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List of Figures 

Figure 0.1. (a) Time slice at 500ms through seismic amplitude and (b) coherence volumes 

from a survey acquired through from Central Basin Platform. Acquisition footprint gives 

rise to a regular grid of circular artifacts on the coherence image that masks circular to 

elliptical anomalies associated with karst features at this time level. (After Falconer and 

Marfurt, 2008). 

Figure 1.1. (3-D) migration of salt-dome flanks in the Gulf of Mexico obtained (a) 

without and (b) with the application of an antialiasing filter that limits the frequency of 

steeply dipping events. (After Biondi, 2001). 

Figure 2.1. New azimuth binning (Perez and Marfurt). Perez and Marfurt (2008) 

proposed one new azimuth binning algorithm in Kirchhoff prestack migration, by sorting 

seismic data by the azimuth of  average travel path from source to subsurface image point 

and back to receiver, rather than the azimuth between source and receiver  directly. 

Figure 3.1. Prestack structure-oriented filtering workflow. (After Davogustto, 2011). 

Figure 3.2. Here is workflow of CLSM. Some programs from the AASPI utilities, I will 

explain each in table 3-1. 

Figure 4.1. Map of the Mississippian subcrop in Kansas. Black box outlines Ness County, 

and the white block arrow indicates the location of Dickman Field. Black dots represent 

oil production. Colors represent different Mississipian-Age formations (After Nissen et 

al., 2009). 

Figure 4.2. Vertical slice through stacked volume after prestack time migration of the 

decimated data: (a) using conventional migration, (b) one iteration of CLSM, (c) two 
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iterations of CLSM, and (d) three iterations of CLSM. White block arrows indicate 

aliasing artifacts in (a) and (b). These artifacts are significantly attenuated in (c) and (d). 

Figure 4.3. Change of residue as iterations increase for (a) unpreconditioned and (b) 

preconditioned least-squares migration for the decimated Dickman dataset. Change of 

gradient with increasing iteration for the decimated Dickman dataset (c) 

unpreconditioned, and (d) preconditioned LSM. The initial, preconditioned solution 

converges faster (smaller value of |r|), but then levels out. Without constraints, aliases 

that appear in the subsurface image provide a better fit to the surface data, regardless as 

to whether that component of the data is signal or noise.  

Figure 4.4. (a) Time-structure map of the top of the Gilmore City horizon, (b) source and 

receiver pair map, (c) the vertical slice through the line AA’. White arrows show collapse 

features, red arrow shows noise. 

Figure 4.5. Vertical slice through seismic amplitude along profiles AA’ as shown in 

Figure 4.4a: (a) using conventional migration, and after (b) two, and (c) three iteration of 

CLSM. (d) Vertical slice through noise difference amplitude between the original 

modeled data   and structure-oriented filtered model  ̃ along profiles AA’. The red 

block arrows in (a) indicate noise. White block arrows indicate the collapse features. 

Figure 4.6. Vertical slice through seismic amplitude along profiles BB’ as shown in 

Figure 4.4a: (a) using conventional migration, and after (b) two, and (c) three iteration of 

CLSM. Red block arrows indicate the fault. After CLSM, the fault is better imaged. 

Figure 4.7. Time slice at t=0.406s through stacked amplitude volumes after (a) 

conventional migration and after (b) two, and (c) three iterations of CLSM. The white 
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block arrow in (a) indicates footprint, which impedes interpretation. CLSM attenuates 

these footprint artifacts after (b) two, and (c) three iterations. 

Figure 4.8. Horizon slices along the Gilmore City through coherence volumes computed 

from seismic amplitude: (a) using conventional migration, and (b) two, and (c) three 

iterations of CLSM. Red block arrows indicate the karst collapse features. 

Figure 4.9. Horizon slices along the Gilmore City through inline gradient co-rendered 

with the coherent energy volumes computed from seismic amplitude: (a) using 

conventional migration, and (b) two and (c) three iterations of CLSM. The white block 

arrows in (c) indicate the collapse features.  

Figure 4.10. Horizon slices along the Gilmore City through K2 curvature volume 

computed from seismic amplitude: (a) using conventional migration, and (b) two and (c) 

three iterations of CLSM. The white block arrows in (b), (c) indicate the collapse features.  

Figure 4.11. Representative traces from seismic shot gathers: (a) Original data which was 

input to both conventional and the first iteration of CLSM migration. (b) Predicted 

(demigrated) gathers after (b) conventional migration, (c) one, (d) two, and (e) three 

iterations of CLSM. Note the scale bar for the demigrated conventional gathers are 

different from the original input data. In contrast, CLSM better approximates the original 

data, allowing us to construct the residual r at each iteration.  Random noise in the 

demigrated image of the conventionally migrated data indicates that such noise has 

leaked into the subsurface image. In contrast, the demigrated reflectors become 

increasingly coherent with the number of iterations in CLSM (white block arrows), 

indicating that only signal (or noise consistent with signal) remains in the subsurface 

images, mn. 
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Figure 4.12. A representative conventionally migrated CRP gathers (a) before and (b) 

after muting. The same gather after (c) two, and (d) three iterations of CLSM. The red 

block arrow in (a) indicates migration stretch. The white block arrow indicates noise that 

has been attenuated using CLSM. 

Figure 4.13.  Change of residue as iterations increase in least-squares migration for the 

undecimated Dickman dataset. 

Figure 5.1. Major geologic provinces of Oklahoma. (After Yenugu, 2010). 

Figure 5.2. (a): Stratigraphic column of Osage County, Oklahoma. (b): Clasts of chert are 

visible as angular discolored forms in these typical core samples from the chert. Samples 

are from the middle of the zone and suggest small-scale debris flow textures. (After 

Rogers, 2001). 

Figure 5.3. (a) is the Time-structure map of the top of Mississippian Chert horizon, (b) 

Stacked volume through seismic amplitude along profiles CC’, white block arrows show 

collapsed features. 

Figure5.4. Stacked volume through seismic amplitude along profiles CC’ as shown in 

Figure5.3a: (a) using conventional migration, and after (b) two, and (c) three iterations of 

CLSM.  White block arrows show diagenetically altered fractures or faults. 

