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ABSTRACT 

Shale resource plays are fairly new to the petroleum industry, but they have 

reinvigorated oil and gas production in North America. Brittleness and TOC are the two 

most important parameters for shale resource characterization. Ideally, of the multilinear 

and non-linear regression can be used to correlate TOC and brittleness measured on core 

to well logs forming a proxy for TOC and brittleness with in the seismic survey. In turn 

seismic attributes correlated to TOC and brittleness predictions from well logs. The 

success of such integration depends on data quality. In Texas and the mid-continent much 

of our seismic data have been merged and reprocessed using modern technology. I will 

expose one pitfall on merged seismic surveys due to offset range variation. Other pitfalls 

are best addressed by seismic modeling.  

Legacy seismic data acquired in the mid-continent region have low fold, resulting 

in a rise to low signal to noise ratio. Such data often exhibit a strong acquisition footprint, 

which can be caused by the presence of aliased ground roll. Conventional processing 

techniques cannot suppress such groundroll without damaging the signal. I developed and 

applied a coherence-based technique to remove highly aliased ground roll present in a 

survey of North Central Texas Mississippi Lime play.  

The predicted TOC and brittleness volumes showed a fair correlation with 

production in the Barnett Shale of Fort Worth Basin. The areas of good production are 

associated with high brittleness in the vicinity of high TOC.       
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 : INTRODUCTION 

Shale resource plays have formed attractive oil and gas resource plays for the past 

decade. Brittleness and TOC are two primary parameters which are required to 

characterize such plays. While one can use cored wells to compute brittleness and TOC 

from well log data, lateral heterogeneity of shales makes interpolation of such parameters 

solely from well control inaccurate. 

Modern quantitative interpretation (QI) workflows are commonly used to 

integrate well logs with seismic amplitude and attribute volumes to predict volumetric 

estimates of porosity. Predictions of brittleness and TOC are more recent objectives 

brought on by the interest in shale reservoirs.  QI is heavily based on prestack seismic 

inversion for P-impedance, S-impedance, Poisson’s ratio, lambda-rho, mu-rho and (for 

high quality long offset data) density. Other attributes often provide softer information. 

Curvature measures strain which may be correlated to natural fractures, coherence often 

shows geohazards such as small fault and collapse features, while spectral decomposition 

can be correlated to depositional stacking patterns. Multilinear regression and non-linear 

regression, such as neural networks, can be used to provide a relationship between seismic 

volumes and petrophysical property logs. Such regression relations can be applied to 3D 

seismic attribute volumes to obtain a TOC volume.  

Success of QI depends on seismic and well log data quality. QI is sensitive to 

ambient noise and accuracy of processing parameters. Not addressing data quality can 

lead to erroneous predictions.  

In Chapter 2, I address some of the pitfalls associated with prestack seismic 

inversion. In the 1990’s most seismic surveys were acquired with smaller offset ranges 
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than used today. Over the intervening two decades the increase in recording capacity has 

resulted in both longer offset and wider azimuth surveys. While ideally, one would 

reshoot a target with more modern technology, cost and limited access often justifies 

reprocessing legacy surveys. In order to improve lateral resolution by increasing 

migration aperture, companies often merge multiple contiguous surveys. In this chapter, 

I analyzed a mega merged seismic data composed of more than five different surveys 

acquired over 20 years with different ranges of source-receiver offset. These seismic data 

were processed by a commercial acquisition and processing company, where they used 

the survey with the higher offset range as the reference survey. Migration noise fills the 

far offset bins in areas where there are no data.  Performing pre-stack seismic inversion 

without discounting this migration noise leads to erroneous estimates of impedance. In 

this chapter, I describe and illustrate how one can find the usable range of offset. By 

limiting the offsets used in our prestack inversion, I obtain less aggressive but still useful 

results.   

In Chapter 3, I demonstrate the use of seismic modeling to determine common 

pitfalls in seismic analysis. Seismic modeling allows the geophysicist to evaluate 

alternative hypothesis and thereby define the uncertainty in seismic interpretation. In case 

study two of this chapter, I focus on the Woodford Shale of the Arkoma basin, where low 

impedance anomalies may be due to fractures associated with faulting, or due to the 

inability to accurately preserve amplitudes near a fault. With the help of modeling, I show 

that the hypothesis of increased porosity is correlated to the occurrence fractures rather 

than amplitude dimming due to poor fault imaging.  
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In Chapter 4, I investigate remnant groundroll as the source of acquisition 

footprint on modeled stacked seismic data. The most important component of groundroll 

is radially travelling dispersive Rayleigh waves. Significant groundroll remained in the 

gathers and stack after f-k filtering, giving rise to false structural artifacts. In this chapter, 

I show that insufficiently suppressed groundroll leads to artifacts that one can result in an 

erroneous interpretation.  

In Chapter 5, I reprocess a legacy 3D merged survey with a Mississippi lime 

target. Currently seismic acquisition companies use 4000 or more channels to acquire the 

data with nominal fold ranging between 200 and 1000.  The seismic survey discussed in 

Chapter 5 was acquired in 1990’s with 360 channels, with the nominal fold of this merged 

survey being15. Such sparse sampling causes the groundroll to be spatially aliased. I 

design and implement a new data adaptive coherence-based workflow to suppress aliased 

groundroll, resulting in improved the data quality. The improvement can be seen not only 

on the vertical slices through the seismic amplitude data but also on 3D seismic attributes. 

For example, coherence computed from reprocessed data shows faults which were 

previously masked by acquisition footprint.  

 

In Chapter 6, I estimate  TOC and brittleness volumes using seismic, core and 

well data. In general, TOC can be computed on well logs using Passey’s method. The 

major weakness associated with Passey’s method is that, it requires an interpreter-driven 

definition of a baseline. In order to be more quantitative, I compute a multilinear 

regression relation between TOC measured on core samples and well logs of two cored 

wells. I use this multilinear regression relation to predict TOC on wells, which were not 
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cored providing a TOC “proxy” with in 3D seismic survey. I correlate Wang and Gale’s 

estimates of brittleness based on mineralogy to elastic logs on the cored well, and use 

same multilinear regression to compute brittleness on other wells without elastic logs. 

These forty wells form the well control for neural network estimation of TOC and 

brittleness from the 3D seismic attribute volumes.  
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ABSTRACT 

Modern 3D seismic surveys are often of such good quality and 3D interpretation 

packages so user-friendly that seismic interpretation is no longer exclusively carried out 

by geophysicists. This ease-of-use has also been extended to more quantitative 

workflows, such as 3D prestack inversion, putting it in the hands of the “non-expert” – 

be it geologist, engineer, or new-hire geophysicist. Indeed, given good quality input 

seismic data, almost any interpreter who can generate good well ties and define an 

accurate background model of P-impedance, S-impedance and density, can generate a 

quality prestack inversion.  

Two of the authors are new geophysicists who fell into the prestack inversion 

“pit”. Fortunately, they were, able to recognize that something was wrong. We applied 

prestack inversion to gathers that were carefully reprocessed by a major service company. 

The problem however was not with the processing, but with our lack of understanding of 

the input legacy data that formed part of a larger “megamerge” survey. Not all of the 

surveys that were merged had the same offset range. In the migration step, gaps in long 
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offsets of the older surveys were not muted. Migration noise from newer surveys was 

allowed to fill this space.  

 In this paper we share our initial workflow and suspicious results. We also clarify 

the meaning of “fold” and “offset” for prestack-migrated gathers. In addition to 

presenting some QC tools useful in analyzing megamerge surveys, we show how by 

limiting the offsets used in our prestack inversion, we obtain less aggressive but still 

useful results. 

 

INTRODUCTION 

Much of midcontinent USA and Texas is covered by legacy 3D seismic surveys. 

During the period of low oil prices in 1980s and 1990s, many of these properties were 

sold, traded, or consolidated, while licenses to the 3D surveys were in turn traded to data 

brokers in exchange for seismic data over areas of more active interest. Most data brokers 

(some of whom are major service companies as in this study) pride themselves in their 

ability to pull more information out of legacy data. They do this in two ways. First, they 

reprocess the data using modern surface-consistent statics, noise-reduction, spectral 

balancing, and seismic imaging techniques. Second, they merge the prestack data with 

adjacent surveys, thereby increasing the migration aperture, resulting in improved lateral 

resolution of steeply dipping faults, channel edges, and other discontinuities, particularly 

near the internal edges of the surveys that form the megamerge.  

Such processing can be difficult. The megamerge survey discussed in this paper 

was acquired with dynamite in some areas, and vibroseis with different sweeps and 

number of vibrators in other parts of the survey. The geophones may be grouped in 
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different arrays and may have different spectral responses. It is common for the shot and 

receiver line spacing and also for the line orientations to change from survey to survey. 

Nevertheless, careful processing can produce significantly improved results. Using the 

stacked version of the data discussed here, Del Moro et al. (2013) illustrate the 

improvements of the megamerge versus a unmerged legacy survey in mapping incised 

Pennsylvanian age Red Fork channels using seismic attributes. 

The advent of resource shale, tight sand, tight lime, and other resource plays has 

renewed interest in these legacy surveys. Most resource plays are exploited through 

horizontal drilling followed by either hydraulic fracturing, acidation, or both. In addition 

to identifying horizontal drilling hazards (geohazards), we wish to better quantify the 

geomechanical properties (for hydraulic fracturing) and lithology (for higher porosity 

sweet spots) through the use of prestack impedance inversion. 

The survey of interest was shot at various times, beginning in the mid 1990s. 

CGG-Veritas acquired licenses for these surveys, shot infill data where necessary, and 

carefully reprocessed them, resulting in a megamerge survey (Figure 2.1). Many of these 

surveys were shot to map Pennsylvanian age Red Fork sandstones. While the Red Fork 

is the focus of this paper, the major focus of most of the operators is now on the deeper 

Mississippian age Woodford Shale, Mississippi Lime, Hunton Limestone resource plays 

(Figure 2.2). 

We encountered a pitfall while attempting prestack impedance inversion of the 

megamerge survey. The data were very carefully reprocessed, with most of the events 

quite flat and relatively noise free on common reflection point gathers. Our objective was 

to use prestack inversion to identify what are known as “invisible” Red Fork sands – 
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sands that are not seen on conventional stacked or P-impedance seismic data volumes 

where polarity reversals give rise to a low amplitude stack. Such sands are commonly 

logged while drilling for deeper Woodford Shale objectives. Barber and Marfurt (2010) 

applied fluid substitution to such wells in a neighboring county and similar megamerge 

survey, and hypothesized that there should be a shear impedance anomaly if the data 

could be processed using prestack inversion. 

We begin with data description and follow up with an overview of the 

assumptions required by prestack inversion. Next we briefly review prestack migration, 

explaining the meaning of offset and fold on common offset migrated results. This 

background allows us to discuss the pitfall that befell us. We show the suspicious results, 

and follow with some simple quality control plots and representative CRP gathers that 

illustrate what happened. With this understanding, we performed a less-aggressive 

(offset-limited) prestack inversion and quality control the results. We conclude with a 

summary of the pitfall, as well as a series of steps which should be included in a 

conventional workflow which will alert the interpreter to its occurrence.  

 

Data Description 

The study area is located in the eastern part of Anadarko Basin in west central 

Oklahoma (Figure 2.1). The target is the Red Fork sand of Middle Pennsylvanian. It lies 

approximately at a depth of 2680 m (8800 ft), and is composed of clastic facies deposited 

in deep marine (shale/silt) to shallow water fluvial dominated system. The Red Fork sand 

is, sandwiched between limestone layers, with the Pink lime on top and the Inola lime on 
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the bottom (Figure 2.2). The Oswego lime which lies above the Pink lime and Novi lime 

which lies below the Inola lime, are very prominent reflectors on seismic amplitude data. 

There are 21 wells with P-wave sonic and density logs distributed throughout the 

survey. In addition, two of these wells also have shear sonic logs. The pre-stack data from 

six different surveys were phase matched and pre-stack time migrated, which together 

resulted in common reflection point gathers (CRP), covering approximately 630 km2 (245 

mi2). These gathers served as input to prestack inversion in order to estimate the lithology 

of the different architectural elements of the incised channel system.  

The post stack seismic had a 65-85% correlation with the synthetics generated at 

the wells. The prestack data were converted from 300-5200 m (1000-17100 ft) offset 

gathers to 2-42 angle gathers using a well (sonic log) velocity model. We prepared low 

frequency P-impedance, S-impedance and density background models from the 21 wells 

and four seismic horizons. So, the background models incorporate strong impedance 

changes at limestone/clastic boundaries. Following a standard workflow (Hampson and 

Russel 2005; Russel et al. 2006), we extracted wavelets for 2-15, 14-28 and 27-42 

angle-limited stacks. Then using Fatti’s equation (equation 1), we simultaneously 

inverted three angle limited stacks to obtain P and S -impedance. We will revisit the 

assumptions of the inversion workflow in the next section. 

We expected that fold would be a good measure of seismic data quality. Prior to 

prestack inversion we not only examined the fold in the headers, but also computed the 

fold using the inversion software. The astute reader may now see us walking towards the 

pit. We were reassured to find that the megamerge survey had good, consistent fold 

throughout, ranging between 25 and 30 (Figure 2.3).   
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Although the major stratigraphic features, including fluvial channels and 

overbank deposits were well resolved, the resulting P-impedance (ZP), as well as S-

impedance (ZS) images were suspicious where white arrows indicate linear artifacts and 

black arrows indicate circular artifacts (Figure 2.4). We wanted to know the reason behind 

the creation of such artifacts. We therefore begin our analysis on the input data that went 

into the megamerge seismic data as well as a review of the assumptions made by our 

inversion process.  

 

PITFALLS ANALYSIS 

Input data 

 We did know that of the six constituent seismic surveys, the first acquisition 

survey was carried out by Amoco in 1993 followed by two connected surveys, also by 

Amoco, in 1994 and 1996 (Peyton et al., 1998), using hardware and best practices 

available at that time. These surveys covered the north-east part of the megamerge survey 

area. Other operators acquired seismic surveys imaging in the adjacent acreage from the 

years 1999-2005 with a relatively larger source-receiver offsets, which further analysis 

will indicate to be larger source receiver offsets of 4600m (15000ft). In 2006, the data 

from different companies were licensed to CGG-Veritas. CCG-Veritas acquired some 

additional data to fill in important gaps prior to merging all the component surveys into a 

single prestack dataset using modern (year 2008) statics solutions, noise attenuation, and 

seismic imaging technology.   

Assumptions for Prestack Inversion 

We use commercial software prestack seismic inversion based on  
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Fatti et al.’s (1994) approximation to the Zoeppritz equations   

𝑅(𝜃) ≈
∆𝑍𝑃

2𝑍𝑃
(1 + 𝑡𝑎𝑛2 𝜃)  − 8 [

𝑍𝑠

𝑍𝑃
]

2 ∆𝑍𝑠

𝑍𝑠
𝑠𝑖𝑛2 𝜃,    (1) 

where  

ZP = average or background model P-impedance,  

ZS = average or background model S-impedance, 

ΔZP and ΔZS = the vertical change in P- and S-impedances, and 

θ = the angle of incidence. 

