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Abstract

Wide-azimuth, long-offset seismic surveys are becoming increasingly common in
unconventional exploration plays, where three the key objectives are to estimate the
direction of maximum horizontal stress, to predict the intensity and orientation of any
fractures, and to differentiate brittle from ductile lithology.

Minimization of NMO and migration stretch, which usually appears at long offset,
is one of the main issues for long-offset seismic processing. The stretch not only lowers
the seismic resolution, but also hinders subsequent prestack inversion such as lambda-rho
(Ap), mu-rho (up), and amplitude variation with offset and azimuth (AVAz) analysis of
the long-offset signal. The first part of this dissertation uses a matching pursuit based
normal moveout correction (MPNMO) to reduce NMO-stretch effect in long offset data.

Nonhyperbolic velocity analysis is components for long-offset seismic
processing. Conventional migration velocity analysis mainly has two limitations. First we
need to interpolate the velocity and anisotropy parameters along spatial and temporal axes
between adjacent manually picked locations. Such interpolation can smooth over any
intermediate velocity and anisotropy anomalies contained in the gathers. Second,
smoothed RMS velocities can give rise to unacceptable interval velocities using the
simple Dix equation. | developed an automated nonhyperbolic velocity analysis workflow
in the second part of this dissertation that uses the conventional analysis as a starting
estimate.

The third part of this dissertation illustrates a workflow to preserve the data
fidelity for far offset seismic gathers. The workflow begins by performing reverse NMO

on the time migrated gathers using the initial migration velocity. Then I obtain the optimal

Xix



velocity and anellipticity model using a differential evolutionary automatic algorithm.
Next | apply nonstretch NMO correction to the time migrated gathers using the new
velocity and anellipticity model resulting in flattened nonstretched prestack gathers.
Finally, I apply prestack structure oriented smoothing algorithm to further improve the
signal to noise ratio. In this manner, both stacking power and vertical resolution are
improved by aligning the data and by avoiding stretch, and removing migration aliasing
artifacts.

The fourth part of this dissertation proposed a strategy to evaluate brittleness of
unconventional resources plays by integrating petrophysics and seismic data analysis. |
start by computing rock properties and brittleness index (BI) from mineral content logs.
Then | define a classification pattern between rock properties and Bl using proximal
support vector machine training and testing on the selected benchmark wells. Next |
perform simultaneous prestack inversion using commercial software on the prestack
conditioned seismic gathers. Finally, | estimate 3D brittleness evaluation for the target
reservoirs by applying the recognized classification pattern to the prestack inversion
volumes.

The final part of my dissertation focuses on automatic fault surfaces extracting
using seismic attributes. The extracting procedure is modeled after a biometric algorithm
to recognize capillary vein patterns in human fingers. First, a coherence or discontinuity
volume is converted to binary form indicating possible fault locations. This binary
volume is then skeletonized to produce a suite of fault sticks. Finally, the fault sticks are

grouped to construct fault surfaces using a classic triangulation method. The processing

XX



in the first two steps is applied time slice by time slice, thereby minimizing the influence

of staircase artifacts seen in discontinuity volumes.
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Title: Non-stretching NMO correction of prestack time-migrated gathers using a
matching-pursuit algorithm
ABSTRACT

Wide-azimuth, long-offset surveys are becoming increasingly common in
unconventional exploration plays, where two key objectives are to estimate azimuthal
anisotropy to predict the direction of maximum horizontal stress, and to differentiate high
total organic carbon (TOC) from more “frackable” quartz- and carbonate-rich strata. The
conventional NMO correction which processes the data sample-by-sample results in the
well-known decrease of frequency content and amplitude distortion through stretch,
which both lowers the seismic resolution and hinders lambda-rho - mu-rho (4p-up) and
amplitude variation with offset and azimuth (AVAz) analysis of the long-offset signal.
To mitigate the stretch typically associated with far offsets, we use a matching pursuit
based normal moveout correction (MPNMO) to reduce NMO-stretch effect in long offset
data. MPNMO corrects the data wavelet-by-wavelet rather than sample-by-sample,
thereby avoiding stretch. We apply our technique as part of a residual velocity analysis
workflow to a pre-stack time-migrated data volume acquired over the Northern
Chicontepec Basin, Mexico. The results show higher resolution both on the pre-stack

gathers and on the stacked data volume.



INTRODUCTION

Normal-moveout (NMO) correction applied to common-midpoint (CMP) gathers
are one of the most important routine processes applied to seismic data and is a
prerequisite for CMP stack and many other procedures (Shatilo and Aminzadeh, 2000).
The objective of the NMO correction is to resample a finite-offset trace in a CMP gather
to approximate the kinematics of a zero-offset trace. The standard NMO correction causes
wavelet stretching which lowers the frequency content of the corrected reflection event
at far offset. This stretching will affect all subsequent processing and inversion. For
example, unmuted stacked traces exhibit lower frequency content, and therefore have
lower resolution and hinder the search for subtle traps (Noah, 1996). NMO stretch also
affects AVO analysis by distorting the AVO gradient (Swan 1988, 1997; Ursin and Ekren,
1995).

In flat layers, only the zero-offset traces strictly represent the correct sequence of
reflection coefficients (reflectivity function); other finite-offset-corrected traces contain
a distortion of the vertical reflectivity function where wavelets have been stretched or
even reversed. Buchholtz (1972) was one of the first authors to quantify the artifacts
introduced by the NMO correction. Dunkin and Levin (1973) studied the effect of stretch
in frequency domain and concluded that usual NMO correction stretches the wavelet in
such a way that the spectrum of the NMO-corrected wavelet is a linearly-compressed
version of the original spectrum. The amount of compression depends on X, the source-
detector separation or “offset” and V(to), the velocity model at normal incidence two-way
travel time to. Barnes (1992) analyzed the correction distortion in instantaneous frequency

and instantaneous power domain, and found a time-variant frequency distortion caused
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by the NMO correction. Miller (1992) studied the impact of muting on the frequency
content of stacked images. Owusu and Spencer (1995) analyzed the VSP moveout stretch
for a horizontally stratified medium. In Noah’s (1996) examples, even minor changes in
frequency caused by the NMO correction have a major impact on the interpretation.

As offset increases we often encounter nonhyperbolic moveout in both isotropic and
anisotropic media (de Bazelaire, 1988; de Bazelaire and Viallix, 1994; Castle, 1994;
Bolshykh, 1956; Dix, 1955; Ursin and Stovas, 2006; Alkhalifah, 1997, 1998; Fomel and
Stovas, 2010). Such long-offset data are critical for extending the accuracy of AVO and
extracting more rock property information. Dynamic correction of these kinds of wide
incidence angle gathers using the hyperbolic equation will introduce not only stretch, but
also large time bias which appear on NMO corrected gathers as “hockey sticks”.
Unfortunately flattening such hockey sticks still results in NMO stretch. In general,
severely stretched traces are simply muted out as noise, thus sacrificing the crucial
information contained in long offset data. Although estimation of such anisotropy and
long offset AVO analysis and prestack impedance inversion is our primary objective, in
this paper we focus on eliminating the limitations on such analysis due to wavelet stretch.

Rupert and Chun’s (1975) Block-Move-Sum (BMS) method is perhaps the first
non-muting solution to address stretch in the NMO correction. The BMS method treats
data blocks which are moved as a unit with a single dynamic correction, thus eliminating
trace stretching and reducing trace distortion. The drawback to this method is that it
introduces wavelet replication and discontinuity between adjacent blocks at far-offset
traces where the data blocks overlap. Byun and Nelan (1997) applied a time-varying filter

based on a stretch coefficient analysis to the NMO-corrected traces to reduce the loss of



high frequencies. Lichman (2000) presented a Phase Moveout method where he
substituted the phase spectrum of the minimum-offset-trace for the phase spectra of each
finite offset trace, thereby avoiding the usual wavelet stretch. Based on the assumption
that all time samples of a digital reflected wavelet at a particular offset have the same
normal moveout, Shatilo and Aminzadeh (2000) proposed a Constant Normal Moveout
correction strategy which applied a constant moveout for a finite time window of a
seismic trace, protecting the corrected traces from stretching and distortion. The most
critical factors for successful application of this method are to have an NMO-velocity
accuracy better than 1% and an accurate estimate of the window length containing the
reflection event. This technique may also produce some corresponding amplitude
distortion in the overlapping intervals. Hicks (2001) described a method for removing
NMO stretch during stack that uses the Parabolic Radon Transform. He also introduced
a new transform, which is a combination of Radon and Spatial Fourier Transforms, to
remove stretch from the NMO-corrected CMP gathers. The drawbacks of this approach
have been discussed by Trickett (2003).

Brouwer (2002) expanded on the block-move-out technique and suggested an
alternative approach based on the correction of tapered blocks of seismic data, followed
by a coherence filter (Bruland and Johansen, 1994) to compensate for the specific artifacts
thus introduced. Trickett (2003) developed a stretch-free stack process; the method
replaces the two steps of NMO correction and stacking with a single-step inversion to
zero offset. The main disadvantage of this procedure is that an NMO-corrected CMP

gather which is useful for AVO analysis is never formed. Hunt et al. (2003) created



pseudo-NMO-corrected gathers, and then identified numerous new prospects using the
stretch-free stacking process and AVO analysis.

Hilterman and Van Schuyver (2003) developed a processing and interpretation
approach for wide-angle gathers, named Seismic Wide-Angle Processing, to avoid NMO
stretch for a specified target horizon. This method first pre-stack migrates blocks of
seismic data in the common-offset domain using event-based traveltime rather than
sample-based traveltime tables. The travel times are based on a reflection ray-tracing
model for each offset. The disadvantage is that only the target horizon is truly flat in the
CMP gathers after the processing. Perroud and Tygel (2004) developed a quasi-static
NMO shift approach, which can be obtained from the usual dynamic NMO process in a
manner similar to a block-moveout process, to avoid stretch as much as possible. This
method first requires performing the usual NMO velocity analysis, which estimates to and
V(to) for each reflection event. They adjust V(to) to maintain the local travel time
parallelism for each user-identified band-limited reflection event. Unfortunately, this
adjustment increases the NMO stretch effect between the identified reflection events.
More recently, Masoomzadeh et al. (2010) carefully studied the influence of the data
block size to the distortion of the signal and noted that smaller block sizes introduce
stretch while larger block sizes generate image discontinuities at the block boundaries.
They proposed using iso-moveout curves (lines of equal moveout) in the time-velocity
panel to achieve multi-block constant moveout for the selected individual events, leading
to a nonstretch correction for the selected events. Nonstretch stacking is achieved by the
use of a zigzag velocity function. The main drawbacks are the potential for discontinuities

at the window boundaries and the need to estimate appropriate block lengths.



We introduce a strategy which reduces the NMO stretch at far offsets using a
matching pursuit wavelet decomposition technology. We start by reviewing the
conventional NMO correction equation, using cartoons describing the stretch problem
introduced by the conventional correction. Cartoons illustrate the wavelet replication and
discontinuity problem that occurs using the block-based correction strategy. Next, we
present our non-stretch NMO strategy based on matching pursuit. Finally, we apply our
method to a pre-stack time-migrated volume acquired over the Northern Chicontepec
Basin, Mexico, and show the improvements on both the corrected gathers and final
stacked section.

CONVENTIONAL NMO CORRECTION AND STRETCH

NMO correction transforms seismic traces with arbitrary offset h into their zero-
offset approximations using the NMO velocity (Shatilo and Aminzadeh, 2000).
Assuming a layer cake model for the NMO correction, we obtain the well-known
hyperbolic travel time equation (Dix, 1955) as a function of two-way traveltime at zero-

offset to, offset x, and NMO velocity V(to)

/z X
t(x)= [t V) L)

where V(to) is approximated by the root-mean-square (RMS) velocity for flat-layered
media. Using equation 1, the NMO correction time at offset x and zero-offset time to can
be written as

XZ

AtNmo:t(th) - to: tg"‘m - t0 2
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The conventional correction is implemented on a sample-by-sample basis, using different

values of Aty,o for different samples having a different value of to in the trace.

Consequently, samples within one wavelet will suffer different amounts of correction,
thereby causing distortion.

Figure 1.1 illustrates the distortion of finite-offset seismic traces for a simple case
of two reflection events, R1 and R2. The time interval at zero offset between the two
dashed lines is equal to the wavelet duration. Assume we know the correct NMO
correction velocity through semblance-based velocity analysis. For a given reflection
event, the stretching is exacerbated with increasing offset. The most severe stretching
occurs at the intersection of reflection hyperbolae. Beyond such intersection points, the
standard NMO correction gives rise to local time-reversal of the signal. These reverse
waveforms are particularly harmful to stacking, to high resolution velocity analysis based
on flattened events, to AVO analysis, and to noise suppression, as well as other techniques
that could benefit from the long-offset data information. Furthermore, sample values must
be interpolated to fill in gaps created by the differential stretch.

NONSTRETCH NMO CORRECTION

To avoid stretching for the non-zero offset traces, the moveout correction needs to
be constant for all samples that belong to the same reflection wavelet. Variations of the
Block-based Moveout Correction provide a means to approximately achieve this goal.
The Block-based moveout NMO correction

The Block-based Moveout correction has two main limitations. First, the block size
needs to be a function of the time duration of the reflection events. Second the block

boundaries overlap at farther offset if the correction velocity increases with depth, giving



rise to the wavelet repetition and discontinuities at the block boundaries. Figure 1.2
illustrates the block-based correction procedure. First, the zero offset trace do(t, x=0) is
divided into data blocks which may or may not overlap (Figure 1.2a). The block length,
7, and the block centers, to, are the two key factors affecting the accuracy of the correction.
Rupert and Chun (1975), Shatilo and Aminzadeh (2000) suggested that the block length
should be the same as the time duration of the wavelet. In the example here, the to axis is
subdivided into adjacent but non-overlapping blocks. The block sizes 71 and 7> are set to
approximate the wavelet duration. Masoomzadeh et al. (2010) modified the NMO
velocity to better achieve this goal. Since the NMO velocity usually increases with depth,
the travel time of two successive blocks will be compressed at the long offset, which
results in overlapping areas for adjacent blocks at far offsets, indicated by the green areas.

