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Figure 8: Time slice at t=0.8 s through Sobel filter similarity. Red arrows indicate 
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Figure 23 note that 19.95% of the energy is represented by the first four 
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ABSTRACT 

Acquisition footprint often poses a major problem in 3D seismic data. Some of 

the causes for footprint are constraints on survey design, backscattered noise, lateral 

variations of fold, offset, and azimuth distributions, and spatial aliasing. Faced with 

extracting subtle features contained in seismic amplitudes, interpreters are often 

confronted with footprint that can mask important details critical to the identification of 

key reservoir architectural elements. 

Ideally, footprint from acquisition is handled in the processing shop through more 

careful attention to trace balancing statics, noise reduction and velocity analysis. Such 

reprocessing is not feasible on many legacy data volumes where the pre-stack data cannot 

be found or no longer exists. 

Seismic attributes provide an effective means of delineating subtle geological 

features of interest such as channels, small faults, and fractures. Footprint can mask 

geologic lineaments such as faults and fractures that would otherwise be enhanced by 

attributes like coherence or curvature. For this reason attributes can be used to both 

design and evaluate the effectiveness of alternative footprint suppression workflows. 

In this work I review, apply and evaluate the three most popular footprint 

suppression workflows: structure-oriented filtering, kx-ky filtering, and limited data 

reconstruction using singular value decomposition. 

Application to legacy land and shallow-water data shows that no one workflow 

works best. However, evaluation of attribute images computed from filtered volumes 

provides a quantitative means of determining which workflow, or cascaded workflow, 

works best for a specific data volume. 
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CHAPTER I 

Introduction 

Motivation 

Acquisition footprint often poses a major problem in 3D seismic data. Some of the 

causes for footprint are constraints on survey design, backscattered noise, lateral 

variations of fold, offset, and azimuth distributions, and spatial aliasing. Faced with 

extracting subtle features contained in seismic amplitudes, interpreters are often 

confronted with footprint that can mask important details critical to the identification of 

key reservoir architectural elements. 

Seismic attributes provide an effective means of delineating subtle geological features 

of interest such as channels, small faults, and fractures. Footprint can mask geologic 

lineaments such as faults and fractures that would otherwise be enhanced by attributes 

like coherence or curvature. 

In this work I will review, apply and evaluate a suite of different filtering techniques 

to attenuate acquisition footprint on post-stack seismic data. I will quantify the 

effectiveness of these filters through attribute images. 

Causes of Acquisition Footprint 

Footprint cannot be attributed to a single cause, but rather to a combination of data 

acquisition and processing decisions. The acquisition design defines a particular 

distribution of bins and bin properties such as fold, azimuths, and offsets. While one 

would wish that these properties are constant for all the bins in a survey, this is never the 

case. 
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One of the major contributors of footprint in land data is aliased backscattered noise. 

Such noise can be associated with ground-roll and aliased shallow diffractors (Pramik 

personal communication, 2010). Bin to bin variation in the distributions of offsets and 

azimuths allow the backscattered noise to leak through the stack array, giving rise to a 

noise pattern that mimics the acquisition program (Figure 1-4). Azimuthal dependence 

occurs because source arrays, receiver groups and the stack array itself preferentially 

accept or reject the backscattered noise depending on azimuth (Chopra and Marfurt, 

2008). 

Since the signal-to-noise ratio is a function of fold, obstacles cause deviations from 

the desired, regular geometry giving rise to spatially variable footprint. 

In addition to noise, coarse spatial sampling gives rise to spatial aliasing of signal. 

The signal is most commonly aliased by the migration operator’s attempt to image steep 

dips. These steeply dipping swings are seen on almost all data volumes (Figure 5). 

Hill et al. (1999) provide a thorough explanation of how footprint can arise in the 

processing shop. They start by defining the footprint as a weighted, linear summation of 

partial-offset fold of stacks. They then show that footprint is caused by a variety of offset 

dependent phenomena including source generated noise, residual NMO, amplitude versus 

offset (AVO) anomalies and preferential suppression of multiples and converted waves at 

different offsets. Random noise and stacking process may introduce a footprint that is 

driven by lateral offset variations between bins and amplitude correction pattern that will 

be superimposed on the data (Hill et al., 1999). For flat-layered geologies, the footprint 

pattern will be time-dependent because of time dependent stretch mutes and decreasing 

angles of illumination with depth (Hill et al., 1999). Footprint will vary with time if the 
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offset dependent cause of the footprint does not share the same dip as the primary 

reflectors. While footprint may have a very regular pattern on shallow time slices, this 

pattern will be distorted due to lateral velocity variations in the overburden and to an 

inaccurate migration velocity model (Hill et al., 1999). 

Previous work and summary of solution techniques 

Several techniques have been implemented to suppress acquisition footprint on post-

stack seismic data. Fehmers and Hockers (2003) introduced a structure oriented filter that 

smoothes parallel to the seismic reflections, but preserves reflection terminations 

identified as low coherence anomalies. Luo et al. (2002) extended Kuwahara et al. (1976) 

algorithm to 3D seismic data as an alternative edge preserving smoothing algorithm 

(EPS). The method consists in computing the mean and standard deviation of amplitude 

that fall within the analysis point. The mean of the most homogeneous window, i.e. the 

window having the lowest standard deviation, replaces the amplitude at the analysis 

point. Marfurt (2006) describes a modification of Luo et al.’s (2002) technique; first he 

uses coherence rather than standard deviation to choose the most homogeneous window. 

Then instead of calculating the mean, the median or the α-trimmed mean and replacing 

the amplitude of the analysis point with one these values, he calculates the principal 

components of the analysis window, and uses the projected value of the first eigenvector 

on the windowed data as the filtered data. 

Al-Bannagi et al. (2005), use principal component analysis of relatively large analysis 

windows applied in a 2D by 2D fashion to characterize the pattern of the footprint. Each 

N trace by T sample data matrix is decomposed into its principal components. Those 
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components interpreted to represent the noise are then excluded from the reconstruction 

of the wavefield. 

Drummond et al. (2000) compute the kx-ky spectra of the seismic data on time slices 

to identify the aliased noise. These noise components are then attenuated by designing 

notch filters at the corresponding wavenumbers. For the aliased noise Drummond et al. 

(2000) suggest adaptive filtering time slice by time slice using image processing 

techniques in the kx-ky domain. Gülünay (1999) presents an extension to the f-kx-ky 

filtering algorithm for dipping data. The method assumes that footprint occurs as a 

discrete limited numbers of f-kx-ky components which are then muted. Soubaras (2002) 

also uses a kx-ky filter to remove spatially periodic noise present in the data designed by 

autocorrelating the offset distribution vector of the traces. If the vector offset distribution 

is periodic, its autocorrelation will also be periodic giving rise to localized anomalies in 

the kx-ky domain. Such kx-ky filters are commonly applied as part of the processing flow, 

where notches can be predicted from the prestack acquisition geometry.  

Unfortunately, such acquisition patterns are missing for many legacy data volumes. 

Falconer and Marfurt (2006) compensate for this missing information on migrated data 

by characterizing the footprint pattern using attributes sensitive to footprint. The 

footprint-suppression filters are designed in the kx-ky domain on attribute time slices. 

Noise is estimated by applying these filters to the seismic amplitude time slice by time 

slice. The noise estimate is then adaptively subtracted from the original data. 