The modeled prestack response using equation 1 was tied to a well in the survey 

(Figure 2.5). The synthetic represents an NMO-corrected gather such that the reflectors 

are aligned. Examining the reflector marked by the red line shows amplitudes becoming 

more negative with increasing angle of incidence, θ. In conventional AVO analysis, we 

would simply measure this change and call it the amplitude “slope” or “gradient” while 

the value at θ=00 would be called the “intercept”. Many modern prestack inversion 

software implementations use iterative modeling based on either simulated annealing or 

genetic algorithms using equation 1 to fit the data and thus estimate ZP and ZS. 

  The derivation of the gradient term, or alternatively estimation of ZP and ZS, 

requires the reflectors to be aligned across the incident angle.  Although it is well 

understood that the inversion on misaligned prestack gathers produces incorrect results, 

users can easily encounter a pitfall if they do not carefully examine the data or have too 

much faith in their technology. Such residual moveout is best corrected by residual 

velocity analysis, although trim statics may work within a relatively small analysis 

window. The red curve in Figure 2.5c shows the plot of amplitude variation with angle 

of the synthetic modeled for 0-45 corresponding to the picked horizon in Figure 2.5a.  
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In Figure 2.5b, we replace the farther 25-45 angles in the gather with zero amplitude 

traces. The gradient corresponding to the amplitudes along the cyan pick in Figure 2.5b 

are displayed as the cyan curve in Figure 2.5c. Obviously, this latter amplitude variation 

with the angle will generate an inaccurate gradient and inaccurate estimate of ZP and ZS.  

 

Modeled to measured data misfit 

In order to better understand the problem, we examined a suite of migrated CRP 

gathers at different locations across the megamerge survey (Figure 2.6). We note that the 

reflector along the green Oswego pick has strong amplitudes aligned up to offsets of 4250 

m (14,000 ft) at location A. At location C (Figure 2.6c) the alignment is good to about 

4000 m (12,000 ft). At locations B and D (Figure 2.6b and d) this event is aligned up to 

only 3050 m (10,000ft). Beyond this point, the amplitudes are close to zero. 

To validate our impedance inversion, we generated the synthetic data with the 

inversion products. Then, we subtracted the synthetic from the original gathers and 

created a mean squared error volume. A horizon slice through this error volume along the 

top Oswego shows that the highest error areas (appearing as red) are in the northeast and 

east side of the megamerge survey (Figure 2.7). This includes the gathers shown in Figure 

2.6b and d. This area also corresponds to the suspicious artifacts seen on the ZP and ZS 

slices shown in Figure 2.4. The best fit was in the northwest part of the survey, which 

includes the gather shown in Figure 2.6a. An interpreter might incorrectly use Figure 2.7 

to risk-weight the impedance estimates shown in Figure 2.4.  
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Offsets, fold, and prestack migration 

The pitfall occurs when one does not understand the mechanics of prestack 

common offset migration and what this does to the concepts of fold. To be specific, we 

will base our arguments on prestack common offset Kirchhoff migration, though the 

concepts are appropriate to wave equation and reverse time migration as well. Unlike 2D 

data, which will often have a finite discrete number of source-receiver offsets, 3D data 

will have an almost continuous distribution of source-receiver offsets. Early common-

offset migration algorithms introduced the concept of an offset “bin”. Each trace 

corresponding to a given source-receiver pair is accurately migrated using an offset 

measured to a fraction of a meter, then added to a result that has been binned to say, the 

nearest 100 m, thereby forming a “partial stack”. A more recently-introduced variation is 

to define irregular width annular offset bins, each of which contains approximately the 

same number of traces. Yet another “offset vector-tile” implementation is closely tied to 

a specific acquisition design, and is designed to produce migrated gathers suitable for 

azimuthal anisotropy analysis. In this case, traces with source-receiver offsets and 

azimuths that fall within a (typically square) tile will be independently migrated and 

formed into a partial stack for that tile. 

Our megamerge data contains data that were acquired at different times by 

different companies using different sources, receivers, and recording systems. 

Specifically, the more modern 2000-2005 constituent surveys contained larger offsets (up 

to approximately 5200 m) than the older 1993-1995 vintage surveys (up to approximately 

2700 m). To accommodate the newer data, the megamerged survey was migrated using 

offset bins that ranged between 0 and ≈5000 m.  
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One can think of prestack Kirchhoff migration as taking every sample of the 

unmigrated data and projecting it onto a 3D ellipsoid. The shape of the ellipsoid is a 

function of the two way travels time of the sample and the migration (time or depth) 

velocity model. These ellipses are truncated radially by a value called the “migration 

aperture”. If one were to take a sample at a two-way travel time of 4 s and migrate it with 

a velocity of 5000 m/s, it could image a reflector or diffractor 10,000 m away. Such large 

apertures are common for deep-water marine data to image overturned flanks of salt dome 

where the water velocity is accurately known and the attenuation is often moderate. For 

land data, extremely large migration apertures are usually avoided, not only for cost, but 

because of problems in accurately defining the attenuation and velocity models. This 

restricted approach is more common in relatively flat lying areas such as those imaged by 

this survey.  We do not know the migration aperture used for this megamerge, but a 

reasonable guess would be somewhat less than 5,000 m. Using this number, we then 

found that the far offset data acquired in the northwest part of the survey would be 

migrated or “swung” 5000 m into areas covered by the short-offset vintage surveys.  

Interpreters commonly encounter such “migration swings” on migrated stacked data 

volumes at the edges of their surveys or underneath obstacles such as towns and lakes. 

Thus, the “data” at the farther offsets shown in Figure 2.6b-d are not from the overlying 

survey, but rather migrated noise from an adjacent, more modern survey. Far offsets that 

have little to no data in them will appear to have been “padded” with near-zero value 

traces. A small amount of migration swing will cause a trace to have data in it, preventing 

it from being flagged as “dead”. Thus, the “fold” map represents the 30 offset bins of the 

migrated data, not the fold of the original unmigrated surveys (Figure 2.3). The lower 
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“fold” seen in the northeast corner of the megamerge clearly shows the circular limits 

corresponding to the migration aperture from the corners of neighboring longer offset 

constituent surveys. 

 

Validation of our hypothesis 

The original input surveys and their acquisition and processing information were 

not available; the only seismic data available were the gathers of the migrated 

megamerged survey. In order to identify the useable offset ranges for the data, we picked 

the peak, which corresponds to the Oswego lime horizon on the full stack volume, and 

generated horizon slices through a suite of offset-limited stacks. Because of the AVO 

effects we do not expect these slices to show a consistent polarity. Figure 2.8a-c show a 

nearly constant blue value corresponding to a positive peak for offset-limited stacks of 0-

1520 m (0-5000 ft), 1520-2450m (5000-8000 ft), and  2450-3350 m (8000-11,000 ft). 

The change from blue (positive) to green (less positive) values in Figure 2.8c is an 

acceptable AVO effect. However, as we examine the horizon slice through the offset-

limited stack at 3350-4250 m (11000-14000 ft), we note lower (positive and negative) 

amplitudes and less continuous anomalies in the northeast part of the megamerge survey. 

Finally, the horizon slice through the offset-limited stack of 4250-5200 m (14000-17100 

ft) shows zero or near-zero amplitude (white area) in the northeast corner of the 

megamerge corresponding to the shorter offset acquisition of the 1993-1995 Amoco 

surveys (Peyton et al., 1998).  Note the circular migration “impulse responses” seen in 

this part of the survey where some of the more modern, longer offset infill data has been 

migrated into the shorter offset data. 
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The Solution – inversion using shorter offsets 

Given the result of this analysis, it is inappropriate to use the images shown in 

Figure 2.4 for the entire survey. To obtain a uniform quality inversion for the entire survey 

we simply limit the offsets of our inversion to the range 0-2750m (0-9000ft). At the target 

Red Fork horizon (below the Oswego), these offsets correspond to an angle range of 2-

22. Such a near angle limitation precludes inversion for density (Aki and Richards, 

1980); however, we can still invert for ZP and ZS using equation 1, though with lower 

confidence (Plessix and Bork, 2000) than we had originally anticipated using larger 

angles. We used the same low frequency background model used for Figure 2.4, but this 

time extracted three wavelets for inversion at 2-9, 9-15, and 14-22. The prestack 

simultaneous inversion shown in Figure 2.9 has none of the artifacts seen in Figure 2.4. 

The background amplitude varies relatively smoothly, showing the incised channels of 

variable fill more clearly. Readers interested in the geological analysis of these inversions 

should refer to Del Moro (2012).    

Following our earlier quality control steps, we computed the squared difference 

between the modeled and measured data for 2-22, and displayed a time slice along the 

Oswego top through the error volume in Figure 2.10 using the same color bar and scale 

as in the 2-42 inversion shown in Figure 2.7. Although we have restricted the input 

seismic to 2-22 to avoid the error, we still see some areas of misfit, such as about the 

NNW-SSE trending highway imaged using the 1993 acquisition. Interestingly, the E-W 

trending highway to the south is much more heavily traveled but was acquired by a more 

recent survey. The pink polygon in Figure 2.9 and 10 appears to be associated with 

subsurface geology though not with the channels, or to the present day river flowing in 
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NW-SE direction. This suggests that the offset restriction of 0-4250m is good for most of 

the areas, but the actual offset range was even smaller than 4250m in some areas. A more 

careful inversion would be adaptive for different angle ranges in different parts of the 

megamerge survey.  

         

CONCLUSIONS  

Legacy seismic data acquired by different companies using different acquisition 

parameters over adjacent acreage can be merged into a larger survey that can be 

subsequently imaged using a larger migration aperture, thereby improving lateral 

resolution. “Fold” on migrated data traces should be suspect, and depends on whether the 

processor retained the fold of the input surveys through the complete data equalization 

and reprocessing flow, or carefully computed the illumination at each subsurface point 

using a more sophisticated imaging technique.  Fold count after migration can be 

misleading as a proxy to measure signal strength. 

 If a given input survey is acquired using shorter offsets, Kirchhoff and other 

common-offset migration algorithms will generate numerical noise on the padded far 

offset empty traces. It can also generate steeply dipping signals. In general, such far 

offsets should not be used in prestack inversion. Because of migration “swings”, these 

unilluminated offsets will rarely, if ever, be zero, making automatic detection of dead 

traces difficult. This leads the unsuspecting interpreter and inversion algorithm to believe 

that such traces contain measured data. Prestack inversion will attempt to find impedances 

and densities that will fit all the migrated data, including unilluminated offsets that are 

close to zero, giving erroneous results.  



18 

To avoid such pitfalls, we first suggest that interpreters generate RMS error maps 

of the modeled-to-measured data misfit for any inversion product. Such maps can be used 

in subsequent risk analysis. It is valuable to see the pre-stack gathers of different parts of 

the megamerge survey, but this could be really time consuming. So, for megamerge 

surveys where the offsets of the constituent input survey volumes are unknown, the 

interpreter should generate time or horizon slices through amplitude volumes for each of 

the offsets. Subsequent inversions should be offset- (and implicitly, angle-) limited to 

include only those offsets with physically reasonable amplitudes.  
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FIGURES 

 

Figure 2.1. Location map of Anadarko basin area on map of Oklahoma, and location of 

study area in Anadarko basin marked by green boundary (modified from Northcutt and 

Campbell, 1988). 
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Figure 2.2. Stratigraphy of Anadarko basin in Pennsylvanian and Mississippian age, here 

Red Fork Formation and two of the geologic formations that appear as strong reflectors 

on seismic are highlighted in pink. Hunton (highlighted in blue) and Woodford 

(highlighted with green) are also formation of interest for current operators in the area 

(Modified from Clement, 1991). 

 

 

Figure 2.3. “Fold Map” of the reprocessed megamerged 3D seismic data volume. 

Superficially, this gives the impression that the data are greater than 25 fold throughout 

the survey.   
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Figure 2.4. Phantom horizon slices 80 ms below Oswego cutting the Red Fork incised 

channels through (a) the P-impedance volume, ZP, (b) the S-impedance volume, ZS, 

computed from 2-42 input migrated gathers. For both of the figures, white arrows 

indicate artifacts in the resulting image. Black dotted arrow indicates a circular artifact.  
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Figure 2.5. (a) Synthetic gather generated at a well, with angles ranging between 0-42. 

(b) Synthetic gather generated at a well, with offset range 0-22, and padded with zero 

traces from 24 -42. (c) Extracted amplitudes corresponding to the red and cyan picks in 

(a) and (b). 
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Figure 2.6. Representative gathers and base map indicating their locations. Note that 

location A and D have moderate amplitudes while B and C have low amplitudes at the 

farther offsets. The small residual amplitudes beyond these ranges are due to migration 

swings from the longer offset surveys. 
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Figure 2.7. Mean-squared error map showing the difference between the measured and 

modeled seismic gathers for the 2°–42° inversion. 
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Figure 2.8. Horizon slices along the Oswego surface through offset-limited stacked 

amplitude volumes: (a) 0-1520 m (0-5000 ft) (b) 1520-2450 m (5000-8000 ft) (c) 2450-

3350 m (8000-11,000 ft) (d) 3350-4250 m (11000-14000 ft) and (e) 4250-5200 m 

(14000-17100 ft). The Oswego Lime was interpreted as a strong peak in the stacked 

seismic volume. Amplitude changes in c may be valid AVO effects. Often, inaccurate 

velocities (including anisotropic effects) result in misaligned gathers giving rise to zero 

crossings and troughs at far offsets.  However, note how the amplitude approaches zero 

in the top right corner of the megamerged survey in (d) and (e) indicating that these large 

offsets were never recorded in these areas. White polygons in (c) indicate amplitude 

anomalies that will be used in subsequent quality control. White arrows indicate the major 

highways. 
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Figure 2.9. Phantom horizon slices 80 ms below the Oswego through (a) the P-impedance 

volume, ZP, (b) the S-impedance volume, ZS, computed from 2-22 input migrated 

gathers. Pink polygons correspond to an area of high error shown in Figure 2.10.   
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Figure 2.10. Mean squared error map showing the difference between the measured and 

modeled seismic gathers for the 2-22 inversion. To compare with Figure 6 the squared 

error was normalized with respect to the number of traces in each gather. White arrow 

corresponds to those drawn about amplitude anomalies shown in Figure 8c. Pink 

polygons encircle an area of high error that is posted on Figure 2.9. 
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ABSTRACT 

Seismic modeling is commonly used to determine subsurface illumination of 

alternative seismic survey designs, in the calibration of seismic processing and imaging 

algorithms, and in the design of effective processing workflows. Seismic modeling also 

forms the mathematical kernel of impedance inversion and is routinely used to predict the 

AVO response as a function of rock and fluid properties. However, the use of seismic 

models in seismic attribute studies is less common. We present four case studies where 

2D synthetic common shot gathers were computed (acoustic or elastic) and processed 

(including migration) to evaluate alternative interpretation hypothesis. Modeling showed 

that, the lack of continuous coherence anomalies in a faulted Chicontepec Basin survey 

were due to overprinting by coherent interbed multiples. Attributes computed from the 

resulting processed model data show that subtle curvature anomalies in a Mississippi 

Lime survey were due to karst collapse rather than to velocity pushdown related to 

vertical gas migration. Impedance attributes computed from a Woodford Shale model 

favor the hypothesis of increased porosity correlated to the occurrence of subtle faults 
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rather than amplitude dimming due to poor fault imaging. Finally modeling of a fractured 

basement survey in the Texas Panhandle survey showed that, aggressive headwave 

suppression preserved the basement fracture response while increasing the signal to noise 

ratio. Seismic attribute study on seismic models helped significantly to determine 

between the two alternative hypothetis in our case studies.    