Each data block is corrected as a unit from the top to the bottom of the to axis (Figure
1.2b). The samples located in the overlapping area (green) are used twice during the
correction resulting in either a repetition or a discontinuity at the block boundaries. The
degree of repetition worsens with increasing offset. This repetition harms the stack,
creates artificial stacked reflections, and lowers the seismic resolution.
The matching pursuit NMO correction

The NMO-uncorrected traces, d(t), can be regarded as the convolution of the

seismic wavelet with the reflectivity series and added noise

d(t)=r(t)«wit)+n(t),
(©)
where r(t) is reflectivity series, w(t) is wavelet, and n(t) is noise. This classic theory

suggests that the NMO correction can be implemented on a wavelet-by-wavelet basis,



with the moveout applied to the reflection events, r(t), rather than to the data samples,
d(t). we achieve this goal by using a matching-pursuit wavelet-based decomposition
algorithm, commonly used in spectral decomposition algorithms (e.g. Liu and Marfurt,
2005, 2007).

Our input data consist of pre-stack time migrated seismic cube, d(t, xn), after
performing reverse NMO correction using the migration velocity function. Our output
data consist of MPNMO-corrected gathers, dmpnmo(to, Xn), modeled uncorrected gathers,
dmod(t, Xn), and the residual or difference, dres(t, Xn), between the original and modeled
uncorrected gathers. The process begins by selecting the NMO correction trajectory curve
using either hyperbolic (equation 2) or non-hyperbolic moveout (e.g., Alkhalifah, 1997),
as appropriate. Then we build a library of analytic Ricker or Morlet wavelets. Before the
MPNMO correction loops begin, residual data are initialized to the input uncorrected data
while modeled data and MPNMO-corrected data are initialized to be zero. At each
decomposition and correction iteration, j, we apply a constant normal-moveout correction
to the residual uncorrected data and stack the corrected gather to form a residual stacked
trace. We compute its envelope e(to) and pick to® of the K largest envelope peaks that
exceed 50% of the value of the largest envelope, and at each trace n compute moveout
times t,® for each offset, x». For each residual trace n in the current gather, we also
compute its Hilbert Transform to form an analytic trace and calculate the instantaneous
frequency, f, at time locations of t.® and look up a precomputed analytic wavelet, wt,
fal]. Finally, the analytic wavelets are least-squares fit to the analytic residual trace, dn®,

to obtain the amplitude, an[t®]and phase n[t?] of the analytic wavelet, a,[t¥] and phase
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on[t™] (Liu and Marfurt, 2007). The K scaled wavelets are then subtracted from the

previous, (j-1)™ version of the un-NMO-corrected residual trace
- . K
di2(tx,) =d 02t %,) - a1, 1 Jowplipl] 4)
k=1

and added to the previous version of the MPNMO-corrected and modeled uncorrected

traces
. i K
oo (o X0) = Ao (to ) + > a®wft 199, £ © Jexp i ], (5)
k=1
and
. i K
dig(t.x,) =d st x) + Y a®wt—t©, £ © Jep[ip® ] (6)
k=1

The above process is repeated until the total energy of the residual trace falls below a
desired threshold (Figure 1.3). At present if crossing events exits in our gathers, we just
simply add the scaled wavelets to the time to® which has the largest stacking power.

In this paper, assume that the MPNMO correction velocity function comes from
high resolution velocity analysis, such as the method proposed by the Key and Smithson
(1990). To obtain a good-quality corrected gathers, the error of NMO-velocity should be
less than 1%, such as that for the method proposed by Shatilo and Aminzadeh (2000).
Larger errors will place the wavelets at an incorrect time value of to, which will harm
subsequent AVO and prestack inversion processes.

To better illustrate the above MPNMO produce, we apply the workflow shown in
Figure 1.3 to a synthetic case. The gather is composed of five reflection events. The first

and second events cross each other while the fourth and fifth events strongly interfere at
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far offset (Figure 1.4a). The offsets range from 50 to 3000 m at increments of 50 m. A
Ricker wavelet with a 30 Hz dominant frequency is used to generate the synthetic gathers.

Figure 1.4b shows the corrected results using conventional NMO algorithm. Notice
that all the events are stretched to some extent at the farthest offset, especially those events
located in the blue rectangle. Crossing travel time curves give rise to wavelet repetitions,
indicated by red circles in Figure 1.4b. In contrast, the MPNMO algorithm preserves
wavelets during the correction (Figure 1.4c). Events within the green rectangle in Figure
1.4c have anonymously low energy compared to other offsets for the second reflection.
This artifact is because MPNMO simply move all matched wavelets at crossing time t
(labeled with green rectangle in Figure 1.4a) to time to of the first reflection (labeled with
the green circle in Figure 1.4c). MPNMO also favors one event over another in
decomposition of the interfering fourth and fifth reflection events.

To quantify the improvement of MPNMO over conventional NMO we compare the
spectra of the corrected reflection events for five different offsets. For conventional
NMO, the spectra of the first and second reflectors shifts to lower frequencies side when
the offset exceeds the crossover point (Figures 1.5a and b). The spectral shift to lower
frequencies with increasing offset is more continuous for the third but results in severe
stretching at far offset (Figure 1.5¢). The spectra features of the fourth reflection is erratic
as it interferes with the underlying and (at farther offsets) crossing fifth reflector (Figure
1.5d). The fifth reflector is stronger, is less contaminated by interference with the forth
reflector, and suffers from less stretch, such that its spectra shift smoothly to lower and

lower values with increasing offset (Figure 1.5¢).

12



Figure 1.6 shows that the spectra of these five reflection events is much better
preserved using MPNMO, with the spectra for reflectors 1-3 (Figures 1.6a-c) preserved
with increasing offset. The spectra of the fourth reflection changes moderately from trace
to trace, but exhibits a consistent shape which is a measure of tuning. The spectra of the
later-arriving fifth reflection (Figure 1.6e) are similar to that of those Figure 1.5e
corrected using conventional NMO. The fifth reflection is not heavily affected by
stretching.

A second measure of the fidelity of the correction is to correlate the near-offset trace
with all other offsets (Figures 1.7). Note that cross-correlation coefficients for the
MPNMO-corrected reflectors (Figure 1.7b) is much better correlated to the zero-offset
trace than when using conventional NMO (Figure 1.7a). This waveform consistency is
critical to robust AVO and prestack inversion results.

Figure 1.8 illustrates the sensitivity of MPNMO to noise. Figure 1.8a shows the
result of adding 15% random noise to the synthetic gathers shown in Figure 1.4a. The
noise is sufficiently strong that it is hard to see the second reflection events. The last three
traces of the third reflections is also overwhelmed by noise. Figure 1.8b shows that
MPNMO successfully corrects the noisy gathers without generating obvious artifacts.

Our final synthetic test is examine the sensitivity of MPNMO to velocity errors. We
set the velocity for the third event to be 10% too slow, resulting in an overcorrected, but
relatively non-stretched event (Figure 1.9).

APPLICATION
Having calibrated our algorithm on synthetic data, we now apply it to a residual

velocity analysis work flow to pre-stack time-migrated CMP gathers in the Northern

13



Chicontepec Basin, Mexico. The target tight sand Paleocene-Eocene Chicontepec
formation lies between t,=0.8 s and to=1.2 s. Interpretation of the Chicontepec reservoirs
is hampered by geologic complexity, overlying volcanics, and limited resolution (Sarkar,
2011). Figure 1.10a shows a representative CMP gather after reverse NMO correction
which “re-squeezes” the migration stretch. The shallow part of the conventional NMO-
corrected results suffers severe stretch at far offsets. This stretch can notably lower the
seismic resolution in the stack and is harmful to pre-stack inversion. Usually such
severely stretched data are muted out (Figure 1.10b) based on a pre-defined muting
criteria. In this example we allow wavelets to stretch no more than 150%. Next, we apply
the workflow shown in Figure 1.3 to the same CMP gather shown in Figure 1.10a and
obtain the MPNMO corrected results (Figure 1.10c), the precomputed wavelet library is
Morlet wavelet. Note that MPNMO minimizes the stretch that occurs in the shallow far
offset data when compared to the conventionally NMO-corrected data (Figure 1.9d).
These corrected far-offset data can be used to improve the stability of AVAz and Ap-up
inversion.

Figures 1.11a and 1.11b show the amplitude spectra for angle range limited stacked
traces to corrected traces shown Figure 1.10b and 1.10c. Red, blue and green lines show
the spectra of near-(0-10°), middle- (10°-20°), and far- (20°-30°) angle range stacked
traces. Due to the increasing stretch with the increase of incidence angle introduced by
the conventional NMO correction, the spectral bandwidth (the green line in Figure 1.11a)
of the middle- and far-angle stacked traces is distorted and narrower than that of the near-
angle stacked traces. In contrast, MPNMO preserves the spectral bandwidth for both

middle- and far-angle stacks (Figure 1.11b).
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As we did for the synthetic example, we wish to compare the change in waveform
as a function of offset or angle. We show the correlation between the near- and mid-angle
stacks in Figure 1.12a and the near- and far-angle stacks in Figure 1.12b. Note the overall
higher correlation using MPNMO (the red curves) vs. conventional NMO (the blue
curves).

After the moveout correction, we stack the corrected CMP traces such as shown in
Figures 1.10b and 1.10c to form seismic stacked sections. The traditionally-corrected and
stacked section (Figure 1.13a) is acceptable for mapping structure but not stratigraphy
(Sarkar, 2011). The interfering events are not well resolved using the conventional
correction, such as the pinch-out locate in the red circles in Figures 1.13a and 1.13b.
Furthermore the reflection events are more continuous by applying MPNMO correction
to the same data set, for example the events that are labeled with the red rectangle in
Figures 1.13a and 1.13b. To quantify the improved resolution, we compare the average
spectrum features (Figure 1.14) of stacked sections (Figures 1.13). Red, and blue lines
are respective the spectra of stacked section from MPNMO correction (Figure 1.13b) and
conventional NMO correction (Figure 1.13a). Note that spectra of MPNMO correction
show higher ratio of high frequency content compared that of conventional NMO
correction.

LIMITATIONS

Like conventional NMO, MPNMO will generate under- (over-) corrected traces if
the velocity function is higher (lower) than it should be. Although the cost of MPNMO is
significantly greater than both conventional NMO and the published nonstretch NMO

correction algorithms, the cost is significantly less than the prestack time migration
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algorithm used to generate generates the input gathers. Through parallelization and
precomputation not only of wavelets, but of moveout functions, the cost becomes
acceptable. Crossing events can be approximately handled, but results in amplitude
artifacts that could harm subsequent AVO and prestack inversion workflows. Proper
partitioning of this energy to the appropriate 79 location may require integrating concepts
associated with high resolution Radon transforms.
CONCLUSIONS
Conventional NMO corrections introduce stretch at offsets that are large relative to
reflection depth. This stretch lowers the seismic resolution and distorts the seismic
waveform. Block-based correction algorithms avoid stretch but result in wavelet
repetition at the block boundary, giving rise to artifacts. Our matching pursuit NMO
correction is implemented on a wavelet-by-wavelet basis, reducing stretch and avoiding
wavelet repetition. By minimizing stretch, more far-offset data are available for
subsequent Ap-up and AVAz inversion. The final stacked section has improved band
width, which is critical for interpreting thin reservoirs.
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Figure 1.1. Schematic diagrams showing conventional NMO correction for two reflection
events (R1 and R2) (a) before (b) after NMO correction. Only the zero-offset samples
maintain the same waveform before and after correction; the degree of stretch increases
with increasing offset. Shallower events (R1) undergo greater stretch than deeper events
(R2). The maximum stretch occurs at the crossing point, beyond which the samples’
chronological order is reversed.
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Figurel.2. Cartoons illustrating the implementation and limitation of the block-based
NMO correction. (a) The zero-offset time is divided into adjacent data blocks of variable
time duration (z1 and 72). The samples within each block have the same amount of
moveout correction. If the NMO correction velocity increases with depth (or zero-offset
travel time), the travel time will be compressed with increasing offset, giving rise to
overlap (indicated by the green area) at the boundary between the two adjacent blocks.
(b) Two interfering reflection events after block-based nonstretch NMO correction.
Because of the compression of travel time with depth, the samples indicated by green
amplitude values located in the overlapping area of adjacent block will be used twice,
giving rise to wavelet repetition and discontinuities.
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Figure 1.3. Flowchart showing the nonstretch NMO correction workflow based on the
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Figure 1.4. (a) A synthetic input gather and corresponding corrected gathers after (b)
conventional NMO and (c) MPNMO corrections.
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Figure 1.5. Representative spectra as a function of offset for conventional NMO corrected
gathers for the (a) first, (b) second, (c) third, (d) fourth, and (e) fifth corrected reflection
events shown in Figure 1.4b.
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in Figure 1.4b.
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Figure 1.10. Applying (b) conventional NMO and (c) MPNMO correction to a

representative pre-stack time migrated gather (a) from the Chicontepec Basin, Mexico

(CMP no. 1 in Figure 1.13).
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conventional NMO and (b) MPNMO correction.
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Title: Horizon-based semi-automated nonhyperbolic velocity analysis
ABSTRACT

With higher capacity recording systems, long-offset surveys are becoming common
in seismic exploration plays. Long offsets provide leverage against multiples, have
greater sensitivity to anisotropy, and are key to accurate inversion for shear impedance
and density. There are two main issues associate with preserving the data fidelity
contained in the far offsets 1) nonhyperbolic velocity analysis and 2) mitigating the
migration/NMO stretch. Current nonhyperbolic velocity analysis workflows first
estimate moveout velocity Vamo based on the offset-limited gathers, then pick an effective
anellipticity #7err using the full-offset gathers. Unfortunately estimating Vamo at small
aperture may be inaccurate, with picking errors in Vamoe introducing errors in the
subsequent analysis of effective anellipticity. We propose an automated algorithm to
simultaneously estimate the nonhyperbolic parameters. Instead of directly seeking an
effective stacking model, the algorithm finds an interval model that gives the most
powerful stack. The searching procedure for the best interval model is conducted using a
direct, global optimization algorithm called differential evolutionary (DE). Next we apply
an anti-stretch workflow to minimize the stretch at far offset after obtaining the optimal
effective model. The automated velocity analysis and anti-stretch workflow are tested on
the data volume acquired over the Fort Worth Basin, USA. The results show noticeable

improvement both on the pre-stack gathers and on the stacked data volume.
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INTRODUCTION

Velocity analysis applied on common-midpoint (CMP) gathers is usually based on
computing the coherence of moveout corrected gathers using zero-offset times and a suite
of trial stacking velocities. Velocity analysis is one of the most important and interpreter-
time consuming tasks in seismic processing. The accuracy of velocity analysis depends
on 1) the resolution of velocity spectra, 2) The accuracy of the selected equation in
approximating the kinematic behaviors of the reflection events, and 3) the skill and
experience of data processor.