In this tutorial paper, I evaluate alternative algorithms and workflows to suppress 

acquisition footprint on migrated, stacked data volumes. I begin by illustrating the impact 

of footprint on seismic amplitude, attribute and impedance volumes. Next, I review the 
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theory of each of the methods used to attenuate acquisition footprint. Then I present data-

dependent workflows using these algorithms and evaluate their success by reexamining 

amplitude, attribute and impedance slices. I conclude by summarizing the limitations and 

advantages of the competing methods. 

 

Figure 1: Representative velocity analysis supergather for the Anadarko Basin data set. Red 

arrows indicate ground roll, converted waves, airwaves and other noise present in the gathers. 

Purple arrows indicate the residual velocity anomalies in the gather. Spatially (bin-to-bin) varying 

suppression of these features gives rise to footprint. 
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Figure 2: Constant velocity stacks computed for a window about the CMP shown in Figure 1. 

Red arrows indicate noise that has leaked through the stack array. Accurate velocity picking 

enhances reflections and filters noise by stacking (green boxes). Note that if an inaccurate 

velocity is chosen, considerable steeply dipping noise can leak trough the stack (red boxes). 
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Figure 3: Representative velocity analysis supergather for the Anadarko Basin data set with NMO 

stretch mute. Red arrows indicate the ground roll, converted wave, airwaves and other noise 

present in the gathers. Muting the far offsets in the shallow section residual velocity anomalies 

will not affect the constant velocity stack but has smeared and introduced artifacts in the velocity 

semblance (white arrows).  
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Figure 4: Constant velocity stacks computed for a window about the CMP shown in Figure 3. 

Red arrows indicate noise that has leaked through the stack array. Yellow arrows indicate steeply 

dipping noise introduced by muting and low fold in the gathers. Note the dip reversal between 

both types of noise. Compared to the constant velocity stacks on Figure 2, reflectors are broader 

band, such that the reflectors are better resolved in the mid and deep section. Accurate velocity 

picking enhances reflections and filters noise by stacking (green boxes). Note that if an inaccurate 

velocity is chosen, considerable steeply dipping noise can leak trough the stack (red boxes). 
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Figure 5: Migration section of a pre-stack finite difference simulation of the acoustic wave 

equation. Green arrows indicate where the migration operator of each CDP has constructive 

interference thus placing the energy of the reflection at the right location in the reflection 

boundary. Yellow arrows show migration artifacts that are due to the coarse surface sampling and 

the subsequent lack of destructive interference for steep dips (after Cabrales-Vargas, 2010). 
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CHAPTER II 

Impact of acquisition footprint on seismic interpretation 

Seismic attributes help the interpreter extract information from the seismic reflection 

data for qualitative or quantitative interpretation (Chopra and Marfurt, 2008). 

Unfortunately seismic attributes often enhance the acquisition footprint and appear as 

coherent, spatially-periodic artifacts overprint and often mask the geologic features of 

interest. In this section I will illustrate through real data examples how footprint can 

deteriorate the signal-to-noise ratio in seismic data and hamper the interpretation process. 

Figure 6 shows a representative vertical slice through a legacy seismic amplitude 

volume acquired in the Delaware basin, NM. In the shallow section the footprint 

signature is strongest, healing with depth. More often than not this is the case for seismic 

reflection data where the strong, coherent noise disrupts the lower-fold shallow 

reflections almost making their interpretation difficult, if not impossible. Figure 7 shows 

a 3D view of a time slice and two vertical slices through the same seismic amplitude 

volume. Note the periodic pattern of amplitude anomalies seen on the time slice. Figure 8 

shows a time slice at t=0.8 s through the corresponding Sobel filter similarity volume 

where subtle geologic features are overprinted by the strong acquisition footprint pattern. 

Figure 9 is a representative vertical slice through the Watonga seismic amplitude 

volume acquired over the Anadarko Basin of Oklahoma. Although the data are 

contaminated with footprint, the interpretation of Skinner and Novi horizons was possible 

using wavelet based auto-trackers. Noisier areas contaminated by footprint needed to be 

reseeded and picked (Figure 10). Figure 11 shows a common workflow for time-structure 

map generation given noisy picks. Interpretation packages will honor faults and 
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discontinuities in generating time-structure maps by smoothing the picks only if there are 

no significant discontinuities in the analysis window. One popular smoothing process is 

to fit a B-spline curve to the raw picks. The algorithm removes the footprint signature 

while retaining the longer wavelength geologic features (Figure 12).  

Figure 13 andFigure 14 show how attribute such as dip magnitude and dip azimuth 

computed from the time structure map exacerbate otherwise subtle footprint artifacts. 

Footprint has low and medium wavelength components that are not removed in this case 

by the surface interpolator but are preserved as if they were real features of the seismic 

data (Figure 15).  

Although more robust than horizon-based dip magnitude and dip azimuth 

computations, volumetric dip magnitude and dip azimuth calculations will also be 

sensitive to acquisition footprint (Figure 16). Edge preserving methods, used for faults 

and fracture feature preservation in the data, can enhance the acquisition footprint by 

treating it as linear discontinuities (Figure 17). Subsequent attributes that use volumetric 

dip magnitude and azimuth calculations, such as similarity or curvature will inherit this 

footprint signature or in some cases further enhance it (Figure 18). 

 Footprint has also a negative impact on spectral components of seismic data. 

Acquisition footprint will affect the waveforms and will produce magnitude, frequency 

and phase anomalies (Figure 19). These anomalies will also degenerate the quality of 

impedance estimation thus percolating to the acoustic impedance inversion volumes 

(Figure 17). 
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Figure 6: Representative vertical slice through a seismic amplitude volume acquired over the 

Delaware Basin, NM. Green arrow indicates the interpreted horizon while the magenta dotted line 

indicates a time slice at 800 ms. The horizon was picked following a zero-crossing. Notice that 

reflections are contaminated by noise (red arrows). This noise pattern heals with increasing time. 

Orange and cyan arrows indicate features in the data that might be channels (Seismic data 

courtesy of Marathon Oil Co.). 

 

 

 

 

 



 

13 

 

 

Figure 7: 3D view of time slice at t=0.8 s and line A-A’ shown previously in Figure 6. Red 

arrows indicate acquisition footprint noise. Note that the features indicated by orange arrows in 

Figure 6 are organized rather than random, mimicking the orthogonal shot line – receiver line 

acquisition. Cyan arrow indicates a channel like feature that corresponds to the features observed 

in Figure 8. 

 

Figure 8: Time slice at t=0.8 s through Sobel filter similarity. Red arrows indicate acquisition 

footprint noise. Note that the features indicated by orange arrows in Figure 6 are organized rather 

than random, mimicking the orthogonal shot line – receiver line acquisition. Sobel filter similarity 

attribute helps to clarify that the feature indicated by the cyan arrow is a channel in Figure 6 and 

Figure 7. 
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Figure 9: Representative vertical slice through the seismic amplitude volume acquired over the 

Anadarko Basin, OK. Green arrow indicates interpreted Skinner horizon, yellow arrow indicates 

interpreted Novi horizon and blue arrow indicates interpreted Red Fork horizon. All horizons 

were interpreted using wavelet tracking with seeded points using a correlation coefficient of 0.95 

in a 12 sample symmetric vertical window. Magenta arrows indicate areas where footprint affects 

the performance of the wavelet-tracking algorithm. Skinner horizon and Novi horizon exhibit a 

lateral change in amplitudes due to the footprint but the performance of the wavelet tracking is 

not diminished. Red arrows indicate areas where the footprint pattern is particularly strongest. 
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Figure 10: Representative vertical slice through the Watonga seismic amplitude volume acquired 

over the Anadarko Basin, OK. Green arrow indicates interpreted Skinner horizon, yellow arrow 

indicates interpreted Novi horizon and blue arrow indicates interpreted Red-Fork horizon. Red 

Fork horizon was reinterpreted using wavelet tracking with seeded points using a correlation 

coefficient of 0.85 in a 12 sample symmetric vertical window. Although the Red Fork horizon has 

been successfully picked, it is quite irregular due to the cross cutting noise (orange arrows). Red 

arrows indicate areas where the footprint pattern is strongest.  