 

INTRODUCTION 

Seismic modeling has been used as a tool to help seismic acquisition survey 

design (Cordsen et al., 2000), to quantify subsurface illumination as a function of offset 

and azimuth (Fagin, 1991), to calibrate processing algorithms as well as workflows, and 

to calibrate and justify the use of alternative seismic velocity analysis and migration 

algorithms (Versteeg, 1994). Seismic modeling is routinely used in rock physics fluid 

substitution to predict the AVO response (Russell et al., 2001). Seismic modeling is also 

used in understanding the feasibility of 4D seismic acquisition (Mukherjee et al., 2012).  

The use of seismic modeling to calibrate and interpret seismic attributes is less 

common. Hart and Chen (2004) used simple 1D acoustic convolutional models 

constructed from well control to validate the subsequent interpretation of seismic attribute 

anomalies. Clawson et al. (2003) computed 3D convolution models from an outcrop-

generated 3D interpretation of a Brushy Canyon turbidite system. He then computed 

coherence, P-impedance, and other attributes from the modeled seismic data to determine 

which attributes may help in the seismic prediction for improved hydrocarbon reserve 

estimation.  
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The generation of 3D common shot gathers is computationally intensive, and their 

use is presently limited to major oil and service companies, or collaboration through a 

modeling consortium (Fehler, 2012). Conversely, the generation of 2D acoustic and 

elastic models can be computed on modern desktop computers using commercially 

available software. In this paper, we show examples using such software to answer 

specific questions about the attribute response to alternative geologic hypotheses. 

Specifically, we use 2D models to quantify the response of coherence, curvature, and 

acoustic impedance through four case studies. 

Coherence and curvature are widely used attributes in structural interpretation. 

Coherence measures the similarity of the seismic waveform within analysis window using 

cross-correlation, semblance, eigen structure (Chopra and Marfurt, 2007). In this paper 

we have used eigen structure coherence along the reflector dip. Curvature is a measure of 

the deviation of the reflector surface from a plane (Chopra and Marfurt, 2007). Murray 

(1968) correlated curvature to fracture-enhanced production while McQuillan (1974) 

correlated fracture patterns to basement-controlled lineaments. Al-Dossary and Marfurt 

(2006) expanded these ideas to volumetric computations. In the first case study we calibrate 

curvature and coherence attributes through seismic modeling to understand the tectonic 

structures of a structurally-complex Chicontepec Basin. Mai (2010) described lateral 

relationships between coherence and curvature, in order to give a better understanding of the 

complex geology of the Chicontepec Basin. Pena (2010) used coherence and curvature 

attributes to map igneous bodies in the Chicontepec Basin.  However, many faults clearly 

identified on seismic amplitude vertical sections are not delineated by coherence. We will 

model two cross sections to determine why. 
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 The second case study addresses the Woodford Shale in Oklahoma where 

fractures play a very important role. Open fractures provide porosity as well as 

permeability, while hydraulic fracturing can often open previously healed fractures 

creating good permeability as well.  Staples (2011) found intense natural fractures in the 

Hunton Limestone correlated with curvature. Nissen et al. (2009) found that 

diagenetically altered fractures in the Mississippi Lime were filled by the overlying 

Pennsylvanian Cherokee Shale. Baruch et al. (2009) found increased accommodation 

space and differential compaction of the Barnett Shale lying above the karsted 

Ellenburger Dolomite in the Fort Worth Basin. Similar features were observed by Gupta 

et al. (2013) and Guo et al. (2010) in the Woodford Shale overlying the Hunton Limestone 

reflectors. While seismic amplitudes adjacent to large faults are often inaccurate due to 

limited migration aperatures and inaccurate velocities, the faults imaged by Guo et al. 

(2010) often exhibited offsets less than ¼ wavelength. In this paper, we generate, process, 

image, and invert a suite of prestack seismic models to determine whether the anomalies 

are seismic artifact or geologic feature of interest.  

Our  third case study uses modeling to evaluate alternative hypotheses of sags 

seen over karst collapse features in a Fort Worth Basin survey – are they structural karst 

collapses or a pushdown effect due to overlying gas chimneys?  Discriminating these two 

hypotheses can be critical to guide horizontal wells so they reach the reservoir.  

The fourth case study is different in that we know from well control that fractures 

in the basement exist. In this Texas Panhandle oil and gas field, the high velocity 

basement is overlain by a high velocity Permian Evaporite and then low velocity 

Mesozoic clastics, resulting in two rock units that give rise to strong headwave 
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generation.  We also observed strong linear events cutting the shallow basement 

reflections and diffractions of interest.  In this example we create seismic models to 

calibrate an aggressive processing workflow that suppresses headwaves and preserves the 

deeper diffractions that image the basement fractures.   

The unifying principle in all four case studies is that seismic attributes are a 

function not only of the impedance contrasts but also of the signal-to-noise ratio of the 

data after processing that include prestack migration.  

 

METHODS 

We used commercial software, which grids a 2D geological model and then uses 

the finite difference method to solve the wave equation to generate synthetic seismic data. 

Figure 3.1 shows the flowchart used for generating synthetics.  First, we create a simple 

geologic cross-section based on real seismic data. We choose the velocity, density and 

depth of formations from well logs.  We simplify the geology other than the target features 

to be modeled. Next, we define parameters for the target feature of interest (e.g. fault’s 

throw, karst width and thickness). We choose the number of source points, source 

spacing, receiver points and receiver spacing similar to the real data (Table 3.1). We then 

propagate a wave field through the 2D geological model creating synthetic shot gathers. 

Last, we process the synthetic seismic data through prestack migration and stack the 

migrated data to obtain the final results.  
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CASE STUDIES 

 

CASE STUDY 1:  SEISMIC MODELING OF CHICONTEPEC BASIN’S 

TECTONIC STRUCTURE 

 Chicontepec Basin, discovered in 1925, is one of the most productive basins in 

Mexico. It is a structurally complex basin, and the tectonic evolution controlled the influx 

and deposition of the tight sand turbidite reservoir. The deeper and interfingered shale 

source rock is a potential unconventional resource play (Sarkar, 2011). Time slices and 

horizons through seismic attributes such as coherence and curvature derived from a 3-D 

seismic volume helps visualize the tectonic deformation within and below reservoir. 

These attributes allow us to map faults, fractures, channels, folds, pop-up structures, 

horsts and grabens, and other geologic features (Figure 3.2 and Figure 3.3). Murray 

(1968) correlated curvature to fracture-enhanced production; McQuillan (1974) 

correlated fracture patterns to basement-controlled lineaments. 

  The seismic expression of tectonic structures in the Chicontepec Basin is a 

function of the acquisition parameters, seismic wave propagation, imaging and the 

underlying geology. While there are areas of low fold and poor data quality due to shallow 

volcanics (Pena et al., 2009), overall data quality is quite good.  We generated two seismic 

models to investigate the performance of coherence in delineating the faults seen in 

Figure 3.3. Results were somewhat deceiving in that they did not delineate faults that 

were clearly identifiable by a human interpreter (Figure 3.2).   To better understand this 

result, we used a commercial finite difference wave-equation modeling software package 

to evaluate representative pop-up and graben structures. We construct both models with 
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parallel bedding geometries and no significant thickness changes along the beds in order 

to make the model geologically consistent to those seen in the Chicontepec Basin. 

Simplification, such as reducing the number of layers, aids in extracting key information 

from the seismic modeling and imaging workflow. Through this simplification, key 

geological features can be more easily identified on real data.  Survey parameters (Table 

1) were kept similar to those used in the real seismic survey. In both acoustic models, we 

use a Ricker wavelet with 25 Hz dominant frequency as the source wavelet, and generate 

raw common shot gathers. These common shot gathers are then prestack time and depth 

migrated using a Kirchhoff migration algorithm. Finally, seismic attributes are computed 

on both models, and the results compared to those computed from the real data. The 

values of the P-wave velocity and density are taken from a well log in the survey (Figure 

3.4a). 

 

Seismic modeling of a pop-up structure  

 The pop-up model shown in Figure 3.4b is constructed based on a cross section 

through the 3D seismic survey shown in Figure 3.2 and Figure 3.3. In the model, there 

are two symmetric reverse faults on either side of the pop-up block. Both faults have a 25 

m (83 ft) throw. The units above the top Paleocene level horizon are deformed, but not 

faulted. On the other hand, the units below the top Paleocene are deformed and faulted. 

We assume that formation velocities increase with depth. Figure 3.5a shows the prestack 

depth migrated (in time) seismic sections of the pop-up model. The thin-bedded turbidites 

give rise to significant interbed multiples.  
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  We computed seismic attributes on the depth migrated section as it provided a 

better image than the time migrated section. While time migration works well for smooth 

velocities and flat reflectors, it cannot handle sudden velocity changes in the overburden. 

In contrast, depth migration uses a more exhaustive interval velocity model, and 

accurately handles velocity changes. Snapshots of seismic wavefronts (Figure 3.4d) help 

to verify if a recorded reflection is a primary or a multiple. Figure 3.5b shows that the 

reflector dip (Marfurt , 2006) has higher values at the edges of the pop-up structure. 

Figure 3.5c shows that 2D curvature has positive values at the inside edges of the pop-up 

structure and negative values at the outside edge of the pop-up structure. Figure 3.5d 

shows that (unlike the curvature and dip) coherence anomalies are absent in the shallower 

part where the strata are folded but not faulted. We do see low coherence anomaly in the 

lower faulted region. Although the fault inclination and placement are not exactly the 

same, the results computed from the model are quite similar to the results computed from 

the real data, thereby quantifying our interpretation of the attribute anomalies.  

 

Seismic modeling of a graben structure  

 The graben model shown in Figure 3.4c is constructed from the vertical slice 

through the actual seismic survey shown in Figure 3.3b. In the graben model, the 

thickness of units, P-wave velocity and density values are kept the same as those used in 

the pop-up model. There are two symmetric normal faults on either side of the graben 

structure. Both faults have a 25 m (83 ft) throw. The units above the top Paleocene level 

horizon are not deformed or faulted, while the units below the top Paleocene are faulted. 

We assume that velocity increases with depth. Figure 3.6a shows the prestack depth 
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migrated (in time) seismic sections of the graben model. Figure 3.6b shows that the 

reflector dip has higher values at the edges of the graben structure. Figure 3.6c shows 2D 

curvature has negative curvature at the inside edge of the graben structure and has positive 

values at the outside edge of the graben structure. Figure 3.6d shows discontinuous 

coherence anomalies in the lower faulted region.  

 The results of both the pop-up as well as graben models are quite similar to the 

real 3D seismic data thereby, validating our interpretation of the attribute anomalies.   

 

Discussion of results for case study 1 

 Synthetic seismic modeling confirms that the pop-up and graben structures in the 

Chicontepec area give rise to coherence and curvature anomalies. Seismic modeling 

results are similar to those from the real data. Synthetic modeling gives us an idea of how 

the pop-up and graben structures in the area look like in reality. Specifically, it shows 

how continuous interbed multiples break up curvature and coherence anomalies that 

would otherwise be continuous. This allows us to recognize such anomalies as an artifact, 

not as geology, thereby preventing a potential interpretation pitfall. 
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CASE STUDY 2: SEISMIC MODELING OF IMPEDANCE ANOMALIES 

ASSOCIATED WITH FAULTS IN THE WOODFORD SHALE 

  Guo et al. (2010), working on a Woodford survey in the Arkoma Basin and Gupta 

et al. (2013), working on a Woodford survey in the Anadarko Basin both noted a strong 

correlation between lows in acoustic impedance and subtle structural lineaments seen in 

the most-negative principal curvature (Figure 3.7). These lineaments can be enhanced by 

computing 1) 2nd derivatives along structural dip and azimuth and 2) the magnitude and 

strike of the most-positive and most-negative 2nd derivative changes, or “amplitude 

curvature” (Chopra and Marfurt, 2013). In both cases, the Woodford Shale directly 

overlies the fractured and karsted Hunton Limestone. The simplest geologic hypothesis 

is that these fractures and faults continue into the overlying Woodford, thereby increasing 

permeability. Supporting this hypothesis is the lack of correlation between positive 

curvature lineaments and impedance. The alternative hypothesis is that 3D pre-stack time 

migration does not accurately reconstruct the amplitudes around the faults. While such 

imaging artifacts do occur for faults with large vertical throws (or steep dips) and limited 

migration apertures, the throw seen in Figure 3.7a is so small that we hypothesize the 

amplitude variation to be geological. We therefore construct two simple seismic 

(acoustic) models to evaluate the hypotheses mentioned above.  

 As in case study 1, we use a commercial finite difference wave equation modeling 

software package to evaluate the fault imaging artifact versus the fracture/diagenetic 

alteration hypotheses. Model parameters were kept the same in the both models (Table 

3.1). We setthe  Woodford Shale top at a target depth of 914 m (3000 ft), resulting in 

incident angles up to 40o. These common shot gathers were then prestack time and depth 
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migrated using a Kirchhoff migration algorithm, with the later using travel times 

computed using a first arrival eikonal solver. In both models, we used a Ricker wavelet 

with 60 Hz dominant frequency as the source wavelet. Seismic attributes were extracted 

and an acoustic impedance inversion was computed on both models. The P-wave 

velocity, S-wave velocity and density values were taken from a typical log of the area 

(Figure 3.8a).   

 

The Fault Model : 

  We prepared a fault model with four faults in the Woodford and Hunton layers, 

at regular offset intervals (Figure 3.8b). The faults were kept as simple vertical fault with 

throws ranging between 6 m (20 ft)  to 24 m (80 ft). We terminate the faults at the top of 

the Woodford Shale (green unit). The faults with throws of 12 m (40 ft) and higher can 

be identified on the time-migrated seismic amplitude (Figure 3.9a) and the coherence 

(Figure 3.9b), whereas all the faults are visible on the curavature (Figure 3.9c). The 

acoustic impedance (Figure 3.9d) shows quite smooth varitions near the faults.     

 

The Fracture Model :  

 We prepared a fracture model with variable numbers of fractures that begin in the 

Hunton Limestone (blue unit) and terminate in the middle Woodford Shale (green unit) 

(Figure 3.10a). All of the fracture zones are 6 m (20 ft)  wide and 91 m (300 ft)  in height, 

and have low velocity and density values. On the time-migrated seismic section, highly 

fractured areas (4 and 8 fracture zones) can be identified easily, while the  less fractured 

areas (1 and 2 fracture zones) are harder to identify because of the limited seismic 
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resolution (Figure 10a). Curvature was able to detect all the modeled fractured zones 

(Figure 3.10c). In contrast to the fault model, the changes in acoustic impedance (Figure 

3.10d) allowed us to identify the fracture zones easily and accurately.  

 

Discussion on results for case study 2 

 Seismic modeling confirms our hypothesis that the impedance anomalies seen in 

the two surveys are not due to a processing artifact of fault imaging but rather correlated 

to fracturing (or may bekarsting) in the underlying Hunton Limestone. Operators in 

Oklahoma frequently drill horizontal wells in both formations. In the Hunton, they look 

for natural fractures and complete the wells with acidation. In the Woodford Shale, most 

operators attempt to define the strike of natural fractures and maximum horizontal stress 

to optimally place and orient their wells, completing them with hydraulic fracturing. We 

suspect these two reservoirs to be coupled, thereby providing opportunities for more 

innovative completion strategies. Modeling therefore confirms the hypothesis that the low 

impedance lineaments associated with small faults are associated with a fractured or 

otherwise diagenetically altered low zone rather than limitations in seismic imaging. 