Semblance is perhaps the most commonly used coherency measurements for
velocity spectra (Taner and Koehler, 1996; Neidell and Taner, 1971). Swan (2001) is one
of the first researchers to develop high resolution velocity spectra algorithm that accounts
for amplitude variations with offset. Larner and Celis (2007) improved both the resolution
and reliability of velocity spectra by just using selected subsets of crosscorrelation rather
than all possible ones in the gathers. To minimize the effect of AVO phenomenon that
exists in prestack gathers, Fomel (2009) proposed a generalized “AB semblance” that is
particularly attractive for velocity analysis of class Il AVO anomalies where the polarity
of the reflections changes. To further improve the resolution of semblance-based velocity
spectra, Luo and Hale (2010) introduce a weighting function that slightly increases the
cost of calculation but are still comparable to that of conventional semblance. Biondi and
Kostov (1989) introduced high-resolution velocity spectra by using an eigenstructure
method rather than semblance. Key and Smithson (1990) also used eigenstructure
analysis, which is based on covariance measurement of NMO-corrected traces, to get

higher velocity spectrum and locate the reflection events. Kirlin (1992) deduced the
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relationship between semblance and eigenstructure velocity estimators. The
eigenstructure-based estimators have higher resolution but greater computation cost.
Sacchi (1998) further improved the resolution of velocity spectra by integrating a
bootstrap method in the covariance computation. Unfortunately his computational cost is
also very expensive.

The approximated kinematic behaviors of the moveout correction for P-wave
reflection traveltime is defined by either hyperbolic (Dix, 1955) or nonhyperbolic
equations (Thomsen, 1986; Alkhalifah and Tsvankin, 1995; Alkhalifah, 1997). The
hyperbolic traveltime approximation equation is based on the assumption of
homogeneous isotropic or elliptically anisotropic layer-cake model and need to be
restricted to small aperture (the offset-to-depth ratio 2h/z < 1.0). As offset increases we
often encounter nonhyperbolic moveout in both isotropic (Bolshykh, 1956, Taner and
Koehler, 1969; de Bazelaire, 1988) and anisotropic media (Alkhalifah, 1997; Fomel and
Stovas, 2010; Alkhalifah, 2011). Ignoring the anisotropy in prestack migration will fail
to properly correct for the moveout of dipping reflectors and injects errors for the
reflectors. The most common nonhyperbolic equations are fourth-order approximations
expressed using three parameters 1) the two-way zero-offset travel time to, 2) the short-
spread NMO velocity Vamo, and 3) effective anellipticity #er. The effective anellipticity
combines the effects of long offset ray bending (the “Snell” effect) as well as intrinsic
anisotropy. Alkhalifah (1997) introduced what is now the most commonly used two-step
approach for nonhyperbolic velocity analysis, where one first estimates the NMO velocity
on offset-limited truncated gather using hyperbolic NMO correction, followed by

estimation of effective anellipticity using the full-offset gathers. Unfortunately, small
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aperture NMO velocity analysis may be inaccurate. Picking errors in Vamo introduce errors
into the subsequent analysis of effective anellipticity.

Conventional velocity analysis (CVA) requires manually picking the peaks of the
semblance panel. Such picking is tedious, and a great deal of effort has been invested in
attempting to accelerate this process. CVA also requires a great deal of skill and
experience. There is no guarantee that the picked RMS velocity represents the true earth
model with erroneous picks (for example of multiple reflections) leading to infeasible
interval velocities. Toldi (1989) proposed one of the first velocity analysis algorithms that
avoids manual picking. Instead of directly searching the RMS velocity, his algorithm
examines suite of possible interval velocity models, calculates the corresponding RMS
velocity using Dix equation, and then estimates the corresponding stacking power. The
final product is an interval velocity model that when converted to a moveout curve
corresponds to the most powerful stacking. His least-squares optimization algorithm is
parameterized by layers of equal time thickness without explicitly considering the
location of reflection events. Building on the concept of measuring the degree of
reflections flattening using an li-norm in the z-p domain, Calderén-Macias et al. (1998)
performed automatic velocity analysis to recover the interval velocity model. Van der
Baan and Kendall (2002) also inverted the model in the z-p domain, and concluded that
there exists a family of kinematically equivalent models that exhibit identical moveout
curves. Siligi et al. (2003) obtained dense model parameters by simultaneously picking
velocity and anellipticity. Abbad et al. (2009) proposed two-step automatic
nonhyperbolic velocity analysis using a normalized bootstrapped differential semblance

(BDS). They first performed hyperbolic velocity analysis on truncated small-offset data
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at coarse space to identify events, and then implemented dense nonhyperbolic velocity
analysis about the identified events. The BDS estimator has higher resolution than
differential semblance (DS), but can significantly increase the computation cost. Choi et
al. (2010) developed an efficient automatic velocity analysis algorithm by using BDS and
Monte Carlo inversion.

Most velocity analysis is done in a processing shop by professional processors.
These velocities are then used to prestack migrate the data. Our goal in this paper is to
present a workflow that improves upon these images, giving a residual velocity analysis.

To use the critical information contained in the long offset data, we need not only
to flatten the reflections at far offset using nonhyperbolic travel time equation but also
minimize the stretch typically associated with large aperture. In this paper, we first extend
Toldi’s (1989) method by adding interval anellipticity as one of the parameters for the
model to perform automatic nonhyperbolic analysis based on user defined horizons. We
then follow Zhang et al., (2013) to minimize the stretch at far offset. We apply our
technique as a residual velocity analysis workflow to a pre-stack time-migrated data
volume acquired over the Fort Worth Basin, USA, and show the improvements on both
the prestack corrected gathers and final stacked section.

AUTOMATED NONHYPERBOLIC VELOCITY ANALYSIS

There are mainly two issues in performing automatic residual velocity analysis. The
first issue is to select a proper travel time equation. The second issue is to define the
objective function as a function of proposed model. In this paper we employ the well-
known nonhyperbolic trajectory (Alkhalifah, 1997). Our model parameters consist of

interval velocity v,,,,,, and anellipticity n;,,. (7). The objective is to find an interval model

46



that gives the maximum stacking power (semblance). Our optimization engine is a direct,
global searching called differential evolution (DE) algorithm.
Travel time equations

The shifted hyperbola (de Bazelaire, 1988; Castle, 1994) and Alkhalifah-Tsvankin
(Alkhalifah and Tsvankin, 1995; Alkhalifah, 1997) approximation are among the most
commonly used traveltime equations for nonhyperbolic velocity analysis. Since we wish
to perform residual velocity analysis on anisotropic shale reservoirs, we employ

Alkhalifah-Tsvankin approximation

2 2n. . x*
t2 :tz X _ ) eff - 1
SRRV SV (P v @

where to is the two-way traveltime at zero-offset, x is offset, Vimo(to) is the NMO velocity
at small apertures, and e is effective anellipticity.
For VTI (vertical transverse isotropy) media, Alkhalifah (1997) deduced the

relationship between effective and interval values using Dix forward equations

Vn2mo (tO) = tl_[;o Vr?mo (T)d & (23.)
and

1 1 o 4
Mo () = 8 {t\/4—(,[) [ )i+8n,,(r)]dz - 1} , (2b)

where 1;,:(7) is the instantaneous (interval) anisotropy, and v,,,,is the interval NMO

velocity given by

v (2)=v(r)\1+25(7), 3)
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where v(7) is the vertical interval velocity and §(t) is one of the Thomsen’s anisotropy
parameters (Thomsen, 1986). Note that although Equation 1 has higher accuracy than the
conventional Dix equation, it is not suitable for velocity analysis when the absolute value
of 7eff exceeds 0.2. And large value of 7ef might may result in a possible smoother and
lower resolution mode of 7;,. Furthermore equation 1 may introduce up to 2% travel time
error when the aperture is greater than 2.0 (Alkhalifah, 1997).
Differential evolution (DE) optimization

Least-squares maximization is usually the optimization engine for automatic
velocity analysis (e.g., Toldi, 1989). Classical least-squares requires the Hessian matrix
(or approximations of the Hessian using the Jacobian matrix) to define the next search
step. Unfortunately the relationship between the stacking power and a given interval
model is highly nonlinear (Toldi, 1989). For this reason, we use an efficient, global search
engine named differential evolution (DE), which is described in Appendix A, to obtain
the optimal interval velocity and anellipticity model. The advantage of DE is that it avoids
any estimation of derivatives but rather requires more computation to generate forward
models, and it is more expensive than that of least-square based optimization.
The Objective function

Toldi (1989) proposes a two-step workflow to conduct automated hyperbolic
velocity analysis. First, he calculates the stacking slowness from predicted trial interval
slowness models. Then the algorithm computes the total stacking power of corrected
gathers. The model with the greatest stacking power is considered as the best model. We
follow Toldi’s workflow by extending it to automated nonhyperbolic velocity analysis.

Toldi (1989) parameterizes the interval velocity model using equally-spaced increments
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along the to axis. In contrast, since we focus on residual velocity analysis of migrated
gathers, we geologically consider our interval model using user-defined horizons. We
choose the semblance S as the estimator of stacking power to minimize cost, though
eigenstructure methods provide higher resolution (Key and Smithson, 1990; Sacchi,
1998). The objective of our algorithm is to search an interval model m that gives the
maximum semblance value S. And the model m consists of the interval NMO velocity

Unmoand instantaneous (interval) anisotropy n;,; parameters

m= (Vnmo’nint)’ (43.)

and objective function Q(m)
Qm)=>->"¥s,(m.x,.y, ), (4b)
i j k

where x and y stand for inline and crossline, and indices i, j, k indicate the index of time,
inline, and crossline samples.

Figure 2.1 illustrates the proposed workflow for automatic nonhyperbolic velocity
analysis. Our input data consist of prestack time migrated CMP gathers, the initial
migration velocity, and interpreted horizons. The outputs are flattened gathers, and a
model of interval velocity and anellipticity that best flatten the gathers. The prestack
gathers are generated from time-migrated gather that have been subjected to a reverse
NMO correction using the migration velocity. The horizons are manually interpreted on
an offset-limited stack of the migrated gathers, and are used to parameterize the interval
model m. The algorithm starts by building an initial interval velocity model from
migration velocity, then generates suite of alternative models in the decision space. Next,
the model undergoes DE mutation and crossover to generate a set of new trial interval

models and calculate the effective models using equation 2. The algorithm estimates the
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objective function for each model, better models survive into the next generation. We
repeat generating and evaluating the new models until all the reflection events are
flattened, or convergence slows down.
MINIMIZE THE STRETCH ASSOCIATED WITH FAR OFFSET

Migration and NMO corrections are conducted sample by sample which results in
the well-known decrease of frequency content and amplitude distortion through stretch at
far offset. To avoid the effects of serious stretch associated with far offsets, we usually
mute the farther offsets based on a user-defined criterion. Muting of far offset not only
lowers the stacking power, it also reduces information necessary for accurate prestack
inversion of shear impedance and density. Zhang et al. (2013) developed a wavelet-based
algorithm named MPNMO (the matching-pursuit-based normal moveout correction) to
minimize the stretch at large aperture. Their algorithm first applies reverse NMO
correction, which “resqueezes” the migration stretch of the time migrated gathers, and
then conducts a wavelet-based NMO correction on the reverse NMO corrected gathers.
In this paper, we apply their workflow to the time migrated gathers using new the velocity
and anellipticity model. In this manner, resolution is improved first by aligning the data
and second by avoiding stretch. Furthermore the AVO phenomenon exited in the prestack
gathers is well preserved.

