east-west trending fault is the only indication of the east-west fault 

that we can see on the derivative maps of Figure 3.4 (See Figure 3.6a).  

The result of the Euler deconvolution computation using N of 1 (Figure 3.5a) and 

0 (Figure 3.5b) should be effective in delineating low-displacement and large-

displacement faults respectively (Reid et al., 1990). Within the area of Seismic Survey A, 

we noticed linear clustering of depth solutions that trend northeast and northwest (Figure 

3.6b). Lineament indicated by the blue arrow is consistent in orientation with what was 

observed in the seismic attribute data (Figure 3). 

The collapse features and faults indentified within the sedimentary section of 

Seismic Survey A generally display a northeast and northwest trend. The strike-slip fault 

located at the southeast corner of Seismic Survey A correlates with a derivative anomaly 
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that is also parallel to the northeast trending anomalies located about 25 km east of 

Seismic Survey A (Figure 4.4). Based on our workflow, we predict that a northeast 

trending fault will be present within the sedimentary section above these anomalies. 

Although, the seismic data for that location is not available for this study, however, a 

northeast trending basement penetrating sedimentary fault termed the Mineral Wells fault 

(Montgomery et al., 2005) has been interpreted at this location (Roderick, P., E. Baruch, 

and O.O. Elebiju, 2009, per comm.). Thus, this interpretation suggests that HRAM can 

also be used to predict sedimentary features where seismic data is unavailable or limited. 

3.6.2. Area of Seismic Survey B 

Seismic Survey B (Figure 3.7) shows more diverse lineaments orientation than 

survey A. We identified three lineaments on the coherence and most negative curvature 

horizon slices at the Ellenburger horizon. Two orthogonal lineaments trend northeast 

(blue arrows) and northwest (black arrows) in addition to an east-west (orange arrow) 

lineament (Figure 3.7). Circular collapse features were also indentified (yellow arrow). 

However, we did not notice any preferred orientation of these circular features. We 

suggest that the three lineaments we identified are faults that penetrate the Precambrian 

basement (See Figure 3.8). 

A rose diagram plot was derived from manually picking the trends of anomalies 

on the horizontal gradient magnitude map and we identify anomalies with orientations 

similar to fault orientations interpreted from seismic data in Figure 3.7 (Figure 3.9a). 

Similarly, the linear clustering of Euler depth solutions are parallel to fault interpreted on 

seismic data (Figure 3.9b). These similarities in orientations between sedimentary and 
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Precambrian basement structures are common to both survey areas (Figures 3.6a and 

3.9a).  

Based on the analysis of all the available datasets, we indentified three trends of 

lineaments within the study area. The lineaments within the sedimentary section strike 

northeast, northwest and an east-west. Precambrian basement lineaments are 

predominantly northeasterly and northwesterly.  

We relate the northeast-southwest trending sedimentary faults to the current 

maximum stress (Soebrits et al., 2000). The Mineral-Wells fault system and induced 

fractures have been documented to be associated with the northeast trending present day 

stress (Simon, 2005). Regionally, the northeast trend of these structures is also similar to 

the northeast trending Paleozoic Ouachita orogenic belt located east of the study area. 

Similarly, the northeast-southwest directed Ouachita orogenic compression 

controlled the depositional history and the types of structures found within the FWB. For 

example, northeast trending normal faults and anticlinal flexures of Atokan age that 

offset the basement developed across the exposed Llano uplift, which is located south of 

the FWB. According to Ewing (1991), these northeast trending features disappear to the 

northeast toward the Muenster Arch. 

In contrast, the natural fractures have orientations parallel to the northwest 

trending lineaments that are parallel to the Muenster Arch fault, which is a reactivated 

basement fault. Another lineament study conducted east of the FWB near the Ouachita 

thrust front subcrop, indicates that faults and surface lineaments trends are sub-parallel to 

the Ouachita basement structural grain (see Caran et al., 1981). Pre-existing basement 

faults associated with formation of the Cambrian rifted southern edge of the North 
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American craton may be related to both the Muenster Arch and the Ouachita thrust (Hale-

Erlich and Coleman, 1993). Thus, these lineaments within the study area are suggested to 

be mimicking the zones of weakness within the basement that may have formed during 

the reactivation and propagation of these structures through the sedimentary section. On a 

regional scale, strains generally are related to deep crustal movements during reactivation 

and may be directly expressed as faults and shear zones in the overlying sedimentary 

cover (Jauques, 2003). 

The structures identified within the sedimentary section in this study are 

suggested to be related to the basement structures because lineaments indentified with the 

aid of a seismic attributes are aligned parallel to basement features indentified with the 

aid of HRAM data.  

3.7 Conclusions 

Our integration of seismic data that is effective in mapping sedimentary structures 

with high-resolution aeromagnetic data that is effective in mapping Precambrian 

basement structures was used to compare the interaction and links between Precambrian 

and sedimentary structures within the northern part of the Fort Worth basin. Sedimentary 

features such as faults and collapse features mapped on seismic attribute display 

orientations that are parallel with trends of anomalies displayed on the HRAM data. The 

northeast-southwest and northwest-southeast orientation of these features are consistently 

parallel with Precambrian structural grains that form structures such as the northeast 

trending Ouachita orogenic belt and the northwest trending Muenster Arch, which is a 

reactivated Precambrian fault. We suggest that propagation of the Precambrian structural 
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grain through the sedimentary section via zones of weakness is responsible for creating 

the linear sedimentary features that we interpreted as fault in the seismic data  

Based on the analysis of the HRAM data we can predict the occurrence of the 

northeast fault systems that occur beneath the Mineral Wells even if seismic data is 

unavailable. We confirm this prediction with an independent seismic study, which 

identified a northeast trending fault system that is part of the Mineral Wells fault. This is 

a classic example of how the integration of HRAM data and seismic data can help for 

reconnaissance purposes where seismic data is unavailable or limited. This can improve 

or extend hydrocarbon exploration objectives in frontier areas before an expensive 

seismic survey is undertaken. In frontiers areas where seismic data is limited, HRAM 

data can be cheaply used to expand on the structures interpreted on the seismic data. 

Acquisition of HRAM data is also relatively faster than seismic data, thus exploration 

cycle-time can be significantly reduced. 

Our results have shown that that the integration of derivative images from high 

resolution aeromagnetic data with scattered 3D seismic surveys can provide a means of 

effectively mapping basement features and establishing a links between the basement and 

sedimentary structures within the north central part of the FWB. The knowledge gained 

here will positively impact oil and gas exploration and development within the study area 

because the orientation of the natural and induced fractures can be predicted even if 

seismic data is limited or unavailable.  
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Figure 3.2. a) Reduced-to-pole (RTP) residual total magnetic intensity map (TMI) generated by 
subtracting 5 km upward continuation grid from TMI grid. Square cyan boxes shows the 
location of the seismic data used in this study. b) Map showing the 5 km upward 
continuation grid that was subtracted from the original TMI map to produce the RTP 
map shown in Figure 3.2a. Broad anomalies are related to deep regional features that 
masked the more local crustal features that are enhanced on the residual RTP map.  
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Figure 3.3. a) Coherence and b) Most-negative curvature horizon slices extracted at the Ellenburger  
formation level through seismic survey A. On the top horizon slice, the orange arrows 
(east-west lineaments) and blue arrows (northeast lineaments) are the major faults and 
strike-slip faults respectively that is consistent with Hakami et al. (2004) and Sullivan et 
al., (2006) interpretations. Yellow arrow and red-dash lines show the collapse features that 
is also strikes northeasterly and northwesterly. Inset rose diagram shows the trend of 
major lineaments mapped manually on the Ellenburger Formation surface. 
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Figure 3.4. a) Horizontal gradient magnitude (HGM) of the TMI anomaly map shows where maxima  
are location of magnetic source edges. b) Total horizontal derivative of the tilt derivative  
lineaments orientations discussed in the text. The blue arrows located on the southeast 
section of the map was used independently to predict the kinds of intra-sedimentary structure 
to expect over that area.
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Figure 3.5. Euler deconvolution cluster plots computed using a structural index (N) of (a) 
1.0 and (b) 0.0 are effective for delineating low-displacement faults and large-
displacement faults, respectively  
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Figure 3.6 Zoomed-in section of (a) the horizontal gradient magnitude and b) the Euler deconvolution cluster plot with structural index of 0.0 from  
seismic survey A. Blue and orange lines are interpretation from seismic. The northeast faults (northeast black-arrow) appear parallel to 

 linear trend from the Euler deconvolution estimation, which are reflecting basement structures. Inset rose diagram shows the trend of 
 major lineaments mapped manually on the horizontal gradient magnitude map. 
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Figure 3.7. a) Coherence and b) Most-negative curvature horizon slices extracted at the Ellenburger formation  
level through seismic survey B. The orange arrows (east-west lineaments), blue arrows (northeast 
lineaments), and black arrows (northwest lineaments), are the major faults interpreted. Yellow arrow 
shows the collapse features. The northeast and northwest striking faults are parallel  to the northeast 
striking present day stress field, the northeast trending Ouachita thrust front and the northwest 
trending Muenster Arch respectively. Inset rose diagram shows the trend of major lineaments mapped 
manually on the Ellenburger Formation surface. 
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Figure 3.8. a) Coherence and b) Most-negative curvature horizon slices extracted near the 
top of basement surface through seismic survey B. Intra-sedimentary structures 
appears to penetrate the Precambrian basement. 
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 Figure 3.9. Zoomed-in section of (a) the horizontal gradient magnitude and b) the Euler deconvolution cluster plot with SI of 0.0 from  

seismic survey B. Blue, orange, and black lines are interpretation from seismic. The northeast, northwest, and east-west faults 
appear parallel to linear trend from the Euler deconvolution estimation, which are reflecting basement structures. Inset rose 
diagram shows the trend of major lineaments mapped manually on the horizontal gradient magnitude map. 
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Chapter 4: Integrated Geophysical Studies of the Basement Structures, 

the Mississippi Chert, and the Arbuckle Group of the Osage County, 

NE, Oklahoma  (Paper to be submitted to the AAPG Bulletin) 

4.1 Abstracts 

We have used the integration of gravity, magnetic, and 3D seismic data to map 

features in the sedimentary column and to study relationship between sedimentary and 

basement features in the Osage County area. Volumetric seismic attributes such as 

coherence and curvature derived from 3D seismic data employed to better characterize 

subtle features such as collapse features, faulting and fracturing within the carbonate 

reservoirs that are difficult to image on conventional 3D seismic data. We conducted an 

integrated analysis that includes the use of 3D seismic data, seismic attributes, and 

derivative maps from potential field data to study the Mississippi Chert and the Arbuckle 

Group of Osage County, Oklahoma. We investigated the large gravity and magnetic 

anomalies and their association with the Mid-Continent Rift System (MCRS). Seismic 

attribute analysis of the Osage County carbonate reservoirs was effective in studying and 

identifying polygonal, highly coherent, and high amplitude lineaments that strike 

northwesterly and northeasterly within these reservoirs. The fracture lineament densities 

increase from the Mississippi Chert toward the Arbuckle Group and reduce toward the 

Reagan Sandstone. A one-to-one correlation between the Precambrian basement 

structures and the carbonate reservoir could not be established. However, basement 

structure lineaments were found to be parallel in orientation with the trend of lineaments 

seen within the Mississippian Chert and the Arbuckle Group. The northwest-striking 
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lineaments maybe related to the late-Paleozoic tectonism that affected both the 

Precambrian and Paleozoic section of Osage County. On the other hand, the northeast 

lineaments are related to the inherent structural grain of the northeast Oklahoma 

basement rock. Our analysis revealed prominent northeast trending anomalies that 

suggest that the MCRS extends into northern Oklahoma. However, geochronological data 

for basement rocks suggest that this extension would have to be limited to intrusive 

bodies that have little or no subcrops.  