 

 

CASE STUDTY 3 : MODELING SAGS - ARE THEY KARST COLLAPSE OR 

GAS CHIMNEYS PUSHDOWN?  

Seismic interpretation can be ambiguous in certain cases, due to alternative 

geologic causes of the resulting seismic image. Karst features have an easily identifable 

seismic signature (Qi et al., 2014).  In some cases, poor resolution in the shallower section 
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(e.g. Story et al., 2000) is due to a gas chimney associated with deeper karst, such that the 

incoherent expression of the karst collapse is due to velocity pushdown and inaccurate 

seismic focussing (Figure 3.11). In karst collapse seen in the Ellenburger Dolomite of the 

Fort Worth Basin (e.g. Sullivan et al., 2006; Kwatamadi et al., 2014) the shallower Marble 

Falls, Atoka, and Caddo reflectors are also deformed, but well focused using a laterally 

smooth time migration velocity, suggesting that the depressions are structural lows rather 

than velocity pushdown artifacts. These two hypotheses can produce identical seismic 

images using a 1D convolutional acoustic model.  To better understand these events on 

seismic images and attributes we create prestack wave equation models to observe karst 

and gas chimney effects on wave propogation and to observe the results on the processed 

stacked data. Specifically, we expect that long source-receiver offsets will undershoot a 

gas chimney and provide a different (conflicting) image than that of a collapse feature.   

 

Karst Collapse Model: 

 We model karst collapses based on the seismic cross section shown in Figure 3.12  

from a seismic survey in the Fort Worth Basin (Sullivan et al., 2006). The area has many 

karst collapse features that are well imaged by the 3D seismic data. We then constructed 

a model with a structural collapse at the top Ellenburger Dolomite filled with the Barnett 

Shale (Figure 3.13a).  

 

Gas Chimney model: 

 For the gas chimney model we assume that the top of the karsted Ellenburger 

Dolomite was structurally flat and  the “collapse feature” was an artifiact of velocity 
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pushdown due to an overlying gas chimney similar to that seen in Figure 3.11. To build 

prepare the gas chimney model, the karsts were replaced with a vertical column of low 

velocity “gas-charged” rock. The velocities in the chimney model of Figure 3.13b were 

chosen to construct the same 1D convolution model as the structural collapse of Figure 

3.13a and Figure 3.14a. The gas chimney model took several iterations to attain the 

desired results. The difficulty came in creating a gas chimney that extended through all 

of the desired layers while still maintaining the underlying layer boundaries (Figure 3.13b 

and Figure 3.14b). The modeled synthetic gathers were prestack time migrated using a 

laterally smooth velocity model that  ignored the chimney in order to imitate a typical 

processing workflow in the Fort Worth Basin (Fernandez, 2013). 

 

Discussion on results for case study 3 

 The resulting migrated and stacked images bear a close resemblance to the actual 

seismic data (Figure 3.12). One noticeable difference are the migration artifacts 

associated with the gas chimney model. The velocity pushdown at the top Ellenburger is 

both smoother and less focused than the input model. It is also consistent with the 

misalignment of ray paths traversing vertically through the chimney versus those that 

undershoot the chimney from its flanks. There are also diffractions and a complex 

velocity pushdown at the base of the Ellenburger Dolomite that are not evident in the 

karst collapse model or in the real data.  

 Alai et al. (2011) described the elastic wave field propagation through gas clouds 

that are similar to the gas chimneys that we have modeled with acoustic wave field. The 

key to this observation is that the pushdown effect will continue into the deeper medium 
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below the gas chimneys. This is an effect we can expect to see from all gas chimneys. 

Structural collapse can cause a similar behavior, such as the low velocity sand filled karst 

of the Tarim Basin (Zhao et al., 2014). The Barnett Shale fill also has a high velocity 

similar to that of the Ellenburger Dolomite. Furthermore, Sullivan et al. (2006) show that 

the shallower isochrons are smooth across the karst with no local temporal thickening due 

to a gas chimney, suggesting that the karst collapse occurred after the shallower layers 

were deposited.  

 

 CASE 4 : IDENTIFYING PROCESSING CHALLENGES WITH SEISMIC 

MODELING 

 

Our final example is more traditional in that we use modeling to aid in the 

selection of processing parameters. The study area is located within the Texas Panhandle 

oil and gas field where wells have encountered hydrocarbons in basement fractures. These 

fractures are charged by fluid migration from deeper sedimentary source rocks in the 

Anadarko Basin to the North and East. The basement fractures are well imaged by seismic 

attributes such as curvature and coherence (Figure 3.15) as well as by P-wave impedance. 

Our goal was to design a workflow that preserved the amplitude response at far offsets to 

facilitate a prestack inversion to better differentiate weathered and fractured basement 

from tighter rocks. The high velocity basement is overlain by slower clastics and then by 

a very high velocity Permian Evaporite, with a final layer of low velocity Mesozoic 

sediments. Both the basement and Permian Evaporite give rise to strong P- and S-
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headwaves that overprint the shallow (2500 ft deep, equivalent to t=0.57 s) basement 

reflections and diffractions of interest.  

Ground roll and air waves were successfully removed, and the evaporite and 

basement provided good refractors for tomographic inversion, as seen by Xu (2014), we 

decided to model the possible impact of these refraction events on the processing of 

reflections. 

To better understand the effect of noise, we generated a synthetic shot gathers 

using a simple, flat-layered model with hypothesized fractures within the basement 

(Figure 3.15a). The elastic modeled gather (Figure 3.17b) is highly contaminated by 

reverberations in the weathering zone. For the real data (Figure 3.17c), the weathering 

zone has higher attenuation, thereby damping waves reverberating within it. Thus, we 

created an additional model without the weathering zone (Figure 3.16b) as well as a 

simpler model without fractures. Acoustic-modeled gathers with diffractions, without 

diffractions, and their difference, are shown side-by-side in Figure 3.18.  

To further interpret the modeled gathers, we also generated several snapshots of 

the acoustic wave field. By alternatively examining the snapshots and the surface seismic 

acoustic-modeled gather, we were able to correlate and thereby identify noise and signal, 

and then mark those events on the acoustic-modeled gather, elastic-modeled gather, and 

real shot gather (Figure 3.17a- c). Acoustic gathers are synthetic gathers that contain only 

P-wave information. They are simple and good for interpreting primary reflections and 

some dominant multiples. Elastic gathers are synthetic gathers that contain P-wave, S-

wave, and converted wave information, and thus resemble real gathers better than 

acoustic gathers, but may be too complicated to interpret. Real gathers are extracted from 
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the 3D-survey data set. Diffractions are only marked in the acoustic-modeled gather; they 

are overlain by reverberations in the elastic-modeled gather. Diffractions in real gathers 

are much less prominent than in synthetic gathers, suggesting that fractures in real life are 

of smaller scale than those in the model. At the target depth (t=0.57s), critical refractions 

from basement tangent to the reflections occur at offset h = 975 m (3200 ft) and must be 

muted prior to subsequent prestack inversion. 

 

CONCLUSIONS 

The attribute expression of the subsurface depends not only on the impedances 

and geometric configuration of the various facies, but also on the acquisition and 

subsequent processing and imaging of the seismic data. Unlike the classic convolutional 

model, prestack seismic modeling using the acoustic wave equation  models both signal 

and noise. In our first case study our synthetic seismic modeling confirms that pop-up 

and graben structures in the Chicontepec area give rise to coherence and curvature 

anomalies. Seismic modeling results are similar to those from the real data. However, by 

using snapshots of the wavefront we are able to see that interbed multiples give rise to 

coherent, continuous reflections that overprint our faulted structures of interest. This 

overprinting disrupts what should otherwise be a continuous fault anomaly on the seismic 

section.  In many areas of the survey, interbed multiples from the overlying volcanics are 

stronger than the reflection of interest. Modeling does not solve our problem, by removing 

the interbed multiples, but it helps to identify primaries and interbed multiples and 

motivates future processing workflows as well as quantifies the confidence we have in 

our attribute images. 
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Our next case study from the Woodford Shale of the Arkoma Basin of Oklahoma 

shows the conjugate situation, where we are concerned that the interpretation of low-

impedance anomalies visually correlated with small-offset faults are artifacts of imaging. 

Here, seismic modeling confirms the geologic hypothesis that the impedance anomalies 

seen in the two surveys are correlated to fracturing and karsting in the underlying Hunton 

Limestone. We suspect these two reservoirs to be coupled, thereby providing 

opportunities for more innovative completion strategies. 

Our third case study evaluates two geologic hypotheses of a karst collapse versus 

a gas chimney, for which a convolutional model would result in the exact same image. 

Prestack data with large source-receiver offset undershoot much of the hypothesized gas 

chimney, thus allowing us to differentiate the scenarios. The resulting images are 

different, with the gas chimney being a smoother, smeared, pushdown anomaly, and with 

the karst collapse being a surface with sharp edges as seen in the real 3D survey.  

Our fourth and final case study is different in that we know from the well bore 

that there are hydrocarbon-bearing fractures in the shallow basement of a Texas 

Panhandle survey. Here, our problem was one of validating alternative processing 

workflows to preserve the fracture-generated diffractions while rejecting the strong 

overprinting coherent P- and S- headwaves.   Modeling showed that we could not preserve 

the farthest offset (>450) data since the filtering contaminated the reflection of interest. 
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FIGURES AND TABLES 

 

 

Figure 3.1 Flowchart for generation of synthetics. 
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Table 3.1 Survey geometry created for models. 

 

 

 

 

Figure 3.2 Horizon slice along the top Jurassic through co-rendered coherence, most-

positive curvature, and most-negative curvature. The same three attributes are co-

rendered with amplitude on the vertical slice, which shows a pop-up feature (yellow 

arrow) and a graben (cyan arrow). Although the edges of these features are well 

delineated by curvature, the coherence anomaly (in green) appears to be broken. In 

subsequent images, we will generate 2D models over these features to better understand 

the lack of a coherence anomaly. (Data courtesy of PEMEX). 
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Figure 3.3 Vertical slices through the seismic amplitude volume through (a) a pop-up 

block and, (b) a graben previously shown in Figure 3.2. Fault traces are shown in by red 

lines. (c) and (d) The same images are co-rendered with most-positive and most-negative 

curvature. Figures displayed at 1:1 scale. 
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Figure 3.4 (a) A representative well in the study area showing gamma ray, density, and 

P-wave sonic logs. (b) The model of the pop-up feature seen in Figure 3.3a. (c) Graben 

model based on image shown in Figure 3.3b. The units below the top Paleocene are 

faulted. P-wave velocity VP is in ft/s while density ρ is in g/cm3.  (d) Snapshot at 0.7sec, 

green star represents source location and the red inverted tringles represent receiver 

position, blue arrow represents primaries and yellow arrow represents multiples.   
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Figure 3.5 (a) Modeled prestack depth migrated (time converted) data from 120 common 

shot gathers based on model displayed in Figure 3.3a.  The same section co-rendered with 

(b) dip, (c) 2D curvature, and (d) coherence. Primaries are indicated by cyan arrow and 

multiples are indicated yellow arrow. Note that the multiples from the shallower horizon 

disrupt the anomalies on dip and curvature. The fault plane reflection appears only above 

the stronger reflection. These fault plane reflections give rise to a continuous response 

such that the coherence anomalies are minimal. All the attributes including seismic are 

displayed with 50% opacity.    
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Figure 3.6 (a) Modeled prestack depth migrated (time converted) data from 120 common 

shot gathers on model displayed in Figure 3.3b (primaries are indicated by cyan arrow 

and multiples are indicated yellow arrow). The same section co-rendered with (b) dip, (c) 

2D curvature, and (d) coherence. Note that the multiples from the shallower horizon 

disrupt the anomalies on dip and curvature. The fault plane reflection appears only about 

the stronger reflection. These fault plane reflections give rise to a continuous response 

such that the coherence anomalies are minimal. All the attributes including seismic are 

displayed with 50% opacity.   
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Figure 3.7  Horizon slices along the top Woodford Shale through (a) most negative 

principal structural curvature, (b) acoustic impedance, and (c) most-negative curvature (a 

2nd derivative) of the acoustic impedance volumes. Note the correlation of structural 

curvature lineaments with subtle faults on the vertical slice through seismic amplitudes. 

These faults give rise to subtle changes in amplitude and hence to impedance, which are 

delineated through 2nd derivative (curvature) computations seen in (c). The correlation of 

the low impedance anomalies and structural lows implies that they are either fault- or 

fracture-related, though this correlation may be due to limitations in seismic imaging 

rather than to geology. (Data courtesy of CGG-Veritas. After Guo et al., 2010). 
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Figure 3.8 (a) A representative well log section of the study area, and (b) model of a suite 

of faults with variable throw constructed to evaluate the hypothesis that amplitude 

anomalies are due to errors in prestack migration. The green Woodford Shale layer is 

faulted with the fault dying out in the deeper blue Hunton Limestone layer. (c) Model to 

evaluate fractures filled with low impedance material. In this model we represent a 

variable number of 20 ft wide fracture zones with lower impedance inclusions. Velocities 

are in ft/s, while densities are in g/cm3. 
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Figure 3.9  (a) Prestack time migrated stacked seismic section generated from 100 

common shot gathers over the model shown in Figure 3.8b. Note the amplitudes across 

these faults are a very continuous, indicating that prestack time migration preserves 

amplitude across faults with such small throw. The top Woodford at t~0.35 s is clearly 

visible. The faults with throws of 10 and 20 ft fall below seismic resolution, while faults 

with throw greater than 40 ft are more easily identified. Stacked seismic amplitude co-

rendered with (b) coherence shows the faults with 40 ft and higher throws,  (c) Curvature  

was able to see the all the faults. (d) Acoustic impedance also maps the fault and does not 

suffer from imaging loss amplitudes. 
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Figure 3.10 (a) Prestack time migrated stacked seismic section generated from 100 

common shot gathers over the model shown in Figure 3.8c. The top Woodford at t~0.35 

s is clearly visible. As in the real data, the velocity model for prestack migration did not 

include the perturbation due to the fractures. While the top of the fracture zones are 

accurately imaged (yellow arrow) the base is overmigrated because the velocity used was 

too fast (orange arrow). In addition, the base of the limestone layer experiences a velocity 

pushdown effect (cyan arrow). Stacked seismic amplitude co-rendered with (b) coherence 

shows the faults with 4 and 8 fracture zones clearly, (c) Curvature was able to delineate 

fractures. (d) In contrast to the fault model, the fracture zones give rise to a low impedance 

anomaly, as seen in the real data shown in Figure 3.7b and c. 
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Figure 3.11 (a) A cross section through the envelope of the seismic data (time domain) 

corresponding to lines AA’ from a survey acquired over Liuhua field reservoir, offshore 

China. The dotted white line indicates the top Miocene carbonate reservoir. (b) Horizon 

slice along the top reservoir through the coherence volume. Yellow arrows indicate karst 

collapse chimneys. Note the incoherent image above the karsted reservoir in (a) indicated 

by the white arrow. Such poor imaging indicates the data were migrated using an incorrect 

velocity model, consistent with the collapse chimney hypothesis. High amplitude 

reflections (black arrow) that ring the chimney are consistent with gas charge from below. 