APPLICATION

To illustrate the effectiveness of the proposed workflow, we apply it to prestack
time migrated CMP gathers in the Fort Worth Basin (FWB), USA. The FWB is a foreland
basin and covers approximately 54000 mi? (14000 km?) in north-central Texas. The target

is Mississippian Barnett Shale which is one of the largest unconventional reservoir in the
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world and spreads approximately 28000 mi? (72520 km?) across the FWB. Although the
Barnett Shale (da Silva, 2013) is present in 38 counties in Texas, production is mainly
restricted to Denton, Tarrant, Johnson, and Wise Counties in the northeastern portion of
the FWB. Our survey is located in Wise County and has a maximum offset of 13000 ft.
The target Barnett Shale lies at approximately 7000 ft depth. Figure 2.2 shows a
simplified stratigraphic column of the FWB in Wise County (Silva, 2013; Montgomery
et al., 2005). Note the Barnett Shale lies directly on the easy-to-pick Viola limestone.
Figure 2.3 is a representative time-migrated CMP gather using the two-term
hyperbolic travel time equation. Note the “hockey stick” and stretch indicated by the
white arrows at far offsets. Both “hockey stick” and stretch are harmful for the following
processing and prestack inversion. The “hockey stick™ can blur reflection events in the
stacked volume while the stretch lowers the resolution of shear impedance and inversion
volume. Usually, seriously stretched data are muted out (Figure 2.4) based on a user-
defined muting criterion. In this example we allow wavelets to stretch no more than
130%. Figure 2.5 shows a prestack gather after applying reverse NMO correction on the
gather shown in Figure 2.3. The RMS migration velocity (Figure 2.6a) comes from
performing hyperbolic velocity analysis on coarse grid (20x20) super gathers. The
migration velocity is then converted to interval velocity (Figure 2.6b) as one of the inputs
for our algorithm. Figure 2.7 shows the horizons used for parameterizing the model. They
are interpreted on the stacked volume which just uses the near offset data of time migrated
gather (Figure 2.4). During each generation we only update the interval slowness and
anellipticity values located at those horizons. Other interval model values are interpolated

using values on the horizons.
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To automatically flatten the gather shown in Figure 2.5 without picking, we apply
the workflow shown in Figure 2.1 to obtain the corrected results (Figure 2.8). The initial
interval anellipticity zintis set to zero and the maximum absolute value of corresponding
neff is limited to 0.2 during the optimization. The maximum absolute deviation of interval
velocity from the initial model is not permitted to more than 20%. Figures 2.9a and 2.9b
show the optimal interval NMO velocity and anellipticity. The corresponding optimal
RMS velocity and effective anellipticity are respectively shown in Figures 2.9¢ and 2.9d.
Compared to the initial velocity model, the optimized interval NMO and RMS velocity
have higher resolution. The differences between initial and optimized velocities are
caused by 1) the isotropic assumption compensating for the anellipticity (Abbad, et al.,
2009) and 2) the initial velocity analysis performed on coarse grids super gathers having
lower lateral resolution. Some correlations are observed between the inverted model and
the geology features in the stacked section. For example, velocity pattern (high-low-high)
indicated by the white arrows in Figure 2.9a correlates to the Marble Falls Limestone —
Upper Barnett Shale — Forestburg Limestone sequences. The velocity increase indicated
by the grey arrows corresponds to the Viola limestone. The feature in Figure 2.9b
indicated by white arrow is associated with Barnett Shale which is known to be a VTI
media. It can be used as a direct anisotropy indicator (Abbad, et al., 2009).

Note that although the reflection events are flattened by our algorithm, we still
cannot use the information contained at far offset due to the serious stretch indicated by
the white arrows in Figure 2.8. At present MPNMO minimizes the stretch to some extent,
but cannot resolve highly interfering and crossing events. Before using this algorithm, we

therefore apply muting to the time migrated gathers (Figure 2.3) which allow wavelets to
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stretch no more than 180% (Figure 2.10a). Then we apply a reverse NMO correction
(Figure 2.10b) on the muted gathers. Finally we implement MPNMO algorithm (Figure
2.10c). Note that MPNMO minimizes the stretch that occurs at the far offset data when
compared to the original time-migrated gathers. Figures 2.11a and 2.11b shows vertical
slices through the stacked volume from traditional time migrated gathers after muting and
MPNMO corrected gathers. Note the greater stacked energy (red arrows) and improved
resolution (yellow arrow) of the MPNMO results. To better see the improvements, we
displayed a zoomed in part of the stacked section (Figure 2.12a and 2.12b) between 1.15s
and 1.4s where our reservoir locates. Those horizons are no longer located at the troughs
or peaks on the new stacked section and need re-interpretation. Note the improved
resolution indicated by yellow arrows and more continuous reflection events indicated by
the red arrow. Unfortunately the stacking power indicated by green arrow has lower
energy compared to that of conventional. This artifact arises because MPNMO does not
properly handle interfering reflections in prestack domain and moves all the interfered
energy of current wavelets to the lower reflection events. To quantify the improved
resolution, we compare the average amplitude spectra of the stacked data shown in Figure
2.13. The blue and red curves represent the stacked data using gathers shown in Figure
2.4 and MPNMO correction (Figure 2.10c). The MPNMO spectrum obviously has a
greater ratio of high to low frequencies.
CONCLUSIONS

“Hockey stick” and stretch are the two main issues associated with long offset data

processing. We propose a two-step workflow for maximizing the usage of information

contained in far offsets. The first one is an automatic nonhyperbolic velocity analysis to
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obtain an interval model that gives the maximum stacking power. The interval model
based search ensures that the optimized model is physically feasible and avoids sudden
variations. In our application the interval velocity has very good correlation with the
reflection events in the stacked section. Unfortunately the interval anellipticity is
ambiguous and need further comparison to well log data. Nonhyperbolic velocity analysis
can mitigate the “Hockey stick” but not the stretch appeared at large aperture. MPNMO
minimizes the stretch and improves the stacking power and resolution critical for
interpreting thin reservoirs. Another advantage benefiting from MPNMO is that more far-
offset data are available for subsequent Ap-up and AVO inversion.

The proposed methodology has some short comings. The algorithm favors
flattening stronger reflection events due to their large stacking power, and may ignore
some weak reflections. Also it still cannot estimate the nonuniqueness in the solution.
There may exist a suite of kinematically equivalent models that exhibit identical moveout
curves. The employed anti-stretch algorithm cannot decompose the highly compressed or
crossing events. Future works therefore include 1) resolving interfering and crossing
events in prestack domain and 2) employing well logs as the calibration during the
optimization procedure.
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APPENDIX A
The differential evolutionary (DE) optimization algorithm used in this paper was
initially proposed by Storn and Price (1997). The initial population of DE is randomly
generated within the decision space. If the total variable number of the objective function

is K, then the nt™™ member at the g™ generation can be expressed as:

m,, =M, .., m¥ m*) n=12..N;g=12..,G, (A-1)

N My
where N is the population number, G is the total generation, and k is the index for
variables. DE exhibits the basic features of any general evolutionary algorithm and is
comprised of mutation, crossover, and selection.

Mutation: For a given target vector m, , at generation g, randomly select three

vectors from the population to generate the donor vector:

V,,=m,  +F-(m_,-m__ ) (A-2)
where the indexes ry, r,, and r3 represent selected integers from [1,N] that are different
from n, and F is a user-defined scaling factor.

Crossover: The target vector m,, , is recombined with the donor vector v, to
develop the trial vector u, .. Elements of the donor vector enter the trial vector with a
probability C,.:

k)
L0 {vnfg if RAND(0,2) <C, (A-3)

" m otherwise

where n=1,2,--* N, k=1,2,---,K, RAND(0,1) is the k™ evaluation of a uniform random
number generator.
Selection: The target vector m,, , is evaluated against the trial vector u,, 5, with the

better model surviving into the next generation:
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C|m,, otherwise

) { u,, ifQU,,)<QX,,) (A-2)

We repeat implementing equation A-2 to A-4 until the maximum generation G is

reached or the convergence rate is smaller than user-defined value.
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Figure 2.1. Flowchart showing the automated nonhyperbolic velocity analysis. The model
parameters consist of interval NMO velocity and anellipticity. The objective is to find a
model that gives the maximum stacking power using a global optimization strategy called
differential evolution.
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Figure 2.2. Simplified stratigraphic column of the Fort Worth Basin in Wise County (da
Silva, 2013). The Barnett Shale lies between the Marble Falls and Viola Limestone in our
survey area.
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Figure 2.3. A representative time-migrated CMP gather using two term hyperbolic travel
time equation and the migration velocity shown in Figure 2.6. Note the “hockey stick”
and stretch indicated by the white arrows at far offset.
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Figure 2.4. The gather shown in Figure 2.3 after muting. The wavelet is not allowed to
stretch more than 130%, resulting in the loss of information in the far offset.
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Figure 2.5. The gather shown in Figure 2.3 after applying reverse NMO. This gather
server as input to automatic nonhyperbolic velocity analysis.
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Figure 2.6. Velocity analysis results performed on the coarse grid (20x20) super gathers.
(a) RMS velocity from hyperbolic velocity analysis on the offset truncated gathers and
(b) interval velocity converted from the RMS velocity. This interval velocity is used for
generating the initial target interval velocity. The initial interval anellipticity is set to 0.
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Figure 2.7. Horizons used in parameterizing the model. We interpreted these 18 horizons
on the stacked volume of near-offset time migrated gathers (Figure 2.4). The named
horizons are tied to wells. Unnamed horizons provide further constraints.
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Figure 2.8. Flattened representative gathers using the workflow shown in Figure 2.1. Note
the “hockey stick” is gone but not the stretch.
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Figure 2.9. Optimized model results using the workflow shown in Figure 2.1. During the
optimization procedure, we first the update interval NMO velocity (a) v,me and (b) 9ine,
then calculate the corresponding (c) RMS velocity and (d) effective anellipticity. The
optimal interval velocity has higher resolution than the initial interval velocity (Figure
2.6Db).
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Figure 2.10. Anti-stretch processing applied to prestack gathers. Representative gather
after (a) muting and (b) reverse NMO correction. The muting is applied on the time
migrated gathers shown in Figure 2.3 where the wavelet is not allowed to stretch more
180%. Reverse NMO is applied to the muted gather. (c) The anti-stretching processed
results. Note we minimize the stretch at far offsets.
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Figure 2.11. Stacked sections after (a) conventional migrated gathers with 130% muting
criteria and (b) MPNMO correction gathers with 180% muting criterion. The target
Barnett Shale lies between t=1.1s and t=1.3s. Note the improved stacking power indicated
by the red arrows and vertical resolution indicated by yellow arrow.
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conventional (a) and (b) proposed residual velocity analysis workflow. Note we have
more continuous reflection events (red arrows) and improved resolution (yellow arrow).

70



—— Conventional ——Proposed workflow

0.8

<
=N

Magnitude
=
=

02

0 10 20 30 40 50 60 70 80
Frequency (Hz)

Figure 2.13. Spectra of stacked section from conventional- (blue) and proposed- (rea)
processing. Note the spectrum of new stacked section obviously has a greater ratio of

high to low frequencies.
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Title: Improving the confidence of prestack inversion by preserving the data fidelity in
long offset
ABSTRACT

Prestack seismic inversion techniques provide valuable information of rock
properties, lithology, and fluid content for reservoir characterization. The confidence of
inverted results increases with increasing incident angle of the seismic gathers. The most
accurate result of simultaneous prestack inversion of P-wave seismic data is P-
impedance. S-impedance estimation become reliable with incident angles approaching
30°, while density evaluation become reliable with incident angles approaching 45°. As
offset increases we often encounter “hockey sticks” and severe stretch at far offsets. Both
“hockey stick” and stretch not only lower the seismic resolution but also hinder long
offset prestack seismic inversion analysis. The invention results are also affected by the
random noises presented in the prestack gathers. In this paper we present a three-step
workflow to perform data conditioning prior to simultaneous prestack inversion. First,
we mitigate the “hockey sticks” by using an automatic nonhyperbolic velocity analysis.
Then we minimize the stretch at far offset by employing an anti-stretch workflow. Last,
we improve the signal-to-noise ratio (SNR) by applying prestack structure oriented
filtering. We illustrate our workflow by applying it to a prestack seismic volume acquired
over the Fort Worth Basin (FWB), TX. The results inverted from the conditioned prestack
gathers have higher resolution and better correlation coefficients with well logs when

compared to those inverted from conventional time migrated gathers.
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INTRODUCTION

Simultaneous prestack inversion provides estimation of acoustic impedance (Zp),
shear impedance (Zs), and density. Those estimations represent the intrinsic rock
properties and are commonly used for predicting fluid, lithology, and geomechanical
properties. Preserving data fidelity in the prestack seismic gathers is key to obtaining
reliable impedance and density estimations. The main factors that affects the data fidelity
in the restack gathers include 1) “hockey sticks” in the long offset seismic surveys,
2)NMO/migration stretch, and 3) random noise.

“Hockey sticks” arise in the long offset of prestack gathers when we do not
accounting for the effects of anisotropy (Alkhalifah, 1997; Fomel and Stovas, 2010) and
long-offset (Taner and Koehler, 1969; de Bazelaire, 1988) in seismic processing. To
mitigate the “hockey stick” at far offset, we need to perform nonhyperbolic velocity
analysis using a proper travel time equation. The conventional nonhyperbolic velocity
analysis (CNVA) first estimates the NMO velocity (Vamo) on offset-limited gathers using
a hyperbolic NMO correction, then picks effective anellipticity (#er) using the full-offset
gathers. CNVA produces estimated model of Vamo and #esr on coarse grid of super gathers.
The model at other common midpoint (CMP) gathers are interpolated from those at
manually picked grids. However there is no guarantee that the interpolated velocity model
is correct for all CMPs. Another disadvantage is that small aperture Vamo analysis may be
inaccurate. Picking errors in Vimo introduce errors into the subsequent analysis of 7esr.
Unfortunately simultaneously manual picking of Vamo and #es at every CMP location is
time consuming and tedious. In this paper, we extended Toldi’s (1989) automatic velocity

analysis to mitigate the “hockey stick” in the long offset.
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Migration and NMO corrections are conducted sample by sample which results in
the well-known decrease of frequency content and amplitude distortion through stretch at
far offset. To avoid the effects of serious stretch associated with far offsets, we usually
mute the farther offsets based on a user-defined criterion. Muting of far offset not only
lowers the stacking power, it also reduces the accuracy and vertical resolution of prestack
inversion for shear impedance and density. Zhang et al. (2013) developed a wavelet-based
algorithm named MPNMO to minimize the stretch at far offset. Their algorithm first
applies reverse NMO correction, which “resqueezes” the migration stretch of the time
migrated gathers, and then conducts a wavelet-based NMO correction on the reverse
NMO corrected gathers. We apply their algorithm to minimize the stretch after having
computed Vamo and 7esr using automatic nonhyperbolic velocity analysis.