 

Figure 11: Workflow for generating a smooth time-strcuture map honoring fault traces. Most 

interpretation packages follow a similar flow to generate time-structure maps.   
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Figure 12: 3D view of time-structure map interpreted from a seismic amplitude volume acquired 

offshore Louisiana. Cyan arrows indicate distinctive faults that are preserved after the 

interpolation smoothing. Red arrows indicate noise in vertical sections (data courtesy of 

Schlumberger). 
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Figure 13: 3D view of the dip magnitude derived from the time-structure map shown in Figure 

12. Red arrows indicate N-S artifacts in the dip magnitude map caused by the acquisition 

footprint.  
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Figure 14: 3D view of dip azimuth derived from the time-structure map in shown Figure 12. Red 

arrows indicate zones where the footprint signature is strongest. The magenta-red color anomalies 

indicate dip azimuths of 90° corresponding to the N-S footprint. 
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Figure 15: 3D view of seismic amplitude extracted along the time-structure map shown in Figure 

12. Red arrows indicate zones where the footprint signature is strongest. 
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Figure 16: Time slice at t=0.8 s through the (a) dip magnitude and (b) dip azimuth data volumes 

computed from the data shown in Figure 6. Dip magnitude and azimuth were calculated using a 

semblance-based search within a three trace by three trace by 0.020 s analysis window.  Red 

arrows indicate the acquisition footprint artifacts on the volumetric dip magnitude; green arrows 

indicate the platform edge. The footprint sometimes appears as circles (white arrows) and 

sometimes as a grid of NE, NW-trending (black arrows) and N-S trending (gray arrows) 

lineaments. 
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Figure 17: Time slice at t=0.8 s through the dip magnitude volume computed from the data shown 

in Figure 6. Dip was calculated using a three trace by three trace by 0.020 s analysis window with 

(a) nine overlapping Kuwahara windows at the analysis point and (b) a single analysis window 

centered about the analysis point. Yellow and cyan arrows indicate lineaments exacerbated by 

using nine overlapping windows method in the dip magnitude calculation. Green arrows indicate 

lineaments that are smoothed by using a nine overlapping windows in the dip magnitude 

calculation. Red arrows indicate footprint noise that remains unchanged using either method. 
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Figure 18: Time slice at t=1.3 s through the (a) most positive principal structural curvature and 

(b) most negative principal structural curvature data volumes computed from the data shown in 

Figure 12. (a) Green arrows indicate features that correlate to folds and faults seen on vertical 

slices through the seismic amplitude volume that are enhanced by the curvature attribute. Cyan 

and yellow arrows indicate lineaments attributed to the acquisition footprint. Most negative 

structural curvature seems to be more sensitive to the acquisition footprint than the most positive 

structural curvature for this particular data set.  
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Figure 19: Phantom horizon slice 0.066 s below Skinner horizon trough (a) peak frequency 

modulated by peak magnitude and (b) peak wavelet phase modulated by peak magnitude using a 

2D color map (Guo et al., 2008) data volumes computed from seismic amplitude volume acquired 

over the Anadarko Basin, OK (Figure 9). (a) Red arrows indicate acquisition footprint artifacts 

with a predominant frequency of 30 Hz. (b) White arrows indicate acquisition footprint artifacts 

seen on phase.  
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Figure 20: Time slice at t=1.68 s trough the model based acoustic impedance data volume 

computed from the data shown in Figure 9. White arrows indicate acquisition footprint artifacts. 

Artifacts appear as N-S trending impedance anomalies that mask impedance in the reservoir 

interval. 
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CHAPTER III 

Theory 

In this section I review the most popular post-migration footprint suppression 

algorithms in order to better understand their applicability and effectiveness. I begin by 

discussing 2D filters applied to maps, time slices or local patches of data along a 

reflection. 

Mean Filtering 

The mean filter is the best known and simplest random noise suppression filter. It 

forms the basis of almost all seismic stacking algorithms. For maps and post-stack data 

the mean filter acts as a running-window low-pass filter that outputs the arithmetic 

average of all the samples that fall inside a centered analysis window. Usually the 

window size is an odd number for ease of implementation. Defining the analysis window 

along a map, a time slice, or local horizon as a suite of samples centered about a location 

(x0,y0), the mean data filter is: 

     (1) 

where xj and yj are the inline and crossline coordinates (Figure 21).  

Median Filter 

The median filter is also commonly implemented as a running-window filter, 

replacing each sample with the median of all the samples that fall within the analysis 

window. The median filter has the advantage over the mean filter of rejecting outliers and 

preserving edges. The simplest way to calculate the median for an odd number of 

samples is to order the samples in the window from the smallest value to the greatest 

value and extracting the middle one. For seismic data, the window size is typically and 
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odd number of J=2K+1 samples. If the samples are ordered from 0 to 2K, the median 

value index of the sorted data is always at the k
th

 location. The order vector uj is then 

      (2) 

such the median is given: 

      (3) 

α-Trimmed Mean Filter 

The α-trimmed mean filter forms a continuum of filters whose end members are the 

median (α=0.5) and mean (α=0.0) filters. The data are ordered and a fraction α is rejected 

from both the high and low ends of the ordered data vectors before averaging, thereby 

eliminating potential outliers, but preserving much of the statistical power of the mean 

filter.  If the samples are ordered following equation 2, the α-trimmed mean is given by: 

      (4) 

Where the value of α varies from 0 to 0.5. Figure 22 show the effect and differences 

of the median, mean and α-trimmed mean filters on a test dataset. 

kx-ky Filter 

kx-ky filters are routinely used in the image processing industry to remove structured 

noise, either periodic or aperiodic, that contaminates pictures or maps. kx-ky filters are 

routinely used in filtering potential field data and are implicitly or explicitly used in 

upward continuation of gravity and magnetic data. Following the previous arguments we 

consider data volumes along a horizon slice, time slice, or local horizon slice but restrict 

ourselves to an S by R sample rectangular analysis window. Filters can be designed as a 

function of the wavenumber to remove coherent, periodic or aperiodic noise (Buttkus, 

2000). The two-dimensional Fourier transform is given by: 
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      (5) 

where and . After the transformation filtering is carried out by 

muting or tapering unwanted wavenumber components, after which the data are 

transformed back to obtain the filtered data. 