(After Story et al., 2000). 
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Figure 3.12 Seismic cross section showing four karst depressions. Note the two karsts on 

the left have smaller diameters and steeply dipping reflection (blue arrows) while the two 

on the right have larger diameters and less steeply reflectors (red arrows). Model 

parameters defined from well W.  (Data courtesy Devon Energy).  
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Figure 3.13 (a) An illustration of the karst model used. (b) A low velocity gas chimney 

model used.  Both models are based on Figure 3.12.  In both the models VP is in ft/s while 

density ρ is in g/cm3.  
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Figure 3.14 Seismic cross section through the depth migrated (converted to time) (a) karst 

collapse model of Figure 3.13a and (b) the gas chimney model of Figure 3.13b.   
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Figure 3.15 (a) Time-structure map of top basement horizon. The northern part of the 

horizon is noisy and difficult to pick. Since the top basement and the top evaporite are 

close to each other, the rugose appearance of the northern top basement is not geophysical 

noise, but rather geology, represent the weathered, eroded, and fractured top basement. 

Geologic relief of the top basement is as high as 360 ft. (b) Co-rendered image of k1, k2, 

and coherence along the top basement horizon. We suspect that some of the NW-SE 

lineaments may be acquisition footprint.  The k1 lineament is displaced ~200 ft to the 

south of the k2 lineament.   
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Figure 3.16 Flat-layered Earth model with hypothesized fractures in the basement  (a) 

with, and (b) without a weathering zone. Velocity and density generally increased with 

depth, except for the low-density evaporate. The fractures are 20-ft thick and have lower 

velocity and density than the basement. This model in (b) is designed to avoid the 

reverberation effect of seismic wave in the weathering zone. 
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Figure 3.17 (a) Acoustic-modeled gather on model shown in Figure 3.16b with 

interpreted events. Head wave, reflections, diffractions, and reverberation are identified 

on the gather by alternatively examining the snapshots of the wave field. (b) Elastic-

modeled gather on model shown in Figure 3.16a with interpreted events. Head wave, 

reflections, ground roll, and reverberation are identified. Note that diffractions are not 

identified because it was overlaid by strong reverberation from the weathering zone. (c) 

Real shot gather with interpreted events. Head wave, reflections, ground roll, and 

reverberation are identified. Note that the reverberation effect of the weathering zone is 

much less in the real gather than the modeled gather due to finite Q (1/attenuation). At 

the target depth (t=0.57s), critical refraction occurs at offset h = 3200 ft. Beyond this 

point, the signal are highly contaminated by coherent, moderate bandwidth refracted 

waves and must be muted after NMO correction. 
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Figure 3.18 Acoustic-modeled shot gather sorted by absolute offset corresponding to the 

model with no weathering zone Figure 3.16b and (a) with and (b) without fractures. (c) 

Difference between (a) and (b), showing diffractions. Note that diffractions are not 

centered at zero offset.  
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SUMMARY 

Whether it is in reference to the limitations of interpretation or associated with 

seismic processing, usage of the phrase acquisition footprint is never in a positive context. 

Footprint contaminates both time structure map and impedance inversion.  Although 

common, footprint is often poorly understood.  Footprint is more common in older, lower 

fold surveys. Part of this mystery is due to the division of labor in most exploratory 

companies. Processing is usually conducted by specialists in a service company, while 

attribute analysis is conducted by interpreters (often geologists) in an oil company. Often, 

younger interpreters have never processed 3D seismic data, while younger processors 

have never analyzed attributes.  As a part of a reprocessing effort for quantitative 

interpretation analysis, Cahoj (2015) encountered severe footprint masking his shallow 

exploration target. We attempt to modify his processing workflow to ameliorate the 

footprint lead to an effort to understand its cause, at least for this survey. Upon completion 

of seismic processing we are left with a stacked version of our synthetic data in which we 

can compute seismic attributes.  We show that the subsequent attribute interpretation is 

greatly affected by footprint caused by residual groundroll.  Lastly, we show an attribute 
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interpretation corresponding to real 3D seismic dataset and conclude that many artifacts 

seen in the dataset, often labeled under the broad category of acquisition footprint, are 

actually residual groundroll not properly removed during the processing flow.  Because 

out of plane groundroll can have hyperbolic moveout common noise removal techniques, 

such as F-K filtering, that operate under the assumption of modeling noise with different 

linear moveouts, fail. 

 

 

INTRODUCTION  

Acquisition footprint refers to the imprint of acquisition geometry seen on seismic 

amplitude timeslices and horizons. Acquisition footprint can obstruct not only classical 

seismic interpretation but also affect interpretation based on seismic attributes (Marfurt 

and Alves 2015, Marfurt et al., 1998).  Seismic attributes, especially coherence and 

curvature, often exacerbate the effect of footprint making their utility diminish (Marfurt 

and Alves 2015; Verma et al., 2014). 

With footprint being such a common problem its occurrence and formation are 

often poorly understood (Chopra and Larsen, 2000).  Although many methodologies have 

been developed to remove linear coherent noise and acquisition footprint (Cvetkovic et 

al., 2008 and Marfurt et al., 1998), little has been done in the way of illustrating its 

occurrence via modeling.  Hill et al. (1999) investigated acquisition footprint is caused 

by inaccurately picked NMO velocity. Although groundroll is one of the prime causes of 

acquisition footprint, the footprint pattern caused by the presence of groundroll has not 

been modeled and documented.  
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One of the main causes of seismic acquisition footprint is sparse spatial sampling. 

It is particularly challenging to remove aliased groundroll. Because of this the residual 

groundroll’s occurrence on the stacked seismic data can be strong enough to influence 

the interpretation. We study a low fold legacy seismic survey of North Central Texas and 

observed acquisition footprint with the North-South lineaments (Figure 4.1a) aligned with 

the receiver lines. We investigate what can cause such footprint to be present in our 

dataset; in this paper we present the findings.  

MOTIVATION 

We observed north–south acquisition footprint present on the curvature attribute 

shown in Figure 4.1a. The presence of this acquisition footprint hindered our attribute 

assisted interpretation.  Because of this we had an incentive to understand its origin. We 

hypothesis that this acquisition footprint could have three potential sources: 

1) Inadequate removal of groundroll, 

2) NMO far offset stretch, and 

3) Improper velocity analysis 

In this paper we decide to investigate the effect of inadequately removed 

groundroll.  In Part 2 (Cahoj et al., 2015) of this abstract we will try to understand the 

effect of NMO stretching and incorrect velocity analysis on our seismic interpretation. 

Equipped with an actual seismic dataset with acquisition footprint, we are able to 

construct a synthetic analogue. 
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METHODOLOGY 

Seismic modeling 

The objective of this model is to see the effect of residual groundroll on stacked 

seismic data after processing and its relation with reflectors. 

To do so we created a simple 3D flat layer seismic model with four layers. The 

acquisition geometry is shown in Figure 4.2, with 6 receiver lines and 9 shot lines. Each 

receiver line contains 60 receiver groups totaling 360 geophones, and each shot line 

contains 18 sources totaling 162 shots.  The model has a strong presence of broad 

bandwidth (0-50Hz) dispersive groundroll. We generated two separate models, one for 

groundroll using an elastic modeling approach with only the weathering layers and a 

second model with four layers using an acoustic modeling approach. We added these two 

models to simulate the final 3D acquisition geometry for our study. 

Seismic processing  

The seismic processing can be broken into 7 steps.   

1) Importing the synthetic seismic data 

2) Defining the geometry  

3) Sorting the data by absolute offset 

4) Identifying the noise corridor with a mute and finding its respective linear 

moveout velocity 

5) Model the noise in the F-K domain 

6) Inverse linear moveout and subtraction 

7) NMO correction and stacking the synthetic data 
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Figure 4.3a shows a common shot the synthetic sorted by absolute offset.  It is 

easy to identify the lower velocity groundroll crosscutting and overbearing the reflectors.  

Figure 4.3b shows the groundroll modeled by a standard F-K noise filtering procedure 

and Figure 4.3c shows the results after the modeled groundroll is subtracted from the 

input model.  In this figure we see that most of the high amplitude groundroll has been 

removed and the reflectors, once overprinted, are now visible. Upon completion of 

groundroll removal the synthetic data were NMO corrected and stacked (Figure 4.4a).  

 

Attribute interpretation 

We computed a suite of seismic attributes using a commercial software package 

on both the modeled synthetic seismic data and the actual seismic data.  Such attributes 

included dip and azimuth, energy ratio similarity and curvature.  With these attributes we 

were able to determine footprint’s response from improperly removed groundroll.  Using 

the modeled seismic data we were able to make an analogue to actual seismic data to 

compare groundroll’s response and effect on interpretation. 

 

RESULTS 

Figure 4.4a shows the inline of the stacked synthetic seismic data.  The 

undulations in the shallow section are the responses of constructively and destructively 

interfering groundroll not properly removed by F-K filtering.  Figure 4b shows the 

corresponding inline through the actual seismic data.  It is evident that similar undulations 

exist in the shallow section of the real seismic data. 
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Figure 4.5a is a timeslice at t=1.320s through the most negative curvature 

response of the stacked synthetic seismic data.  We find that the response of curvature, an 

attribute commonly used to map folds, flexures and deformation about faults, is greatly 

contaminated by the inadequately removed groundroll.  Figure 4.1a shows the 

corresponding timeslice at t=0.410s through the most negative curvature of the real 

seismic data; containing a similar footprint expression. 

Figure 4.6a shows a horizon tracked through the 2nd layer in the synthetic dataset.  

Because the layers were modeled to be horizontal we expect a uniform surface at a 

constant depth.  However, we can see rectilinear features, particularly strong in the East-

West direction.  These features can also be seen in Figure 4.6b, the real seismic data.  

 

CONCLUSIONS 

Our analysis indicates that the undulations caused by residual groundroll will be 

present on the seismic, having strongest amplitude near the surface and attenuating with 

depth. 

We conclude that inadequately removing groundroll can result in erroneous and 

more difficult interpretations.  Furthermore, seismic attributes, often used by less 

experienced interpreters to accelerate there interpretations, are not immune to acquisition 

footprint caused by groundroll.  In many cases, seismic attributes exacerbate the effects 

of this noise.   
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FIGURES 

 

 

Figure 4.1  (a) Timeslice at t=0.41s through most negative curvature volume from real 

seismic dataset.  The North-South lineaments are aligned with the receiver lines. These 

artifacts contaminate attribute volumes. (b)Timeslice at t=0.41s through coherence 

volume from real seismic dataset.  The North-South lineaments are aligned with the 

receiver lines. These artifacts are weaker at depth but overprint the objective at t=1.0s. 
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Figure 4.2 The synthetic model’s geometry.  Sources are in red and receivers are in green.  

The geometry is perfectly rectilinear which is not the case with actual seismic data due to 

surface obstructions. 
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Figure 4.3 Shot vs absolute offset sorted (a) modeled seismic data with four reflectors 

and groundroll with a large bandwidth (0-50Hz). b) F-K modeled groundroll to be 

removed from the modeled seismic data (a).  (c) Result of subtracting F-K modeled 

groundroll (b) from modeled seismic (a).  Notice large amounts and high amplitude 

groundroll is removed, but residual remains. 
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Figure 4.4 (a) Inline through the synthetic seismic data.  (green horizon is displayed in 

Figure 6a) ( b) Inline of real seismic data (yellow horizon is displayed in Figure 4.6b) . 

Notice the undulation anomalies caused by inadequately removed groundroll in Figure 

4.6a and similar undulation features can be seen in Figure 4.6b most likely caused by 

groundroll.    
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Figure 4.5 (a) Time slice at t=1.320s through most negative curvature of the synthetic 

seismic data.  Notice the undulation anomalies caused by inadequately removed 

groundroll. (b) Coherence at t=1.320s of the synthetic seismic data. Similar undulation 

features can be seen causing lateral discontinuity in the reflectors. 
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Figure 4.6 Horizons tracked through (a) synthetic data, displayed on Figure 4.4a as green 

horizon. (b) real seismic data, displayed on Figure 4.4a as yellow horizon.   The linear 

striations (red arrows) are due to residual groundroll overprinting P-wave reflections. 
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ABSTRACT 

  While modern recording capacity facilitates dense seismic acquisition, many, if 

not most, legacy 3D surveys are spatially aliased with respect to groundroll. Irregular 

topography and weathering zones give rise to groundroll that has piecewise, rather than 

continuous linear moveout. Dispersion often results in shingled events whose phase 

velocity cuts across the groundroll noise cone.   We present a workflow for the 

suppression of highly aliased broadband groundroll where modern f-kx-ky filters failed. 

Our workflow begins with windowing and low-pass filtering the data, 3D patch by 3D 

patch. We then apply linear moveout corrections using the average phase velocity of the 

groundroll. We compute residual moveout components along the shot and channel axes 

to account for changes in velocity, thickness, and weathering zone topography about each 

sample. Using a Kuwahara algorithm, we choose the most coherent window within which 

we apply a structure-oriented Karhunen–Loève filter to model the coherent noise. Finally, 
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we remove the linear moveout correction and subtract the modeled groundroll from the 

original data.  We validate our workflow using a synthetic gathers having the same 

geometry as our field data we then apply our workflow to a merged legacy data volume 

consisting of four 3D surveys acquired in the 1990’s and evaluate its efficacy using 

modern seismic attribute to map faults and flexures.  

 

     INTRODUCTION 

 Several techniques have been developed for coherent noise suppression in the last 

30 years. Groundroll on 2D seismic shot gathers and receiver gathers acquired over flat 

topography often appears as low frequency noise exhibiting nearly linear moveout. 

Embree et al.  (1963), Treitel et al. (1967) and Kirchheimer et al. (1985) used f-k fan filters 

to remove unaliased groundroll on 2D gathers. However, if the data are coarsely sampled 

(most legacy land surveys) the groundroll will be aliased in the kx domain (Foti et al., 

2002), such that the aliased component of groundroll may overlap the signal components 

of the spectrum.  Radon, -p, and radial transforms have also been applied to groundroll 

suppression (Russell et al., 1990; Brysk and Mc Cowan, 1986, Henley, 2003). Turner 

(1990) showed the appearance of spatial aliasing in the -p domain. Trad et al. (2003) 

achieved reduced aliasing using a sparse Radon transform.  Although recent 

developments in “high resolution” Radon transform algorithms have made 

improvements, irregular moveout of groundroll on rough topography limits their 

effectiveness even for 2D data.  
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 Liu (1999) modeled groundroll on common shot gathers using the Karhunen-Loève 

(KL) transform. Liu first picked groundroll alignment functions on each 2D shot gather 

to flatten the groundroll. He then formed a covariance matrix about the flattened 

groundroll and computed its eigenvectors and eigenvalues. He reconstructed the coherent 

groundroll using the strongest eigenvalue eigenvector pairs, and removed the moveout 

correction. Finally, he subtracted the modeled groundroll from the original data to obtain 

a filtered result. Done (1999) improved the workflow by defining different window sizes 

while forming the covariance matrix. Montagne and Vasconcelos (2006) added an 

alignment function to find the correct velocity to flatten the groundroll.  In general, 

groundroll is dispersive which makes flattening a human intensive process. Figueiredo et 

al. (2009) partially addressed this issue by muting the top and base of the groundroll zone 

prior to flattening and application of the KL transform, thereby minimizing any negative 

impacts on signal outside the noise cone. In a related problem regarding high amplitude 

tube waves masking upcoming P- and S-waves of interest on a VSP, Mulder et al. (2002) 

used an adaptation of structure-oriented filtering.  Their version filtered within coherent 

windows and avoided filtering in incoherent windows where the moveout of the tube 

wave changes due to abrupt vertical changes in velocity. All these methods were applied 

to 2D data. 