Seismic signal is almost always contaminated with noise. To mitigate this undesired
component of the seismic data, we assume that proper filters have already rejected the
coherent noise (such as multiples) and that the remaining “noise” is random prior to
applying our data conditioning workflow. If we assume the noise and reflected signals
are uncorrelated, then we can decompose the prestack gathers into signal and noise parts
by principal component analysis (Key and Smithson, 1990) along the structural dip.

In this paper, we present a three-step workflow to perform prestack seismic data
conditioning prior to prestack inversion. First we mitigate the “hockey sticks” by using
an automatic nonhyperbolic algorithm. We then minimize the stretch at far offset using
an anti-stretch procedure. Finally we improve the SNR by applying a prestack-oriented
filtering. The workflow is validated on a seismic data volume acquired over the Fort

Worth Basin, TX.
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STRATEGIES TO PRESERVE THE DATA FIDELITY AT FAR OFFSET

To use the critical information contained in the long offset data for prestack
inversion, we need to 1) flatten the reflections at far offset using a nonhyperbolic travel
time equation, 2) minimize the stretch typically associated with far offset, and 3) improve
the SNR by prestack structure oriented filtering.
Mitigating the “hockey stick” using automatic nonhyperbolic velocity analysis

To mitigate the “hockey stick” associated with far offset and anisotropy, we employ
an automatic nonhyperbolic velocity analysis algorithm (Zhang et al., 2014). The model
m of the algorithm consists of the interval NMO velocity v,,,,and instantaneous
(interval) anisotropy n;,; parameters. The workflow employs a genetic differential
evolutionary (DE) algorithm to find the best model that can mitigate the “hockey stick”
at far offset. Our input data consist of prestack time migrated CMP gathers, the initial
migration velocity, and interpreted horizons. The outputs are flattened gathers, and a
model of interval velocity and anellipticity that best flatten the gathers. The prestack time-
migrated gathers have been subjected to a reverse NMO correction using the migration
velocity. The horizons are manually interpreted on an offset-limited stack of the migrated
gathers, and are used to parameterize the interval model. The algorithm starts by building
an initial interval velocity model from the migration velocity and setting the initial
anellipticity model to O, then generates a suite of alternative models in the decision space.
Next, the model undergoes DE mutation and crossover to generate a set of new trial
interval models. The algorithm estimates the objective function for each model. Better
models survive into the next generation. We repeat generating and evaluating the new

models until all the reflection events are flattened, or convergence slows down.

79



Minimizing the stretch at far offset

The conventional NMO correction which processes the data sample-by-sample
results in the well-known decrease of frequency content and amplitude distortion through
stretch. The NMO-uncorrected traces, d(t), can be regarded as the convolution of the

seismic wavelet with the reflectivity series and added noise

d(t)=r(t)*w(t)+n(t),

1)
where r(t) is reflectivity series, w(t) is wavelet, and n(t) is noise. This classic theory
suggests that the NMO correction can be implemented on a wavelet-by-wavelet basis,
with the moveout applied to the reflection events, r(t), rather than to the data samples,
d(t). Zhang et al. (2013) achieved this goal by using an algorithm named MPNMO. Our
input data consist of pre-stack time migrated seismic gathers, d(t, x»), after performing
reverse NMO correction using the migration velocity function. The output is the non-
stretch NMO corrected gathers.
Improving SNR

By assuming that 1) coherent noise have been filtered using proper filters, 2) noise
and reflected signals are uncorrelated with zero mean, and 3) noise is uncorrelated from
trace to trace and sample to sample, Key and Smithson (1990) concluded that the first
few eigenvalues and eigenvectors of the covariance matrix of prestack seismic gathers
represent the coherent reflection signals. Based on this assumption, we apply a prestack
structure oriented filter (PSOF) based on principal component analysis (PCA) to the
seismic gathers to improve the SNR. The workflow begins by calculating the reflectors

dip in a running window on all traces of the stacked volume (Marfurt, 2006). Then we
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estimate the correlation coefficients for the stack volume along the local reflection dip
(Gersztenkorn and Marfurt, 1999). Next we extract the reflection signal whose correlation
coefficients are greater than a user defined threshold through the first eigenvalue and
eigenvector of seismic covariance matrix. The signals whose correlation coefficients are
less than the threshold do not undergo any processing, thereby preserving potential
discontinuities.
Prestack seismic data conditioning workflow

Figure 3.1 summarizes the proposed workflow for preserving the data fidelity
contained the far offset. Our input data consist of prestack time migrated gathers and the
initial migration velocity Vimo 0. The initial effective anisotropy merr iS set to 0. We obtain
the initial migration velocity by performing hyperbolic velocity analysis on coarse grid
super gathers. The workflow begins by performing reverse NMO on the time migrated
gathers using the initial migration velocity. Then we obtain the optimal velocity and
anellipticity model using our automatic algorithm. Next we apply MPNMO to the time
migrated gathers using new velocity and anellipticity model resulting in flattened
nonstretched prestack gathers. Lastly we apply PSOF to further improve the SNR. In this
manner, both stacking power and vertical resolution are improved first by aligning the
data and second by avoiding stretch.

APPLICATION

To evaluate the data quality processed by our workflow, we first apply it to pre-
stack time-migrated gathers acquired in the Fort Worth Basin (FWB), USA. We then
compare the prestack inversion results computed from migrated gathers using

conventional (muting) analysis and our proposed data conditioning workflow. The FWB
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is a foreland basin and covers approximately 54000 mi? in north-central Texas. The target
is the Mississippian Barnett Shale which is one of the largest unconventional reservoir in
the world and spreads approximately 28000 mi? across the FWB. In our survey the “core”
or main production area is the Barnett Shale formation lies between 1.2s and 1.4s. The
maximum offset is around 14000 ft while the target Barnett Shale lies at approximately
7000 ft depth, implying a maximum incidence angle of about 45°.

Figure 3.2a shows a representative time migrated CMP gather using a two term
hyperbolic travel time equation. Note the “hockey stick” and stretch indicated by white
arrows at far offset. To avoid the effect of serious stretch, we usually the mute those
serious stretched data according to a user defined criterion. Figure 3.2b shows the muted
gather where the wavelet is not allowed to stretch more than 130%. By combining NMO
velocity (Vnmo) and effective anellipticity (7erf), nonhyperbolic velocity analysis can
mitigate the “hockey stick” but not the stretch at far offset (Figure 3.2c). Figure 3.2d
shows the flattened nonstretch gather. Note that MPNMO minimizes the stretch that
occurs at the far offset data when compared to the original time-migrated gathers. Figures
3.2e and f show the same gather after apply PSOF and the rejected random noise,
respectively.

P-impedance is the most reliable result from prestack inversion. S-impedance
estimation become reliable when the incidence angle reaches 30°, while density become
reliable when the angle approaching to 45°. By applying the proposed workflow, more
far offset data (Figure 3.2e) are available for the subsequent processing and inversion.
We apply simultaneous prestack inversion to the gathers from both the conventional

(Figure 3.2b) and the long offset preservation (Figure 3.2e) processing. We first extract
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the angle dependent statistical wavelets for both the conventional migrated (Figure 3.3a)
and the conditioned (Figure 3.3b) data after the seismic-well tie. The red, blue, and green
lines show the extracted small (0°-12°), intermediate (12°-24°), and large angle wavelets
(24°-36°), respectively. Note that the large angle wavelet extracted from time migration
is distorted to some extent. To better compare the improvements, we show the amplitude
spectrum of the extracted wavelets from time migrated and conditioned gathers in Figures
3.3c and d. Due to the increasing stretch with increasing incidence angle in the time
migrated gathers, the spectral bandwidth (the blue and green lines in Figure 3.3c) of the
intermediate and large angle wavelets are distorted and narrower than that of the small
angle wavelet (the red line in Figure 3.3c). However the proposed conditioning workflow
preserves the spectral bandwidth of the intermediated and large angle (the blue and green
lines in Figure 3.3d). Another factor responsible for the narrower bandwidth of large
angle wavelet is that we applied a low pass antialiasing filters to the far offset data internal
to the time migration algorithms (Biondi, 2001). Figures 3.4, 3.5, and 3.6 compare the
inverted P-impedance, S-impedance, and density from the conventional and long offset
preservation gathers. The vertical black curve in those figures are the well tract that used
to quality control the inversion results. We observe an overall improvement by including
the long offsets, especially for the inverted S-impedance. For example, the formations
indicated by the white arrow in the new inverted results from conditioned data are more
laterally continuous compared to those from of conventional data. The zone indicated by
dark arrows in the new data have higher resolution compared to that of conventional data.
These improvement are due to our ability to preserve the frequency content for wavelet

in the mid- and far-offset in particular. To better see the improvement, we quality control
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our inverted results from (Figure 3.7a) time migrated and (Figure 3.7b) conditioned
gathers with well logs at the target zone. The left, middle, and right tracks show the P-
impedance, S-impedance, and density panels. The black, blue, and red curves indicate the
initial model, the original well logs, and the inverted results. The blue curves are the
inverted result from conventional processed gathers while the red curves are the inverted
result from the conditioned gathers. Note we have obvious improvements in the zone
indicated by the red arrows. The new inverted results show a better correlation to the
original well logs. The improvement of density is not as good as those of P- and S-
impedance. This is due to that the maximum incidence angle of our gather is
approximately 36° and it is beyond the inversion algorithm’s capability to generate a
reliable result.
CONCLUSION

Preserving the data fidelity in the prestack gathers, especially the information
contained in the far offsets is critical to obtaining a reliable prestack inverted results. The
main tasks include 1) mitigating the “hockey stick” using high resolution automatic
nonhyperbolic velocity analysis, 2) minimizing the stretch introduced by conventional
NMO correction/migration, and 3) improving the SNR by applying proper filters. By
combining all of the processing, the proposed workflow maintains the frequency content
of wavelets and rejects unwanted random noise through the small- intermediate- and
large- angles. Thus the more information is available for subsequent inversion, the more
accurate the inverted results. The prestack inverted results based on the new conditioned
gathers not only show higher resolution but also exhibit a better match to the original well

logs due to critical information contained in the far offset.
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Figure 3.1. Flowchart showing the three data conditioning steps to preserve the data
fidelity at far offset: 1) automatic nonhyperbolic velocity analysis, 2) applying anti-stretch
processing on the time migrated gathers, and 3) prestack structure oriented filtering.
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Figure 3.2. Representative gather showing the processing steps shown in Figure 3.1. (a)
The time migrated gather from the conventional processing. (b) The same gather after
applying 130% stretch mute. (c¢) The corrected gather using RMS velocity and effective
anisotropy obtained from automatic nonhyperbolic velocity analysis. (d) The anti-stretch
processing result applied to (a) using the new RMS velocity and effective anisotropy. ()
The SNR improved gather applied to (d) using the prestack structure oriented filter. (f)
The rejected random noise.
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Figure 3.3. Statistical extracted wavelets from (a) the time migrated and (b) the
conditioned angle gathers. The corresponding amplitude spectra (c) and (d) of wavelets
shown in Figures 3.3a and 3.3b. The red, blue, and green curves indicate the small,
intermediate, and large angle wavelets and spectra.
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Title: Brittleness evaluation of resource plays by integrating petrophysics and seismic

data analysis
ABSTRACT

The main considerations for well planning and hydraulic fracturing in
unconventional resources plays include the amount of total organic carbon (TOC) and
how much hydrocarbon can be extracted. Brittleness is the direct measurement of a
formation about the ability to create avenues for hydrocarbons when suffering to
hydraulic fracturing. Brittleness can be directly estimated from laboratory stress-strain
measurements, rock properties, and mineral content analysis using petrophysics well logs.
However the brittleness from these methods only provides “cylinder” estimates near the
borehole. In this paper, we proposed a workflow to estimate brittleness of resource plays
in three dimension by integrating the petrophysics and seismic data analysis. The
workflow begins by brittleness evaluation using mineral well logs at the borehole
location. Then we employ a proximal support vector machine (PSVM) algorithm to
construct a classification pattern between rock elastic properties and brittleness from the
selected benchmark wells. Then we prestack invert the fidelity preserved seismic gathers
to generate a suite of rock properties volumes. Finally, we evaluate the brittleness of target
formations by applying the trained classification pattern to the inverted rock properties
volumes from seismic data, validating the results to wells not used in the construction of

the classification pattern.
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INTRODUCTION

Brittleness and ductileness are used to describe deformation behavior under stress.
A rock is considered to be ductile if it absorbs a high amount of energy before fracturing.
Brittle rocks are unable to accommodate significant strain before fracturing, opening
pathways for fluid flow. In conventional reservoirs brittleness is mainly used to evaluate
the “drillability” in drilling, “sawability” in rock cutting, and mechanical “winning” of
coal rocks (Jin et al., 2014). Brittleness is one of the most important rock parameters in
shale reservoirs. Wells completed in brittle rock will develop more fractures.
Furthermore, these fractures will close more slowly against the proppant than in more
ductile rocks. Thus differentiating brittle from ductile rocks has been the key to archive
success in shale gas reservoirs.