Figure 5.5. Time slice at t=0.6 s through stacked amplitude volumes after  (a) 

conventional migration and (b) two, and (c) three iterations of CLSM. The white block 

arrow in (a) indicates the footprint, which impedes the interpretation. CLSM attenuates 

these footprint artifacts after (b) two, and (c) three iterations. 
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Figure 5.6. A representative conventionally migrated CRP gathers after (a) conventional 

migration and after (c) two, and (d) three iterations of CLSM. The white block arrow 

indicates noise that has been attenuated using CLSM. 

Figure 5.7. Horizon slices along the Mississippian Chert through coherence volumes 

computed from seismic amplitude: (a) using conventional migration, and (b)two and (c) 

three iterations of CLSM. Red block arrows in (a), (b), (c) indicate fractures lineaments.  

Figure 5.8. Horizon slices along the Mississippian Chert through coherence co-rendered 

with most negative curvature volumes computed from seismic amplitude: (a) 

conventional migration, and (b) two iterations and (c) three iterations of CLSM. (d), 

Vertical slice through CC’ of same attributes of three iterations of CLSM.  Red block 

arrows in (a), (b), (c) indicate the fractures lineament. After CLSM is applied, there is 

higher correlation between the most negative curvature and low coherence.  

Figure 5.9. Horizon slices along the Mississippian Chert through coherence co-rendered 

with RMS amplitude volumes computed from seismic amplitude after three iterations of 

CLSM. 

Figure 5.10. Horizon slices along the Mississippian Chert through inline gradient co-

rendered with RMS amplitude volumes computed from seismic amplitude after three 

iterations of CLSM. 
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List of Symbols 

The seismic migration literature now has a 50 years history, using many different 

notations. The table below summarizes the notation used in this thesis: 

Symbols meaning 

  migrated CRP gathers 

  midpoint vector between source and receiver 

  two way travel time 

  migration weight 

  offset vector 

  seismic data vector 

  migration aperture 

  demigration aperture 

  The (x,y,z) coordinate information 

  forward modeling operator (prestack Kirchhoff time demigration) 

   adjoint operator (prestack Kirchhoff time migration) 

  misfit function 

  residual vector  

  gradient vector 

  conjugate direction vector 

  weighting coefficient 

  weighting coefficient 

  a specific trace within the migration analysis window 

      the horizontal projection of the image-coordinates vector 
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Abstract  

       Conventional Kirchhoff migration often suffers from artifacts such as aliasing and 

acquisition footprint, which come from sub-optimal seismic acquisition. The footprint 

can masks faults and fractures, while aliased noise can focus into false coherent events 

which affect interpretation and contaminate AVO, AVAz and elastic inversion. 

Preconditioned least-squares migration minimizes these artifacts.  

      I implement least-squares migration by minimizing the difference between the 

original data and the modeled demigrated data using an iterative conjugate gradient 

scheme. Unpreconditioned least-squares migration better estimates the subsurface 

amplitude, but doesn’t suppressing aliasing. In this thesis, I precondition the results by 

applying a 3D prestack structure-oriented LUM  filter to each common offset and 

common azimuth gather at each iteration. The preconditioning algorithm not only 

suppresses aliasing of both signal and noise, but also improves the convergence rate. 

       I apply the new preconditioned least-squares migration to two surveys acquired over 

a new resource play in the Mid-Continent, USA. Acquisition footprint in shallow targets 

is attenuated and the signal to noise ratio is enhanced. To demonstrate the impact on 

interpretation, I generate a suite of seismic attributes to image the Mississippian 

limestone, and show that karst-enhanced fractures in the Mississippian limestone can be 

better illuminated. 
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Motivation 

       Aliasing comes from the incomplete spatial sampling of the surface seismic wave 

field and often presents major problems in seismic interpretation. For reasons of 

efficiency, almost all land seismic data are acquired on a regular grid, which is “rolled 

along” as the survey progresses. In this situation, the aliasing is no longer random but 

becomes organized into acquisition footprint. Footprint can mask faults and fracture and 

contaminate AVO, AVAz, and elastic inversion analysis. Geometric attributes enhance 

footprint artifacts. When acquisition obstacles are encountered, the change from regular 

to irregular surface coverage gives rise to migration ellipses, which “swing in” to fill the 

gap. 

       Post stack seismic attributes can enhance subtle geological features. Curvature and 

coherence are routinely used to delineate fractures and faults, while spectral 

decomposition illuminates channels, fans, and stratigraphic features. Seismic attributes 

often enhance subtle geological features such as fractures, karst, and tripolite sweet spots 

in the Mississippian limestone. Seismic attributes also “enhance” the appearance of 

acquisition footprint (Figure 0.1). Falconer and Marfurt (2008) used this ‘negative’ 

feature of geometric attributes as a means of characterizing short-wavelength footprint 

components on migrated data after stack. The goal of this thesis is to use constrained 

least-squares migration to suppress such artifacts and thereby improve the interpretation 

on prestack migrated gathers. 

       The Mississippian limestone is one of the most recent resource plays made 

economical by horizontal drilling and hydraulic fracturing. Natural fractures provide 
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conduits for hydrocarbon and fluid movement. Diagenetically-altered chert (tripolite) 

provides sweet spots for production. Karst features in the deeper Cambro-Ordovician 

Arbuckle Limestone provide excellent well locations needed to deposit the large volumes 

(up to 95%) of water produced. Since the targets in the two surveys are shallow (< 5000 

ft), acquisition footprint is particularly strong. I use constrained least-squares migration to 

suppress artifacts and improve lateral resolution of the underlying geology. 
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Figure 0.1. (a) Time slice at 500ms through seismic amplitude and (b) coherence volumes 

from a survey acquired through from Central Basin Platform. Acquisition footprint gives 

rise to a regular grid of circular artifacts on the coherence image that masks circular to 

elliptical anomalies associated with karst features at this time level. (After Falconer and 

Marfurt, 2008). 
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Chapter 1  

Introduction 

 

       Prestack Kirchhoff time migration is still the most popular migration algorithm due 

to its high efficiency and flexibility, especially in imaging relatively flat-lying faulted and 

fractured plays in the Mid-Continent of the USA. Unfortunately, suboptimal surface 

seismic acquisition patterns usually give rise to both data and migration operator aliasing 

and footprint, both of which hinder subsequent interpretation. The most common means 

of suppressing aliasing is to apply an antialias filter within the migration algorithm 

(Figure 1.1). While such a filter removes the aliasing overprint, it also reduces the high-

frequency content of more steeply dipping events, including lateral discontinuities. One 

of the goals of PLSM is to suppress aliasing yet retain the full frequency bandwidth in the 

resulting image. 