4.2 Introduction 

Osage County located in northeastern Oklahoma and is bounded by the Ozark 

uplift to the east, the Nemaha uplift to the west, the Kansas state boundary to the north, 

and the Arkansas River to the southwest. This county is part of the gently southward- 

sloping stable shelf, which extends into the Anadarko and Arkoma basins (Thorman and 

Hibpshman, 1979) (Figure 4.1). Exposed deformed rocks within the county dip westward 

(Guo and Carroll, 1999). 

Osage County, Oklahoma has been a prolific oil producing area since the 

discovery of the giant Burbank field in 1897. Although oil and gas exploration within the 

Osage County is as old as the seventeenth century, production has been mostly from the 

Cambrian-Ordovician Arbuckle Group that lies unconformably on top of the irregular 

Precambrian basement surface and from Mississippian Chert reservoirs (Thorman and 

Hibpshman, 1979; Franseen et al., 2004). The Mississippi Chert reservoir, informally 

called “Mississippi Chat” by drillers, is formed from exposed and diagenetically altered 

cherty limestone (Rogers, 2001). In Texas alone, Devonian fractured-chert reservoirs 

have produced about 700 million barrels of oil (Fu et al., 2006), many trillion cubic feet 
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of natural gas, and a hundred million more barrels of oil are yet to be produced from 

these reservoirs (Rogers and Longman, 2001). 

For example, a vast majority of oil production from the Arbuckle reservoirs in 

Kansas and Oklahoma occurs on the Central Kansas uplift and the Nemaha uplifts 

respectively (Thorman and Hibpshman, 1979). In fact, the occurrence of these fracture-

controlled reservoirs has been linked to Precambrian basement uplifts (Franseen et al., 

2004), differential compaction and post Arbuckle weathering (Thorman and Hibpshman, 

1979). However, what is not clearly established is the interaction between Precambrian 

basement structures and these fracture-controlled carbonate reservoirs.  

Even with more than 50 years of production from chert reservoirs, a myriad of 

misconceptions and enigmas still surround these reservoirs. For example, chert reservoirs 

are generally associated with carbonate rocks that contain secondary porosity, but Rogers 

and Longman (2001) have documented a deep-marine clastic chert type of reservoir that 

produces from a primary porosity. These Monterey Cherts in California have never been 

sub-aerially exposed and were diagenetically stable in the subsurface where they became 

an early hydrocarbon accumulation site. 

Chert reservoirs are structurally, depositionally, and diagenetically complex. Such 

complexities are reflected in their heterogeneity, which can be caused by faulting and 

fracturing (e.g. Thirty-one Chert reservoirs in the Three Bar field of the Permian Basin, 

Texas (Ruppel and Barnaby, 2001), and carbonate dissolution (e.g. Dickman field in 

Kansas (Nissen et al., 2006) resulting from transportation and deposition of siliceous 

sediments (Ruppel and Hovorka, 1995). These heterogeneities can act as hydrocarbon 

barriers creating compartmentalization when they are shale-filled or hydrothermally 
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altered. Otherwise, the fault and fractures that causes the heterogeneity can act as a fluid 

flow conduit (Davies and Smith, 2006). Thus, it becomes imperative to understand these 

structures and map their distribution within Osage County. The understanding of porosity 

and heterogeneity often associated with chert reservoirs is important for the exploration 

and management of such complex reservoirs. 

For the last decade, independent operators have used conventional interpretation 

methodology from 3D seismic data to study the Midcontinent carbonate reservoirs. 

Increasingly, volumetric seismic attributes such as coherence, curvature, and amplitude 

gradients calculated from the 3D seismic data are being incorporated into the Mid-

Continent exploration workflow to better characterize subtle carbonate features such as 

karsting, tectonic faulting and fracturing, and hydrothermal dissolution that are difficult 

to image from standard 3D seismic (e.g. Nissen et al., 2006). Seismic attributes that are 

sensitive to fractures and impedance have also been used to characterize porosity and 

field scale fractures that are associated with chert reservoirs (Fu et al., 2006). Studying 

chert reservoirs with the aid of seismic and seismic attribute data can effectively help 

delineate lineaments related to fault and fracture distribution within chert reservoirs.  

In this paper, we present the results of potential field and seismic data analysis 

from several 3D seismic surveys acquired in Osage County, Oklahoma. Our efforts are 

directed at the fractured-controlled Ordovician Arbuckle dolomite and Mississippian 

Chert reservoirs that have been faulted, fractured, and diagenetically altered subaerial 

exposure and hydrothermal process. Our objective is to understand the interaction 

between Precambrian structures and the fractured controlled carbonate reservoirs. We 

attempt to establish an association between these structures and the karst reservoirs. In 
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addition, features identified within the Precambrian basement were compared with 

features within the sedimentary section as we examine possible links between these 

features. We believe that the results of this study will be useful in exploration for these 

reservoirs because knowledge about the geometry and their association with or without 

Precambrian basement will be improved. 

We also conducted a regional integrated study utilizing seismic data, regional 

gravity, and regional aeromagnetic data to study the basement rocks and their associated 

potential field anomalies. Our methodology was directed at: 1) Investigating the extent of 

the 1100 Ma (MCRS) across Texas and Oklahoma. Authors such as Jones and Lyons 

(1964), Nixon and Ahern (1988), Robbins and Keller (1990), and Adams and Keller 

(1994) have used gravity and magnetic information to suggest that the MCRS extends 

further into west Texas and New Mexico than previously thought. 2) Studying the large 

Osage gravity anomaly and other intriguing anomalies that may or may not have a 

relationship with the MCRS. Density variation (Cook, 1956), deeper crustal sources 

(Denison, 1981), thinned crust, and Moho-bumps or anti-root (Roark, 1962) have been 

suggested as the cause of this anomaly because of its lack of correlation with regional 

structural geology. 

4.3 Geologic Background 

The present configuration of the Osage County area basement rocks reflects 

subtle large-scale Paleozoic movement; and according to Chenoweth (1968), the 

basement surface, which is an irregular erosional surface with series of domes, controls 

the overlying Paleozoic sedimentary distribution and thickness (Walters, 1946; Thorman 

et al., 1946).  
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Osage County (Figure 4.1) is surrounded by uplifts (Ozark, Nemaha, and Central 

Kansas). The Precambrian basement of these uplifts contains rocks that belong to the 

1370 ± 30 Ma Southern Granite-Rhyolite (SGR) province that blankets most of the 

Midcontinent (Van Schumus et al., 1996). The intensely sheared and mylonitic Central 

Oklahoma granite group underlies the Nemaha uplift that bounds Osage County on the 

west (Figure 4.1). The uplift consists of a number of crustal blocks that are surrounded on 

the east and west by Middle Pennsylvanian reactivated faults (Luza et al., 1978). 

Widespread within the Osage County area are distinct broad domes, covering an 

approximately 320-square-mile area (829 square kilometers) that spatially correlate with 

the Osage gravity anomaly (Figure 4.2). The western part of Osage County, which is less 

deformed than the eastern part, also contains fewer northeasterly and northwesterly 

striking domes, anticlines, and structural basins (Guo and Carroll, 1991). 

Two sets of major Precambrian basement faults have been identified within Osage 

County. The northeast-southwest striking Labette fault that juxtaposes metarhyolitic 

rocks on the northwestern side (up-thrown) against rhyolitic rocks to the southeast 

(downthrown) extends northward from Payne County through Osage County and into 

southern Kansas. In addition, four other northwest-southeast striking faults cross the area 

(Denison, 1981; Guo and Carroll, 1999).  

Common Paleozoic features that occur within the county include north-northeast 

and weakly defined northwest trending broad open-folds and en-echelon normal faults 

(Bass, 1942). These structures developed sporadically throughout Paleozoic time, and the 

dip of their flanks increases with depth mostly within the Cambrian and Ordovician strata 

(Thorman and Hibpshman, 1979). 
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4.4 Precambrian Geology of Northeast Oklahoma and Southeastern 

Kansas  

The Northeast Precambrian rocks of Oklahoma and southeastern Kansas consist 

of petrographically, chronologically related intrusive and extrusive rocks and their 

metamorphic rocks equivalents. These rocks occur as a relatively thin veneer of shallow 

intrusive and extrusive rocks that cover unknown older basement rocks (Denison, 1981). 

These rocks are considered part of the widespread 1400 – 1340 Ma intracratonic 

magmatism that formed the “Western Granite-Rhyolite Province” (WGRP) or SGR 

(Bickford et al., 1986; Van Schmus et al., 1996), which overprints the earlier Proterozoic 

continental orogenic outer tectonic belt (Whitmeyer and Karlstrom, 2007) and extends 

from western Ohio to west Texas (Lidiak et al., 1966; Muehlberger et al., 1967). Relative 

ages of this Oklahoma rock units based on Rb/Sr isotopic dating is about 1285 Ma 

(Denison, 1981). 

Basement rocks of northeastern Oklahoma can be classified into four igneous 

units: one volcanic and three granitic units (the Washington Volcanic Group (WVG), the 

Spavinaw Granite Group (SGG), the Osage Microgranite (OM), and the Central 

Oklahoma Granite Group (COGG)) (Figure 4.2) (Denison et al., 1966 and Denison, 

1981).  

4.4.1 Washington Volcanic Group (WVG) 

The WVG unit covers a large portion of northeast Oklahoma and consists 

predominantly of porphyritic rhyolite, relic welded tuff texture, andesite and meta-

rhyolite, which is the metamorphic equivalent of the rhyolite that occurs around its 

margin (Figure 4.2).  
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4.4.2 Spavinaw Granite Group (SGG) 

This unit outcrops in Mayes County, Oklahoma and extends into southwestern 

Missouri (Figure 4.2). It consists of porphyritic micrographic granite, and these uniform 

epizonal granites are considered the subsurface equivalent of the irregularly shaped 

Wichita Mountain sills in southern Oklahoma (Denison, 1981).  

4.4.3 Osage Microgranite (OM)  

The Osage microgranite is uniform and a strongly porphyritic granite that is 

present in a very small area of northeastern Oklahoma (Figure 4.2) (mainly restricted to 

Osage County). The OM occurs as a relatively thin sill that intrudes into a thick rhyolite 

cover at shallow depth (Denison, 1981). Subsequent removal of the rhyolitic covering by 

erosion exposed the OM.  

4.4.4 Central Oklahoma Granite Group (COGG) 

The central Oklahoma granites are sometimes interpreted as the youngest rocks 

that occupy a vast area in northeastern Oklahoma (Figure 4.2). They are rimmed partly 

around the margins of the shallow intrusive and extrusive basement rocks of northeast 

Oklahoma, regionally metamorphosing the rhyolite into metarhyolite (Denison, 1981). 

Equivalent rocks of the COGG can be seen as outcrops in the eastern part of the Arbuckle 

Mountains. 

4.5 Paleozoic Geology 

The Paleozoic sequences in northeast Oklahoma reflect four episodes of north-

south marine transgression and regression, and each of these sequences is bounded above 
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and below by a regional unconformity. Mesozoic and Cenozoic records are not present 

within northeast Oklahoma except for a late Cenozoic gravel deposit related to the 

glaciation and erosion in the Pleistocene time (Thorman and Hibpshman, 1979). Figure 

4.3 shows a schematic lithologic column for Osage County.  