Principal Component Filter 

The sines and cosines that form the basis of the Fourier transform are appropriate 

because footprint is often periodic. However, the Fourier transform is one of many 

possible orthogonal data transforms we can use. We can also design basis functions from 

the data itself. In order to identify a pattern, we need to sample it several times. Let’s 

examine a 21x21 inline by crossline patch of seismic amplitude extracted along horizon 1 

shown in Figure 23.  Such a patch forms a 441 long ―sample vectors‖ of the seismic 

amplitude data (Kirlin and Dome, 1999). In order to see the pattern we need to examine 

more than one sample vector. In satellite imagery, we might take multiple snapshots of a 

fixed patch of the earth over several days. The ―amplitude‖ of the snapshot will change 

due to different illumination at 9 AM, 12 noon and 5PM. Likewise, the ground surface 

itself may be partially obscured by clouds, the location of which may appear to be 

random at each satellite pass over our patch of earth. The underlying spatial pattern –

rivers, roads, forest and prairie will remain fixed. In principle each snapshot should be 

correlated to all the others. 

Let’s examine 11 ―sample snapshots‖ or ―sample vectors‖ of our seismic patch. 

Clearly, we could reacquire our survey 11 times with different acquisition parameters to 

randomize our noise. More simply, we can assume that our seismic wavelet within the ± 

5 sample window is sampling the same reflectivity. Changes in the wavelet (peak, trough, 
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zero-crossings) are not unlike the satellite images at different times of the day. Figure 24a 

shows these 11 images. If K=5 cross-correlation from K=-5 to K=5 of the n
th

 trace with 

the m
th

 trace forms the mn
th

 element of the 441 by 441 covariance matrix, C: 

      (6) 

By definition, the first principal component, also called the first eigenvector, 

represents the variability of the data, and for moderate amplitude noise, best represents 

our consistent reflectivity pattern (Kirlin and Done, 1998) as shown in Figure 24b. 

For better or worse, principal component analysis has entered the seismic processing 

world from many directions, rendering the additional names of eigenstructure, 

eigenvalue-eigenvector, singular value decomposition (SVD), and Karhunen-Loeve 

transform analysis, causing unnecessary confusion. The eigenvectors υ
m

 of the 

covariance matrix C are by construction unit length and orthogonal, such that they can 

form a basis function as we did with the kx-ky transform. The m
th 

component of our 

principal mapped data u(x,y) is simply 

      (7) 

as shown in Figure 25. 
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Figure 21: Example of a 13-sample analysis window centered about an analysis point at ( ). 

This analysis window is applied to every sample in the 3D volume, typically aligned along the 

local reflector dip. The numbering is arbitrary (in this example clockwise, reading from the 

center). 
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Figure 22: Effect of the mean, median, and α-trimmed mean filter on a test dataset. (a) Original 

data and its histogram. (b) Random noise with uniform distribution (c) Original data with added 

noise. (d) Mean filtered data; histogram has the same character as the original data but edges and 

subtle details are not preserved. (e) Median filtered data; edges are better preserved but still some 

subtle details are removed. (f) 20 % α-trimmed mean filtered data; edges as well as subtle detail 

are well preserved by this filter being a hybrid between the mean and the median filter. 
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Figure 23: The first 11 of 441 eigenmaps computed from a covariance matrix generated by cross-

correlating a suite of eleven 21 by 21 trace horizon slices extracted along horizon 1 shown in 

Figure 12. By construction, the first eigenmap (a) best represents the data variability in the 

eleven-sample window; the second eigenmap (b) best represents the remainder and so on. This 

result indicates that the coherent part of the signal will be well represented by the first four 

eigenmaps and the noise, either random or not, will remain on the later eigenmaps. 

 

Figure 24: (a) Principal component eigenvalues corresponding to the eigenmaps shown in Figure 

23 note that 19.95% of the energy is represented by the first four eigenmaps. and (b) vertical 

waveform centered along the horizon slice (sample k=0) resulting by cross-correlating the first 

eleven eigenmaps with eleven 21 by 21 trace phantom horizon slices centered about the picked 

horizon at sample 0. When cross-correlated with the data the first waveform represents the 

seismic traces better than the other waveform in the 21x21 trace analysis window. 
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Figure 25: 21x21 inline by crossline patch of seismic amplitude extracted along horizon 1 shown 

in Figure 9 and its reconstruction to from the first eleven principal components. As shown in 

Figure 23 and Figure 24 the signal is well represented by the first four eigenmaps. The first 

principal component reconstruction best approximates the original data and even enhancing 

certain features in it. 
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CHAPTER IV 

Evaluation of alternative filtering workflows 

Filtering along horizon slices 

Slowly time variant and spatially periodic noise, such as acquisition footprint, often 

allows seismic data filtering along constant time slices. If structure is present a best 

practice is to flatten the data about the target area if possible. Flattening removes the 

coherent short wavelength component of the signal in the spatial domain thereby 

allowing us to attack periodic short wavelength footprint components.  

kx-ky filtering can often suppress periodic noise seen on time horizon slices. Figure 26 

shows a generalized kx-ky filtering workflow following Falconer and Marfurt (2006). 

Since I am addressing legacy post-stack data volumes, no source or receiver geometry 

information is retained in the headers the first step is to generate footprint-contaminated 

attributes from seismic data. To estimate the noise, the footprint is enhanced and 

stratigraphic signal suppressed by applying a vertical median filter that removes the 

stratigraphic features. Along with rescaling the attribute amplitudes, a constant bias may 

need to be added to the attribute data to force noise free (e.g. high coherence, c=1) values 

to be the same as null values in mute and dead trace zones. Once the footprint is 

enhanced it is transformed to kx-ky space and smooth pedestal filters are generated that 

best represent the acquisition footprint in the seismic attribute volume. 

Parallel to the footprint characterization steps described above, the seismic amplitude 

volume is transformed to kx-ky space and masked with the pedestal filters generated from 

the attribute data. Figure 27 summarizes the steps of the kx-ky footprint suppression 

workflow applied to the seismic data acquired over the Anadarko Basin, OK. The reverse 
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transform of the masked amplitude data yields modeled noise time or horizons slices that 

are then adaptively subtracted from the original data to produce filtered seismic data 

(Figure 28). Footprint sensitive attributes are computed from the filtered data to QC the 

filtering process and decide whether the data need more filtering or is ready for 

interpretation. 

Although filtering in kx-ky space effectively removes spatially periodic and coherent 

noise it could be harmful to geologic features that express similar spectral components. 

Figure 29 shows phantom horizon slices 80 ms below the Skinner horizon in Figure 9. 

Most of the footprint along this phantom horizon slice has been successfully removed; 

however, some steeply dipping signal was also removed (red arrows). Figure 30 shows 

the computed frequency spectrum for the kx-ky filtered data and the removed noise. 

Like kx-ky filtering, principal component analysis and filtering is most safely applied 

along horizons. Kirlin and Done (1998) use principal component filters are in seismic 

processing to estimate and remove ground roll from the data. Spitz (1999) models 

multiple events from interpreted multiple generator primaries on 3D data volumes. This 

pattern is defined as a spatial eigenmap that contains the phase shift and lateral amplitude 

variation from trace to trace but excludes the waveform of the event. 

In our case we will use principal components to determine piecewise planar events 

that have a fixed waveform that best fit the data along reflector dip and azimuth, to model 

the ―coherent‖ part of the signal (Figure 31). The n
th

 principal component is given by: 

      (8) 
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where v
n
(t) is the n

th
 eigenmap calculated from the covariance matrix C. Marfurt (2006) 

describes a covariance matrix aligned with reflector dip components (p,q) measured in 

s/m, in a (-K,+K) vertical window centered about (x0=0, y0=0): 

− ( , , )+ =− + + ∆ − − − ( , , ) + ∆ − − − (

, , )      (9) 

where the superscript H denotes the Hilbert transform of the data and the bar denotes the 

mean values in the (-K,+K) sample window. 