       Conventional Kirchhoff migration can be regarded as the adjoint of the seismic 

forward modeling operator (Claerbout, 1992). Chavent and Plessix (1996) used standard 

migration as the zeroth iteration, and then used a conjugate gradient scheme to compute 

the Hessian matrix. They then used a least-squares formulation to obtain an optimized 

image. Schuster (1993) added constraints to the objective function. Following Nemeth 

(1996), he used least-squares migration to overcome uncompensated migration artifacts 

due to incomplete data, which can give rise to acquisition footprint. 

       Least-squares migration may require many iterations to reach convergence, 

consuming significant computer resources. For this reason, significant effort has focused 

on preconditioning the input data to decrease the number of iterations. Wei and Schuster 
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(2009) and Aoki and Schuster (2009) preconditioned the data by using a deblurring filter, 

thereby reducing the number of iterations needed. Wang and Sacchi (2009) evaluated 

running average and prediction filter constraints to improve the convergence rate of a 2D 

least-squares migration algorithm. Cabrales Vargas (2011) used mean and median filters 

as constraints in 3D constrained least-squares migration in his master thesis. 

      Post-stack structure-oriented filtering is commonly used in conditioning stacked 

volumes after migration to facilitate interpretation (Fehmers and Höecker, 2003). Luo et 

al. (2002) extended Kuwahara et al. (1976) algorithm to 3D seismic data as an alternative 

edge-preserving smoothing algorithm. Marfurt (2006) proposed a modification of Luo et 

al.’s (2002) technique. First, he used coherence rather than the standard deviation to 

choose the most homogeneous window. Then, instead of using the mean, median or the 

α-trimmed mean, he used a principal component (or Karhunen-Loeve) filter to that more 

fully uses trends in the analysis window to replace the amplitude at the analysis point. 

Corrao et al. (2011) showed how an LUM-based structure-oriented filter can reject 

outliers, yet better retain the original character of the seismic data. Kwiatkowski and 

Marfurt (2011) showed how such filters can be applied to prestack time-migrated 

common-offset-azimuth gathers. To suppress aliasing within the conjugate gradient 

PLSM algorithm, I apply structure-oriented filters to the common-offset-azimuth gathers, 

which reduces the number of iterations needed by PLSM. 

       In this thesis, I begin my discussion by a review of Kirchhoff migration and 

demigration. Specifically, I examine the role of Kirchhoff migration as the adjoint of the 

seismic modeling operator and demigration as the seismic modeling operator in a PLSM 

algorithm. Next, I will introduce the mathematics of the PLSM algorithm, and its solution 
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using the conjugate gradient method. Then, I show how Kwiatkowski and Marfurt’s 

(2011) prestack structure-oriented filter serves as constraint that increases PLSM 

convergence. I demonstrate the value of my PLSM algorithm and workflow to two 

prestack Mississippian Lime data volumes –from Ness Co., KS and Osage Co., OK and 

illustrate the effectiveness by analyzing seismic attributes computed along the Gilmore 

City and Mississippian Chert horizons. I conclude with a summary of computational 

advantages and disadvantages of PLSM. 
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Figure 1.1. (3-D) migration of salt-dome flanks in the Gulf of Mexico obtained (a) 

without and (b) with the application of an antialiasing filter that limits the frequency of 

steeply dipping events. (After Biondi, 2001). 
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Chapter 2 

Kirchhoff migration and demigration  
 

2.1 Kirchhoff migration 

       Kirchhoff migration is the adjoint operator of Kirchhoff modeling (Nemeth et al., 

1999). Biondi (2006) represents prestack 3D Kirchhoff migration using Green’s function 

             𝐦(𝜉) = ʃ
𝛺𝜉
𝑊(𝜉, 𝐪, 𝐡)

∂

d𝑡
𝑑[𝑡 = 𝑡𝐷(𝜉, 𝐪, 𝐨), 𝐪, 𝐨]d𝐪d𝐨,                                   (2-

1) 

where 𝐦(𝜉)  are the migrated CRP gathers,  

𝐝(𝑡, 𝐪, 𝐨) are the surface seismic data, 

𝐖(𝜉, 𝐪, 𝐨) is the weighing function, 

𝜕

𝑑𝑡
  represents the first time derivative, 

 𝛺𝜉  is the migration aperture, 

𝐪 is the midpoint vector, and 

o is the offset position vector. 

        Equation 2-1 migrates 𝑑(𝑡, 𝐪, 𝐨)  when the midpoint, 𝐪 , falls in the migration 

aperture 𝛺𝜉 . 𝑡𝐷(𝜉, 𝐪, 𝐨) is the time that the reflection travels from the source position to 

image position,𝑡𝑠, plus the time from the image point back to the receiver, 𝑡𝑔: 

                  𝑡𝐷 = 𝑡𝑠 + 𝑡𝑔 = √
𝑍𝜉
2+|𝐗𝐘𝜉−𝐪+𝐨|

2

𝑉
+√

𝑍𝜉
2+|𝐗𝐘𝜉−𝐪−𝐨|

2

𝑉
 .                                       (2-2) 
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where 𝐗𝐘𝜉 represents the horizontal projection of the image-coordinate vector, and v is 

the migration velocity. 

 

Figure 2.1. New azimuthal binning (after Perez and Marfurt, 2008). 