A late Cambrian sea deposited granite wash or the Lamotte-Reagan Sandstone 

that probably represents reworked lag gravel deposits eroded from exposed basement, 

unconformably on the flanks or crest of the Precambrian basement (Keroher and Kirby, 

1948).  

The Arbuckle Group that unconformably overlies the Lamotte-Reagan Sandstone 

or directly overlies the Precambrian basement includes limestone, dolomite, and 

sandstone units. Where the Arbuckle Group directly overlies the Precambrian basement, 

the lower Arbuckle Group units onlap rugged Precambrian basement, and the upper 

Arbuckle Group is bounded at the top by a major interregional unconformity representing 

a major sea regression and subaerial exposure of the North America craton (Sloss 1963). 

Due to post-Arbuckle erosion and weathering, which enhances porosity and permeability, 

the upper Arbuckle Group contains of a series of karst sinkholes, collapse structures, and 

fractures and joints similar to its Ellenberger equivalent in the Fort Worth basin in Texas. 

It has been suggested that the distribution and alignment of these karst features in the 

Kansas Arbuckle Group are influenced by basement structures (Cansler and Carr, 2001). 

Thus, the complexity of the Arbuckle structures increases in structurally high areas 

(Franseen et al., 2004).  

During the middle Ordovician, the Simpson Sea transgressed and regressed across 

Osage County depositing the Simpson Group. A shallow sea covered most of Oklahoma 
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during the Mississippian period depositing the Mississippian Limestone, which consists 

partly of limestone (chert) and dolomite that lies conformably on top of the Woodford 

Shale. Uplift and either surface/near surface erosion or in-situ weathering of the 

underlying Mississippian Limestone resulted in erosion and diagenetic alteration of the 

top of the this unit. The resulting irregular surface of this highly porous, hard, and tight 

Mississippian Chert and the dissolution of calcite create secondary porosity that makes 

the Mississippi Chert a potential hydrocarbon reservoir. In north-central Oklahoma and 

south-central Kansas, the Mississippian Chert present between the Pennsylvanian and 

Mississippian unconformity occurs as widespread, heterogeneous reservoirs that are 

generally not continuous (Rogers, 2001). 

4.6 Previous Geophysical Works 

In 1948, a joint effort between the U S Geological Survey and U S Coastal and 

Geodetic Survey was one of the first geophysical collaboration done in northeast 

Oklahoma. The effort resulted in the collection of regional gravity data around northeast 

Oklahoma and southeast Kansas. Cook (1956) recognized that the Osage anomaly did not 

correlate with regional geology. Roark (1962) suggested the cause of this anomaly to be 

due to crustal thinning, Moho antiroot or bump. 

A lineament study that consisted of surface and subsurface fracture analysis was 

conducted by comparing satellite images and aerial photographs from Osage County 

(Guo and Carroll, 1999). The results of this study showed an orientation correlation 

between northeast-southwest and northwest-southeast surface lineaments with subsurface 

features. 
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4.6.1 Mid-Continent Rift System 

The Middle Proterozoic Mid-Continent Rift System (MCRS) of North America is 

a 1100 Ma failed rift that extends for more than 1243 miles (2000 kilometers) (Hinze et 

al., 1997) from Lake Superior, through northwestern Wisconsin, southeastern Minnesota, 

southwestern Iowa, and southeastern Nebraska toward central Kansas. Jones and Lyons 

(1964), Nixon and Ahern (1988), Anderson and McKay (1989), Robbins and Keller 

(1990), and Adams and Keller (1994) suggested that dikes related with the MCRS mafic 

intrusion extend into Oklahoma. Other authors that have shared similar thoughts include 

Yarger (1985) and Xia et al. (1996). However, (Berendsen, 1997) and Bickford (1988) 

could not validate such an extension via drill holes. Repeated reactivation of Paleozoic 

structures (Berendsen, 1997), covering the MCRS by Phanerozoic cover, and rift offset 

(Xia et al., 1996) are some of the explanation given as the reason why the MCRS cannot 

be seen directly in Oklahoma.  

4.7 Data and Methodology 

4.7.1 Potential field data 

The association of the MCRS with prominent gravity and magnetic anomalies 

makes the potential field methods an effective tool to investigate the MCRS. The datasets 

used in this study include aeromagnetic data that is part of the North American Magnetic 

Map project grid (http://crustal.usgs.gov/namad), which is the result of a combined effort 

of the United State Geological Survey (USGS), Geological Survey of Canada (GSC) and 

Consejo de Recursors Minerales of Mexico (CRM). This dataset contain grids obtained 

from the Geological Society of America’s (GSA) Decade of North American Geology 

http://crustal.usgs.gov/namad�
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(DNAG) program and is available for download at: 

(ftp://ftpext.usgs.gov/pub/cr/co/denver/musette/pub/open-file-reports/ofr-02-0414).  

In addition to the aeromagnetic grid, gravity data points were downloaded from a 

community online gravity database that is maintained by Pan American Center for Earth 

and Environmental Studies (PACES) at the University of Texas at El Paso (UTEP) 

(http://research.utep.edu/paces). In addition, in the summer of 2008, I collected additional 

200 gravity readings to better constrain the Osage anomaly. The gravity points were 

spaced at 200 m (656 ft) and acquired along existing roads using a LaCoste Romberg G-

1115 gravimeter and a Worden 112 gravimeter. We reduced the gravity data using the 

standard data reduction program of Holom and Oldow (2007), which utilizes a Bouguer 

reduction density of 2.67 g/cc (2670 kg/m3). The gravity spreadsheet used for this 

reduction conforms to the United State Geological Survey (USGS) and standard format 

of the working group of the North American Gravity Database Committee (Hildenbrand 

et al., 2002; Hinze et al., 2005). We compared the gravity spreadsheet results with results 

generated from the software written by Mike Webring of the USGS, which is the same 

program from which the PACES gravity datasets were derived,and were satisfied with 

the spreadsheet results. Thus, a simple residual Bouguer anomaly map was generated 

from all these gravity points (Figures 2 and 4a). 

Potential field data enhancement and filtering techniques 

Potential field anomalies contain a wide range of signals originating from various 

sources and depths, and there are times when a local anomaly needs to be extracted from 

a regional anomaly. The techniques of enhancing an anomaly of interest from the 

Precambrian basement allows us to be able to compare Precambrian basement structures 

ftp://ftpext.usgs.gov/pub/cr/co/denver/musette/pub/open-file-reports/ofr-02-0414�
http://research.utep.edu/paces�
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with sedimentary structures identified on seismic and seismic attribute data. All potential 

field enhancement and filtering are performed using modern magnetic and gravity 

processing and interpretation software. 

The gravity and aeromagnetic data was gridded with a grid spacing of 5000m 

(16404 ft) and 1000 m (3281 ft) respectively. Before any interpretation could be done on 

aeromagnetic data, the data was reduced-to-the pole (RTP) in order to remove magnetic 

anomaly distortion caused by varying magnetization inclination and azimuth. This linear 

transformation transforms a total magnetic intensity field into a vertical component field 

such that the magnetic anomaly will lie directly over its causative source (Kis, 1990).  

To highlight the effect of anomalies within the Precambrian basement, we 

generated a residual Bouguer anomaly and a residual total magnetic intensity (TMI) map 

from the complete Bouguer anomaly and the RTP TMI grids, which are shown in (Figure 

4.4).  

To highlight lateral or abrupt changes in magnetization, which indicate lateral 

changes in anomalies generally associated with faults or source contacts, we computed 

the horizontal gradient magnitude (HGM), tilt derivative, horizontal derivative of the tilt 

derivative and analytical signal for both gravity and aeromagnetic datasets. Derivative 

maps generated are shown in Figures 4.5. Although these edge-detecting derivatives 

enhance lateral discontinuities, it is the interpreter’s responsibility to provide a geological 

acceptable interpretation. Mathematical foundation and details on these gradient methods 

are available in papers such as Grauch and Cordell (1987), Roest et al., 1992, Miller and 

Singh (1994); Blakely (1996), Verduzco et al. (2004), and Li (2006). For example, 

Grauch and Cordell (1987) cited an example of where the gradient from a sloping 
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interface could lead to maxima with two edges. This observation could be misinterpreted 

as two separate interfaces separating three geological units. 

We also applied directional filters to our data. Directional filters isolate linear 

anomaly of interest that might have geological or tectonic implication to potential field 

map. Results from this filter allowed us to be able to compare anomaly trends associated 

with the MCRS. We were able to isolate anomalies that have inherent trends parallel to 

those of the (MCRS) and assess whether the MCRS extends southward into Oklahoma 

(Figure 4.6).  

4.7.3 Seismic data 

To understand the interaction between sedimentary features and structures within 

the Precambrian basement, we interpreted four different 3D seismic surveys that the 

Osage Nation and Spyglass Energy LLC provided us using modern interpretation 

software (Figure 4.1). The seismic data provide spatially and depth-limited structural 

details but at higher resolution than the potential field data. In addition, the seismic data 

give insight into the geometry and seismic expression of the chert reservoirs. 

We began our interpretation by mapping the Arbuckle Group and the Mississippi 

Chert horizons. In addition to the time-structure map, we generated integrated seismic 

attributes for both horizons, which are designed to enhance geometric features such as 

fractures, faults, karst, and differential compaction that are not easily seen in the raw 

seismic data. The physical and geometrical features in the attribute use models of dip and 

azimuth, waveform similarity, amplitude, and frequency content from adjacent seismic 

samples, which can then be rendered on a computer for interpretation. Attributes that we 

found useful include coherence, most-negative and most-positive curvature, total energy 
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and energy-weighted coherent amplitude gradients; examples of their application and 

mathematical concepts in available in Chopra and Marfurt, 2007.  

4.8 Data Analysis and Interpretation 

Basement rocks generally display incoherent signals on seismic data. This is often 

due to lack of signal from basement depths or to processing flows that do not emphasize 

basement depths. Very seldom do we see coherent intra-basement reflection similar to 

that we observed on seismic data from Osage County (Figure 4.7). Beneath the base of 

the top of the basement and below the nearly horizontal Paleozoic section of Osage 

County, we identified many highly coherent dipping intra-basement reflectors. Between 

the bright intra-basement reflectors and the top of basement are reflecting sequences that 

we interpret to be meta-igneous or meta-sedimentary (Figure 4.8). McBride et al. (2003) 

identified similar broad “basinal” sequences bounded below by three highly coherent 

layers beneath the Paleozoic Illinois basin. 

Generally, within the granite-rhyolite province, dipping intra-basement reflectors 

are associated with volcanics (Hinze et al., 1997; Richard et al., 1997). For example, 

Schaming and Rotstein (1990), and Schlich et al. (1993) interpreted dipping intra-

basement reflectors on seismic data from the Kerguelen Plateau in south Indian Ocean, as 

basaltic flows that are associated with volcanic margin. Hinze et al. (1997) and Richard et 

al. (1997) also interpreted dipping intra-basement reflectors seen in the southern margin 

of the MCRS of western Lake Superior and Pre-Mount Simon basins of western Ohio as 

Keweenawan volcanic and eastern granite-rhyolite rocks respectively. 

The Osage intra-basement reflectors display a positive reflection coefficient 

(positive acoustic boundary) that is caused by an increase in acoustic impedance resulting 
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in a red (trough) blue (peak) red (trough) pattern (see Figure 4.7 inset). The base of the 

intra-basement reflector displays a decrease in acoustic impedance marked by a change 

from peak to trough. The increase in acoustic impedance at the top intra-basement 

reflector (similar to what can be observed at a hard water bottom) also has a positive 

impedance change. 