The methods of evaluating brittleness of rocks are mainly divided into three
categories: (1) direct laboratory stress-strain measurements, (2) mineral content, and (3)
empirical methods based on elastic module. Brittleness based on laboratory stress-strain
testing (Honda and Sanada, 1956; Hucka and Das, 1974; Altindag, 2010) does not provide
a direct link to seismic data. Thus, we concentrate on the last two methods in this paper.
In the Barnett Shale, it is widely accepted that brittleness is mainly controlled by quartz
content while ductility is related to clay minerals and TOC. Jarvie et al. (2007) proposed
a brittleness equation based on the amount of quartz, calcite, and clay minerals where
quartz is considered to be the brittle mineral while calcite and clay minerals are regarded
to be ductile minerals. Wang and Gale (2009) improved Jarvie’s et al. (2007) equation by
considering dolomite as one of the brittle minerals and TOC as one of the ductile mineral.

The disadvantage of these two approach is that determination of mineral content requires
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either core or an elemental capture spectroscopy (ECS) log that are not available for most
of wells. Furthermore the brittle-ductile behavior of rock is related to but not fully
controlled by the statistical content of brittle minerals. Other factors such as diagenesis
and the distribution (such as layering) of mineral may also influence the brittle-ductile
behaviors. Rickman et al. (2008) proposed an average brittleness equation based on the
elastic parameters of Poisson’s ratio and Young’s modulus. Their equation assumes that
more brittle rocks show relative high Young’s modulus and low Poisson’s ratio while
more ductile rocks exhibit low Young’s modulus and high Poisson’s ratio. Brittleness
estimation based on elastic parameters is more popular in the geomechanics field than
that based on mineral content. This is due to the fact that they are easily derived from
wire line logs where elastic parameters directly describe rocks ability to fail under stress
and maintain an open fracture once the rock fractures (Pickman et al., 2008). Perez (2013)
compared brittleness index estimated from mineral content and brittleness average
estimated from elastic parameters. He observed inconsistencies between these two
methodologies. Therefore he constructed brittleness template based on the Lamda-rho
(Ap) and Mu-rho (up) analysis from selected benchmark wells that had both mineral
content (ECS) and rock parameters (sonic, dipole sonic, and density) logs. At last he
estimated the brittleness of shale reservoirs by applying his template to inverted Ap and
up from prestack seismic inversion. Da Silva (2013) found that the brittleness index (BI)
computed from mineral content is positively correlated to up and negatively correlated to
Ap. Jin et al. (2014) reviewed several based brittleness estimation from geomechanical
and petrophysics. They proposed a fracability index equation by considering the elastic

parameters and mineral content together where feldspar, mica, as well as the carbonate
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minerals (limestone, dolomite, and calcite) are regarded as the brittleness contributors.
They found a very good correlation between fracability index and mineral content based
brittleness evaluation.

Elastic parameters inverted from seismic are commonly used for reservoir
characterization after calibration with well logs. The accuracy of elastic parameters
derived from seismic inversion mainly depends on whether we can preserve the data
fidelity at far offsets in the prestack gathers. Stretch and “hockey sticks” are the two main
factors that affect the data fidelity at far offset. We apply a workflow to mitigate these
two phenomena at far offset (Zhang et al., 2014) beginning by mitigating the “hockey
stick” using automatic nonhyperbolic velocity and followed by a wavelet based correction
to minimize the stretch at far offset. Zhang et al. (2014) found that inverted results from
conditioned gathers have better resolution and higher correlation coefficients with well
logs.

In this paper, we propose a workflow to evaluate the brittleness of shale reservoirs
by integrating petrophysics and seismic analysis. By employing a supervised
classification algorithm, we obtain a classification pattern between multiple rock elastic
properties and Bl computed from mineral logs for the benchmark well. We then obtain
the rock elastic properties volumes by performing prestack inversion on the fidelity
preserved gathers. Finally, we evaluate the brittleness of target reservoirs by applying the
classification pattern to the inverted rock properties volumes.

BRITTLENESS DEFINITION
Brittleness is used to describe the deformation behavior when the rocks are subject

to stress in the laboratory. The brittleness index (BI) is commonly used to evaluate the
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degree of brittleness of rocks. The higher the magnitude of Bl, the more brittle of the
rock. One common BI measurement is the ratio of compressive strength, o, to tensile

strength o, (Coates and Parsons, 1966):

Q

Bl="¢, 1)

O,

However Bl measurements based on compressive strength and tensile strength are
only available in the laboratory. In practice it is expensive and therefore unrealistic to
extract reservoir cores for all wells, limiting the use of such direct measurements to
reservoir characterization. Several researchers have proposed Bl definitions based on
either mineral content logs or on rock elastic parameters for reservoir characterization.
Jarvie et al. (2007) and Wang and Gale (2009) proposed Bl definitions based on mineral
content of rocks. They first classified the minerals as ductile or brittle by considering their
deformation behavior. Then they computed Bl as the ratio of the brittle mineral content
to the sum of constituent minerals. Jarvie et al. (2007) considered quartz as the brittle

mineral:

Qz
Bl = .
Qz+Cal +Cly

)

Wang and Gale (2009) further improved Jarvie’s definition by including dolomite as a

brittle mineral and TOC as a ductile component

Qz + Dol

Bl, =
" Qz+Cal + TOC + Cly + Dol

(3)

where Qz is the fractional quartz content, Dol is the dolomite content, Cal is the calcite
content, TOC is the total organic carbon content, and Cly is the clay content by weight in
the rock.
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Rickman et al. (2008) proposed a brittleness average estimation using Young’s

Modulus E and Poisson’s ratio o.

Bl =%, 4)

where E,, and o are the normalized Young’s Modulus and Poisson’s Ratio

E_-E
E =—m — 5
' Emax - Emin ( )
o = O0—0,. | ©)
O-max _O-min

where E,qx, Emin @re maximum and minimum Young’s Modulus; 0,45, Omin are the
maximum and minimum Poisson’s Ratio.

The BI evaluation based on mineral content is widely used for shale reservoir
characterization. Unfortunately it is expensive to obtain the mineral content logs and this
evaluation is only available for the formations at the borehole location. While it is easier
and cheaper to compute the average brittleness but it fails when there are limestone
stringers (Perez, 2013). In this paper we employ Wang and Gale’s (2009) definition to
evaluate the brittleness of formations.

PRESTACK SEISMIC DATA CONDITIONING

Simultaneous prestack seismic inversion provides a 3D estimation of reservoir
properties such as acoustic impedance (Zp), shear impedance (Zs), and density (p). These
estimates represent intrinsic rock properties and are commonly used to predict fluid,
lithology, and geomechanical properties (Goodway et al., 1997). The reliability of
inverted results increases with increasing angle of incidence. However information

contained in the far offsets (large incidence angle) are usually distorted to some extent
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after conventional processing. Thus preserving the data fidelity in prestack seismic
gathers is one of the key factors to obtain reliable estimations of Zp, Zs, and p. The main
factors that affects the data fidelity in the prestack gathers include 1) “hockey sticks” at
far offset in the long offset seismic surveys, 2) NMO/migration stretch, and 3) random
noise. To use the critical information contained in the long offset data for prestack
inversion, we need to 1) flatten the reflections at far offset using a proper nonhyperbolic
travel time equation, 2) minimize the stretch typically associated with far offset, and 3)
improve the signal-to-noise ratio (SNR) by prestack structure oriented filtering (PSOF).

Figure 4.1 summarizes the workflow for preserving the data fidelity contained in the
far offset. Our input data consist of prestack time migrated gathers and the initial
migration velocity Vimo o. The initial effective anisotropy mest IS Set to 0. We obtain the
initial migration velocity by performing hyperbolic velocity analysis on coarse grid super
gathers. The workflow begins by performing reverse NMO on the time migrated gathers
using the initial migration velocity. Then we obtain the optimal velocity and anellipticity
model using our automatic algorithm (Zhang et al., 2014). Next we apply nonstretch
NMO correction (Zhang et al., 2013) to the time migrated gathers using new velocity and
anellipticity model resulting in flattened nonstretched prestack gathers. Lastly we apply
PSOF algorithm to further improve the SNR. In this manner, both stacking power and
vertical resolution are improved first by aligning the data and second by avoiding stretch.

BRITTLENESS EVALUAITON BY INTEGRATING PETROPHYSICS AND
SEISMIC DATA ANALYSIS
Bl estimation based on mineral logs is widely used to evaluate the brittleness of

resources plays reservoirs (Jarvie et al., 2007; Wang and Gale, 2009). However, mineral
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content logs are expensive to acquire, therefore limiting direct brittleness estimates to
only a few wells. Different minerals exhibit different rock elastic properties such as
acoustic impedance, shear impedance, Poisson’s ratio (o), incompressibility lambda (1),
and shear modulus mu (w). For example A of quartz is lower than those of clay and calcite,
while the p of quartz is higher than those of clay and calcite (Mavko et al., 2009). This
observation of elastic properties to minerals provides a mean to evaluate the brittleness
of resource play by multiple rock elastic properties analysis (Goodway et al., 1997; Perez,
2013; Da Silva, 2013). In this paper we employ an advanced classification algorithm
named proximal support vector machine (PSVM) (Fung and Mangasarian, 2001) to find
the pattern between multiple rock properties and Bl. PSVM is a supervised learning
procedure which uses associated learning algorithms to analyze data and recognize
patterns. It is widely used for classification and regression analysis (Fung and
Mangasarian, 2005). The details of PSVM are described in Appendix A.

We proposed a workflow of Figure 4.2 to obtain a 3D brittleness estimates for
resource plays by integrating petrophysics and seismic data. Our workflow contains two
parts 1) obtaining the classification pattern between elastic properties and Bl, and 2)
applying the recognized pattern to the elastic volumes from seismic data to generate a Bl
volume. Our algorithm starts by computing rock elastic properties from sonic and density
logs and BI from mineral content logs. Next we obtain a classification pattern between
these elastic properties and Bl by performing PSVM training on randomly selected well
log samples (the training subset). The recognized pattern is then tested on the remaining
well log samples (the testing subset) to validate the mapping. The seismic inversion

begins by applying PSOF (Figure 4.1). Then we obtain the 3D elastic property volumes
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by performing simultaneous prestack inversion using commercial software. Finally, we
generate a 3D brittleness estimates for the target reservoir by applying the recognized
PSVM pattern to the inverted elastic properties volumes.
APPLICATION

The Barnett Shale of Fort Worth Basin (FWB), TX, USA is one of the largest
unconventional shale reservoirs in the world. The FWB is a foreland basin and covers
approximately 54000 mi? in north-central Texas (Da Silva, 2013). A high quality long
offset surface seismic survey (Figure 4.3) was acquired in 1990s over “core” production
area of FWB. In our survey, the Barnett Shale formation lies between 1.2 sand 1.4 s. The
maximum offset is around 14000 ft while the target Barnett Shale lies at approximately
7000 ft depth. Well A, which lies approximately 5 miles to the northeast of seismic survey
(Figure 4.3), serves as the bench mark well to build the classification pattern between
selected elastic properties and BI.
Classification training between rock properties and Bl for the benchmark well

Figure 4.4 illustrates gamma ray, percent weight clay, percent weight TOC, percent
weight quartz, percent weight calcite and Bl logs computed using equation 3 for well A.
Note that zones with high quartz content are more brittle than zones with high clay,
calcite, and TOC content which are less brittle. Figure 4.4 also shows that the shale
formation (Upper and Lower Barnett Shale) exhibits moderate to high brittleness index
values while the limestone formations (Marble Falls Limestone, Forestburg Limestone,
and Viola Limestone) show low GR and low Bl values. Considering the reliability of
inverted rock properties from seismic inversion, we choose Zp, Zs, 6, and p/A as the elastic

properties (Figure 4.5) used in training with BI. First we break the continuous Bl logs
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into 10 equal petro-type to obtain a normalize Bl (BI_N) (Figure 4.6). Next we assign a
value between 1 and 10 to BI_N corresponding to its petro-type number. The sixth track
in Figure 4.6 shows the normalized results. A rating of 1 denotes the most ductile rock
while a rate of 10 denotes the most brittle rock. Figure 4.5 illustrates a positive correlation
between /A and BI N. We also observe a negative correlation between o and Bl N. Then
we randomly select 30% of total samples as the training subset used in PSVM
classification. The remaining 70% samples are used as the testing subset to validate our
classification pattern. The seventh track in Figure 4.5 shows the new classified BI (BI_C)
logs by applying the classification pattern on selected rock properties. Note the strong
agreement between the original normalized (the sixth track in Figure 4.5) and new
classified Bl (the seventh track in Figure 4.5). We obtain a very high correlation
coefficient (0.9) between original and new BI logs.
Simultaneous prestack inversion and 3D brittleness evaluation

P-impedance is the most reliable result from prestack inversion. S-impedance
estimation become reliable when the incidence angle reaches 30°, while density become
reliable when the angle approaches to 45°). The maximum incident angle of our prestack
gathers used for inversion is approximate 36° in our survey. Thus preserving the fidelity
of far offset data is one of the main targets in processing and is the key to obtain reliable
estimation of rock properties form prestack seismic inversion. Figure 4.7a shows a
representative time-migrated CMP gather using a two term hyperbolic travel time
equation. Note the “hockey sticks” and stretch indicated by the white arrows at far offsets.
The “hockey sticks” blur the reflection events while the stretch lowers the resolution in

the stacked volume. Usually, seriously stretched data are muted out based on a user-
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defined muting criterion. However muting the far offset data rejects the critical
information contained in the far offset. Figure 4.7b shows the flattened nonstretch gather.
Note that the “hockey sticks” and stretch at far offset are gone when compared to the
original time-migrated gather. Figures 4.6¢c and d show the same gather after applying
PSOF and the rejected noise, respectively. Figure 4.7d illustrates that the noise rejected
by PSOF is incoherent noise. By applying the pre-conditioning workflow (Figure 4.1),
more far offset data (Figure 4.7c) are available for the subsequent processing and
inversion.