       Perez and Marfurt (2008) proposed a new azimuthal binning approach to Kirchhoff 

prestack migration that sorts output by the azimuth of the average travel path from 

surface midpoint to subsurface image point, rather than the azimuth between source and 

receiver (Figure 2.1).  This new binning allows us to identify the image contribution from 

out-of-the-plane steeply dipping reflectors, fractures, and faults. I will use this algorithm 

as my migration operator. For ‘conventional migration’, I will leave the antialias operator 

‘on’. For PLSM, I will remove the antialias operator and instead use the constraints to 

reduce aliasing after the first iteration. 
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2.2 Kirchhoff demigration 

          Demigration is the adjoint of migration, and constitutes the modeling operator 

during least-squares migration (Zhang, et al 2002; Biondi, 2006) 

                    𝐃(𝑡, 𝐪, 𝐨) = ʃ
𝑄
𝑊(𝜉, 𝐪, 𝐨)

∂

d𝑡
𝐦(𝑡𝜉 , 𝐱𝜉 , 𝐲𝜉)d𝐱d𝐲,                                   (2-3) 

where 

 𝐃(𝐭, 𝐪, 𝐨) denotes the 3D modeled common-shot gathers, 

𝐦(𝑥𝜉 , 𝑦𝜉 , 𝑧𝜉) are the 3D migrated common-reflection point gathers,  

(xξ, yξ) represents the horizontal projection of the image point, 

𝐖(𝜉, 𝐪, 𝐨) are the demigration weights,  

 
𝜕

𝑑𝑡
 is the time derivative applied to the migrated common-reflection point gathers, and 

Q denotes the demigration aperture. 

 𝑡𝜉  is the total time the reflection travels from the source position to image position, plus 

the time from the image point back to the receiver:  

                        𝑡𝜉 = 𝑡𝑠 + 𝑡𝑔 = √
𝑍𝜉
2+|𝐗𝐘𝜉−𝐪+𝐨|

𝟐

𝑉
+√

𝑍𝜉
2+|𝐗𝐘𝜉−𝐪−𝐨|

𝟐

𝑉
.                                 (2-4) 

        The demigration program I developed in thesis is based on the Kirchhoff prestack 

migration, and it constitutes the forward modeling operator used in the least-squares 

migration workflow described below. 
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Chapter 3 

Preconditioned least-squares migration 

3.1 Least-squares migration 

       I can express modeling (demigration) in matrix notation as: 

𝐝 =  𝐦,                               (3-1) 

where L constitutes the forward modeling operator (in this thesis prestack time 

demigration), 

m is the reflectivity model, and 

d is the modeled data. 

       I define migration as  

                          𝐦 =   𝐝,                                  (3-2) 

where 

    is the adjoint operator of L, (in this thesis is prestack time migration), and 

 𝐦  is the migration approximation to the Earth's reflectivity. 

 Standard migration    is the adjoint of the forward modeling operator  . 

Substituting equation 3-1 into equation 3-2, I obtain 

𝐦 =    𝐦.                     (3-3) 

       I can regard the matrix     as a linear filter applied to m. If     approximates the 

identity matrix, the migration 𝐦  will be a scaled version of the reflectivity𝐦 . 
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Unfortunately, due to sparse surface acquisition,     is almost never diagonal such that 

𝐦   has migration artifacts (Nemeth, 1996). 

       Schuster (1997) attenuated these artifacts by making     closer to the identity matrix. 

In this thesis, I add constraints to obtain: 

 = || 𝐦 𝐝||
𝟐
+ || 𝐦||𝟐,                                          (3-4) 

where   is the objective function to be minimized, the first term on the right-hand side of 

the equation is the misfit function, and C is the constraint matrix. Multiplying both sides 

of equation 3-4 by L
T
, the model m that minimizes equation 3-4 can be found by a 

gradient type optimization method (Wei and Schuster, 2011). 

   𝐦 + = 𝐦    ( 
 ( 𝐦  𝐝) +  𝐦 )                          (3-5) 

       where   ( 𝐦  𝐝) +  𝐦  is the gradient, F is a preconditioning matrix, here I use 

prestack structural-oriented filter,   is the step length. I will solve equation 3-5 for 𝐦 

using a conjugate gradient scheme, giving rise to an iterative method constitutes 

preconditioned least-squares migration algorithm (Schuster, 1997). 

 

3.2 The conjugate gradient method 

       The conjugate gradient method is perhaps the most popular iterative algorithm for 

solving sparse systems of linear equations. 

       First, initialize the model m to be 0: 

                                                              𝐦 =  ,                                                          (3-7) 

Next, compute the residual vector    associated with the model 𝐦 : 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/System_of_linear_equations
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                                         = 𝐝   𝐦 ,                                                 (3-8) 

where 𝐝  represent the original data. Since 𝐦 =  , I obtain: 

                                          = 𝐝 ,                                                          (3-9) 

The residual vector    constitutes the initial search direction, allowing me to compute the 

zeroth iteration gradient vector: 

                                          =  
   ,                                                      (3-10) 

where     can be regarded as the conventional (unconditional, non-least-squares) 

migration result, and defines the search direction of the first  =   iteration in the 

conjugate gradient scheme. Following Jovanovic (2004), I create a set of orthogonal 

conjugate direction vectors 𝐡 , 

                                   𝐡 =   + ∑   𝐡 
 − 
   ,                                        (3-11) 

where βk is the k
th

 weighting coefficient. For the  =   iteration, 𝐡  is identical to   , 

resulting in an updated model vector 𝐦 + : 

                                                     𝐦 + = 𝐦 +   𝐡 ,                                            (3-12) 

 

Where αn is the weighting coefficient at the n
th

 iteration. Next, I update the residual 

(direction) vector   +  and gradient   + : 

 

                     + =       𝐡 , and                                             (3-13) 

 

                                   + =  
   + .                                                   (3-14) 

 

        Since    is the migration, the gradient vector    +  is the migration of the 

residual   + .  

        I define the optimum values of the weighting coefficients αn and βn to be: 

                             =
〈  ,  〉

〈 𝐡 , 𝐡 〉
 , and                                               (3-15) 
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                         =
〈    ,    〉

〈  ,  〉
,                                                 (3-16) 

where the notation <,> indicates the inner product. To enhance the specular 

reflection energy and attenuate the aliased noise, I will apply α-trim median 

filter along reflection dip to m:  

                         ̃ + =  (𝐦 + ),                                                   (3-17) 

prior to updating h 

 

                              𝐡̃ =
 ̃   −𝐦 

  
.                                                      (3-18) 

 

       Substituting the updated 𝐡̃  for 𝐡  in equation 3-11 results in preconditioned 

least-squares migration.  To obtain an accurate representation of Earth's reflectivity 

model, the conjugate gradient scheme needs to run a number of times, with the number of 

iterations depending on the convergence rate and the desired level of accuracy. In my 

applications, I will limit myself to no more than three iterations, which will provide the 

bulk of the image improvement. 