4.8.1 Seismic description of Osage basement reflectors 

To understand the nature and geometry of these bright coherent intra-basement 

reflectors, we mapped the intra-basement reflectors from the available 3D seismic data. 

The intra-basement reflectors exhibit a basinal geometry with the high end occupying the 

northeastern end of the survey (Figure 4.8a). This kind of geometry is also similar to the 

sill geometry described in Hansen et al. (2004). On Figure 4.8b, the geometry observed is 

similar to growth or detachment faults. However, the intra-basement reflectors crosscut 

each other in Figure 4.8c. This crosscutting relationship is generally seen in an igneous 

intrusion setting and according to the law of crosscutting relationship; a younger igneous 

intrusion always crosscut an older igneous body that it cuts through. Inset in Figure 4.8b 

indicates the general orientation of the reflectors to be northwest. Using the intra-

basement reflectors dip, we classify these reflectors into two groups (I and II). Reflectors 

in group I dip south-southwest and reflectors in group II dip to the east (Figure 4.8c). In 

addition to these geometries, other 3D data interpreted show interactions of intra-

basement features with younger sedimentary strata (Figure 4.9a-c). This suggests that 

both the intra-basement reflectors and the Paleozoic section have been affected by the 

same tectonic event. 
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Based on the crosscutting relationship of the intra-basement features shown in 

Figure 4.8c, reflector group II (blue line) crosscuts reflector group I, which implies that 

reflector group I, which strikes northwesterly, is oldest. 

The areas of the 3D seismic surveys (Figure 4.1) is part of the granite-rhyolite 

province (Denison, 1981); thus, we interpret the basement reflectors as being from the 

lower portion of the eastern granite-rhyolite province units. 

4.8.2 Potential field expression of basement features 

Anomaly Identification and Interpretation 

The potential field anomalies analyzed around Osage County generally display 

simple Bouguer gravity anomalies and complex magnetic anomalies (Figures 4.2). We 

specifically investigated the broad gravity high “Osage anomaly” (OS1 on Figure 4.4a) 

(Cook, 1956; Denison, 1981) that occupies a vast majority of Osage County, the elongate 

north-northwest gravity high anomaly that occurs west of the Nemaha uplift (OS2 on 

Figure 4.4a), and the elongated north-northeast gravity high that abuts against the Wichita 

uplift (OS3 on Figure 4.4a). Robbins and Keller (1990) indentified gravity anomaly OS3 

and interpreted this anomaly via 2D gravity modeling as dense Keweenawan volcanic 

rock. Our integrated approach was based on understanding these anomalies in the context 

of all the available geological and geophysical data. 

The broad high anomaly on the residual anomaly map (OS1) (~ 20 mGal, ~150 

nT) has an approximate length and width of 99 km and 75 km respectively (Figures 4.4). 

This suggests that the source of this high density, high magnetic susceptibility could be 

deep and broad. Gravity and magnetic derivative maps suggest a northwest trending 

anomaly (Figures 4.5). However, the directional filtering map in Figures 4.6 suggests 
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both a northwesterly and northeasterly trending anomaly. OS1 anomaly occurs within the 

Osage Microgranite and Washington Volcanic Group. At locations where the Spavinaw 

Granite Group are present, this kind of prominent high gravity response is lacking 

(Figures 4.4). 

High gravity and magnetic value (~18 mGal, ~200 nT) dominate the 83 km long 

and 48 km wide OS2 anomaly (Figures 4.4). Occurring south of the MCRS relics, 

gravity, a magnetic derivative map, and directional filter maps (Figures 4.5 and 4.6) 

suggest a northwest trending anomaly. The high frequency nature of this elongate 

anomaly suggests a shallow source.  

The anomaly that abuts against the Wichita uplift (~10 mGal) is a 75 km long and 

33 km wide and trends northeast (OS3; Figures 4.4 - 4.6). The magnetization displayed 

by this elongated anomaly (-250 nT to the north +115 nT to the south) is complex but 

forms a distinct signature.  

Based on the gravity data and its derivative maps alone, one could assert that the 

MCRS extends across Oklahoma, abutting against the Southern Oklahoma aulacogen 

(Figure 4.5).  

Directional filters aimed at enhancing trends of the anomalies show that the OS1 

anomaly has both northwestern and northeastern trending components. OS2 has a 

characteristic northwest and northeast anomaly trend while OS3 anomaly exhibits trend 

that is consistent with the northeast trend displayed by the MCRS (Figures 4.6). Thus, 

OS2 anomaly can be interpreted to be related to be part of the MCRS, the same 

conclusion cannot be made about the OS1 anomaly. 
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Age dating from Precambrian wells available from the work of Denison (1981) 

and Van Schmus et al. (1993) only provide one date as young as the MCRS. The Texaco 

Inc. Kohpay well (Table 4.1), which is the only well that penetrated the Osage 

Microgranite and close to OS1 gave a Rb/Sr age of 1183 ± 46 Ma (Figure 4.6). However, 

the wells to basement are sparse to the south and the anomalies could be from intrusion 

that do not subcrop. In a similar case, a massive subcrop 1.1 Ma mafic intrusions from 

the Central basin platform of west Texas, which have been missed by previous wells, was 

penetrated by the Nellie #1 well that that was drilled into about 5 km of basement rocks. 

The well was centered on a gravity anomaly maximum and a well that is just 5 km north 

surprisingly tested a granitic and metamorphic basement rocks (Keller et al., 1989).  

4.8.3 Seismic attribute expression of chert reservoirs from Osage County 

Mississippi Chert and Arbuckle Group Time-Structure and Seismic Attribute Mapping  

We evaluated Mississippi and Arbuckle Group reservoirs comparing structures 

and lineation on both seismic and seismic attribute data. Structural mapping of both 

reservoirs shows generally southeast dipping undulating horizons (Figures 4.10). The 

chert horizons display an irregular surface that is typical in a karsted carbonate region. 

Structural complexity increases from the shallow Mississippi Chert to the deeper 

Arbuckle Group. We also noted an east-west feature in the southern portion of the 

seismic data (Figures 4.10). 

Coherence, curvature, total energy, and inline gradient attributes computed from 

the seismic data facilitates mapping of karst features and associated fracture patterns. The 

coherence horizon-slice map near the Mississippi Chert shows the presence of circular 

low-coherence features that we interpret as collapse features (red arrows on Figure 
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4.11a). At the Arbuckle Group level, the incoherent features are more dominant. We 

noticed that some of these low coherence features contain very coherent linear features 

(Figures 4.12a and 4.13a). 

Figures 4.11b-4.14b shows the most-negative horizon slice that enhances valley 

or bowl shaped features. We notice that most-negative curvature attributes enhance the 

lineaments that we interpret as fractures and faults. We also identified increase number of 

lineaments especially at the top and within the Arbuckle Group (Figures 4.11b-4.13b). 

We manually mapped most of the coherent and most-negative lineaments plotted them as 

a rose diagram. The rose diagram plots in Figures 4.12b-4.14b inset indicate two sets of 

orthogonal lineaments (northeast-southwest and northwest-southeast). We suggest that 

the northeast striking lineaments are similar to the solution-enhanced faults and fractures 

reported by Nissen et al. (2006) in the Mississippian reservoir of the Dickman field in 

Kansas. The long anomalous northeast-striking lineament (yellow lineament) on the rose 

diagram is the fault seen on the southeast corner of the most-negative curvature horizon 

slice (Figures 4.12b-4.14b). 

Based on our interpretation, the density of the northwest striking lineaments 

increase toward the top and below the Arbuckle Group (Figures 4.11b-4.13b). However, 

lineaments densities is reduced within the Reagan Sandstone that lies on top the basement 

rocks (Figure 4.14b). The blended image of the most-negative curvature (Figure 4.15), 

the total energy (Figure 4.16), and the coherence (Figure 4.13a) attributes with the inline 

gradient attribute (Figure 4.17), show these lineaments to be nearly polygonal in shape. 

The lineaments occur as high amplitude and high total energy (Figures 4.18-4.20). Figure 
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4.20 also shows these lineaments to be highly coherent and we suggest that the amplitude 

and coherent nature of these lineaments can be due to the content material within them. 

Based on the seismic analysis result, we suggest that lineaments over the 

Mississippi Chert and Arbuckle Group have a general northeasterly and northwesterly 

strike. Our finding is consistent with a surface and subsurface remote sensing study of 

lineaments conducted by Guo and Carroll (1999). These authors also identified a 

northeast-southwest and northwest-southeast striking surface lineament, which correlated 

with subsurface lineaments (Figures 4.21).  

Precambrian Basement Lineaments  

Rose diagrams from regional maps of the potential field derivatives sensitive to 

basement structures, display lineaments that are parallel to the northwest and northeast 

strike direction of lineaments identified from the local seismic and seismic attributes 

images (Figures 4.22). However, the northwest-striking anomalies on both derivatives 

map shown in Figures 4.22, appear longer with more lineament density than the northeast 

striking anomalies. Thus, we suggest that the northeast-southwest Precambrian structures 

reflect the regional inherent structural fabric of northeastern Oklahoma.  

Based on the similarity in orientation of the lineaments seen within the Paleozoic 

section and Precambrian basement of Osage County, we suggest that the Precambrian 

basement controls the Mississippian Chert and Arbuckle Group reservoirs.  

4.9 Conclusions 

This paper describes an integrated geophysical analysis that utilizes seismic data 

and potential field data to study Precambrian basement controls on carbonate reservoirs 

in Osage County in northeast Oklahoma. Seismic attribute analysis of the Mississippi 
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Chert and the Arbuckle Group of Osage County was effective in studying and identifying 

lineaments within these reservoirs.  

Our fracture analysis study on the most-negative curvature and rose diagram 

revealed that lineaments within the study area strike northeast-southwest and northwest-

southeast. These lineaments interpreted as fractures and their density increase from the 

Mississippi Chert downward toward the Arbuckle Group but decreases from the 

Arbuckle Group toward the Reagan Sandstone. These lineaments also appear as 

polygonal and are highly coherent with high amplitude on the most-negative curvature, 

coherence, and total energy attributes respectively.  

Basement structure lineaments were found to be parallel in orientation with the 

trend of lineaments seen within the Mississippian and Arbuckle Group. The northwest-

striking lineaments are suggested to be related to the late-Paleozoic tectonism that 

affected both the Precambrian and Paleozoic section of Osage County. On the other hand, 

the northeast lineaments are related to the inherent structural fabric of the basement rock. 

Thus, we suggest that the Precambrian basement controls the Mississippian Chert and 

Arbuckle Group reservoirs. Thus, for Mississippi Chert and Arbuckle group exploitation, 

structurally high areas that are fractures will be the primary target area to explore for 

these reservoirs. In addition, highly coherent area with high total energy is good indicator 

of a viable chert reservoir. Therefore, these parameters mentioned above are what 

explorers in Osage County should look for when exploiting for Mississippi Chert and 

Arbuckle Group reservoirs.  

In our investigation of the possible extension of the Mid-Continent Rift System 

(MCRS) through Oklahoma and toward the Texas border, the potential field anomalies 
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indicates that the Osage anomaly (OS1) centered within Osage County is not related to 

the MCRS. Based on the orientation of the OS2 and OS3 anomalies, which occur west of 

the Nemaha uplift and abut the Wichita uplift respectively, we suggested that both 

anomalies are related to MCRS extension through Oklahoma. However, we could not 

substantiate this conclusion with a geochronological age dating data at this time. 
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Table 4.1. Wells in north-central Oklahoma that penetrates Precambrian basement. The depth to the top of basement is listed under  

column title “BASEMENT TOP (ft)”. Column title “BASEMET (ft)” is the subsea depth, which is the basement depth relative 
to mean-sea-level (MSL). Isotope ages were compiled from Denison (1981) and Van Schmus et al. (1996). 