 

 In general, simple 2D f-k and linear Radon filters do not work well on 3D data, 

where the travel time from a shot location (xs, ys) to a receiver location (xg, yg) is given 

by a hyperbola 

                                         t = [( xg – xs)
2 + ( yg – ys)

2]1/2   /Vgr                                         (1) 



91 

where,  Vgr is groundroll velocity.   f - k filters and Radon filters can be extended to 3D 

seismic geometries. Gaiser (1995) sorted the 3D gathers by offset, and accounted for 

unequal trace spacing by computing an  f – x domain fan-filter using a least squares 

approach. Galibert et al. (2002) applied a true f-kx-ky filter to 3D seismic data to filter 

coherent noise. Neither of these methods work if the coherent noise is aliased. Liu and 

Marfurt (2004) found similar limitations using 3D -p-q Radon transform in suppressing 

coherent noise. Short window, coherence-driven filters often work better in the presence 

of discontinuous changes in moveout due to variations in topography, thickness and 

velocity of weathering zone. Using commercial software, D ‘Agosto et al. (2003) sorted 

their 3D data by offset, flattened using an average groundroll phase velocity, and then 

estimated the coherence and local residual moveout of the groundroll by cross-correlating 

adjacent trace pairs. For those samples where the coherence exceeded a processor-

determined threshold, the groundroll was estimated using the cross-correlation coefficient 

and subtracted. 

  We begin our paper with a description of the exploration objectives, data acquired 

and failure of conventional processing techniques (in piecewise continuous dispersive 

groundroll removal). We then addressed this problem by adapting a well-established edge 

preserving structure oriented filter (e.g. Marfurt, 2006) to enhance piecewise continuous 

dispersive groundroll, acquisition patch by acquisition patch. We apply this workflow to 

a legacy low fold merged survey contaminated by high amplitude, broadband, dispersive 

groundroll. We validate the efficacy of our algorithm by computing geometric attributes 

sensitive to noise and geologic discontinuities. We conclude with a summary of the value 

and limitations of this workflow.    
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 EXPLORATION OBJECTIVES AND DATA DESCRIPTION 

 

   Our study area lies between the Midland Basin (Permian Basin) and Fort Worth 

Basin, Texas. In this area, there is no Barnett Shale, such that the Mississippi Lime lies 

directly above the Ellenburger Limestone at a depth of 6000-8000 ft (1825-2450 m). The 

target in our study area is shallow, at approximately t = 1.2 s., the surface infrastructure 

is in place, and many small operators already hold acreage from shallower or deeper 

production. Advancements in horizontal drilling, acidation, hydraulic fracturing, and 

efficient disposal of large volumes of water make these reservoirs economic. In contrast 

to some shale resource plays, the Mississippi Lime is highly heterogeneous laterally. The 

major rock types are tripolitic chert, fractured tight chert, and tight limestone. The 

tripolitic and fractured chert have good porosity and good production in northern 

Oklahoma and southern Kansas.  

 

  Four seismic surveys were shot in the early 1990’s, three of which had EW 

receiver lines and one with NS receiver lines (Figure 5.1a). The merged surveys cover an 

area of 80 mi2 (207 km2). Initially, we followed the conventional land processing 

workflow for Mississippian play after Dowdell (2013) and Aisenberg (2013) including 

iterative static and velocity analysis, and prestack time migration. Unfortunately, the 

resulting images were still contaminated by acquisition footprint (Figure 5.1b and c). The 

seismic data are very low fold (average fold ~15) (Figure 5.1a). Examination of the 

migrated gathers (not shown) reveals strong groundroll aliasing. On the original shot 

gathers, the groundroll appears as high amplitude, aliased, coherent events that persist up 
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to 50 Hz (Figure 5.3a and b).  Modern 5D interpolation can often suppress footprint 

(Chopra and Marfurt, 2013). Using such a 5D interpolation workflow, reflectors are 

flattened through careful velocity picking and statics corrections prior to interpolation. 

Diffractors are only partially flattened such that edges in 5D interpolated volumes are 

somewhat smeared, but footprint free. Groundroll is not flattened and is incorrectly 

interpolated producing the inferior image seen in Figure 5.2.      

   

 The four surveys were acquired using vibrator sweeps of 14-90 Hz and 12-85 Hz. 

The presence of groundroll up to 50 Hz (Figure 5.3b) precludes the use of a simple low-

cut filter. The aliasing which prevents accurate 5D interpolation also prevents the use of 

modern f-kx-ky filtering.  

 In this paper we build on the coherent noise modeling concepts developed by 

Mulder et al. (2002), d’Agosto et al. (2003), Liu (1999), and Done (1999) as well as 

modern 3D edge preserving structure oriented filtering (Marfurt, 2006) and apply them 

to the 3D data volume, patch by patch. We recognize that the groundroll (1) is high 

amplitude, (2) is band limited (f< 50 Hz), (3) exhibits outgoing low group and phase 

velocity with few backscattered events, and (4) is piecewise coherent.  We are also 

fortunate that our data were acquired in patches (Figure 5.4), facilitating the 

implementation of a 3D dip filter across channel number and shot number dimensions. 
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METHOD 

 Figure 5.5 summarizes our workflow. The seismic data includes geological 

reflections of all frequency ranges (12-85 Hz). Our first step is to apply a low pass filter 

(Figure 5.6a), f < 50 Hz (10-15-45-55 Hz) that removes the signal in the higher frequency 

range (50 < f < 85 Hz).  The second step is to window the groundroll contaminated zone 

based on an average group velocity of 1000 m/s (Figure 5.6b). In this manner, subsequent 

filters will not impact reflection events outside the groundroll window. In the third step 

(Figure 5.6c), we apply a linear move out (LMO) correction using groundroll phase 

velocity v = 1500 m/s (5000 ft/s), thereby approximately flattening the shingled 

groundroll events and misaligning the higher apparent velocity geological reflections of 

interest. At this point, we have created a patch of data (Figure 5.4) that is amenable to 3D 

edge preserving structure-oriented filtering (Marfurt, 2006).  

 We compute the residual inline (Figure 5.7a) and crossline components of linear 

moveout as well as coherence (Figure 5.7b) within each and every 3 channel by 3 shot by 

0.020 s analysis window. Each sample forms part of 9 spatial by 21 vertical (or 189) 

windows. The most coherent Kuwahara (1976) window (i.e. the one that best represents 

moderately dipping coherent groundroll) is used for subsequent analysis (Figure 5.8). If 

the window is sufficiently coherent (c > 0.3) we apply a Karhunen–Loève (KL) filter to 

model the strongest event (the moveout-corrected groundroll) at the current sample of 

interest.   If the window is incoherent (c < 0.2), only misaligned signal (or random noise) 

exists, and no filter is applied. We blend the modeled noise and signal for value of 0.2 < 

c < 0.3.   
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 We apply inverse linear moveout after the KL filter (Figure 5.7)  to obatin the 

modeled groundroll (Figure 5.9a). Finally we subtract the modeled groundroll from the 

original data. A major advantage of KL filtering is that  the scale of the seismic amplitude 

does not change. A simple subtraction therefore is effective and sufficient (Figure 5.9b). 

In this workflow, the most important parameters are the high cut frequency, linear 

moveout velocity, window size, and the threshold values of coherence. We obtain the 

high cut frequency by simply applying bandpass filters to the gather to determine at which 

frequency band the groundroll is sufficiently low in amplitude. Since we know our data 

are dispersive and will need to search for residual linear moveout we only need an 

approximate phase velocity of groundroll. The size of vertical analysis window used in 

the KL filter should be smaller than the dominant groundroll period to avoid vertical 

mixing of events.  If the widow is too large, vertical samples that correspond to different 

groundroll phase velocities will be smeared, reducing the amount of noise that can be 

modeled. When using a nine-trace (three shots into three channels) window, we find that 

the first two eigenvectors (rather than simply the first eigenvector) better estimate the 

groundroll.   Coherence is computed as the ratio of the energy represented by the first two 

eigenvectors to that of the original data. After linear moveout using the groundroll group 

velocity, reflection events are in general strongly overcorrected and aliased such that this 

appears as low coherence zones in the flattened data volume. By co-rendering coherence 

plotted against a polychromatic color bar with seismic amplitude data plotted as a gray 

scale one can easily choose a cut off value of coherence below which there is no 

significant groundroll present.  
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Validation with a Synthetic patch 

 We generated prestack synthetic data to validate our groundroll suppression 

workflow. First we created a model with very shallow layers and velocity increasing with 

depth, in order to generate dispersive groundroll. We then created a second model with 

deeper layers to generate reflections. We combined the results of the two models to 

generate the final synthetic. We then generated a synthetic 3D patch using geometry 

representative of our real seismic data (Figure 5.10a).   We implemented the groundroll 

suppression workflow described in this paper to remove the dispersive groundroll. Figure 

10b shows that most of the dispersive groundroll was removed while the reflectors were 

preserved. It is important to notice that the groundroll at near offsets appears to be an 

incoherent event and could not be removed by this technique. 

 

APPLICATION 

 Comparing the shot gathers before (Figure 5.3a) and after groundroll suppression 

(Figure 5.9b)   shows that we remove the highly aliased groundroll and preserve the 

reflection events of interest. When sorted to CMP super gathers, the filtered data provides 

significantly improved velocity spectra.  

 Calculating coherence attribute after groundroll suppression (Figure 5.11b), we 

observe that the footprint is minimized and geological structures are enhanced.  After 

migration, we applied two passes of prestack structure oriented filter and one pass of post-

stack structure oriented filter (Marfurt, 2006; Höcker and Fehmers, 2002) to remove more 

random noise from the data (Figure 5.12).  



97 

 In order to verify the applicability of the method, we applied the groundroll 

suppression method to a second data set. These legacy data were acquired in 1990 over 

the Central Basin Platform, Texas, USA, and is representative of the much of the data 

used to drill horizontal wells in this important shale oil resource play.  Figure 5.13 

indicates that this method successfully eliminates the aliased groundroll.        

 

CONCLUSIONS 

 We have adopted concepts of edge preserving structure oriented filtering 

commonly used to improve the continuity of reflectors in 3D migrated data volumes to 

modeling groundroll in LMO corrected acquisition patches. Through shot and channel 

3D residual moveout search, within overlapping windows we are able to model piecewise 

continuous, dispersive noise trains. 

 We show by application to two data volumes that our workflow provides excellent 

results when applied to aliased groundroll suppression where f-kx-ky techniques fail. The 

explicit search for sample-by-sample phase velocities allows the filter to adapt to 

dispersive groundroll wave trains. The short, overlapping 3D window implementation 

allows the filter to model piecewise continuous groundroll events that are broken by 

irregular topography and discontinuities in the weathering zone. The suppression of 

groundroll provides more accurate velocity analysis and preconditions the data for 

subsequent 5D interpolation. Coherence slices show that random noise is suppressed 

while edges are preserved.  Our surveys are dominated by radially-traveling groundroll, 

allowing us to approximate the moveout using a user defined velocity and the source-

receiver offset. If backscattered groundroll were a problem (Strobbia et. al, 2014), a more 
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computationally intensive search about a 3D moveout cone rather than within the source-

receiver sagittal plane would be required.  
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FIGURES AND TABLES 
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 Figure 5.1 (a) Fold Map of the four merged surveys. Before reprocessing (b) vertical 

section of seismic amplitude (c) time slice at t =1.1 sec at the level of Mississippian chert 

for coherence. Note the strong EW and NS footprint in both images (indicated by yellow 

arrow). 
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Figure 5.2. After 5D interpolation before eliminating coherent noise (a) vertical section 

of seismic amplitude (b) time slice  at  t =1.1 sec at the level of Mississippian chert for 

coherence. Notice footprint seen in Figure 5.1c appears to be interpolated. 
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Figure 5.4. A representative receiver patch. The common shot gather associated with 

source location indicated by blue dot is shown in Figure 5.3. These 18 sources into 360 

channels forms an 18x360 trace 3D seismic volume. If we flatten the noise in this volume 

using linear moveout, we can use multiwindow structure oriented filters to model it.  
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Figure 5.5. The groundroll suppression workflow presented in this paper. 
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Figure 5.6. (a) Common shot gather sorted by absolute offset x after a high cut filter 

removing reflections with f >50 Hz, strong ground roll window indicated by top and base 

mutes parallel to the group velocity of approximately 1000 m/s. (b)  Windowed data 

shown sorted by common shot vs channel number. (c) The same gather after linear 

moveout using a phase velocity of v=1524m/s (5000 ft/s). Note the ground roll events are 

relatively flat while the underlying signal is steeply dipping.   
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Figure 5.7. (a) Local residual linear moveout (dip) in Inline direction, where increasing 

channel numbers are “in-line” and increasing shot numbers are “cross-line” in reference 

to the 18x360 trace patch geometry. Crossline dips are computed but not shown. (b) 

Coherence computed on the windowed, flattened patch, high coherence indicates 

coherent ground roll. (c) Modeled ground roll using a Karhunen-Loeve filter within those 

windows exhibiting a coherence, c > 0.3.  
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Figure 5.8. A simplified cartoon showing a suite of nine overlapping 3 shot by 3 receiver 

Kuwahara (1976) windows used to filter the ground roll. The red star and triangle indicate 

the target trace to be filtered such as the blue shot  point into a channel on receiver line 

R5 in Figure 4. First we compute the coherence along local 3D dip for each of the nine 

windows. The window with the highest coherence value best represents the coherent 

ground roll. Within this window, we then apply a 9-trace Karhunen Loeve filter along dip 

to model the desired ground roll for the red source-receiver pair. In actual 

implementation, we also allow our windows to vary vertically over ±10 samples, such 

that we search 21x9 =189 windows, all of which include the target time sample at the 

target shot-receiver trace.  
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Figure 5.9 (a) Modeled ground roll, after reverse linear move on the gather shown in 

Figure 5.7c. Notice that the modeled ground roll has dominant frequency range of 25-40 

Hz. (b) The same shot gather (sorted by shot vs channel) after ground roll suppression, 

obtained by subtracting modeled ground roll (Figure 5.9a) from the original gather 

(Figure 5.3a). (c) Amplitude spectrum of seismic shot gather before (in blue) and after 

(in red) ground roll suppression.   
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Figure 5.11. After ground roll suppression (a) vertical section of seismic amplitude (b) 

time slice  at  t =1.1 sec at the level of Mississippian chert for coherence. Compare this 

figure with the Figure 1, to see improvements after ground roll suppression. 
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Figure 5.12. After ground roll suppression as well as prestack seismic data conditioning  

(a) vertical section of seismic amplitude (b) time slice  at  t =1.1 sec at the level of 

Mississippian chert for coherence. Compare this figure with the Figure 5.1, to see 

improvements after ground roll suppression. 
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Figure 5.13. A different seismic data set, (a) before ground roll suppression, (b) after 

ground roll suppression. Notice, the elimination of aliased ground roll and preservation 

of signal after ground roll removal.  
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 : ESTIMATION OF TOC AND BRITTLENESS 

 

This chapter is written as first person for this dissertation.  This paper will later be 

submitted to ‘Interpretation’ after some modifications with the following authors:  
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Annual convention, Search and Discovery Article: 80429. 