 

 

3.3 Structure-oriented filtering 

       Structure-oriented filtering utilizes filters along local estimates of seismic of dip and 

azimuth. To remove random noise and enhance lateral continuity, popular filters include 

mean, median, α-trim mean, LUM, and principle component filters. Given the need to 

suppress strong, non-Gaussian aliased noise in least-squares migration, I will use the α-

trim median filter to each common-offset gathers. 
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The α-trim mean filter 

       The first step in the α-trim mean filter is to first sort a suite of seismic samples in 

ascending order. Then, the lowest and highest α fraction of the data are trimmed away, or 

rejected. Finally, we compute the mean of the remaining 1-2α fraction of the data. Thus, a 

value of α =0.0 results in the conventional median filter. Ideally, rejection of α fraction of 

the largest and smallest data will reject strong positive and negative spikes, while the 

mean filter improves the statistics of the “better behaved” data that remain. 
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Figure 3.1. Prestack structure-oriented filtering workflow. (After Davogustto, 2011). 
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3.4 Algorithm description  

          My Preconditioned least-squares migration starts with prestack Kirchhoff time 

migration. The first prestack time migration constitutes the zeroth iteration, or   𝐝  in 

equation 3-10. After the first migration, I set the first model m0 to be zero, and obtain the 

migrated gather    and 𝐡  as shown Figure 3-2.  

        After the initial migration (program azim_offset_mig), the program enters the 

preconditioned least-squares migration loop. The first step in the loop is to perform 

prestack demigration, which outputs   , 𝐦 , and the updated   . 

       The constraints are applied to 𝐦 , which is implemented using structure-oriented 

filtering (program sof_prestack). In our implementation at OU, structure-oriented 

filtering requires previously computed estimates of volumetric dip and azimuth (program 

dip3d). By using an α-trimmed mean filter, I am able to reject strong, cross-cutting noise 

associated with both data and operator aliasing. The result is a filtered version of the 

subsurface reflectivity model  ̃ . Following equation 3-17 and equation 3-18, I calculate 

the updated search direction  ̃ using the filtered  ̃ . 

       The second migration will migrate the residua. The second and all subsequent 

migration will be run with the antialias filter (Biondi, 2000) turned off. When the 

iteration count, n, reaches the maximum number of iterations N, I end the loop, where the 

final value of 𝐦  represent the PLSM image.  
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Figure 3.2. Here is workflow of PLSM. Some programs from the AASPI utilities, I will 

explain each in table 3-1. 
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Table 3.1. Component programs that together with shell scripts and graphical user 

interfaces, comprise my implementation of preconditioned least-squares migration. Pre-

existing software at OU are in black, while routines I have written as part of this thesis 

are in red. 
 

 

 

 

 

 

 

 

 

 

 

 

Program Name Description (Programs I have written are in red) 

azim_offset_mig  AASPI prestack Kirchhoff time migration  

prestack 

demigration 

Prestack Kirchhoff  time demigration 

remigration nth iteration (n>1) of  prestack Kirchhoff  time migration, that 

updates the gradient, g, based azim_offset_mig 

dip3d AASPI utility program, it can calculate the inline and crossline dip 

components 

sof_prestack  AASPI_prestack utility, structure-oriented filter for prestack 

gathers  

stack AASPI utility stack the prestack gathers to post stack volume 

update_h The Program that updates conjugate direction vector h 
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Chapter 4 

PLSM of 3D data acquired over Dickman 

Field, Ness Co., KS 
4.1 Field introduction 

 

       Dickman field, located in Northern County, Kansas, is a typical super mature 

Mississippian reservoir, which has produced approximately 1.7 million barrels of oil. In 

the field, Pennsylvanian strata unconformably overlie the Mississippian reservoir rocks of 

the Meramecian Spergen and Warsaw limestone. The Mississippian reservoir in Dickman 

field is composed of shallow-shelf carbonates. Karst-enhanced fractures have been 

documented to extend several meters below the regional unconformity surface. The 

Western Interior Plains aquifer system acts as a very strong bottom water drive for the 

reservoir, which in turn is underlain by the low porosity and low permeability Gilmore 

City limestone, which acts as a flow barrier.    

 
Figure 4.1. Map of the Mississippian subcrop in Kansas. Black box outlines Ness County, 

and the white block arrow indicates the location of Dickman Field. Black dots represent 

oil production. Colors represent different Mississipian-Age formations (After Nissen et 

al., 2009). 
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4.2 Application to a decimated dataset 
 

       Sparse sampling will give rise to aliasing artifacts in the stacked volume. To 

demonstrate the effectiveness of the preconditioned least-squares migration, I applied 

PLSM to the Dickman dataset after removing almost 80% of the data. 

     Figure 4.2a shows the stacked volume after conventional migration. The block white 

arrow indicates an aliasing artifact giving rise to a low signal-to-noise ratio.  The stacked 

volume after one iteration of PLSM in Figure 4.2b is nearly identical in appearance to 

conventional migration in Figure 4.2a, since constraints have not yet been applied, with 

only differences in scale due to the scale factor αn as described by equation 3-10 through 

3-12. After two iterations of PLSM in Figure 4.2c, the stacked volume shows significant 

improvement, with aliasing artifact attenuated, and deeper reflectors exhibiting greater 

continuity. After three iterations (Figure 4.2d), the aliasing artifacts are removed and the 

data quality is sufficiently improved such that no further iterations are required.  