Since principal component analysis implicitly computes a fixed waveform for each 

event (Figure 24b), principal component analysis is best applied along dip and azimuth. 

Such flattening ensures correlation in constructing the covariance matrix of events from 

the same reflector. Al-Bannagi et al., (2005) applied principal components (or SVD) 

filtering to suppress footprint in a 2D by 2D implementation. Figure 32 shows a 3D 

implementation applied to seismic data acquired over the Anadarko Basin, OK using the 

first, second and third principal components. 

Structure Oriented Filtering (SOF) 

Filtering along horizon slices reduces a 3D problem to series of 2D problems. 

Although proven effective for slowly time variant and spatially-periodic noise, 2D 

transformations are not as robust when the data are contaminated with time-and-space 

variant noise. In such situations, a 3D implementation of filters will better estimate the 

noise and separate it from the signal. Footprint will change with depth if there are lateral 

velocity changes in the overburden. Filter parameters include lateral and vertical window 

size, edge preservation techniques and smoothing criteria used. 
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Edge preservation techniques 

Fehmers and Höecker (2003) introduced the concept of Structure Oriented Filter 

(SOF) as a stepwise removal of noise (Figure 33). Smoothing is applied parallel to 

reflector dip and azimuth so long as a significant discontinuity does not exist. Figure 34 

shows my workflow to estimate the degree of smoothing using a similarity attribute 

implemented in my modification of a SOF algorithm. Figure 35 shows the effect of using 

Sobel filter similarity as a degree of smoothing factor is tested on the offshore Louisiana 

data.  

Marfurt (2006) built on Luo et al., (2002) Kuwahara algorithm to implement a robust 

volumetric dip and azimuth calculation that avoided smearing of faults, fractures and 

other discontinuities using an overlapping window method (Figure 36 and Figure 37).  

This technique along with the seismic data input can be used to implement volumetric 

filters based on mean, median, α-trimmed mean or principal component algorithms 

(Figure 37). Rather than using a centered analysis window, the algorithm uses the most 

coherent window containing each analysis point, hence enhancing the lateral resolution 

and reducing both random and coherent noise (Marfurt, 2006). Figure 38 shows the 

results of this overlapping window filtering technique applied to the offshore Louisiana 

data. Figure 39 andFigure 40 show a comparison of each technique impact on the 

offshore Louisiana data.  

Sensitivity to smoothing algorithm 

As with the edge preservation techniques, filtered data will be sensitive to our 

algorithm selection. Mean, median and α-trimmed mean filters will work best in areas 

where the data has random incoherent noise but might misestimate the amplitude. Median 

and α-trimmed mean filters are relatively insensitive to spikes in the data. Principal 
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component filters will diminish random noise and better preserve lateral variations in 

signal amplitude (Figure 41). Figure 42-Figure 45 show filtered data from offshore 

Louisiana (Figure 12) using mean, median, α-trimmed mean and principal component 

algorithms respectively and their differences with respect the original data. 

Special care has to be taken when using principal component filters as to how many 

eigenvectors are going to be sued for filtering the data. In some cases subtle geologic 

features such as small faults and channels may be represented by second and the third 

eigenmaps. If only the first eigenmap is used, subtle geologic features may be also 

removed (Figure 46). 

Sensitivity to horizontal window size 

Horizontal window parameter modulates the degree of smoothing in the horizontal 

direction having a direct impact upon the filtered seismic data. For the mean, median and 

α-trimmed mean filter the influence of the horizontal window size will enhance the 

results by adding more sample points to the statistics of the analysis window. Figure 47 

shows the impact of varying the horizontal analysis window size to the filtered data for 

the offshore Louisiana data set.  
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Figure 26: kx-ky filtering workflow for seismic amplitude data using seismic attribute pattern 

recognition described by Falconer and Marfurt, 2006. 
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Figure 27: Application of footprint suppression workflow shown in Figure 26 to the seismic 

amplitude volume acquired over the Anadarko Basin, OK. (a) Time slice through seismic 

amplitude at t=1.6 s horizon shown in Figure 9. Red arrows indicate footprint anomalies on the 

data. (b) Corresponding time slice through most negative amplitude short wavelength curvature 

exacerbating short wavelength footprint anomalies and its derivative spectrum. (c) Time slice 

through smoothed most negative amplitude curvature at t=1.6 s after median filter to suppress any 

remaining signal of the geologic features and enhance vertical footprint features. (d) Time slice 

through most negative amplitude curvature at t=1.6 s in the kx-ky domain. White arrows indicate 

peak amplitude anomalies due to the footprint signal in the attribute. Black arrows indicate N-S 

and E-W anomalies that correlated to the survey edges as well as footprint. (e) Time slice through 

seismic amplitude at t=1.6 s in the kx-ky domain. Most of the smooth, relatively flat signal will 

cluster near the origin (yellow arrows) whereas lineaments such faults and channels will be 

scattered at larger values of kx-ky. White arrows indicate zones where noise clusters are present. 

Black arrows indicate anomalies due to the survey edges. (f) Notch filter pedestals. Counter 

intuitively in this step the signal is removed from the data in order to model the noise 

components. Noise (blue arrows) will then be adaptively subtracted from the data for a noise 

reduced seismic amplitude volume. 
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Figure 28: (a) Time slices at t=1.6 s through: original seismic amplitude data, kx-ky filtered seismic 

amplitude data and noise pattern for the dataset acquired in the Anadarko Basin, OK. Notice that 

most of the N-S and E-W lineaments present due to the footprint in the original data have been 

removed. Green arrows indicate geologic features that have been enhanced after the filtering. 

Yellow arrows indicate footprint pattern characterized by the kx-ky filter and removed from data. 

(b) Representative vertical section through the original seismic amplitude data, filtered seismic 

amplitude data and noise pattern for the dataset acquired in the Anadarko Basin, OK. Green 

arrows indicate areas where the signal-to-noise ratio has increased compared to the original data. 

Red arrows indicate areas where noise was removed but it is still present. Yellow arrow indicates 

geologic features removed by the filtering process represented by a kx-ky ―noise‖ component. 
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Figure 29: Time slice at t=1.6 s through (a) original seismic amplitude data, (b) kx-ky filtered 

seismic amplitude data and (c) removed noise for the dataset acquired in the Anadarko Basin, 

OK. Distinctive geologic features can are observed in both the original and filtered data. Filtered 

data displays sharper and better defined channels and features than the original data. 

Unfortunately part of the signal present in the data was also removed, dimming certain features 

indicated by red arrows. Green arrows indicate footprint removed. Note the difference in 

amplitude scales. 
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Figure 30: Representative section through frequency spectrum calculated for (a) kx-ky filtered 

seismic amplitude data and (b) noise pattern for the dataset acquired in the Anadarko Basin, OK. 

Most of the signal in the filtered data is in the 20 to 70 Hz band. Magnitude trough the vertical 

section shows a regular character. The noise spectrum appear to be contained in the 60 to 80 Hz 

with ―bursts‖ in the lower frequencies.  