 

 

API OPERATOR LEASE WELL # QUARTER SECTION TOWNSHIP RANGE YEAR

TOTAL 
DEPTH 

(ft)

SURFACE 
ELEVATION 

(ft)
BASEMENT 

TOP (ft)
BASEMENT 

THICKNESS (ft)
BASEMENT 

(ft) LATITUDE LONGITUDE ROCK AGE SOURCE ISOTOPE AGE

13320229 PAWNEE PETROLEUM CO. RENTIE 1 W2 NW NE 23 9N 6E 1968 7261 886 7224 37 -6338 35.24469 -96.64333 1242 ± 21 Ma Denison, (1981) Rb/Sr

03715553 CENTRAL COMMERCIAL JOHNSON HAY 3 SW NW SW 10 17N 10E 1930 or 1937 4282 793 4278 4 -3485 35.96382 -96.24289 1212 ± 48 Ma Denison, (1981) Rb/Sr

11330447 TEXACO INC. OSAGE C 1A C NE SW 24 20N 11E 1965 3690 1002 3634 56 -2632 36.19272 -96.08434 1286 ± 24 Ma Denison, (1981) Rb/Sr

11303718 NORBLA OIL LYMAN 2 NW SE SW 24 22N 9E 1963 2972 860 2933 39 -2073 36.36426 -96.29443 1281 ± 48 Ma Denison, (1981) Rb/Sr

11315912 CITIES SERVICE OIL CO. OSAGE LOT 1-SWD NW SE NE 8 23N 11E 1953 3032 762 3007 25 -2245 36.48741 -96.14216 1233 ± 50 Ma Denison, (1981) Rb/Sr

11306916 TEXACO INC. L KOHPAY 16WS C NE NE N 29 25N 8E 1963 2848 1088 2813 35 -1725 36.62072 -96.45967 1183 ± 46 Ma Denison, (1981) Rb/Sr

07101424 ANDERSON-PRICHARD OIL CORP. J WELSH 28 NW NE SW 17 28N 1E 1918;1956 4408 1138 4406 2 -3268 36.90384 -97.22348 1228 ± 56 Ma Denison, (1981) Rb/Sr

EAGLE PICHER MINING CO. BEAVER 43-C NE NW NE 19 29N 23E unknown 1650 833 1610 40 -777 36.98608 -94.85449 1383 ± 8 Ma Van Schmus et al., (1996) Zircon

10937486 CITIES SERVICE CO. FARLEY 5 SW NE NW 19 11N 2W 1947 8344 1249 8272 72 -7023 35.41797 -97.45326 1220 ± 73 Ma Denison, (1981) Rb/Sr

10300893 OKLAHOMA NATURAL GAS CO. HARDROW 1 NW SE 15 23N 2W 1964 5508 959 5464 44 -4505 36.46829 -97.39674 1381 ± 29 Ma Denison, (1981) Rb/Sr

00321255 CHAMPLIN PETROLEUM CO. RAY N SMITH 1 E2 SE NW 1 27N 10W 1985 7300 1161 7239 61 -6078 36.84963 -98.22701 1380 ± 24 Ma Van Schmus et al., (1996) Zircon

AMAX DAC 2 SE SE NE 6 20N 23E 1723 1165 1674 49 -509 36.24235 -94.88778 1270 ± 32 Ma Denison, (1981) Rb/Sr
11701034 SINCLAIR OIL & GAS CO. LOUISA M JONES 46 W2 SE SW 20 21N 8E 1962 or 1988 2945 961 2929 16 -1968 36.27682 -96.47240 1224 ± 51 Ma Denison, (1981) Rb/Sr
14502643 HENDERSON OIL CO KELLEY 1 SW SW NW 18 17N 17E 1965 2505 553 1828 677 -1275 35.95263 -95.54615 1299 ± 26 Ma Denison, (1981) Rb/Sr

101 



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

102
o

101
o37

o

36
o

100
o

99
o

98
o

97
o

96
o

95
o

35
o

Exposed major faults

Subsurface fault major faults

Overthrust faults

Relative movement on faults

Surface rock contacts

Structure plunge direction

Basement Uplift

Detached Uplift

Deep Basin

Shallow/ Shallow Basin

Precambrian penetration wells

Precambrian basin penetration wells

Subsurface rock contacts

40 Miles0

Osage 
County

Figure 4.1. Map shows the major geologic province in Oklahoma, geologic boundaries, structural boundaries, the study area (Osage County),  
seismic data used for this study (colored boxes), and wells that penetrate the basement. Potential field anomalies around the Osage 
county, Nemaha uplift, and Anadarko basin were investigated. (Map adapted from Northcutt and Campbell, 1995 Map).  
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Figure 4.2. Simple residual Bouguer anomaly map of the Midcontinent United States. Inset  
map shows the basement rocks identified by wells in central Oklahoma overlain on residual 
Bouguer anomaly map. Dashed yellow line shows the outline of the Osage anomaly that lacks 
spatial correlation with regional structural geology. (See texts for description of the basement 
rocks). (Map modified after Denison’s (1981) map of basement rocks in central Oklahoma). 
Inset map shows the Osage anomaly and gravity points collected in the summer of 2008 as part 
of dataset for this study. Black dots represent gravity stations. Pink-fault boundaries 
downloaded from (http://www.ogs.ou.edu/geolmapping.php ) 
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Figure 4.3. Schematic stratigraphic column for Osage County. Extracted from  
Zeller (1968), Thorman and Hibpshman (1979), and Franseen (2004). 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
  
 
 
 
 
 
 

Figure 4.4. (a) Residual Bouguer anomaly map (b) Total magnetic intensity (TMI) map showing the relic of the MRS, Osage anomaly, other  
anomalies investigated in this study, as well as the Precambrian basement geology of Osage County. Magnetic anomaly over the 
anomalies and the relics of the MCRS are complex and inconclusive when compared with the gravity anomaly in (a).  
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Figure 4.5. Derivative maps computed on the residual gravity grid. (a) First vertical derivative (b) Horizontal gradient magnitude (c) Tilt  
derivative and (d) Analytical signal. Corresponding derivative maps on TMI anomaly grid. (e) Horizontal gradient magnitude (f) 
Horizontal derivative of the tilt derivative (g) Tilt derivative and (h) Analytical signal. (See text for interpretation). 
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Figure 4.6. Directional filter of the 90 km high-pass filtered Bouguer anomaly map that  
enhances (a) northeast structures related to the MRS and (b) northwest structures. 
Age dating from Precambrian well (black dots) were from Van Schmus et al.’s 
(1993) and Denison’s (1981) work. Inset map shows rose diagram showing 
anomaly trends (a) northwest and (b) northeast
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Figure 4.7. 3D Visualization of seismic data from Osage county showing the geometry of intra- 
basement reflectors beneath the nearly horizontal Paleozoic section. Inset shows the top of 
the intra-basement reflector and polarity of one of the seismic lines. 
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Figure 4.8. Seismic section (a), (b), and (c) shows the intra-basement reflectors  
indicated by yellow arrows. Black line is the top basement. Between the 

 intra-basement reflectors and the top basement are suggested meta-
 sedimentary section. (c) Seismic section shows crosscutting relationship of 
 the intra-basement reflectors, which we classed into type I and II based on 
 reflector dips. Inset map shows time shows time structure map over the 
 basement reflectors from two seismic surveys. 
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Figure 4.9. Seismic section (a), (b), and (c) shows the intra-basement reflectors  
indicated by yellow arrows from Osage seismic survey. (d) Map showing the 
location of the seismic section. Processes that affect the intra-basement 
reflector also influence the sedimentary sections also. 
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Figure 4.10. Time structure map on (a) the Mississippi Chert and (b) top of Arbuckle Group from two Osage county surveys. Map  
shows a general southeast dipping undulating and irregular surface. Features marked with black arrows suggest residual 
hills associated with a karsted carbonate region. 
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Figure 4.11. (a) Coherence and (b) most-negative curvature horizon slice along Mississippi Chert from two Osage county surveys with overlain  
time-structure contours. Red-arrows indicate the location of collapse features, magenta-arrows indicate networks of fracture lineaments 
enhanced by curvature attributes. Circular features dominate curvature along the Mississippi Chert and no preferred order of lineament is 
identified. 
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Figure 4.12. (a) Coherence and (b) most-negative curvature horizon slice at the top of Arbuckle Group from two Osage county surveys  with  
overlain time-structure contour. Magenta-arrows indicate networks of fracture lineaments enhanced by curvature attributes, and yellow 
arrows indicate low coherence feature that spatially correlate with structurally high area. We manually mapped these lineaments to 
generate the inset rose diagram shown in Figure 4.12b. Inset rose diagram show lineaments orientation and density, which increases 
below Arbuckle Group (see Figure 4.13. Anomalous northeast trending lineament (yellow petal) on the rose diagram correspond to the 
northeast trending lineament that we interpreted as fault located on the southeast corner of the lower survey.  

113 



 

a) b)

+127

-127

Positive

Negative

Zero

5 km 5 km

Figure 4.13. (a) Coherence and (b) most-negative curvature horizon slice below Arbuckle Chert from two Osage county surveys with overlain  
time-structure contour. Magenta-arrows indicate networks of fracture lineaments enhanced by curvature attributes, and yellow arrows 
indicate low coherence feature that spatially correlate with structurally high area. We manually mapped these lineaments to generate the 
inset rose diagram shown in Figure 4.13b. Circular features dominate curvature along the Mississippi Chert and no preferred order of 
lineament is identified. Inset rose diagram show lineaments orientation and density, which increases below Arbuckle Group. Anomalous 
northeast trending lineament (yellow petal) on the rose diagram correspond to the northeast trending lineament that we interpreted as fault 
located on the southeast corner of the lower survey.  
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Figure 4.14. (a) Coherence and (b) most-negative curvature horizon slice near the Reagan Sandstone from two Osage county surveys with overlain  
time-structure contour. Red-arrows indicate the location of collapse features, magenta-arrows indicate networks of fracture lineaments 
enhanced by curvature attributes, and yellow arrows indicate low coherence feature that spatially correlate with structurally high area. We 
manually mapped these lineaments to generate the inset rose diagram shown in Figure 4.11f-h. Circular features dominate curvature 
along the Mississippi Chert and no preferred order of lineament is identified. Inset rose diagram show lineaments orientation and density, 
which increases below Arbuckle Chert. Anomalous northeast trending lineament (yellow petal) on the rose diagram correspond to the 
northeast trending lineament that we interpreted as fault located on the southeast corner of the lower survey. Toward the Reagan 
sandstone and the basement, the density of the northwest trending lineaments diminishes. 
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Figure 4.15. Most-negative curvature attribute extracted below the top Arbuckle Group. This attribute show the polygonal shape of  
the lineaments. 
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Figure 4.16. Total energy attribute extracted below the top Arbuckle Group. This attribute show the high amplitude nature of the  
lineaments. 
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Figure 4.17. Inline gradient extracted below the top Arbuckle Group. This attribute show the polygonal shape of the lineaments. 
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Figure 4.18. Co-rendering most-negative attributes with inline gradient. This attribute combination better enhances the lineaments  
shape with added benefit of a shaded relief display. 
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Figure 4.19. Co-rendering total gradient attributes with inline gradient. This attribute combination better enhances the lineaments  
amplitude with added benefit of a shaded relief display. 
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Figure 4.20. Co-rendering coherence attributes with inline gradient. This attribute combination better enhances the lineaments  
coherent nature with added benefit of a shaded relief display. 
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(a) (b)

(c) (d)

Figure 4.21. Rose diagrams showing the lineaments trend computed from aerial  
photograph and satellite images of (a) surface and (b) subsurface structures 
within the Osage County. (c) Schematic diagram shows the trend of 
structures within the Precambrian basement. (d) Major lineament trend 
within the Osage County trends northeast-southwest and northeast-
southeast (Adapted from Guo and Carroll, 1999).   