       Figures 4.3a and c show the change in the magnitude of the residue and gradient with 

increasing iteration for least-squares migration without constraints for the decimated 

Dickman dataset. Figures 4.3b and d show analogous figures for preconditioned least-

squares migration. Note that the residue convergence performance of PLSM is better than 

LSM, but there is not much change in the gradient change as iterations increase.  
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Figure 4.6. Change of residue as iterations increase for (a) unpreconditioned and (b) 

preconditioned least-squares migration for the decimated Dickman dataset. Change of 

gradient with increasing iteration for the decimated Dickman dataset (c) 

unpreconditioned, and (d) preconditioned LSM. The initial, preconditioned solution 

converges faster (smaller value of |r|), but then levels out. Without constraints, aliases 

that appear in the subsurface image provide a better fit to the surface data, regardless as 

to whether that component of the data is signal or noise.  
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4.3 PLSM of the undecimated Dickman data volume 

 

         Figure 4.7a shows the time-structure map of the top of the Gilmore City horizon 

interpreted from the conventional migrated seismic data volume. Figures 4.7b shows 

source and receiver pair map, which allows us predict the footprint pattern. Vertical slices 

through seismic amplitude along profiles AA’ and BB’ are shown in Figures 4.7c and 

Figures 4.8, 4.9 and 4.10. White block arrows show collapse features near the top of the 

Gilmore City horizon which underlies the Mississippian reservoir. Red block arrows 

indicate noise. 

       Figure 4.8 shows vertical slices through seismic amplitude along profiles AA’ of 

conventional migration, the low signal-to-noise ratio causes the poor illumination for the 

layers, and random noise masks subtle geological features. After two and three iterations 

of PLSM in Figurers 4.9 and 4.10, the signal-to-noise ratio is enhanced and there is less 

noise contamination, which interferes with the main reflected energy from conventional 

migration. Figure 4.11 shows Vertical slice through noise difference amplitude between 

the original modeled data   and structure-oriented filtered model  ̃ along profiles AA’, 

note the noise rejected after structure-oriented filter applied. 

       Figure 4.12 shows vertical slices through seismic amplitude along profiles BB’ of 

conventional migration, the low signal-to-noise ratio causes the poor illumination for the 

interpretation of fault denoted by white block arrow. After two and three iterations after 

PLSM in Figurers 4.13 and 4.14, the signal-to-noise ratio is highly enhanced and there is 

less noise contamination, better showing the fault.  

       Figure 4.15 shows a time slice at t=0.406s of the stacked volume after conventional 

migration. The red block arrow indicates footprint, its contamination interferes with the 
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interpretation of subtle geological features. After two and three iterations of PLSM in 

Figure 4.16 and Figure 4.17, the footprint is almost eliminated and the structural features 

are retained. 

       Figure 4.18 shows coherence horizon slices through coherence volumes along the  

Gilmore City after conventional migration. The red block arrow denotes the 

contamination of random noise on the coherence attribute. After two iterations of PLSM 

in Figure 4.19, contaminating noise is suppressed. After three iterations of PLSM in 

Figure 4.20, most random noise is gone. The red block arrows highlight the karst features 

in form of collapse character. 

       Figure 4.21 shows co-rendered horizon slices along the Gilmore city through the 

inline coherent energy gradient (the derivative of the energy along local dip and azimuth) 

co-rendered with coherent energy volumes after conventional migration. While this 

image highlights the karst collapse features, the presence of footprint and other noise 

contaminates the image. Figures 4.22 and 4.23 show the same two attributes after two 

and three iterations of PLSM. The resulting co-rendered attribute illumination of the karst 

collapse features is significantly improved. 

       Figure 4.24 shows a horizon slice along the Gilmore City through the most negative 

principal curvature computed from conventional migration volume. The presence of 

footprint masks the karst-enhanced fracture. Figure 4.25 and 4.26 show the improvement 

(white arrow) after two and three iterations of PLSM. Note the strike of k2 curvature 

trends NE-SW. 

       Figure 4.27 shows representative unmigrated traces from the middle of the survey 

(trace numbers 100000 to 10050).  Figure 4.28 shows the corresponding demigrated 
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gathers from conventional migration. Note that the demigrated gathers contain mainly 

coherent reflected events compared with the original gathers. Unfortunately, these 

demigrated data has a very different scale of α. Figure 4.29 and d display demigrated 

gathers after two and three iterations of PLSM, the random noise is significantly 

attenuated and coherent reflections are enhanced. In contrast, PLSM better approximates 

the original data, allowing us to construct the residual r at each iteration.  Random noise 

in the demigrated image of the conventionally migrated data indicates that such noise has 

leaked into the subsurface image. In contrast, the demigrated reflectors become 

increasingly coherent with the number of iterations in PLSM (white block arrows), 

indicating that only signal (or noise consistent with signal) remains in the subsurface 

images, mn. 

       Figure 4.31 shows the common reflection point (CPR) prestack gathers from 

conventional migration. The red block arrow indicates hockey sticks at longer offsets. 

Figure 4.32 shows same result but new after muting to remove the hockey sticks, the 

noise as white block arrow shown can interfere the AVO gradient implement and elastic 

inversion. After the two iterations and three iterations after PLSM in Figure 4.33 and 

Figure 4.34 these events show more continuation and less noise contamination, so the 

application of PLSM can make the AVO analysis and elastic inversion more accurate.  
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 Figure 4.7. (a) Time-structure map of the top of the Gilmore City horizon, (b) source and 

receiver pair map, (c)the vertical slice through the line AA’. White arrows show collapse 

features, red arrow shows noise. 
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Figure 4.15. Time slice at t=0.406s through stacked amplitude volumes after conventional 

migration, the white block arrow in it indicates E-W and N-S footprint, which impedes 

interpretation. 
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Figure 4.16. Time slice at t=0.406s through stacked amplitude volumes after two 

iterations of PLSM, PLSM attenuates the slow wavenumber footprint artifacts 

 
Figure 4.17. Time slice at t=0.406s through stacked amplitude volumes after three 

iterations of PLSM. The white block arrow indicates area where footprint is deeply 

attenuated. 
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Figure 4.18. Horizon slices along the Gilmore City through coherence volumes computed 

from seismic amplitude using conventional migration, red block arrows indicate the karst 

collapse features. 

 

Figure 4.19. Horizon slices along the Gilmore City through coherence volumes computed 

from seismic amplitude after two  iterations of PLSM. Red block arrows indicate the 

karst collapse features. 
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Figure 4.20. Horizon slices along the Gilmore City through coherence volumes computed 

from seismic amplitude after three  iterations of PLSM. Red block arrows indicate the 

karst collapse features. 