 



 

43 

 

 

Figure 31: A window of five noise-contaminated traces having the same underlying waveform, 

but with different amplitudes (1, 1, 1, 2, 2). The first eigenvector or principal component, are 

amplitudes that best represent this lateral variation within the vertical analysis window. By 

convention, the eigenvector is normalized here by  to have length 1.0, giving rise to the 

eigenvector v
1
= . 
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Figure 32: Phantom horizon slice 0.066 s below the Skinner horizon (Figure 9) through (a) 

original seismic amplitude data, (b) horizon based principal component filtered seismic amplitude 

data and (c) removed noise for the dataset acquired in the Anadarko Basin, OK. The filter was 

designed using the first three principal components of the data in a 21-trace by 21-trace running 

analysis window. Footprint is attenuated in the filtered data (green arrows) but still present. The 

lack of footprint removal from the principal component filter is due to the consistent character of 

its waveform through the data. Note on the noise slice that random patterns of footprint are 

removed but also an equal amount of signal (red arrows). 
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Figure 33: Fehmers and Höecker’s (2003) structure-oriented filtering workflow where the degree 

of smoothing is a function of the strength of the measured discontinuities. Their original 

algorithm computed di, azimuth, and discontinuities using a gradient structure tensor (GST). In 

the actual implementation there is a gradational blending between ―smooth‖ and ―don’t smooth‖.  
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Figure 34: Suite of images illustrating the interactive workflow used to define smoothing weights 

in structure-oriented filtering for a time slice at t=0.76 s through the Sobel filter similarity data 

volume computed from the offshore Louisiana data set (Figure 12). (a) Similarity values, S, and 

corresponding weights, W. By modifying the threshold values for S we increase or decrease the 

smoothing weights thereby changing the aggressiveness of the filter. (b) Note the enhancement of 

the footprint noise (red arrows). Green arrows indicate white areas where the filter will be more 

aggressive and remove incoherent noise. (c) Yellow arrows indicate geologic features that will be 

partially or totally smoothed due to their similarity values S and corresponding weights W 

compared to (a). Green arrows indicate features that will be preserved or areas where footprint 

will be removed. (d) This case is the optimal setting for the degree of smoothing. Green arrows 

indicate key areas where (d) shows an improvement over (c) both in preserving lineaments and 

removing footprint. 
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Figure 35: Time slice at t=0.76 s though (a) seismic amplitude and (b) output from a variation of 

Fehmers and Höecker’s structure-oriented principal component algorithm for the offshore 

Louisiana data set. (a) Red arrows indicate footprint contamination. (b) The amplitude of the 

footprint was diminished by the filter but there are still remnants visible after first iteration 

(yellow arrows). Green arrows indicate areas where edges of geologic features are sharper. 
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Figure 36: (a) An analysis window centered about an analysis point indicated by the red solid dot 

containing a total of 13 traces (red and green dots). (b) A suite of 13 overlapping windows 

centered about the green dots in (a), each of which also contains 13 traces, including the analysis 

point indicates by the red dot. The coherence along dip and azimuth is computed in each window 

and used in the flow described in Figure 37. Use of such laterally shifted windows helps avoid 

smoothing across faults, angular unconformities and other features of geologic interest when 

compared to (a). 
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Figure 37: Structure oriented filtering workflow using a modification of the Kuwahara algorithm 

for dip estimates after Marfurt (2006). 
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Figure 38: Time slice at t=0.76 s though (a) seismic amplitude and (b) principal component 

filtered seismic amplitude following the workflow in Figure 37 for the offshore Louisiana data 

set. (a) Red arrows indicate footprint contamination. The amplitude of the footprint was 

diminished and smeared by the filter but there are still remnants visible in (b) (yellow arrows). 

Green arrows indicate areas where edges of geologic features are sharper. Cyan arrows indicate 

features that became distinguishable after the filtering. Line AA’ is shown in Figure 39. 
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Figure 39: Vertical section through line AA’ shown in Figure 38 for the offshore Louisiana 

dataset showing (a) original data, (b) filtered data and (c) noise respectively. The data was filtered 

using modified Fehmers and Höecker’s workflow (Figure 33) using a single analysis window 

containing 13 traces. Fehmers and Höecker’s technique shows effective for removing footprint 

modulation through the entire section (green arrows) but removes also a fair amount of signal 

(yellow arrows). 
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Figure 40: Vertical section through line AA’ shown in Figure 38 for the offshore Louisiana 

dataset showing (a) original data, (b) filtered data and (c) noise respectively. The data was filtered 

using modified Kuwahara window workflow (Figure 37) using a suite of 13 overlapping windows 

each of which contains 13 traces. The Kuwahara technique also does a good job in removing the 

footprint modulation through the entire section (green arrows) and also removes fault plane 

reflections (magenta arrows). An improvement in the reflector coherence due to Kuwahara’s 

overlapping window technique is observed. Examples in Figure 39 and Figure 40 used only one 

iteration and the same edge-preservation criteria and weights (Figure 34c) 
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Figure 41: (a) Five noise contaminated traces. Note traces 1 and 2 have a peak amplitude of about 

2.0 while traces 3-5 have a peak amplitude of about 1.0. (b) Detail of center trace 3 showing the 

results of mean, median, and principal component filtering. The mean and median filters both 

overestimate the amplitude, while the PC-filter both diminishes random noise and approximates 

the underlying true signal amplitude. The PC filter does this by using 55 data values (5 traces by 

11 time samples) in the filter design, while the mean and median filters are based only 5 data 

values (5 traces at a single time sample). 
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Figure 42: (a) Time slice at t=0.76 s though mean-filtered seismic amplitude using the workflow 

shown in Figure 37. (b) Difference between original data (Figure 35a) and (a). (c) Vertical section 

through mean filtered seismic amplitude for line A-A’ shown in (a). Red arrows indicate footprint 

contamination, yellow arrows indicate features that have enhancement after filtering but are still 

damaged by the footprint. Green arrows indicate features that have been improved after filtering. 

(b) Most of the removed amplitudes correspond to footprint modulation. Note that some signal 

has been removed also by the filtering process. (c) Green arrows indicate areas where filtering has 

improved reflector continuity. Yellow arrows indicate areas that are still damaged by the 

footprint. 
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Figure 43: (a) Time slice at t=0.76 s though median-filtered seismic amplitude using workflow 

shown in Figure 37. (b) Difference between original data (Figure 35a) and (a). (c) Vertical section 

through median-filtered seismic amplitude for line A-A’ shown in (a). (a) Red arrows indicate 

footprint contamination, yellow arrows indicate features that have enhancement after filtering but 

still damaged by the footprint. (b) Most of the removed amplitudes correspond to footprint 

modulation. Note that more signal has been removed when compared to Figure 42b. (c) Median 

filter is not as effective as the mean filter in removing the footprint. Red arrows indicate areas 

where a strong footprint contamination is observed. 
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Figure 44: (a) Time slice at t=0.76 s though 20% α-trimmed mean filtered seismic amplitude 

using workflow shown in Figure 37. (b) Difference between original data (Figure 35a) and (a). (c) 

Vertical section through α-trimmed mean filtered seismic amplitude for line A-A’ shown in (a). 

For this particular case the results of the α-trimmed mean filtered data are very similar to the 

median filter. 
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Figure 45: (a) Time slice at t=0.76 s though principal component filtered seismic amplitude using 

workflow shown in Figure 37. (b) Difference between original data (Figure 35a) and (a). (c) 

Vertical section through principal component filtered seismic amplitude for line A-A’ shown in 

(a). (a) Yellow arrows indicate areas that where the footprint has not been removed completely. 