We use eight wells located in our seismic survey for prestack seismic inversion. All
the wells have P-wave sonic and density logs. S-wave sonic logs are available for three
of the wells. By using a nonlinear regression, we derive S-wave sonic logs for other wells
using P-wave sonic. First, six interpreted horizons and eight wells are used to build the
background P-impedance, S-impedance and density models. Next we apply simultaneous
prestack inversion to the conditioned gathers (Figure 4.7c) to obtain rock properties. The
inversion window ranges from 50 ms above the first horizon (Marble Falls limestone) to
50 ms below the last horizons (Viola limestone). Figures 4.8a, 4.8b, 4.8c, and 4.8d show
the inverted P-impedance, S-impedance, Poisson’s ratio, and Mu-Lambda ratio,
respectively. The vertical black curves in figures are the well tract that used for quality
control of the inverted results (Figure 4.9). The first, second, third, and fourth tracks in
Figure 4.9 show the comparison of P-, S- impedance, density, and Poisson’s ratio. The
blue, black, and red curves are respectively the original logs, initial model, and inverted
results from the prestack seismic gathers. Note that the inverted results from seismic do

not have the high vertical resolution of the well logs, but they bear an excellent trend
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matching with the initial low frequency models derived from well logs at the seismic
scale. Figure 4.10 shows the predicted brittleness by applying the classification trained
from the benchmark well to the inverted rock properties. Note that the Upper and Lower
Barnett Shale are generally more brittle than limestone which agree with the conclusions
derived from well data analysis. The brittleness degree varies horizontally within the
Upper and Lower Barnett Shale formation. Figure 4.9 also shows that a ductile zone exist
in the Upper Barnett Shale and the brittle zone in Lower Barnett Shale is more continuous
than that of Upper Barnett Shale. This phenomenon indicates that Lower Barnett Shale
may more easily produce factures than the Upper Barnett Shale when completed with
hydraulic fracturing. Microseismic data (Perez, 2013) indicate that the amount of
microseismic events happened in Lower Barnett Shale is much larger than that in the
Upper Barnett Shale.
CONCLUSION

The proposed workflow provides a 3D Brittleness estimates for unconventional
resource plays by integrating petrophysics and seismic data analysis. The key algorithm
of this workflow is to obtain the classification pattern between rock elastic properties that
can be estimated from surface seismic data and Bl from petrophysical data. The prestack
seismic data conditioning preserve more far offset data for seismic data and improve the
reliability of the inverted rock elastic parameters. The increasing reliability of inverted
results further stabilize the brittleness estimation of reservoirs when applying the

classification pattern on inverted rock properties volumes.
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APPENDIX A

The proximal support vector machine (PSVM) used in this paper was initially
proposed by Fung and Mangasarian (2005). The algorithm of PSVM is an evolutionary
variant of support vector machine algorithm (SVM) (Cortes and Vapnik, 1995). The SVM
is a powerful supervised machine learning technique widely used in text detection, image
recognition and protein classification. It has been found that PSVM provides comparable
classification correctness to standard SVM but at considerable computational savings
(Fung and Mangasarian, 2005; Mangasarian and Wild, 2006). We show a binary (two
cluster) classification problem in this appendix for simplicity.

The PSVVM decision is defined as

>0 x €At
xTw—y{ =0 X€EAtor A” (A1)
<0 X€EA ,

where x € R™ is a n dimensional vector data point that needs to be classified, T denotes
the vector transpose, w € R™ implicitly defines the normal vector to the decision-
boundary, y € R defines the location of the decision-boundary, and A* and A~ are two
classes of the binary classification. We estimate w and y by solving the following
constrained optimization problem by using the training sample set (Fung and

Mangasarian, 2005):

minv= ||yl + = (@ w + y2), (A2)
Y,y 2 2
subject to
D(Aw —ey)+y=ce, (A3)

where A € R™ ™ is the sample matrix composed of m samples which can be divided into

two classes, A* and A~. A was used for supervised training to obtain wandy; y € R™ is
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the training error vector; D € R™™ is a diagonal matrix of labels with a diagonal
composed of +1 for A* and —1 for A~ , v is a non-negative parameter, and e € R™ is a
column vector of ones. This optimization problem can be solved by using a Lagrangian
multiplier (Fung and Mangasarian, 2005). If we employ the Gaussian kernel function,

then the decision condition for the testing samples can be expressed as

>0 x€A"
K(x",AODu—y{ =0 x€Ator A” (A4)
<0 XEA ,
where
K(x,A');; = exp(—ollx — A1), i € [Lm].  (AS)
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Automatic nonhyperbolic velocity analysis to
mitigate the “hockey stick™ at far offset

v

Apply nonstretch algorithm to minimize
the stretch at far offset

v

Prestack structure oriented filtering

v

Preconditioned gathers

Figure 4.1. Flowchart showing steps to preserve the data fidelity at far offset. It contains
three main steps 1) automatic nonhyperbolic velocity analysis, 2) applying anti-stretch
processing on the time migrated gathers, 3) prestack structure oriented filtering.
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Petrophysics data Prestack seismic gathers

Compute rock properties parameters Apply prestack data conditioning
Compute brittleness index (BI) based on Simultaneous prestack inversion to
the mineral contents generate rock property volumes

{

Apply proximal support vector machine
(PSVM)) to train the classification
between rock properties and Bl

BI prediction is acceptable?

Apply the trained classification patterns to the rock properties inverted from seismic

3D brittleness index volume

Figure 4.2. Flowchart showing steps to estimate the brittleness of resources reservoirs
containing two main parts 1) obtaining the classification pattern between rock properties
and BI from bench mark wells and 2) inverting rock parameters from seismic and obtain
3D BI by applying the classification pattern on inverted volumes.
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Well A

Inline

Crossline

Figure 4.3. Outline of seismic survey located in Wise County including the fold map
resulting from 3D seismic acquisition. Survey boundaries are highlighted in black and the
bench mark well used in this paper is located approximately 5 miles to the northeast of
seismic survey.
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Figure 4.4. Gamma Ray, clay mineral, TOC, quartz mineral, calcite mineral, and
brittleness index logs corresponding to Well A. Brittleness index values were calculated

using Wang and Gale’s equation (2009).
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Figure 4.5. Gamma Ray, P- and S- impedance, Possion’s ratio, Mu-Lambda ratio,
normalized Bl and new classified Bl corresponding to Well A.
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Figure 4.6. Cartoon illustrating the strategy to normalize the BI logs computed from

mineral content using Wang and Gale’s equation (2009).
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Figure 4.7. Representative gather showing the processing steps shown in Figure 4.1.
Normally, we need to mute the serious stretch appearing at far offset in (a) the time
migrated gather in the conventional processing. (b) The stretch free and flattened gather
after applying automatic nonhyperbolic velocity analysis and anti-stretching processing.
(c) The SNR improved gather applied to (c) using the prestack structure oriented filter.
(d) The rejected noise.
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Figure 4.8. Simultaneous prestack inverted (a) P-impedance, (b) S-impedance, (d)
Poisson’s ratio, and (d) Mu-Lambda ratio.
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Figure 4.9. Quality control the inverted results with original well logs. The first, second,
third, and fourth panels are respective the P-impedance, S-impedance, density logs, and
Poisson’s ratio. The blue, black, and red curves are respectively the original logs, initial
model, and inverted results from seismic gathers.

124



CDP Number
30 60 90 120 150 180

Marble Falls

Upper Barnett shale

.
-
—
— —— Forestburg
— _',

t"

0.2

Miles

Figure 4.10. Brittleness estimation by applying the classification pattern on the inverted
rock properties volumes. We obtained the classification pattern by training the rock
properties and BI from bench mark wells using PSVM.
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Title: Semi-automated fault interpretation based on seismic attributes
ABSTRACT

3D fault interpretation is a time consuming and tedious task. Huge efforts have been
invested in attempts to accelerate this procedure. We present a novel workflow to perform
semi-automated fault illumination that uses a discontinuity attribute as input and provides
labeled fault surfaces as output. The procedure is modeled after a biometric algorithm to
recognize capillary vein patterns in human fingers. First, a coherence or discontinuity
volume is converted to binary form indicating possible fault locations. This binary
volume is then skeletonized to produce a suite of fault sticks. Finally, the fault sticks are
grouped to construct fault surfaces using a classic triangulation method. The processing
in the first two steps is applied time slice by time slice, thereby minimizing the influence
of staircase artifacts seen in discontinuity volumes. We illustrate this technique by
applying it to a seismic volume acquired over the Netherlands Sector of the North Sea

Basin and find that the proposed strategy can produce highly precise fault surfaces.
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INTRODUCTION

Faults in the subsurface can act as barriers or efficient avenues for hydrocarbon
migration and flow, and often form hydrocarbon traps. Identifying the fault system is one
of first steps in seismic interpretation and a key component in developing both exploration
and development strategies. However, careful fault interpretation is a highly time-
consuming task. Algorithms that facilitate fault interpretation fall into two categories. The
first category deals with development and application of attributes that highlight fault
locations. The algorithms in the second category are for generating fault surfaces from
these attributes volumes.

Coherence/similarity (Bahorich and Farmer, 1995; Marfurt et al.,, 1998;
Gersztenkorn and Marfurt, 1999; Randen et al., 2001), reflector dip (Marfurt, 2006), and
curvature (Stewart and Wynn, 2000; Roberts, 2001; Al-Dossary and Marfurt, 2006) are
the most popular seismic attributes routinely used to assist in fault interpretation.
Unfortunately, attributes in their native form are not generally amenable to semi-
automated fault system extraction. Rather, we need to apply additional edge enhancement
technology to these attributes to better illuminate faults and minimize human labor. There
are a variety of image processing techniques which can enhance fault visualization and
detection. AlBinHassan and Marfurt (2003) employed the Hough transforms to enhance
faults appearing on time slices. Aarre and Wallet (2011) generalized this workflow to 3D
using an efficient add-drop algorithm. Barnes (2006) designed a filter to pass steeply
dipping discontinuities which can serve as the first step in automating fault interpretation.
Lavialle et al. (2006) proposed a nonlinear filtering approach based on 3D GST analysis

that de-noises and preserves faults prior to automatic fault extraction. Image processing
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techniques applied to seismic attributes usually require a suitable window size. Larger
window size not only smears the fault information but also increases the computational
cost, while smaller window sizes introduces less smearing but are sensitive to noise.
Almost all automated fault extraction strategies need human intervention from time
to time and include three main steps. First, the interpreter selects an appropriate fault-
sensitive seismic attribute (e.g., coherence or reflector dip magnitude) to highlight the
fault location. Next, the interpreter employs different technologies to transform the
attribute volume into a fault likelihood/confidence volume. Finally, the interpreter
generates a localized surface to fit a cloud of fault points. Randen et al. (2001) presented
a four-step workflow to automatically extract fault surface from an attribute cube.
Unfortunately this workflow does not handle X-pattern faults properly. Gibson et al
(2003) proposed a two-step strategy to automatically detect the fault surface in 3D seismic
data. The first step was to generate a confidence cube based on the coherence attribute.
They then generated small patches and least-squares fit those patches to generate a fault
surface. In both the Randen et al. (2001) and Gibson et al. (2003) workflows, the
challenge lies in how to define a suitable threshold to generate the confidence volume as
well as a proper window size to generate the fault surface. Silva et al. (2005) provided
greater insight into the ant tracking algorithm proposed by Randen et al. (2001). They
reported that this strategy can reduce human interaction from 10 days to 3 days in their
testing. Jacquemin and Mallet (2005) proposed a method based on a cascade of two
Hough transforms to automatically extract fault surfaces. Cohen et al. (2006) proposed a
workflow, which contains four steps to detect and extract fault surfaces in 3D volumes,

resulting in a set of one-pixel-thick labeled fault surfaces. Kadlec et al. (2008) presented
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amethod to model faults surface using a growing surface strategy while Dorn et al. (2012)
generated fault surfaces through azimuth scanning on horizontal slices, and dip scanning
on vertical slices.

In this paper, we present a semi-automated strategy to extract fault surfaces from
seismic attributes volumes that requires minimum human intervention. We start by
introducing an edge-detection algorithm successfully used in the biometric field. We then
use these edges to construct a fault system. Finally we apply our algorithm to a seismic
data volume acquired over the Netherlands Sector of the North Sea Basin.

METHOD

Coherence-like attributes typically highlight faults quite well on time/depth slices
(Dorn et al., 2012) but usually exhibit a staircase behavior on the vertical sections. Based
on this observation, we produce our fault sticks time slice by time slice prior to
constructing the fault surfaces in the vertical direction.

Seismic Attribute Conditioning

The fault patterns shown on the time slices (Figure 5.1a) share similar
characteristics with capillary vein images of fingers (Figure 5.1b) acquired using infrared
light. Based on this observation, we borrow an effective method of extracting vein
patterns (Miura et al., 2007) to recognize the fault elements on time slices. In the
experiments, Miura et al. (2007) reduced the equal error rate (EER), which evaluates the
mismatch ratios of personal identification, to 0.0009%. While the EER in other reported
methods ranges from 0.2% to 4%. By calculating the local maximum curvature in cross-

sectional profiles of discontinuity attribute on time slices, the algorithm can extract the
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centerlines of possible fault locations. The output is a binarized volume where 1 indicates
possible fault locations and 0 the absence of faults.