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

Figure 4.22. (a) Horizontal gradient magnitude and (b) horizontal derivative of the tilt derivative map with corresponding rose diagrams  
showing Precambrian structural trends.  
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Chapter 5: A Geophysical Study of Peru’s Subandean Basins and Their 

Regional Setting (Paper to be submitted to the Journal of South 

America Earth Sciences) 

5.1 Abstract 

The integration of potential field data with seismic and well data has helped 

define the major structural features and regional architecture of the Ucayali basin area of 

Peru. Horizontal gradient magnitude and the horizontal derivative of the tilt derivative of 

the total magnetic intensity (TMI) data suggest two trends of basement lineaments. The 

northwest-southeast trending lineaments interpreted as Precambrian basement structures 

are sub-parallel to the late Paleozoic fold and thrust belts that resulted from the 

shortening associated with the formation of the Andes. These fold and thrust belts were 

reactivated along the zones of weaknesses that already existed in the Precambrian 

basement. The east east-northeast lineaments are located beneath the Fitzcarrald Arch 

that lies above the buoyant Nazca ridge. We interpret this lineament as part of the Ene 

Pisco – Abancay Fitzcarrald tectonic lineament, which is one of the five tectonic domains 

in these region and is oriented east-northeast. Gravity modeling suggests that the crustal 

thickness beneath the Peru increases from the north of the Ucayali basin toward the 

south. 

Regional gravity modeling, which was constrained with seismic profile data, 

showed that the dip of the subduction zone and the crustal thickness increase southward  

as earthquake studies have inferred. Two dominant wavelengths of anomalies can be 

identified on the integrated local gravity models. We interpret the longer wavelengths to 
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be due to relief on the Precambrian basement that probably dates from the rifting that 

broke-up the Neoproterozoic Rodinian supercontinent and produced a passive margin that 

remained largely undisturbed until at least the late Paleozoic. Major structures such as the 

Cushabatay, the Contaya, and the Shira Uplifts are also identified on the models 

5.2 Introduction 

The Andes and associated structures form one of earth’s largest orogenic belts. 

However, in terms of modern geophysical studies, Peru is relatively unstudied. Petroleum 

exploration has caused interest in this region to increase, and sparsely explored Peruvian 

Subandean structures such as the Ucayali and Marañon basins (Figure 5.1) have been 

subject of some recent regional research and petroleum evaluations (e.g., Chung, 1999; 

PARSEP, 2002). In addition, there have been many lithospheric-scale studies of the 

Altiplano and Andes south of Peru.  

In eastern Peru, Chung (1999) conducted a regional gravity and magnetic analysis 

of the basement structures. A high correlation between the Andean structures and positive 

gravity anomalies, and intra-basement structures (faults and/or intrusive bodies) control 

on the structural style of the Ucayali basin were noted. We have access to new data in the 

area of the Ucayali and Marañon basin and have undertaken a new integrated study of 

this region with the goal of providing a new insight into the underlying geology of these 

Subandean basins. In this study, we have expanded on what has been done previously by 

carefully conducting a highly integrated analysis of the Ucayali basin region in particular. 

Our focus was on improving the understanding the geometry of the Ucayali basin as well 

as the underlying basement structure and its interaction with Paleozoic or younger 

structures. Reactivation of some pre-existing basement faults system has been known to 
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control paleo-depositional, deformation, metamorphism, and magmatic history within the 

Subandean foreland basin (Jaillard et al., 200; Jacques, 2003). North-south Subandean 

intrabasin highs and major basin-bounding arches such as the Cushabatay uplift and the 

Contaya uplift are associated with basement fault reactivation and many of these 

basement features are difficult to map on seismic reflection data (Figure 5.1). However, 

potential field data can effectively be used to map such basement features. We used 

derivative maps generated form aeromagnetic data to map the basement structures of the 

Subandean basins.  

From a regional perspective, the Peruvian Andes play a crucial role in 

understanding the northern Andes and the Central Andes, which are characterized by an 

accretionary style of subduction and a high plateau style of orogenesis respectively 

(Gerbault and Hérail, 2005). Key efforts in this area have been focused on understanding 

the structure, geometry and effect of the subducting oceanic Nazca plate on continental 

deformation and the along strike variation of the structural styles of the Andean foreland 

(Kley et al., 1999). Authors such as Jordan et al. (1983) and Tassara (2005) have 

investigated the relationships between flat-slab subduction (5-10
o
) along the Andean 

margin (latitude 2
o
-15

o
S) (Jacques, 2003) and volcanism. Studying interaction such as 

this can provide a laboratory understanding of processes such as intraplate seismicity and 

volcanic activity. In this study, we developed a regional geophysical cross-section across 

the Peruvian Andes to the Subandean basins, using all available resources and published 

results (e.g., Sobolev and Babeyko, 2005; Tassara et al., 2006; Mamani et al., 2008) to 

understand the intraplate interactions. Our goal for compiling this information was to 

provide constraints for construction of an integrated 2D gravity model across the region 
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to describe the regional architecture and major structural features. We also investigated 

the slab geometry beneath the Peruvian Andes. Various authors such as Ramos (1999), 

Jacques (2003), and Sobolev and Babeyko (2005) have suggested a flat-slab subduction 

(5– 10odip) of a young buoyant oceanic crust with no associated active volcanism for 

study area. 

5.3 Geologic Setting and Tectonic History 

The Andes are a segmented and a highly complex 8000 km long mountain chain 

that extends along the western boundary of the South American plate (e.g., Jordan et al., 

1983; Ramos, 1999; Jaillard et al, 2000). The Andean chain consists of Western and 

Eastern Cordillera that resulted from the Cenozoic tectonic shortening of the Nazca plate 

subsiding beneath the South American plate margin and present day active processes. 

The Western Cordillera of the Andes consists of deformed metamorphic rocks and 

Mesozoic sediments that are intruded by plutons and are unconformably covered by 

abundant volcanic rocks. The Eastern Cordillera, which is bordered to the west by a near 

continuous east-verging fold and thrust belt, consists of uplifted zone of Pre-Mesozoic 

metamorphic rocks and deformed Mesozoic sedimentary rocks with subordinate 

intrusions and volcanic rocks of primarily Paleozoic –Tertiary age (Litherland et al., 

1994; Jaillard et al, 2000). 

Gansser (1973) classified the Andes along-strike into northern, central, and 

southern segments. Along-strike variations in the subducting oceanic plate slab dip to 

beneath the South American plate that range from flat to normal have been noticed by 

several authors (e.g., Jordan et al., 1983; Wortel, 1984; Kley et al., 1999; Ramos, 1999). 

Jacques (2003) further classified the Andes into five main tectonostratigraphic domains 
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(northern, western, central, eastern, and southern) based on intracontinental deformation 

and basement fault behavior along the Andean domains - based on intracontinental 

deformation and basement fault dominance along the Andean foreland’s length. These 

tectonostratigraphic domains are characterized by east-northeast and northwest basement 

lineaments that are interpreted as reactivated old, deep crustal fracture systems that were 

formed during the early tectonic history of the Andes.  

Mountain building processes that formed the Andean are generally considered to 

have been initiated during the Mid- or Late Cretaceous (Jacques, 2003). However, 

complex history of the Andes began with the formation of the proto-margin of 

Gondwana. During the Phanerozoic - Early Paleozoic era (Pan-African-Brasiliano 

Orogeny) several different continental blocks and cratonic terranes were accreted against 

the late Proterozoic margin of Gondwana constituting the Pre-Andean orogenic 

processes. In the Late Paleozoic, the Andes experienced the first subduction related 

mountain buildup during the Alleghanian and Gondwanan Orogeny (Ramos and Aleman, 

2000).  

Various tectonic processes dominated the Pangaea break-up that occurred during 

the Early Mesozoic rifting of the continental margin of the Andes. This extensional 

period is characterized by northwest-southeast trending grabens. In the Late Permian to 

Early Triassic Andean orogenesis was initiated by eastward subduction of the oceanic 

Nazca plate beneath the continental South American plate. In Peru, this orogenesis 

formed the “Andean Convergent arc” via continued subduction, transpression and crustal 

thickening (Jacques, 2003). In addition, a complex series of fore-arc, intra-arc and retro-

arc basins were developed during this time. Related transpressional and transtensional 
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processes created a series of en-echelon horsts and grabens with northeast-southwest and 

northwest-southeast trends that crossed the Andes (Ramos and Aleman, 2000).  

5.3.1 Peruvian Subandean Basin Tectonic History 

The Peruvian subandean foreland that includes the Marañon, Ucayali, and Madre 

de Dios basins occupies the Eastern Cordillera and extends from Venezuela in the north 

to Chile and Bolivia in the south. These north-south elongated foreland basins are 

bounded on the west by the Andes zone of deformation and on the east by the stable 

cratonic shield (Jacques 2003). Occupying the western tectonic domain, the Peruvian 

foreland basins are associated with the Nazca Ridge flat-slab with dips of 5-10
o
 (Suárez 

et al., 1983; Ramos, 1999) (Figure 5.2).  

These currently active sub-Andean basins have experienced a long deformation 

and basin formation history that is part of the complex fold and thrust belt system of the 

Andes, which is actively been explored for hydrocarbons (Mathalone and Montoya, 

1995). The western and eastern edges of the basins are characterized by a thin-skinned 

deformation in a narrow fold and thrust belt and basement-involved, thick-skinned 

deformation, respectively (Jacques, 2003; Espurt et al., 2008). 

After the Late Mesozoic Peruvian orogenesis, which left the Ucayali and the 

Marañon basins relatively underformed, early Cenozoic “Incaic compressional 

deformation” is suggested to be responsible for most of the central Andes compression, 

which caused a regional flexural tilting (Mathalone and Montoya, 1995). The Late 

Miocene Quencha-III compressional event affected the Subandean basins the most, and 

this event shaped the Andes into it present modern configuration. The Quencha-III event 

resulted in a series of thick and thin-skin basement thrusting and inversions that 
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partitioned and dissected the Peruvian sub-Andean basins at the zones with inherent 

northwest structural fabric. Reactivated structures such as the Contaya and Cushabatay 

uplifts were also developed also during this time. Similarly, normal and reverse faults, 

thrust anticlines, inversion structures and other related hydrocarbon traps and seals 

structures were formed at this time (Mathalone and Montoya, 1995). 

5.4 Datasets and Methodology 

5.4.1 Gravity Dataset 

The onshore gravity dataset used for this project are made available by GETECH 

via the Hess Corporation. These grids were part of the datasets compiled from the South 

America Gravity Project (SAGP) and Global Continental Margins Gravity Studies 

(GCMGS) respectively. The onshore grids (Figure 5.1) were processed with a reduction 

density of 2.67 g/cc. 

The complete Bouguer anomaly map shown in Figure 5.3 was generated with a 

grid spacing of 5 km. The sparse distribution of the gravity points initially raised some 

concern because large regions of interest were devoid of gravity stations. Our solution to 

this problem involved careful construction of gravity profiles for modeling and integrated 

analysis of all the data available to us. 