Green arrows indicate features that have been enhanced by filtering. (b) Compared to Figure 42 

and Figure 43 principal component filtered better removes footprint modulation. Note that almost 

no signal was removed from the original data. (c) Green arrows indicate areas where reflector 

continuity has been greatly enhanced by filtering. Yellow arrows indicate areas where footprint 

still present. 
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Figure 46: Time slice at t=0.76 s though (a) principal component filtered seismic amplitude 

(Figure 37) using the first eigenmap, (b) principal component filtered seismic amplitude (Figure 

37) using the second eigenmap and (c) difference between (a) and (b). Lineaments edges are 

sharper and better defined in (b) with respect to (a). (c) Red arrows indicate subtle features and 

edges present in (b) that are removed in (a) by the filtering process. 
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Figure 47: Time slice at t=0.76 s though (a) principal compoment filtered seismic amplitude 

(Figure 37) using a horizontal analysis window radius of 25 m containing 5 traces, (b) principal 

compoment filtered seismic amplitude (Figure 37) using a horizontal analysis window radius of 

50 m containing 13 traces and (c) difference between (a) and (b). (c) For this case principal 

component filtering with a larger horizontal window shows more effective in removing footprint 

noise (magenta arrows). Notice that large discontinuity features are not harmed by a larger 

window (green arrows) although small geologic features could be harmed when using a larger 

horizontal analysis window (yellow arrow) 
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CHAPTER V 

Alternative workflow examples 

Although interpreters would wish for a single filter that would remove all the noise in 

the data in a single pass, this is rarely the case. A single perfect filter does not exist but 

the combination of different filters often serves as a very good approximation to a 

―perfect‖ filter. I have designed data dependent workflows combining structural oriented 

filters and horizon based kx-ky filters depending on the acquisition footprint response on 

attributes. 

Figure 48 shows the cascaded filtering workflow for removing acquisition footprint 

characterized with structural curvature attributes. Figure 49 and Figure 50 show results of 

seismic amplitude and most positive principal structural curvature for the data acquired 

over the Delaware Basin, NM filtered using the workflow shown in Figure 48. 

Figure 51 shows the cascaded filtering workflow for removing acquisition footprint 

affecting frequency and wavelet phase attributes. Figure 52 andFigure 53 show the 

improvements of peak frequency modulated by peak magnitude attribute and peak 

wavelet phase modulated by peak magnitude attribute for the seismic data acquired over 

the Anadarko Basin, OK. Figure 54 shows the impact of filtering for relative acoustic 

impedance calculation for the same data set. 

Figure 55 shows the cascaded filtering workflow for removing acquisition footprint 

affecting similarity attributes. Figure 56 andFigure 57 show the improvements of Sobel 

filter similarity attribute for seismic data acquired over Central Basin Platform, TX. 
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Figure 48: Workflow implemented for removing footprint contamination of structural curvature 

attributes 
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Figure 49: Time slice at t=0.8 s through the (a) original seismic amplitude data, (b) kx-ky filtered 

seismic amplitude data, (c) difference between (a) and (b), (d) principal component filtered data 

from (b)  and (e) difference between (b) and (d) for the dataset acquired in the Delaware Basin, 

NM using the workflow shown in Figure 48. (a) Magenta arrows indicate areas where the 

footprint contamination is strongest. (b) kx-ky filter was implemented using most positive 

structural curvature following the workflow in Figure 26. Green arrows indicate areas were the 

footprint was successfully removed after kx-ky filtering. (c) Some steeply dipping reflectors were 

attenuated by kx-ky filtering (yellow arrows). (d) Principal component filter was implemented 

using a 220 ft horizontal window containing 13 traces, a 0.01 s vertical window containing 5 

samples and the first three principal components following the workflow in Figure 37. Green 

arrows indicate areas of improvement compared to the kx-ky filtered data. (d) Yellow arrows 

indicate subtle geologic features removed by the principal component filtering process. 
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Figure 50: Time slice at t=0.8 s through the (a) most positive structural principal curvature 

calculated from original seismic data, (b) most positive structural principal curvature calculated 

from kx-ky filtered seismic amplitude data, (c) and most positive structural principal curvature 

calculated from principal component filtered for the dataset acquired in the Delaware Basin. (a) 

Yellow arrows indicate areas where the footprint contamination is strongest. (b) Green arrows 

indicate areas where curvature attribute has improved after kx-ky filtering. (c) Green arrows 

indicate areas where the combination of kx-ky filtering and principal component structure-oriented 

filtering has improved subtle geologic features. 
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Figure 51: Workflow implemented for removing footprint contamination of frequency, phase and 

impedance inversion. Note there are two iterations of SOF following kx-ky filtering. 
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Figure 52: Phantom horizon slice 0.066 s below the Skinner horizon through (a) peak frequency 

modulated by peak magnitude using a 2D color map (Guou et al, 2008) computed from seismic 

amplitude volume acquired over the Anadarko Basin, OK. (b) Peak frequency modulated by peak 

amplitude using a 2D color map (Guo et al, 2008) computed from filtered seismic amplitude 

volume following workflow in Figure 51. Red arrows indicate acquisition footprint artifacts with 

a predominant frequency of 30 Hz. White arrows indicate enhanced features after the filtering 

process. Blue arrows indicate features that have become visible after filtering. Red arrows 

indicate areas still affected by acquisition footprint. 
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Figure 53: Phantom horizon slice 0.066 s below Skinner horizon trough (a) peak phase modulated 

by peak magnitude using a 2D color map (Guo et al, 2008) computed from seismic amplitude 

volume acquired over the Anadarko Basin, OK. (b) Peak frequency modulated by peak amplitude 

using a 2D color map (Guo et al, 2008) computed from filtered seismic amplitude volume 

following workflow in Figure 51. (a) White arrows indicate acquisition footprint artifacts. Black 

arrows indicate enhanced features after the filtering process. Grey arrows indicate features that 

have become visible after filtering. 
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Figure 54: Time slice at t=1.68 s trough (a) relative acoustic impedance computed from seismic 

amplitude volume acquired over the Anadarko Basin, OK and (b) relative acoustic impedance 

data volume computed from filtered seismic amplitude volume using workflow in Figure 51. (a) 

White arrows indicate acquisition footprint artifacts. Artifacts appear as N-S trending impedance 

anomalies that mask impedance in the reservoir interval. (b) Grey arrows indicate areas where 

filtering has improved the resolution of the relative acoustic impedance. White arrows indicate 

areas still affected by footprint. 
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Figure 55: Workflow implemented for removing footprint contamination of similarity attributes. 

Note the kx-ky following the SOF filtering and the two iterations of SOF following kx-ky filtering. 
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Figure 56: Time slice at t=0.6 s trough (a) original seismic amplitude and (b) filtered seismic 

amplitude following workflow shown in Figure 55 for seismic data acquired over Central Basin 

Platform, TX. Red arrows indicate footprint contamination. Green arrows indicate zones where 

filtering has enhanced the amplitude of geologic features. Yellow arrows indicate features that 

have been harmed as a consequence of filtering. 
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Figure 57: Time slice at t=0.6 s trough Sobel filter similarity computed from (a) original seismic 

amplitude and (b) filtered seismic amplitude following workflow shown in Figure 55 for seismic 

data acquired over Central Basin Platform, TX. (a) Red arrows indicate footprint contamination. 

(b) Green arrows indicate zones where filtering has enhanced the amplitude of geologic features. 