  
Figure 4.21. Horizon slices along the Gilmore City through inline gradient co-rendered 

with the coherent energy volumes computed from seismic amplitude using conventional 

migration. The white block arrows in indicate the collapse features.  
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Figure 4.22. Horizon slices along the Gilmore City through inline gradient co-rendered 

with the coherent energy volumes computed from seismic amplitude after two iterations 

of PLSM, the white block arrows indicate the collapse features.  

 

Figure 4.23. Horizon slices along the Gilmore City through inline gradient co-rendered 

with the coherent energy volumes computed from seismic amplitude after three iterations 

of PLSM, the white block arrows indicate the collapse features.  
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Figure 4.24. Horizon slices along the Gilmore City through K2 curvature volume 

computed from seismic amplitude: (a) using conventional migration. 

  
Figure 4.25. Horizon slices along the Gilmore City through K2 curvature volume 

computed from seismic amplitude after two iterations of PLSM. The white block arrow 

indicates the collapse features.  
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Figure 4.26. Horizon slices along the Gilmore City through K2 curvature volume 

computed from seismic amplitude after three iterations of PLSM. The white block arrow 

indicates the collapse features.  
 

 
Figure 4.27. Representative traces from original seismic shot gathers data which  

was input to both conventional and the first iteration of PLSM migration. 
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Figure 4.28. Representative traces from predicted (demigrated) gathers after conventional 

migration. 

 
Figure 4.29. Representative traces from predicted (demigrated) gathers after two 

iterations of PLSM. 
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Figure 4.30. Representative traces from predicted (demigrated) gathers after three 

iterations of PLSM. Note the scale bar for the demigrated conventional gathers are 

different from the original input data.  
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Figure 4.31. A representative conventionally migrated CRP gathers before muting. The 

red block arrow indicates migration stretch. The white block arrow indicates noise 
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Figure 4.32. A representative conventionally migrated CRP gathers after muting. The 

white block arrow indicates noise  
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Figure 4.33. A representative conventionally migrated CRP gathers after two iterations of 

PLSM. The white block arrow indicates noise that has been attenuated using PLSM. 
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Figure 4.34. A representative conventionally migrated CRP gathers after three iterations 

of PLSM. The white block arrow indicates noise that has been attenuated using PLSM. 
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Chapter 5 

PLSM of 3D data acquired over Osage  

County Field, Spyglass Co., Ok 
5.1 Field introduction 
 

       The Mississippian chert is formed at the unconformity between the Pennsylvanian 

sandstone and Mississippian limestone in north-central Oklahoma and south-central 

Kansas. Rogers and Longman (2001) analysis of Mississippi chert core shows the chert 

have low density and high porosity, exhibiting vugs, nodules, and fractures with little 

remnant of the original depositional fabric. These properties make the Mississippian chert 

a good unconventional reservoir rock. The reservoir in Osage County has produced 

approximately 47 million barrels of oil and 40 Bcf (billion cubic feet) of gas within the 

study area over last decades. 

       Tectonic activity and subsequent erosion created a pre-Pennsylvanian unconformity 

along the Nemaha uplift, in parts of Kay, Osage, Pawnee, Noble, Garfield, and Grant 

counties in Oklahoma and northward into Kansas. The major unconformity separates 

Mississippian strata from overlying (Desmoinesian) Pennsylvanian deposits in this area. 

Whether deposited as detrital material or weathered-in-place, the material found at the 

unconformity is of Mississippian limestone origin and was reworked sometime between 

the mid-Mississippian and the Desmoinesian. The time interval provided opportunity for 

weathering, erosion, and redeposition at the unconformity (Rogers, 2001). 

Yenugu used geometric attributes with impedance estimates to understand the 

distribution of fractures. Figure 5.1 shows major geologic provinces of Oklahoma. 
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Figure 5.1. Major geologic provinces of Oklahoma. (After Yenugu, 2010). 
 

 

       The Mississippian chert was formed from Osagean (Mississippian) chert limestone 

during the exposure of those limestones at the unconformity as shown in Figure 5.2a. The 

chert is a diagenetically altered interval of Osagean cherty limestone that was uplifted, 

eroded, and weathered on and around the Nemaha uplift and the Cherokee platform in 

central Oklahoma. The rock unit is a weathered and detrital, highly porous chert, and 

serves as a significant hydrocarbon reservoir rock in north central Oklahoma in Figure 

5.2b. Trapping mechanisms for hydrocarbons in the chert reservoirs are faults, structural 

closures, and porosity pinch outs caused by truncation and diagenesis on the flank of 

structural highs (Rogers, 2001). 
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Figure 5.2. (a): Stratigraphic column of Osage County, Oklahoma. (b): Clasts of chert are 

visible as angular discolored forms in these typical core samples from the chert. Samples 

are from the middle of the zone and suggest small-scale debris flow textures. (After 

Rogers, 2001). 
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5.2 Results analysis and comparison 

 

         Figure 5.3a shows the time structure map on top of Mississippian Chert interpreted 

from the conventional migrated seismic data volume. White block arrows denote the fault 

lineaments. Figure 5.3b shows source receiver pair map. Vertical slices through seismic 

amplitude along profiles CC’ are shown in Figures 5.3c. White block arrows indicate 

three structurally low features, because their lateral extent represents diagenetically 

altered fractures or faults. The green pick denotes the top of the Mississippian Chert. 

         Figure 5.4 shows a vertical slice through the stacked volume after conventional 

migration. Random noise and footprint obscures interpretation of subtle geological 

features. Figure 5.5 shows the stacked volume after two iterations of PLSM. Note the 

random noise is attenuated and geological features show up with higher illumination. 

After three iterations of PLSM (Figure 5.6), noise is further suppressed, which helps to 

better delineate the diagenetically-altered fractures. 

         Figure 5.7 shows time slice at t=0.6s through the stacked volume after conventional 

migration. The white block arrow indicates the footprint, which interferes with the 

reflection signal, and masks underlying geological features. After two and three iterations 

of PLSM (Figure 5.8 and 5.9), PLSM suppresses most of the footprint. 