Gravity Data Enhancement  

In order to achieve our objective of defining the major structural elements within 

the Ucayali basin area and understanding its deep structure, the regional effect of the 

Andes has to be removed from the complete Bouguer gravity map. For our purpose, the 

term ‘regional’ refers to sources with deep origins such as the Andes crustal root. The 
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term ‘residual’ refers to fields created by shallow to intermediate sources such as intra-

basement features. 

Separating a complete Bouguer anomaly map into residual anomalies resulting 

from local mass distributions and regional anomalies can be a somewhat difficult task. To 

separate out the regional anomaly from the complete Bouguer anomaly map, we 

employed an upward continuation to estimate the regional anomaly values (Figure 5.4). 

The upward continuation of potential field data is not new to processing and is a form of 

low-pass filtering. It permits the viewing of potential field at different levels over an 

anomaly source and acts as a standard separation filter for potential field data (Hughes et 

al., 1947; Henderson, 1949; Robinson, 1970; Jacobsen, 1987). It enhances long 

wavelength signals by attenuating higher frequency signals due to shallow sources 

without producing any side effects that require additional correction  

To produce residual maps reflecting shallow crustal features (Figure 5.5), we 

carefully selected an upward continued level that reflected the regional anomalies and 

then simply subtracted the corresponding grid from the complete Bouguer anomaly grid. 

From this standpoint, the subtraction of the regional anomaly map from the complete 

Bouguer map is a form of high pass filter, without the artifacts that often characterized 

high-pass filters maps. We generated a series of regional anomaly maps at various 

upward continuation heights ranging from 10 km – 160 km. We observed that an upward 

continuation height of 30 km produced a map that appeared to best represent the 

prevailing regional trends and the desired smooth regional in the Ucayali basin region. 

Thus, the residual anomaly map used in this study was generated by subtracting a 
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regional anomaly (30 km upward continued grid) from the original complete Bouguer 

anomaly grid (Figure 5.5).  

5.4.2 Magnetic Dataset  

The aeromagnetic dataset consisted of a country wide total magnetic intensity 

(TMI) grid for Peru, compiled from the South American Magnetic Project (SAMMP) of 

GETECH (Figure 5.6). These data consists of individual surveys that were flown at 

different heights and flight-line spacing that were gridded at a 1 km spacing, merged, and 

reduced to a mean ground clearance elevation of 1 km. 

Magnetic Data and Data Enhancement 

Prior to any interpretation can, the data was reduced-to-the equator (RTE). The 

RTE technique ameliorates problems that are typically associated with low-latitude data 

and transforms nonzero inclination anomaly into an anomaly that would be observed with 

the same body with zero inclination. Low-latitude data (our dataset) at about 15 degrees 

latitude becomes unstable for a reduction-to-the pole (RTP) application (Kis, 1990). The 

caveat of the RTE transformation is that it has the tendency to create a change of anomaly 

sign, such that a maximum will appear as a minimum. However, this typically occurs 

very near the equator.  

To highlight lateral or abrupt changes in magnetization that can suggest faults or 

source contacts, we computed the horizontal gradient magnitude (HGM), and the tilt 

derivative. These derivatives (Figures 5.7 & 5.8) are edge-detecting derivatives that 

enhance lateral discontinuities in a TMI grid (Grauch and Cordell, 1987; Roest et al., 

1992; Miller and Singh, 1994; Blakely, 1996; Verduzco et al., 2004; Li, 2006). It is still 
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up to the interpreters to devise a geologically meaningful interpretation to what is seen on 

these gradient maps. 

We also attempted to estimate depth to the top of Precambrian basement using the 

Euler deconvolution method. The Euler deconvolution method is an automated depth 

estimation method (Thompson, 1982) that can help determine the location or depth to the 

shallowest or deepest reasonable magnetic source or edges for various geological sources 

such as, dikes, faults, magnetic contacts, and extrusives (Phillips, 2007). It uses the 

structural index (SI) to describe the geometry of the desired geologic structure and as a 

geological constraint (Reid, 1990; Barbosa et al., 1999). 

The depth to magnetic basement grid (Figure 9) was constructed based on a 

processed not observed 1 km clearance total magnetic intensity grid. However, results 

generated from such a grid need to be analyzed with caution. Two important issues arise; 

first, if we do not know exactly where the magnetometer was located, we have no datum 

from which to compute the depth to basement. Second, magnetic depth estimates are 

dependent on the magnetic field gradients, and the terrain clearance heavily affects field 

gradients. Nevertheless, the depth to basement results obtained from the mean terrain 

clearance magnetic grid still proved to be very useful, but its limitations should be kept in 

mind. In fact, this map provides a constraint in the gravity modeling and was used to 

produce the series of overlays discussed below. 

5.5 Integrated Interpretation and Modeling  

5.5.1 Anomaly Interpretation  

The horizontal gradient magnitude map and the horizontal derivative of the tilt 

derivative of the TMI map (Figures 5.7 and 5.8) show mainly northwest-southeast (black 
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arrows) and east-northeast (green arrows) anomaly trends. The northwest lineaments 

displayed on these maps are consistent with the northwest-southeast trend direction of the 

Subandean fold and thrust belt. The similarity in trend between the basement lineaments 

and the fold and thrust belt suggest that the Late Paleozoic fold and thrust belt that 

resulted from the shortening associated with the early formation of the Andes are 

following the zones of weaknesses already existing in the Precambrian basement.  

The east-northeast lineaments are sub-parallel to the east-west regional shortening 

associated with the Late Miocene Quencha III orogeny that is the recent phase of Andean 

orogenesis (Mégard, 1984). These lineaments are located in the southern part of the 

Ucayali basin and the northern part of the Fitzcarrald Arch. They display a complex 

structural architecture (Espurt et al., 2008) beneath the Fitzcarrald Arch, which has been 

interpreted to be located over the buoyant Nazca ridge (Espurt et al., 2007). Although the 

Nazca ridge trends N45
o
E, the present day plate convergent suggest a N78

o
E trend, which 

is roughly parallel to the strike of these lineaments. 

Regionally, the east-northeast lineaments are also sub-parallel to the Ene Pisco – 

Abancay Fitzcarrald tectonic lineament, which is one of the five tectonic domains 

described in Jacques (2003). This zone is interpreted as an old, deep fracture system that 

has been repeatedly reactivated during the tectonic development of the Andean region 

forming different zones of deformation with the overlying cover. 

The depth to the shallowest Precambrian basement map in Figure 5.9 suggests the 

basement deepens northwesterly beneath the Ucayali basin. A large proportion of this 

basin (southeastern) has an estimated depth that is less than ~ 5 km. Beneath the Marañon 

basin, the Precambrian basement is much deeper (~ >10 km).  
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5.5.2 Gravity Profile Construction - Gravity Point Extraction 

Although we had to work with grids of gravity and elevation data, we went to 

considerable lengths to reconstruct gravity values and elevations at the locations of actual 

gravity points whose locations were provided by GETECH. The OASIS MONTAJ 

modeling software is not set-up to easily handle the selection of randomly distributed 

gravity points on a straight-line profile, but this step was crucial given the erratic 

distribution of data points and the topographic relief present. The points were manually 

selected along the profile lines, and repetitive points were eliminated. We implemented a 

technique to extract selected points from the randomly distributed gravity points in order 

to construct profiles for the integrated gravity modeling. 

5.5.3 Regional Gravity Models 

After constructing the series of gravity and magnetic maps, we chose two regional 

profiles along where gravity data points were available for modeling (northeast - 

southwest trending black lines in inset map of Figure 5.10). These profiles extended 

completely across Peru starting from the Pacific coast. Initial model densities and 

subducting plate geometries were extracted from Tassara et al., (2006) paper. The 

integrated modeling was done employing the Geosoft GM-SYS modeling software. 

Formation top and total depth (TD) information from wells were used as constraint in the 

gravity modelling. Density estimates for the main sedimentary packages were extracted 

from the density logs.  

Modeling of these profiles created a good regional framework from which to 

work in the area within the Ucayali basin. The models also showed that the dip of the 

subduction zone and the crustal thickness is increasing northward as earthquake studies 
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have inferred (Figure 5.10). This variation in dip has implications for foreland 

deformation in this area because the change of dip in the plate induces stresses that are 

oblique to the subduction zone and the Andes. According to Jacques (2003), several 

transfer zones are needed to account for the splitting of the plate slip vector into strain 

and displacement along different parts of the Andean Belt. These induce stresses are 

manifested for example, at the junction between the Peruvian flat-slab and the more 

steeply dipping slab to the south (e.g. The Nazca Ridge – Fitzcarrald Lineaments) (Jordan 

et al., 1983). This broad zone has gone through basement-involved deformations that 

include contraction and reverse fault (Ramos, 1999) and the stresses and strains are 

dissipate throughout the zone of deformation along the flat-slab Peruvian Andes. 

5.5.4 Local Gravity Modeling 

Based on these long profiles, the locations of wells, and the locations of seismic 

lines, we chose and model three local profiles across the Ucayali basin. The locations of 

these profiles were chosen based on the locations of actual gravity readings, the locations 

of deep wells, and the locations of seismic lines. In the case of these profiles, we modeled 

the residual gravity values and used the magnetic depth to basement estimates (Figure 

5.9) as constraints. The lack of a regional trend in these profiles indicates that we 

successfully separated the gravity field into its regional and local components (Figures 

5.11, 5.13, and 5.15). Density units for the modeling were defined based on density log 

information and lithologic descriptions. Our approach was to create relatively simple 

models since we lacked the information to justify a more complex density structure. We 

also chose density contrasts for the units that were skewed toward making the contrast 

large, which is actually a conservative approach in that it reduces the dimension of 
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structures required. We preferred to model anomalies as being related to geologic 

structures rather than intra-basement features such as intrusions unless necessary. The 

only area on the local profiles that required a departure from this approach was the 

southwest end of Local Profile A where the present of salt was indicated.  

Using normalized density values from density logs as much as possible, the 

density units we defined are as follows: (1) Precambrian basement/upper crust - 2.7 g/cc; 

(2) Paleozoic (and pre-Cretaceous Mesozoic) sedimentary rocks - 2.5 g/cc; (3) 

Cretaceous and younger sedimentary rocks - 2.2 g/cc; and (4) Salt – 1.9 g/cc. Also to the 

extent possible, formation tops from the wells constrained contact boundaries between 

density units (see Table 5.1). Seismic reflection profiles were also used where available 

(Figure 5.12, 5.14, and 5.16). 

Local Profile A  

Local Profile A is the longest and extends for about 500 km. The modeling was 

constrained by four wells (Shanusi-1, Yurimaguas-2, Loreto-1, and Samiria Sur-1) whose 

total depths (TD) and formation tops are plotted on the model (Figure 5.11). This model 

has a vertical exaggeration of ~4. The southwest and northeast portions of the profile are 

gravity highs, but the central portion of the profile is a broad gravity low that we modeled 

as being the result of the thickening of the Paleozoic section. In areas with a thin 

Paleozoic section, the Precambrian basement lies at a relatively shallow depth of ~5 km. 

A number of local gravity anomalies were modeled as structural highs and lows, which 

we interpret to be result of a series of horst blocks and grabens (See Figure 5.11). 

However, it is possible that intra-basement density contrasts could explain some of these 

anomalies 
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Local Profile B 

Local Profile B extends for about 250 km (Figure 5.13) and is parallel to Local 

Profile A. Two wells (Orellana-3 and La Frontera-1) are located close enough to this 

profile to serve as constraints. As in the case of Local Profile A, the southwest end of the 

profile is a gravity high and lies along the same northwest trend in the residual gravity 

maps (Figure 5.5). However, there is enough gravity data to show that the intervening 

area between these highs is low relative to them. As in Local Profile A, areas with thick 

Paleozoic sections and considerable basement relief are indicated (Figure 5.14).  