Red arrows indicate features that have been harmed as a consequence of filtering. Circled areas 

are subject to karsting at the San Andres level. 
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CONCLUSIONS 

Acquisition footprint is present in all types of seismic data, and is most commonly 

due to the inadequate sampling of the seismic wave fields, inaccurate velocities and 

improperly muting the seismic data. Seismic attributes derived from footprint-

contaminated data will enhance the acquisition footprint and appear as coherent spatially 

periodic artifacts overprint and often mask the geologic features of interest. Several 

authors have proposed alternative solution techniques for removing acquisition footprint. 

In this work we have approximated their implementations in order to evaluate their 

effectiveness on diverse data volumes as well as to provide additional clarification on 

their implementation. 

For the migrated volumes evaluated, horizon-based filtering techniques produce 

better result overall for acquisition footprint suppression since they rely on the 

interpreter’s ability to recognize the footprint pattern and enhance it with attributes. On 

the other hand horizon-based techniques can also remove subtle features such as channel 

edges and faults if filter implementation is too aggressive. 

Structure-oriented filters, SOF, are more local, can be effective in removing footprint 

anomalies and avoid the need to pick horizons. Cascaded SOF are best implemented by 

recomputing and imaging processing the dip before each iteration. In all cases the 

rejected ―noise‖ should be inspected for signal components that were removed by the 

filter. 

Although several solutions have been proposed to remove acquisition footprint from 

legacy data 3D data volumes, there is not a unique solution.  However, the 

implementation of workflows that cascade structure-oriented with horizon based filters 
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has proven to be the most effective method to remove acquisition footprint from legacy 

data volumes (Table 1). 

Table 1: Summary matrix of observed acquisition footprint examples and solution techniques. 

 

  

Acquisition footprint 

contamination on Sobel filter 

discontinuity attributes

Acquisition footprint pattern 

has a similar response as Karst 

features

Cascaded SOF-kx-ky-SOF-SOF 

filtering workflows 

recomputing similarity 

attributes in each step

Compare similarity attributes 

at each stage of the cascaded 

workflows with originals. 

Compute difference between 

original and filtered seismic 

data at each step

Acquisition footprint pattern 

overlaps seismic amplitudes 

masking subtle depositional 

features

Cascaded kx-ky-SOF filtering 

workflows recomputing 

similarity attributes in each 

step

Compare strcutural curvature 

and filtered seismic 

amplitudes attributes at each 

stage of the cascaded 

workflows with originals. 

Compute difference between 

original and filtered seismic 

Acquisition footprint 

contamination of frequency, 

phase and impedance 

inversion attributes

Acqusitionf footprint changes 

in phase and amplitude affect 

frequency, phase and 

amplitude response of subtle 

geologic features

Cascaded kx-ky-SOF-SOF 

filtering workflows 

recomputing similarity 

attributes in each step

Compare amplitude curvature 

attributes at each stage of the 

cascaded workflows with 

originals. Compute difference 

between original and filtered 

seismic attributes at each step

Diagnostic Problem Proceding Results QC

Acquisition footprint 

contamination on strcutural 

curvature attributes
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APPENDIX 

APPENDIX 1. REVIEW OF REFLECTOR DIP AND AZIMUTH 

ESTIMATOR 

Dip and azimuth are commonly defined in reflection seismology to avoid 

mathematical ambiguities that rise by defining dip and strike in the geological sense. 

The reflector dip (θ) is identical to the geologic dip, and the reflector azimuth (ϕ) is 

defined as the direction of maximum downward dip (perpendicular to the geologic 

strike) measured from north. The reflector dip vector a is defined by the apparent 

reflector dips θx and θy along the survey axes and the dip azimuth (Figure A1), where: 

 (A1) 

 (A2) 

 (A3) 

 

When an accurate velocity model is not known, it is more convenient to measure 

the apparent dips in two-way time, where p is the inline apparent dip in s/m and q is 

the apparent crossline dip in s/m. By approximating the earth by a constant velocity 

model the apparent inline dip (p) and apparent crossline dip (q) can be defined as 

(Figure A1): 

 (A4) 

 (A5) 
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Figure A1: Mathematical, geological, and seismic nomenclature used in defining reflector 

dip: n is unit vector normal to the reflector, a is unit vector dip along the reflector, θ is dip 

magnitude, is ϕ dip azimuth, ψ is strike, θx is apparent dip in the xz plane, and θy is apparent 

dip in the yz plane. The apparent time dip in the xz plane is defined as vector p and the 

apparent time dip in the yz plane is vector q (Modified after Marfurt, 2006) 

 

Marfurt et al. (1998) generalized Finn’s (1986) method for semblance 

computation and analysis based on a 3D scanning analysis, to obtain more robust 

estimates of dip and azimuth. Using the data, u, and its Hilbert transform, u
H
, 

minimizes artifacts encountered about zero crossings:  

 (A6) 

where p and q are defined by equation A2, xj and yj are the local coordinates for the 

jth trace measured from the origin to the analysis point; J denotes the total number of 
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traces in the analysis window and Ks and Ke denoted the first and last time sample in 

the analysis window (Figure A2).  

 

 

Figure A2: (a) Schematic showing the 2D dip coherence estimation. The first step is to 

calculate the coherence using some statistical measure (eg. Semblance or principal 

component), along several discrete dip candidates (shown in colored lines). The maximum 

coherence is shown in dark green. Next, the algorithm passes an interpolation curve through 

the coherence measures estimated by the peak value and two or more neighboring dips (here, 

shown in light green).  The peak value of this curve gives an estimate of coherence, whereas 

the dip value of this peak gives an estimate of instantaneous dip. (b) A schematic diagram 

showing a 3D search-based estimate of coherence, in which p indicates the inline and q the 
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crossline components of vector time dip. The technique is analogous to that shown in (a). 

After Marfurt et al. (1998). 

A better estimate of the reflector dip and azimuth is obtained by fitting a 2D 

paraboloid through the nine discretely sampled point neighboring the point having the 

maximum semblance: 

 (A7) 

Solving for the αj coefficients using a least-squares approximation, an improved 

estimation of the reflector dip can be calculated by solving for ( , ): 

 (A8) 

 (A9) 

Where ( , ) is the apparent dip pair corresponding to the maximum of the 

interpolated semblance surface .  

Marfurt (2006) obtained a better estimate of vector dip using a multi-analysis 

window construct developed by Kuwahara et al. (1976), and adapted  edge preserving 

amplitude filtering by Luo et al. (2002). The algorithm scans a suite of non-centered 

overlapping analysis windows in addition to the centered window, all of them 

containing the point of interest (Figure A3). Since amplitudes are expected to change 

along a discontinuity, semblance estimation is used to choose dip and window with 

the maximum coherence.  
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Figure A3: (a) A plan view of a nine-trace, nine-lateral-window search for dip and azimuth. 

Solid circles indicate the analysis point, and shaded rectangles indicate alternative analysis 

windows. We begin by calculating and then interpolating for the coherence and dip and 

azimuth within each window as described in Figure 6. This process is repeated for all 9  5 = 

45 overlapping analysis windows, each containing the desired analysis point. The dip and 

azimuth at the analysis point are defined to be the dip and azimuth of the window that 

encompasses the analysis point having the maximum coherence. Use of such temporally and 

laterally shifted analysis windows helps preserve angular unconformities and other features of 

geologic interest. (b) A vertical view of the first (northwest) window shown in Figure 3.9a 

illustrating the search over five vertical windows containing the analysis point indicated by 

the yellow dot (only the three crossline traces are displayed).  After Marfurt (2006).  

 

 