 Verma, S. , A. Roy, R. Perez, K. J. Marfurt, 2012, Mapping high frackability and high TOC zones 

in the Barnett Shale: Supervised Probabilistic Neural Network vs. unsupervised multi-

attribute Kohonen SOM: 82nd Annual International Meeting, SEG Expanded Abstracts. 

Zhao, T., S. Verma, and D. Devegowda, 2015, TOC estimation in the Barnett Shale from triple 

combo logs using support vector machine: 85th Annual International Meeting, SEG 
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ABSTRACT 

The Barnett Shale in the Fort Worth Basin is one of the most important resource 

plays in USA. TOC and brittleness can help to characterize a resource play. Higher TOC 

or organic content are generally associated with rocks with higher clay content, which are 

ductile in nature. Higher quartz content results in increased brittleness. Brittle rocks are 

easily fractured, with fracture better held open with proppant. Juxtaposition of brittle-

ductile rocks provide permeable pathways for hydrocarbon to reach the well bore.   

 Cost of core acquisition and petro-physical measurements are very high as 

compared to wireline logging. I estimate TOC from wireline log using Passey’s method 

and attain a correlation of 64% where errors in the base line interpretation can lead to 

inaccurate estimates. Using non-linear regression with Passey’s TOC, normalized 

stratigraphic height and acquired wireline logs the correlation was increased to 75%. This 

regression can be applied to un-cored wells but logged wells to estimate TOC and thereby 

provide ground truth with in the seismic survey.  

  Core measurements provides accurate measures of both TOC and mineralogy. 

Brittleness indices are computed based on mineralogy using Wang and Gale’s formula. 

While the correlation of BI with elastic logs (, , VP/ VS, ZP and ZS)and wireline logs 

is good (78%). That with the triple combo logs falls to only 66 % and form less reliable 

proxies.  

 I correlate production to volumetric estimate of TOC and brittleness by computing 

distance weighted averages about assumed perforations in120 horizontal wells. 

Correlation of blind well test shows 38% was encouraging suggesting that the geologic 

component of completion provides an important contribution to well success. 
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INTRODUCTION 

 

TOC and brittleness are the two most important parameters for resource play 

characterization. In general, resource plays have low permeability and require hydraulic 

fracturing of the rock to make them produce economically. Rocks which are brittle (have 

a high brittleness index) can be fractured more easily than to the rocks which are ductile 

(have a low brittleness index, Wang and Gale, 2009). In general high TOC is associated 

with higher clay content; these ductile rocks are more difficult to fracture and more 

rapidly close about proppant. The sweet spot is often laminated brittle-ductile couplets 

(Slatt, and Abousleiman, 2011). In such situations the well drilled and completed in the 

brittle rock which (after fracking) provides high permeable pathways into the associated 

high TOC rock.  

TOC can be measured on core data accurately, and can be estimated on wireline 

logs using different methods (Sondergeld et al., 2010), with Passey’s method (Passey et 

al., 1990) being one of the most popular methods. Passey’s method requires interpreter 

definition of baseline on porosity and resistivity log. Errors in defining the base lines 

result in inaccurate TOC estimates.  

Several well logs can measure the presence of TOC. High gamma ray response 

can be correlated to high uranium content in organic matter (Fertl and Chilingar, 1988). 

Organic matter is less dense than to matrix minerals resulting in a low on bulk density 

log   (Schmoker and Hester, 1983). Transit times recorded on P-sonic log may increase 

in the presence of organic matter (Passey, 1990; Sondergeld et al., 2010).  Neutron logs 

may provide a high response in the presence of organic matter (Sondergeld et al., 2010).  
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Organic matter being non- conductive, the resistivity logs read high values for high TOC 

(Passey, 1990).  

Jarvie et al. (2007) defined BI (brittleness index) as a measure of brittleness based 

on mineralogy. The formula suggests that an increase in percentage of quartz (brittle) or 

decrease in clay (ductile) or carbonate (ductile) % will increase the brittleness.  Wang and 

Gale (2009) modified the formula by adding TOC and dolomite in to the equation, where 

the increase in dolomite (brittle) increases BI while an increase in TOC (ductile) decrease 

BI. Rickman et al.  (2008)  provided a way to estimate average brittleness with elastic 

properties Young’s modulus and Poisson’s ratio. Zhang et al. (2014) derived Young’s 

modulus and Poisson’s ratio with pre-stack inversion and were able to estimate volume 

of brittleness with Rickman’s equation.  Perez and Marfurt (2014) working on Barnett 

Shale, created template for brittleness with  and  based on the core and well log data, 

and they then used the template to compute a volume of brittleness from  and  3D 

volumes. Zhang et al. 2015 derived 10 classes of brittleness on the cored well using a 

support vector machine using elastic logs (ZP, ZS, /,  ) and Wang and Gale’s 

brittleness index. They then apply these classes to the volumetric estimates of ZP, ZS, / 

and   to obtain a brittleness volume.  

Brittleness varies with mineralogy and response on the wireline logs change for 

different mineralogy. So, wireline log can provide an indirect measurement of BI. For 

example quartz is not radioactive and exhibits low gamma ray response whereas clay 

which has radioactive minerals produces high gamma ray response. Quartz is a heavier 

mineral compared to clay on a bulk density log. Limestone often exhibits high resistivity 
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compared to clay.  P-wave velocity is higher in limestone, lower in quartz and lowest in 

clay.   

I begin with an overview of the geology of study area. Next, I describe 

methodology, where first I show how we can estimate TOC and brittleness from core to 

well log data, and from well log to 3D volume. Then, I discuss the results of my analysis. 

I conclude by correlating the volumetric estimates of TOC and BI to first 90 days of 

production.     

GEOLOGY OF THE STUDY AREA 

The high TOC Mississippian-age Barnett Shale is an unconventional resource 

play in Fort Worth Basin (FWB), which is in Texas, USA (Figure 6.1). The FWB is a 

shallow N-S elongated foreland basin formed at a convergent plate boundary during the 

late Paleozoic (Walper, 1982). The FWB is bordered by the Ouachita thrust belt, the 

structural Bend arch and the Precambrian Llano uplift.  

The FWB basement is comprised of Precambrian granodiorites and 

metasediments. In the Cambrian, the Wilberns, Riley and Hickory formations were 

deposited, followed by the Ellenberger and Viola limestone formations during the 

Ordovician (Montgomery, 2005). In the study area in the NE FWB, the Viola limestone 

is partially eroded, with the Barnett Shale deposited on the unconformity. The Barnett 

Shale sequence is characterized by alternating shallow marine limestones and black 

organic rich shales. In the area of study, the Barnett Shale is separated into Upper and 

Lower shale units by the intervening Forestburg Limestone, which thins and disappears 

to the south-west. The Viola in the area of study is not highly karsted and forms an 

effective fracture barrier. 
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METHODOLOGY 

The methodology consists of two steps (Figure 6.7). First, I correlate TOC and 

Brittleness Index (BI) to wireline logs to form a proxy from common triple combo log. 

TOC was measured with Rock Eval pyrolysis at the two core wells, whereas BI was 

computed with FTIR mineralogy using the Wang and Gale formula. I will then use this 

correlation to predict TOC and BI at the 37 logged (but un-cored) wells that fall within 

the 3D seismic survey.  Second, I use the well log predictions at the 37 wells as truth and 

correlate them to a suite of seismic attributes extracted about the wells. This final 

correlation will provide a volumetric estimate of TOC and BI at each voxel with in the 

Lower Barnett Shale.  

 Most of the production in the Barnett Shale comes from the Lower Barnett Shale 

in the study area. For my study I used data from two cored wells which are outside of the 

seismic survey area. I applied a depth shift (bulk shift) ±2ft on the core measurements 

which increased the correlation of well logs to the core data. Both cores completely 

sample the Lower Barnett Shale, part of the Forestburg, and the Upper Barnett Shale.  

Well A lies less than 1 mile to the NE while Well B lies approximately 21 miles in the 

SW, boundary of the seismic survey (Figure 6.2). There are approximately 50 vertical 

wells in the survey area containing neutron, density and deep resistivity logs. An 

additional 40 vertical wells lack these log suites and will not be used. Around 13 wells 

out of 50 do not have complete log in the Lower Barnett Shale. Finally, for analysis I 

selected 37 wells which have neutron, density, and deep resistivity logs. Out of these 37 

wells few wells have completely or partially missing neutron porosity and P-sonic, I used 

neutral network method to predict missing well logs.  Apart from this there are 261 
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vertical and 120 horizontal wells with first 90 days of production (but no well logs) are 

present with in the study area.  

 

CORRELATING CORE TO WIRELINE MEASUREMENTS 

TOC estimation using Passey’s equation 

Passey’s (1990) method is also called "Delta log R" method, and it requires a 

resistivity log along with a porosity log e.g. P-sonic, density or neutron log in order to 

estimate TOC log:     

∆logR = log10 (RTD / RTD_Base) - 2.5 * (RHOB – RHOB_base)     (1)  

TOC = (∆logR * 10 a),                  (2) 

where,  

a=0.297 – 0.1688 * LOM, and          (3) 

RTD : deep resistivity in any zone (ohm-m) 

RTD_Base : deep resistivity baseline in non-source rock (ohm-m) 

RHOB: bulk density (g/cm3) 

RHO_Base : bulk density baseline in non-source rock (g/cm3) 

LOM: Level of Maturity. 

The RTD baseline is interpreter dependent. For well A I used, RTD_base=5 ohm-

m, RHOB_base =2.58 g/cm3 (Figure 6.3). LOM is the level of maturity; a higher value of 

LOM indicates rock is more mature. LOM has been correlated to vitrinite reflectance 

(RO) (Figure 6.4), which also indicates maturity of rock. Figure 6.4 suggests that the LOM 

value falls between 10 and 12. I evaluated several LOM values between 10-12 and found 

TOC computed with LOM=11.5 provides the best match with core TOC measurements. 
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I then used the same values of RTD_base, RHOB_base and LOM for all the wells in the 

survey area.  

Figure 6.5 shows that the TOC computed with Passey’s method follows the trend 

of core measured TOC on both Well A and Well B. Figure 6.6 shows that the TOC 

correlation (between core measurements and TOC computed with Passey’s method) on 

Well A, for which the base line was chosen, is higher than the well B, which is 30 miles 

away from the Well A. While these correlations are 64% and 55% respectively, I wish to 

improve them.  

Multilinear regression 

Multilinear regression is routinely used to estimate missing logs (Holmes et al. 

2003). In this work, I wish to estimate the “missing” TOC log from these that were 

measured. In addition to density, neutron porosity, gamma ray, deep induction (Deep 

Resistivity) and P-sonic well logs I used two computed logs, Passey’s TOC and 

normalized stratigraphic height; (Figure 6.9).  Kale, 2009 analyzed working on the Well 

A found an increase in porosity with TOC. Hydrocarbons exhibit higher resistivity than 

saline water clastic rocks which suggests may be deep resistivity may be sensitive to 

TOC.           

Using a baseline from well A, I computed TOC with Passey’s method on about 

37 wells with in the seismic survey area. Figure 6.8 shows that the Lower Barnett Shale 

thickness decreases from North-East (A’) to South-West (A). Using gamma ray logs 

Singh (2008) correlated nine para-sequence sets along AA’ in the Lower Barnett Shale. 

This correlation suggests the use of normalized stratigraphic height, Zn : Zn = (ZViola–Z) / 
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(ZViola - ZLBS) where, Z is depth of a log sample and where , ZViola and ZLBS are tops of the 

Viola Limestone and the Lower Barnett Shale in that log.  

While forming the multilinear regression, I allow the core measured TOC to be 

correlated to samples in a window around corresponding depth points of the well logs. 

Such flexibility compensates for the residual depth mismatch between the core and well 

log. I compute correlations and errors for different combinations of input logs (up to five) 

and window sizes from ±0 ft to ±4 ft (Figure 6.9). I use average validation correlation as 

the search criteria for step wise multilinear regression for including the next best well log 

in to regression (Hampson et al., 2001). Validation correlation is the correlation computed 

by including all the wells in regression except the well at which correlation is to be 

computed. Validation correlation is computed on all the wells one by one and then 

average of such correlations is computed. I found that window of ±1 ft and four input 

logs provided an average validation correlation of 70% and a training correlation was 

76%. Inclusion of 5th log increased validation error, which indicates overtraining. 

     Given the multilinear regression between logs and core TOC, I can choose 

which logs to use in nonlinear neural network. Neural network estimation has shown 

better results for the wells which are in the proximity of the training wells (personal 

communication with Mr. Satinder Chopra). I therefore use with well A to train the neural 

network and obtain a training correlation of 80% and the blind well correlation (on well 

B) of 73% (Figure 6.10). With this confidence I used the trained neural network to 

estimate the TOC on the 37 un-cored wells inside the seismic survey. 
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Brittleness estimation using Wang and Gale equation 

Brittleness is a measure to quantify the ability of rock to fracture (Wang and Gale, 

2009). Brittleness depends on rock strength, texture, effective stress, temperature, 

lithology, fluid type diagenesis, and TOC. Jarvie et al. (2007) defined the brittleness index 

(BI) based on mineralogy. Wang and Gale (2009) modified their equation by including 

TOC and subdividing the carbonates into dolomite and limestone: 

𝐵𝐼 =
𝑄+𝐷𝑜𝑙

𝑄+𝐷𝑜𝑙+𝐿𝑚+𝐶𝑙+𝑇𝑂𝐶
 ,               (4) 

where , BI: Brittleness Index, 

          Q = Quartz, 

 Dol=Dolomite, 

 LM = Limestone, 

 Cl = Clay and 

 TOC=Total Organic Carbon. 

Figure 6.12 shows the computed BI on the two cored wells. Wang and Gale 

formula includes TOC in the denominator, which indicates BI is modified by TOC. It 

appears that increase in TOC would decrease BI significantly. But, in reality TOC does 

not have such huge effect on BI because the TOC weight % in general is less than 5%,s 

such that the effect of TOC on brittleness index is not significant.  

 

Correlation to wireline logs 

I use the workflow similar to the previous TOC estimation, to estimate BI logs on 

the wells inside the seismic survey area. In stepwise multilinear regression, the neutron 

log has the highest correlation with the brittleness index (Table 6.2): 
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BI=0.0477*NPHI2-0.186*Density2+2.7X10-8RTD2+1.74,      (5) 

where,  

NPHI: Neutron Porosity (Fraction), and 

RTD: Deep Resistivity. 

 The multilinear training produces a correlation of 66% with ±2ft window length 

and three input well logs. I use a list of the best attributes obtained by the multilinear 

regression in the neural network training. I trained the network with well A, and obtained 

a training correlation of 68% and a blind well (well B) correlation of 63% (Figure 6.15). 

Given this validation, I used the trained neural network to compute brittleness index on 

the wells inside the seismic survey area.   