Local Profile C 

The central portion of Local Profile C (Figure 15) is characterized by a broad 

region with residual gravity values near zero. This gravity high corresponds with the 

location of the Shira uplift, the basement depth from the model is about 6 km, and it is 

shallower than it is surrounding (Figure 5.16). Because this area is flanked by gravity 

lows, it appears to indicate a larger structural high than is actually present. Inspection of 

Figures 5.5 and 5.16 shows that the profile passes across the northwestern edge of a much 

larger gravity high. The northeast end of the profile shows a southwest tilt that indicates a 

small regional was not removed, and this tilt is modeled as the result of a deep crustal 

feature.  

5.6 Observations and Results 

The residual Bouguer anomaly map (Figure 5.5) and the models shown in Figures 

5.11, 5.13, and 5.15 display evidence for a variety of interesting upper-crustal features. 

Here we address our interpretation of their significance. We examined correlations 

between mapped regional geologic features and gravity and magnetic anomalies. This 
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example is from the area of the southwest end of Local Profile B and shows that some of 

the surface features within the Ucayali basin are clearly correlated with deep structures. 

In this case, the correlation is between a northwest trending geologic feature and a 

Bouguer anomaly high that occurs south of the profile (Figure 5.13). The fact that there is 

only a line of gravity measurements crossing this geologic feature suggests that the 

coincident gravity high would follow the geologic feature if a good distribution of gravity 

readings were available.  

Analysis of spatial correlations yield three features that are also constrained, at 

least in part, by seismic data. On Local Profile A, we interpret the Cushabatay uplift 

(Figures 5.11 and 5.12) as being due to two Paleozoic horst blocks. Gravity and magnetic 

anomaly that occur at the extreme northeast corner of the Local Profile B, is interpreted 

as the structurally distinct Contaya uplift, which is due to a combination of thinning of 

Cretaceous and younger strata and a large horst block (Figures 5.13 and 5.14). On Local 

Profile C, we interpret the Shira Mountain high to be due to a combination of thinning of 

Cretaceous and younger strata and a broad horst block (Figures 5.15 and 5.16). We 

interpret this as being due to inverted Paleozoic grabens. We certainly believe that the 

horst blocks discussed above could have experienced inversion due to Andean and even 

late Paleozoic tectonism. In addition, the thick Paleozoic sections in all three models of 

the local profiles could be due in part to structural thickening on faults that in most cases 

do not significantly offset the basement. However as discussed below, we favor the idea 

that these thick sections are due to the development of a passive margin sedimentary 

sequence. 
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5.7 Conclusions 

The integration approach of this project has helped to define the structural 

geometry of the Ucayali basin and its regional setting. With the help of the residual 

gravity map and regional gravity models, we have characterized the major structural 

features and regional architecture that dominates this area. 

Horizontal gradient magnitude and the horizontal derivative of the tile derivative 

of the TMI suggest two trends of lineaments. Northwest-southeast trending lineaments, 

which are indicative of Precambrian structures, are sub-parallel to the late Paleozoic fold 

are thrust belt that resulted from the shortening associated with early formation of the 

Andes. These fold and thrust belt are following the old zones of weaknesses that exist 

within in the Precambrian basement. The east east-northeast lineaments are located 

beneath the Fitzcarrald Arch that has been interpreted to lie above the buoyant Nazca 

ridge. We interpret this lineament as part of the Ene Pisco – Abancay Fitzcarrald tectonic 

lineament, which is one of the five tectonic domains of the subandean region, and it is 

oriented east-northeast.  

The depth-to-basement map suggests the depth to the shallowest magnetic 

sources. The depth to the shallowest Precambrian basement map in Figure 5.9 suggests a 

Precambrian depth that deepens northwesterly lies beneath the Ucayali basin. A large 

proportion of this basin (southeastern) has an estimated depth that is less than ~ 5 km. 

Beneath the Marañon basin, the Precambrian basement is much deeper (~ >10 km). In 

some cases, our depth from the gravity model correlates with the basement depth 

estimates from Euler deconvolution, while in other cases it does not.  
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All the integrated models derived for the local profiles display features with two 

dominant wavelengths. We interpret the longer wavelengths to be due to relief on the 

Precambrian basement that probably dates from the rifting that broke-up the 

Neoproterozoic Rodinian supercontinent and produced a passive margin that remained 

largely undisturbed until at least the late Paleozoic. This interdomipretation is based on 

two other areas where we have done considerable research. The first is in Poland where 

we studied the Paleozoic margin of Baltica as part of a large international effort called 

POLONAISE’ 97 (Figures 5.17 – 5.19). Here our work showed the surprising result that 

the Permian salt basin of central and northern Poland is underlain by a thick sequence of 

low velocity material that is almost certainly sedimentary in nature. The thickness and 

geometry of this material (Figure 5.21) suggests that it represents a passive margin 

sequence that was not destroyed by the late Paleozoic Variscan orogeny, and thus, this 

orogeny is due to a “soft” collision between Baltica and the Bohemian massif (Figure 

5.19). The second area is the Ouachita margin that rims the Gulf of Mexico (Figure 5.20). 

As along the margin of Baltica, the seismic and gravity model across the southern margin 

of cratonal North America (Laurentia) shows that the Paleozoic passive margin is largely 

in tact and that the Ouachita orogeny in this region is also due to a soft collision between 

the Sabine uplift and North America. Figure 5.21 shows the models of these two margins 

at the same scale. Regional tectonic interpretations of both of these margins suggest that 

they experienced considerable strike-slip motion as they formed, so they are narrow. We 

suggest that the western margin of Southern America of the Peru region experienced a 

similar long period of passive margin development that is largely preserved today.  
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The shorter-wavelength features in the models appear to be largely due to 

basement-involved uplifts that have some similarity to Laramide foreland structures in 

Wyoming. Some of these structures may have an element of inheritance from the older 

structures related to the rifted margin of the northern South American craton. In any case, 

our interpretations indicate that thick sections of probable passive margin strata are 

present and that the deep structure is probably not too complex.  
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Figure 5.1. Digital elevation map of the Andes with major geologic features, structural uplift,  
subandean basins, and the transverse tectonic lineaments shown. Black-dot lines indicate 
the distribution of the gravity point used in this study. Red dashed lines are two of the five 
structural lineaments that divide the Andean belt into five tectonic domains(boundaries 
extracted from Jacques, 2003).  
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Figure 5.2.The tectonic map of the Andean plate margin showing the age and  
plate geometry of the subducting Nazca plate and volcanic arc locations. 
(Map from Lamp and Davis, 2003.  



 155

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.3. Complete Bouguer anomaly map showing the distribution of the onshore gravity  
data points (black dots) and the tectonic lineaments surrounding the Peruvian Sub-
Andean basins 
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ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.4. Upward continuation map generated from the upward continuation height  
of 30 km. The large negative and positive anomaly is associated with the 
Andeans and Brazilian cratonic shield 
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ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.5. Residual Bouguer gravity anomaly map generated by subtracting a 30 km  
upward continuation grid from the complete Bouguer grid. The ENE Pisco-
Abancay-Fitzcarrald tectonic lineament is one of the transverse tectonic 
lineaments as suite of deep crustal discontinuities.  
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ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.6. Reduced-to-the-equator (RTE) residual total magnetic intensity anomaly 
map. 
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ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.7. Horizontal gradient magnitude of the total magnetic intensity map shows  
lineament in the basement rocks of Peru. The maxima are the location of 
magnetic source edges, which could be a fault.  
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ENE Pisco -Abancay –
Fitzcarrald Tectonic Lineament

Figure 5.8. Tilt derivative of the total magnetic intensity anomaly map shows magnetic source  
edge continuity and subtle Precambrian basement features. 
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Figure 5.9 Euler depth estimates indicating the depth to the shallowest magnetic sources. 



 

 
 

Figure 5.10. Two northeast trending regional gravity profiles across the Peruvian sub-Andes. Crust thickness increase from the  
north part of the Ucayali basin to the south. Inset map shows the location of these profile lines. (Initial density from 
models adapted from Tassara et al., 2006). 
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Figure 5.11. Local northeast trending gravity profile line A across the Ucayali basin, Peru. Red-dashed rectangle is the location of  
seismic section in Figure 5.12 used to constrain the gravity. Inset map shows the location of the profile line (Cyan line is the 
gravity and red line is the seismic line). 
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Figure 5.12. Seismic section used as a constraint for the gravity model in Figure 11. Black-dotted line and  
the brown-dashed line are the interpreted top of basement  and faults respectively. Cushabatay 
Uplift is a half graben that is filled with sediments (PARSEP, 2002). 
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Figure 5.13. Local northeast trending gravity profile line B across the Ucayali basin, Peru. Red- 
dashed rectangle is the location of seismic section in Figure 5.14 used to constrain the 
gravity. Inset map shows the location of the profile line (Cyan line is the gravity and red line 
is the seismic line). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5.14. . Seismic section used as a constraint for the gravity model in Figure 5.13. Black-dotted line and the  

brown-dashed line are the interpreted top of basement  and faults respectively. Contaya Uplift is an ancestral  
horst structure (PARSEP, 2002). 
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Figure 5.15. Local northeast trending gravity profile line C across the Ucayali basin, Peru. Red- 
dashed rectangle is the location of seismic section in Figure 5.16 used to constrain the 
gravity. Inset map shows the location of the profile line (Cyan line is the gravity and red line 
is the seismic line). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16. Seismic section used as a constraint for the gravity model in Figure 5.15. Black- 
dotted line and the brown-dashed line are the interpreted top of basement  and faults 
respectively. Shira uplift is an ancestral horst block (PARSEP, 2002). 
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Figure 5.17. Tectonic index map of Europe. 
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Figure 5.18. Tectonic index map showing the P4 seismic profile that extend across Poland. 
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Figure 5.19. Map showing the location and shotpoint along profile P4 of the POILONAISE’97 experiment. 
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Figure 5.20. Index map of the Ouachita passive margin (lined area) and the PASSCAL siesmic profile. 
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Figure 5.21. Seismic velocity model for profile P4 and the integrated (seismic/gravity) model for the Ouachitas. 
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Table 5.1. Table of wells used in constraining the gravity models  
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Chapter 6: Implications of This Study 

Three integrated geophysical studies that investigated the linkage between 

Precambrian studies and sedimentary structures show that structures we see within the 

sedimentary section have links with Precambrian structures. These sedimentary structures 

follow zones of weakness that exist in the Precambrian basement, which can be mapped 

with potential field data. Most of the Precambrian basement structures do not have a 

surface expression, and during basement lineament reactivation, stress released within 

these structures is propagated upward into the sedimentary section and expressed as 

structures such as faults. Information about where potential breaks can occur within the 

sedimentary section can also be determined from observation of weakness zones within 

the Precambrian basement.  

We have also demonstrated that potential field data, especially the high-resolution 

aeromagnetic (HRAM) data is effective in mapping basement structures at the scale of 

seismic reflection surveys. Therefore, in untested area or geological complex areas (e.g., 

subsalt exploration) where seismic data is either unavailable or limited, aeromagnetic 

data, which are relatively cheap and readily available than can be used to predict the kind 

of structures to expect within a sedimentary section. The extent of structures such as 

faults whose locations are known locally via seismic data can be determined through the 

help of aeromagnetic data. Thus, this kind of information can help in choosing a location 

for additional seismic surveying or what existing seismic data to purchase.  
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