       Figure 5.10a shows the common reflection point (CPR) prestack gathers from 

conventional migration. The noise as white block arrow shown can interfere the AVO 

gradient implement and elastic inversion. After the two iterations and three iterations 

after PLSM in Figure 5.10b and Figure 5.10c, these events show more continuation and 

less noise contamination, so the application of PLSM can make the AVO analysis and 

elastic inversion more accurate.  
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        Figure 5.11 shows horizon slices along the Mississippian Chert through coherence 

volumes computed from conventional migration. High coherence zone highlights faults 

lineaments as white block arrows shown. Figure 5.12 and 5.13 shows the same two-

attributes after two and three iterations of PLSM. Better illumination for fault lineaments 

occurs because of attenuation of random noise. 

       Figure 5.14 shows co-rendered horizon slices along the Mississippian Chert through 

coherence co-render with most negative curvature volume computed from conventional 

migration. Red block arrows highlight good correlation of high coherence and negative 

curvature in the fractures and faults zone. Figure 5.15 and 5.16 shows the same two-

attributes after two and three iterations of PLSM. Higher correlation of high coherence 

and negative curvature provide better illumination for the faults and fracture zone and 

more geological lineaments begin show up. PLSM can give rise to more accurate 

interpretation and provide reliable guidance of drilling.  Figure 5.17 shows the vertical 

slice through CC’ of same attributes volume computed three iterations of PLSM, note the 

high correlation zone as the red block arrows shown. 

       Figure 5.18 shows co-rendered horizon slices along the Mississippian Chert through 

coherence co-rendered with RMS amplitude volume computed from three iterations of 

PLSM. Note the faults and fracture zone is highlighted by high coherence and relatively 

high RMS amplitude. There is high correlation between these two attributes, which is 

consistent with the previous multi-attribute interpretation shown in Figure 5.16. 

       Figure 5.19 shows co-rendered horizon slices along the Mississippian Chert through 

coherence co-rendered with inline gradient volume computed from three iterations of 
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PLSM. Gradient energy gradient is a robust tool for delineating fault as it denotes the 

derivative of the coherent energy. Note the high correlation between relatively high 

coherent energy and gradient low in fracture and faults zone. 
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Figure 5.3. (a) is the Time-structure map of the top of Mississippian Chert horizon, (b) 

source receiver pair map. (c) Stacked volume through seismic amplitude along profiles 

CC’, white block arrows show collapsed features. 
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Figure 5.7. Time slice at t=0.6 s through stacked amplitude volumes conventional 

migration. The white block arrow indicates the footprint, which impedes the 

interpretation  

 
Figure 5.8. Time slice at t=0.6 s through stacked amplitude after two  iterations of PLSM. 

The white block arrow indicates area where the footprint is attenuated. 
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Figure 5.11. Horizon slices along the Mississippian Chert through coherence volumes 

computed from seismic amplitude using conventional migration. Red block arrows in 

indicate fractures lineaments.  
 

  
Figure 5.12. Horizon slices along the Mississippian Chert through coherence volumes 

computed from seismic amplitude after two iterations of PLSM. Red block arrows in 

indicate fractures lineaments.  
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Figure 5.13. Horizon slices along the Mississippian Chert through coherence volumes 

computed from seismic amplitude after three iterations of PLSM. Red block arrows in 

indicate fractures lineaments.  
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Figure 5.14. Horizon slices along the Mississippian Chert through coherence co-rendered 

with most negative curvature volumes computed from conventional migration. Red block 

arrows in indicate the fractures lineament. 

  
Figure 5.15. Horizon slices along the Mississippian Chert through coherence co-rendered 

with most negative curvature volumes computed from two iterations of PLSM .  Red 

block arrows in indicate the fractures lineament. 
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Figure 5.16. Horizon slices along the Mississippian Chert through coherence co-rendered 

with most negative curvature volumes computed from three iterations of PLSM. .  Red 

block arrows in indicate the fractures lineament. 

 
Figure 5.17. Vertical slice through CC’ of same attributes after three iterations of PLSM.  

Red block arrows in indicate the fractures lineament. After PLSM is applied, there is 

higher correlation between the most negative curvature and low coherence.  

C 
C 
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Figure 5.18. Horizon slices along the Mississippian Chert through coherence co-rendered 

with RMS amplitude volumes computed from seismic amplitude after three iterations of 

PLSM. 

 
Figure 5.19. Horizon slices along the Mississippian Chert through inline gradient co-

rendered with RMS amplitude volumes computed from seismic amplitude after three 

iterations of PLSM. 
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Chapter 6  

Discussion and conclusion  

 

       PLSM worked effectively for removing aliasing artifacts arise from decimated 

Dickman survey from west Kansas. By comparing with the residual convergence rate of 

LSM, the structure-oriented median filter served as constraint in PLSM. 

       Application of PLSM to the undecimated Dickman dataset from west Kansas showed 

rapid improvement of signal-to-noise ratio for CRP gathers and significant attenuation of 

footprint and random noise, which impeded interpretation from conventional migration. 

Moreover, PLSM brought significant improvement for seismic attributes illumination. 

PLSM made multiple attributes better illuminate karst collapse features on Gilmore City 

horizon. In addition, PLSM worked well for eliminating the random noise in prestack 

gathers, and the outcome of constrained least-squares migration better represents the 

seismic amplitudes of earth reflectivity. At last, PLSM allowed better prediction of the 

original gathers while enhance coherent events. 

       Finally, I applied PLSM on the Osage County dataset. PLSM also showed it could be 

robust tool for random noise reduction and footprint elimination. PLSM allowed better 

attributes illumination for fractures lineaments on top of Mississippian Chert. 

       In the future, I would apply the PLSM on diffraction images. Because it provides a 

means that can accurately demigrate the subsurface data, PLSM images can be filtered to 

demigrate the specular reflection component of the surface-recorded data, leaving the 

diffractions (and residual noise) for subsequent diffraction imaging. 
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       Admittedly, the PLSM is computer time intensive, as it is needed to run for several 

iterations. Although I applied constraints and MPI in the program, it still takes a lot of 

computing resource when it comes to bigger dataset. Perhaps for my next step I will work 

a little more on the efficiency of transferring data on the MPI for prestack time migration. 
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