Assume that P is an attribute slice and P(x, y) is the value at grid (x, y). We define
P[&U0] as a cross-sectional profile acquired from P(x, y) along azimuth j, where &) is
the position sequence number in the profile and (x, y) are respectively the index of inline
and crossline number. For a given point of discontinuity attribute on time slice, our
method checks the curvature, k[¢ )], of cross-sectional profiles, P[§ (], as a function of

§Y) along azimuth j. The curvature, k[¢ 9], can be expressed as

k[f(j)]: dzp[f(j)]/d[g(j)]z . (l)

}[.L+ {dP[g“)]/d[é“)]}z}g

The shape of the attribute profile, P[§(], is determined by the type of attribute. For

example coherence appears as a low coherence dent (Figure 5.2a) and exhibits negative
curvature using equation 1. To simplify the following processing, if the attribute shows
low values at the fault location, we reverse the sign of equation 1.

Note that the discontinuity attributes should theoretically reach minimum/maximum

value at the fault location and increase/decrease abruptly (Figure 5.2b). We assume that
the local maxima, k[§U’], in each profile, P[¢U)], indicate the possible fault positions.
Those points are defined as center positions U (x, y). To determine whether a center
position, UY)(x,y), has the possibility to lie on the fault location, we compute scores,

S[UY(x,y)] (Figure 5.2c), defined as
Sl )=k bl D y). @
where WU (x, y)] is the local width of the profile where k(¢Y) is positive (Figure

5.2b), and k[UY (x,y)] is valued directly from k[¢U)] from location mapping between
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(x, y) and €9, The score parameter, S[UY) (x, y)], considers the width and changing rate
of the attribute at the same time. If the score is large, the probability that there is a fault
is also high. To obtain the fault pattern development along all azimuths in the entire time
slice, the scores are accumulated and assigned to a capability plane (Figure 5.3), V(x, y),

which has the same size as the attribute time slice,
J .
V(xy)=>slu"(xy), 3)
J

where j the index of azimuth direction, J is the number of azimuth and set as 8 in this
paper, and (x, y) is the horizontal coordinate pair.

If V(x, y) is large and has large values nearby, we consider this point lying on a fault
system. Even if V(x, y) is large but has small values nearby, a dot of noise is interpreted
to occur at (x, y). By applying equations 4a to 4d on the capability slice shown in Figure
5.3, Figures 5.4 show the confidence slice, C(x, y), of encountering a fault at 0°, 45°, 90°,

and 135° using a strategy described by Miura et al. (2007).

Co((%, )= min{max(V (x, y + )V (x,y + 2)} max{V (x, y~2) v (x,y - 2)If,

(42)

Cysl0,y) = min{max(V (x-+1 y+ 1)V (x+2,y+2) maxV (x -1 y -1V (x-2,y-2JJ}
(4b)

Cool, ) = min{max|V (x +L y)V (x-+2, y)} max{v (x -1 y}v (x-2 y)J},

(4c)

Cas(x,y) = minfmax(V (x-+1 y 1)V (x+2,y -2 maxV (x -1y + )V (x -2,y +2]]},

and (4d).
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The final confidence estimate is given by

C(X' Y) = Max [Co (X’ Y)’ C45(X' Y), Cgo(xn Y)' C135(X’ y)]

(5)

Note fault confidence attributes indicated by the green arrows in Figure 5.5 is more
continuous compare to that of Figure 5.3. The improvement is critical in generating the
binary slice.

The confidence slice is binarized according to a user-defined threshold (Cing in
Figure 5.7). Only those points with values greater than or equal to the threshold are set to
1 and considered as candidate points for the following processing and fault surface
construction. All other points are treated as background with a value of 0 (Figure 5.6a).

The above workflow is designed and set to highlight the faults and is applied to the
whole seismic attribute cube time slice by time slice. The final result is a binarized cube
where the points with value 1 indicate possible fault locations.

Thinning and Connected Component Analysis

Thinning algorithms (e.g., Bag and Harit, 2011) applied to the binarized time slices
can approximate the medial lines of the connected candidate points. The results are one-
pixel thick lineaments that can also be used to separate different fault surfaces (Cohen et
al., 2006). However thinning may generate undesired bifurcation branches (indicated by
blue arrows in Figure 5.6b) due to its sensitivity to noise and complex boundaries.
Crossing fault surfaces also appear as bifurcated branches (indicated by the red arrows in
Figure 5.6b) on the thinned slices. To determine whether a thinned stick has bifurcated
branches, we examine the number of connected neighbor pixels (NCNP) for each pixel

of current stick. A pixel is considered as the bifurcated point if its NCNP is greater than
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three and the stick has branches. We use the following criteria to preserve or trim the
branches. If the length of the branches is much larger (e.g. three times for the examples
shown in this paper) than the local width of the hypothesized binarized result at bifurcated
point (e.g. the limb indicated by red arrow in Figure 5.6¢), we assume the branches belong
to some other fault surface. Otherwise we simply trim the limbs and archive the maximum
length of the current element (e.g. the limbs indicated by the blue arrows in Figure 5.6Db).
The length of the branches is determined by the number of pixel from bifurcated point till
the end pixel of current limb (e.g. the length of branches indicated by the red arrow is 19
in Figure 5.6b). To determine the local width for binarized slice at the bifurcated point,
we first draw a circle with a diameter of 1 pixel centered at the bifurcated point, and then
increase the diameter until a pixel on circle has value of 0 (Figure 5.6a). At last the local
width is set as the diameter of the circle (e.g. the width labeled by red arrow is 5 in Figure
5.6a).

Faults, stratigraphic edges, and acquisition footprint all give rise to elongated
features on the trimmed time slice. To preserve the fault sticks only, we first use
connected component analysis (e.g., Dillencourt et al., 1992) to label all the connected
elements. Then we only keep those components whose lengths are greater than or equal
to a user-defined value (Lmin in Figure 5.7). For example the components indicated by
yellow arrows in Figure 5.6b are deleted due to their limited length. This threshold also
serves as the smallest length of the fault sticks we detect on each time slice. Figure 5.6¢
is the last output fault stick used for the following fault-generating surface.

Thinning, trimming, and component analysis are applied on the entire binarized

cube time slice by time slice, resulting in a suite of linear fault elements on each slice
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ready for the final fault system construction. Channels often exhibit long linear elements
on time slices and survive the initial fault sticks winnowing process. However, channels
are stratigraphically limited and will in general only exhibit a few sticks vertically, which
provides a means of rejecting them through the use of a vertical continuity threshold.
Interactive Fault Surface Generation

The fault surface projected on the time slice is a suite of curves called fault sticks.
Fault sticks on adjacent time slices having similar size and shape are assumed to define
the same geologic feature. Based on this assumption, we group the sticks by comparing
their size and shape (e.g., Bribiesca and Aguilar, 2006). Starting with a given (source)
stick, we search vertically £4 samples over target sticks that share similar features with
the source stick. Once a target stick is joined to the current fault surface, it is deleted from
the sticks set and serves as the source stick to determine whether the next target stick is
suitable for the current fault system. Once the stick grouping is done, we triangulate (e.g.,
Hartmann, 1998) the stick groups whose size is greater than or equal to a user defined
value (Gmin In Figure 5.7) to generate a smooth fault surface. The suitable group size can
reject not only the single noisy sticks but also the channel-like long sticks. Interactive
editing (e.g. merging) to ensure the fidelity of the extracted results is the final process in
our workflow.

Figure 5.7 shows workflow which summarizes fault surface extraction strategy in
this paper. The input is seismic amplitude cube and outputs are labeled fault surfaces. We
need three parameters to control the extraction procedure. The first parameter, Cind,
influences the generating of binary cube. The bigger value of Cig, the fewer pixels

survive in the following processing. The second parameter, Lmin, cOnstrains the minimum
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length of fault sticks on horizontal slice while the third parameter, Gmin, controls fault
surface size on vertical section.
APPLICATION

To demonstrate the capability and efficiency of our algorithm, we apply it to a
subvolume of a seismic survey acquired in the Dutch portion of the North Sea Basin.
Detailed mapping of the faults is critical to this survey because some of the faults may
act as pathways for gas or fluids (Schroot and Schittenhelm, 2003). The tested volume
contains 250 by 200 traces and ranges from 300 ms to 700 ms with a sample interval of
4 ms.

Figure 5.8a shows the seismic cube with a major fault cutting data along one of the
vertical faces. We choose coherence (Figure 5.8b) as the fault sensitive attribute. Note
that the meandering channel indicated by the green arrow is shown in Figure 5.8b. We
generate a capability cube C (Figure 5.9a) from coherence (Figure 5.8b) using the
proposed conditioning strategy and scale it to range between 0 and 1. The binary cube is
shown in Figure 5.9b with values 1, for C>0.95 and 0 for C<0.95. Fault sticks generated
from thinning and trimming are shown in the Figure 5.10. The previously described
trimming successfully removes unwanted branches introduced by the thinning algorithm.
Note that we still have unwanted sticks in Figure 5.10 such as noise sticks indicated by
the red arrow and the channels sticks indicated by the green arrow. We choose a threshold
value of 10 slices (40 ms) for the size of stick group to reject stratigraphic features. Figure
5.11a shows the final automated extracted fault surfaces labeled by different colors. Note
that by setting a threshold value of 10 (40 ms) for the size of stick group, the algorithm

also deletes sticks belonging to two small faults indicated by the yellow arrows in Figure
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5.10. Figure 5.11b is the manually interpreted fault surfaces based on coherence attribute
shown in Figure 5.8b. We can see that there is good agreement between the automated
and manually interpreted results. To better quality control the results, we respectively
show vertical sections (indicated by green arrows in the Figure 5.11a and 5.11b) with
automated extracted and manually interpreted faults in Figures 5.11c and 5.11d. The
yellow arrows in the Figures 5.11c and 5.11d state our algorithm locate the fault surface
better than that of manually interpreted results. Reducing time cost of human is the bright
spot of our method. The whole procedure only requires about 5 minutes human
intervention to generate all the fault surfaces. However, attribute-based manually
interpretation needs about 20 minutes.
DISCUSSION

The size of our subvolume is about 20 Megabytes and whole computational cost is
around 15 minutes on a single processor. And the most time consuming step is the
generating of confidence cube and it account for about 80% in our example. Through the
parallelization of our algorithm, we can heavily speed up the whole extraction procedure.
Parameter, Cind, controls whether we can successfully generate desired faults surfaces.
Since the cost of binary generating is negligible, our suggestion is that produces several
binary cubes by setting different values of Cig and uses the one that has connected pixels

(pixels with value 1) at the possible fault locations.
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CONCLUSIONS

Understanding the fault system is a critical objective for any structural
interpretation. The proposed algorithm and workflow facilitates this procedure by
automatically generating fault surfaces from a discontinuity volume. There is no need for
the tedious window size testing for attributes conditioning and the whole procedure only
needs three threshold values which simplify the fault conditioning process. The first
threshold value is used for generating the binary cube. And the second and third threshold
values are respectively the lateral length of the fault stick and vertical size of the fault.
The lateral length of the sticks controls the fault size apparent on time sections while the
vertical size of the stick group determines the size of the fault on the vertical sections.
Increasing the size of the stick group required to define a valid fault surface can reject
noisy sticks but may reject small faults. Note that the accuracy of our results is highly
dependent on the quality of the seismic data. If the seismic data are so noisy that the
coherence or other geometric attributes do not approximate faults, or if acquisition
footprint is very strong, we do not recommend using an automated interpretation method.
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Figure 5.1. Patterns comparison between (a) seismic discontinuity attribute on time slice
and (b) binarized vein plane (Modified from Miura et al., 2007). Those two objectives
from different field show similar features in the plane.
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Figure 5.2. Diagrams showing the procedure of seismic attribute conditioning. The
attributes value comes from the red line shown in Figure 5.1a. (a) Coherence serves as
the input for the fault sensitive attribute. (b) The curvature computed from coherence
attribute. (c) The score values used to output binary fault sticks.

Figure 5.3. Capability time slice computed from the attribute slice shown in Figure 5.1a
using the strategy of equation 3.
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Figure 5.4. Confidence time slices encountering a fault at (a) 0°, (b) 90°, (c) 45° and (d)
135° using equations 4a to 4d applying on the capability time slice shown in Figure 5.3.
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Figure 5.5. The final confidence estimated from Figures 5.4 using equation 5. We scale
it to range between 0 and 1.
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Figure 5.6. (a) Binarized slice after (b) thinning, and (c) trimming processes. The
binarization processing is applied on the time slice shown in Figure 5.5. The threshold
value used in generating Figure 5.6a is 0.95.
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Get the connected components and apply thinning, trimming
to generate fault sticks.
¥
Delete fault sticks which length is smaller than
meﬂ
| P

v

Group the fault sticks and disregard the ones whose size
are smaller than G,,;,. Then triangulate the fault sticks to
generate fault surfaces

Figure 5.7. Flowchart showing the semi-automated fault interpretation based on seismic
attributes. The whole procedure only requires three parameters which simplify the
extraction processing.
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Figure 5.8. (a) Seismic amplitude and (b) coherence cube used for the algorithm testing.
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Figure 5.9. (a) Capability and (b) binarized cube computed from coherence attribute
shown in Figure 5.8b.
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Figure 5.10. 3D view of trimmed fault sticks and original seismic data.
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Figure 5.11. Visualization of the fault surfaces and original seismic data. Different color
means different fault systems. (a) Extracted fault surfaces using the workflow shown in
Figure 5.7. (b) Attribute-based manually interpreted fault surfaces. (c) Vertical section
view of extracted fault surfaces. (d) Vertical section view of manually interpreted fault

surfaces.
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