 

  VOLUMETRIC ESTIMATION OF TOC AND BRITTLENESS 

The area of study is located in in Fort Worth basin, which has approximately 30 

mi2 of 3D seismic data (Figure 6.2) and 37 wells with estimated TOC and Brittleness 

Index (Figure 6.16). A total of 30 wells with TOC (and BI) logs were chosen for the 

training part of the analysis. I used a commercial software package which predicts 

reservoir properties using seismic attributes and well log data. In order to minimize 

spurious correlations (Kalkomey, 1997) I limited myself to attributes that are directly 

correlated to either lithology (acoustic impedance, shear impedance, VP/VS and Lambda-

Rho and Mu-Rho – computed by Perez, 2013) or stratigraphic stacking patterns (spectral 

magnitude components from 10-90 Hz at 10 Hz intervals, total energy). Similar to well 

log prediction of TOC, I computed normalized stratigraphic height volume, with 

equation, Tn : Tn = (TViola–T) / (TViola - TLBS) where, T is time of seismic sample and, TViola 
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and TLBS are tops of the Viola Limestone and the Lower Barnett Shale surface in that 

seismic trace.  

The process can be divided into three steps (Figure 6.17). First, I need to define 

the attributes used and the vertical zone of influence (defined as a convolutional operator) 

in which the well logs are correlated to seismic attributes. The best attributes and operator 

length result in the minimum validation error. Extending the operator length is equivalent 

to adding attributes at adjacent stratal slices to the stepwise linear regression workflow, 

increasing the chances for Kalkomey’s (1997) false positive correlations. Since our peak 

frequency is about 50 Hz, I limited the window lengths to be less than ±20 ms.  

 

Volumetric TOC estimation 

Using multilinear regression, I found that an operator length of ± 8 ms with 4 

attributes provided the maximum correlation (Table 6.3) for TOC estimation. The training 

correlation was 84% and the average training error was 0.58 % (Figure 6.18).  

 

Given this suite of attributes and operator length, the second step is to relax the 

linear relationship obtained with multi linear regression to allow a non-linear relationship 

using a probabilistic neural network using Gaussian weighting functions. PNN training 

correlation was 87% and the average validation correlation was 75% with the average 

validation error of 0.54. In the third and final step, the trained network is applied to 

generate a 3D volume of TOC. 
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Volumetric Brittleness estimation  

Perez (2013) used LambdaRho and MuRho to estimate BI. Rickman et al. (2008) 

proposed a BI formula based on Young’s Modulus and Poisson’s Ratio. This motivated 

me to include Young’s Modulus, Poisson’s Ratio, LambdaRho and MuRho volume as 

input volumes. I keep all the input attributes used in TOC estimation. With multilinear 

regression analysis, I found the best correlation and least validation error with a window 

of ± 12 ms and five attribute provided (Table 6.4) for BI estimation. I do neural network 

training with the best attributed indicated by multilinear regression. The training 

correlation was 67% and the average error was 0.054 (Figure 6.20).  

 

Correlation of TOC and BI to Relative EUR: AASPI proto type Cigar Probe 

Hydrocarbon production in the Barnett Shale is a function of both geology and 

completion. The completion techniques used in this surveys changed with time, but most 

of the wells were less than one mile long with two to four stages. In this work I assume 

that production varies linearly with the number of stages and the length of the well with 

this simplification, I then wish to correlate the first 90 days of production to the 

volumetric estimate of TOC and BI. Barnett production has been empirically related to 

length of the well, number of stages, brittleness of the rock, TOC of the rock, layering of 

the rock (Brittle/Ductile couplets, Slatt and Abousleiman, 2011), natural fractures or 

zones of weakness (sometimes positively, but in core area of FWB, usually negatively, 

Trumbo, 2010). Relative production ranges between 0 to 10, 10 being the best production 

well and 0 being no production for 120 horizontal wells within the seismic survey. I use 

the trajectory of the horizontal wells, and assume that all the points of the well are 
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perforated. Microseismic data (Perez, 2013) confirm that production comes only from 

targeted Lower Barnett Shale (LBS) fracture barriers provided by Forestburg lime (top) 

and Viola lime at the (base).  

Higher TOC indicates higher amount of oil/gas present such that higher TOC can 

increase the production. Brittle-ductile couplet are important for better production (Slatt 

and Abousleiman, 2011).  Trumbo (2010) found a correlation between the curvature and 

micro-seismic events; most of the micro-seismic events occur in the negative curvature 

or bowl shaped features (Figure 6.22). In this survey the ridges are fractured but 

cemented, forming fracture barriers.      

 Underlying physics suggests that, fluid flow from a voxel of high TOC to the well 

perforation location decays as 1/R2, where R is the Euclidean distance from any point to 

the well. Similarly, hydraulic pressure, P, from a perforation location to a voxel of brittle 

rock decays as 1/R2
; pressure defines the deviatoric stresses, σ1-P, σ3-P. For this reason, I 

integrate the Green function’s response at each element along the well to each voxel 

weighting attributes TOC, BI, k1 by 1/R2.     

In order to correlate the production data of horizontal wells with BI and TOC, I 

used internal AASPI program “cigar probe” (Figure 6.23). In cigar-probe an average 

value of the attribute is computed around the well bore path; a sphere of influence with 

radius R is constructed at each point of on the well path, and then theses spheres are 

integrated which ultimately gives a 1/R2 weighted average property. The output of the 

cigar probe is one value for per well, with an assumption that the each point on the well 

bore path in the horizontal section is contributing equally. This is similar to the 

availability of relative EUR values. I choose a radius of 1,000 ft influence to compute the 
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BI and TOC. For this analysis I used 120 horizontal wells which were completely inside 

the survey area.        

 

Limitations of TOC and BI correlation with Production using cigar probe 

Rocks fracture nonlinearly (when the deviatoric stress exceeds that defined by Mohr’s 

circle) and natural fractures in brittle rock occur only after a given threshold (Staples, 

2011). For this reason, simple weighted averages are not appropriate, but rather some 

weighted average of that volume of rock that exceeds a critical brittleness, or a specific 

percentile of a given rock property (weighted medians and weighted percentiles). 

 

RESULTS 

  TOC computed on the well logs with Passey’s equation on well A has a 64% 

correlation; using the same base lines and LOM values the well B has a lower correlation 

(55%). The maturity map of Barnett Shale (Figure 6.4a) shale indicates that the rock 

maturity changes at with different parts of the Fort Worth basin. One should find LOM 

values, based on the core vitrinite reflectance.  Non-linear regression increases the 

training correlation to 80% and validation correlation to 73%. The use of Passey’s derived 

TOC as well as normalized stratigraphic height provides significant improvement in the 

correlation.  

I use Wang and Gale’s (2007) formula to estimate brittleness index (BI).   Similar 

to TOC from core to well log, I use non-linear regression to estimate BI logs on the wells. 

BI computed with mineralogy, and estimated BI with the multilinear regression had a 



138 

correlation of 66%, and with neural network estimated BI with 68% of training 

correlation. The blind well correlation on well B was 63% for the neural network.  

I followed my previous work in which I estimated gamma ray volume (Verma et 

al. 2012), for computing TOC and BI volumes in Lower Barnett Shale. The multlinear 

regression analysis suggests that Lambda-Rho has the highest contribution in the 

regression relation. Use of neural network increases the correlation to 87 % from 84%. I 

also compared the results on the wells, which were not a part of regression analysis and 

observed a blind well correlation of 70% (Figure 6.19).  

Neural network analysis for the BI has 67% correlation and validation correlation 

43%, which is lower than the TOC correlation. This could be because the seismic 

impedances as well as well log properties are only indirectly related to mineralogy. The 

estimated BI volume shows a good correlation with the training wells and a decreased, 

but acceptable correlation to the blind wells (Figure 6.21).  

BI estimation with the Wang and Gale formula suggests that BI would decrease 

with an increase in TOC. Examining cross-plots on well A (Figure 6.13), I observe a 

decrease in BI with an increase in TOC in deeper part of Lower Barnett Shale. We may 

conclude that BI is decreasing because of TOC %, but as we know that TOC % is 

significantly small around 2-6%, so TOC cannot change BI significantly. For a complete 

picture one should observe cross-plot of clay with TOC. Clay content increases with an 

increase in TOC, actual numbers of clay % change is very high compared to TOC % 

change. BI values will change significantly with variation in clay %.   

Crossplot between the TOC and production as well as BI and prodcution shows 

poor correlation (Figure 6.24). I have used weighted 1/R2 mean in order to computed 
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average property. A future research is suggested to using medians and weighted 

percentiles may provide improved correlation.  Prediction of production (relative EUR) 

with TOC and BI using neural network training shows, a correlation of 38% correlation 

on validation wells. This correlation can be improved by use of other attributes (such as 

curvature) known to plan an influence on completion.             

  

DISSCUSSION AND CONCLUSIONS  

For the Barnett Shale of the Fort Worth Basin in the study area, nonlinear 

regression prediction of TOC provides a better estimate of TOC compared to the estimate 

obtained using Passey’s method on the well log.  BI estimated on the well logs with non-

linear regression has a good correlation with the core computed BI. Core measured TOC 

observed the highest correlation with Passey’s TOC as a single well log, indicating that 

Passey’s method can be used when there is no core available in the study area given a 

reasonable value of level of maturity and baseline. Inclusion of normalized stratigraphic 

height in the non-linear regression increases the TOC correlation significantly.   

The Wang and Gale brittleness equation indicates an inverse relationship between 

BI and TOC, which also matches our observation in the lower part of the deeper part of 

Lower Barnett Shale. Since the TOC % is very small compared to total rock volume, it 

does make a change a significant change in BI. In general TOC occurs with clay minerals. 

The change in clay % can be considerably large number and it can cause a significant 

decrease in BI. Estimated TOC and Brittleness shows a good correlation with the blind 

well. Estimated BI and TOC volumes can be used to find the brittle ductile couplets as a 

sweet spot for drilling.  
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FIGURES AND TABLES 

 

 

Figure 6.1. Areal extent of the Mississippian Barnett Shale, Fort Worth Basin, Texas 

(Aydemir, 2011). The red circle indicates the approximate location of cored well A, used 

in this study. 
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Figure 6.2. Location of cored wells A and B with respect to the seismic survey.  

 

 

 

Figure 6.3. Interpretation of baseline for Density and ILD on Well A. The ideal baseline 

would be a shale/silt stone with zero total organic carbon. Black solid straight line on bulk 

density (RHOB) curve indicates RHOB_base and red solid straight line on ILD (deep 

resistivity) curve indicates RTD_Base. 
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Figure 6.4. (a) Mean vitrinite reflectance (Ro) map of Barnette Shale (Pollastro, 2007). 

Red circle indicates the approximate location of study area. (b) Vitrinite reflectance (Ro) 

vs Level of Maturity (based on Crain’s Petrophysical Handbook, 2015). 
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Figure 6.5. Gamma ray(GR), bulk density(RHOB), neutron porosity (NPHI), deep 

resistivity (RTD) and core TOC (in green) and TOC computed with Passey’s (1990) 

method (TOC_Passey, in pink) on (a) well A (on which we define the baseline), and (b) 

well B.  
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Figure 6.6. Crossplot between core measured TOC and ROC computed with Passeys’s 

method (a) well A on which I define the baseline, and (b) other cored well B.  
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Figure 6.7. Work flow for creation of BI and TOC volumes. 

 

 

Figure 6.8. Cross section AA’ showing subsurface stratigraphic correlation using gamma 

ray log (Singh, 2008).    
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Figure 6.9. Multilinear regression and input and output. 

 

 

Table 6.1 TOC estimated with window of ±1ft has least validation error and highest 

correlation with 4 well logs. 
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Figure 6.10. Cross plot between core measured TOC and neural network estimated TOC, 

(a) well A which was used to train the neural network, and (b) other cored well B.  

 



149 

 

 
Figure 6.11. Gamma ray (GR), bulk density(RHOB), neutron porosity(NPHI), deep 

resistivity(RTD), P-Sonic, TOC estimated with Passey’s method (TOC_Passey), 

normalized stratigraphic height, core measured TOC (in green) and neural network 

estimated TOC (TOC_PNN, in black) at (a) training well A, and (b)  validation well B. 
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Figure 6.12. Gamma ray well log and core measured mineralogy, quartz, total limestone,  

total clay, dolomite  along with core measured TOC and brittleness index computed with 

Wang and Gale (2009)  formula, on cored wells (a) well A, and (b) well B.  
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Figure 6.13. Cross plot of cored well A in lower Barnett Shale; (a) Core measured TOC 

vs Wang and Gale BI with FTIR mineralogy, (b) FTIR measured total clay % vs core 

measured TOC. BI and TOC has an inverse trend in deeper part of Lower Barnett Shale, 

as well as TOC increases with clay.  

 

 

 
Table 6.2. BI estimated with window of ±2ft has least validation error and highest 

correlation with 4 well logs.  
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Figure 6.14. Gamma ray (GR), bulk density, neutron porosity (NPHI), deep resistivity 

(RTD), P-Sonic,  neural network estimated TOC (TOC_PNN), normalized stratigraphic 

height, Wang and Gale computed BI (BI_W_G, in black) and neural network estimated 

BI (BI_PNN, in pink)  at (a) training well A, and (b)  validation well B.  
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Figure 6.15 Cross plot between core computed BI and neural network estimated BI, (a) 

well A which was used to train the neural network, and (b) other cored well B.  
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Figure 6.16. Map of top of Lower Barnett Shale surface. For neural network analysis, the 

circled wells were kept as blind wells and non-circled wells were used as the training 

wells.    

 

 

Figure 6.17. Probabalistic Neural Network work flow used to predict the TOC volume 

from seismic attributes. 
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Table 6.3. Validation and Training error using a window of ±8ms for volumetric TOC 

estimation. 

 

 

Figure 6.18. Cross-plot between predicted TOC using a neural network and TOC well log 

with 30 wells used in neural network training. 
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Figure 6.20. Cross-plot between predicted BI using a neural network and BI well log with 

30 wells used in neural network training. 

 

 

Table 6.4 Validation and Training error using a window of ±12 ms for volumetric BI 

estimation. 
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Figure 6.22. Map view of microseismic event locations corresponding to (a) Well C and 

(b) Well D the orientation of the fracture lineaments formed by the microseismic events 

align with the current maximum horizontal stress direction in the Fort Worth Basin (NE-

SW). (c) Horizon slice along the top Viola Limestone through the most positive curvature 

seismic attribute volume. The majority of the microseismic event locations fall into the 

areas with negative curvature values (bowl shapes). Red vectors indicate velocity 

anisotropy where the length of the vector is proportional of the degree of anisotropy while 

the direction indicates the azimuth of maximum anisotropy.The seismic data were 

acquired after 400 wells stimulated, such that the velocity anisotropy represents the post-

frack stress regime. (Modified from Perez, 2013 and Thompson, 2010). The maximum 

distance of a posted event from a well is 1000 ft, which will be used for as Rmax  in Figure 

6.23. 
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Figure 6.23. Illustration of the cigar probe workflow, horizontal well is drilled in the 

Lower Barnett Shale. The flow (production) to each perforation can be approximated by 

the impulse response of Green’s function 1/R2. I assume all the sections are perforated 

and each point on the well is producing equally. Integration of all the points to along the 

well bore path to get the weighted average property can be correlated to the production. 
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Figure 6.24 Crossplot between, relative EUR, and (a) TOC, and (b) BI. There is almost 

no-correlation between production and TOC or BI.  
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Figure 6.25. Neural network training with relative EUR as target property and TOC and 

BI as input. Training was done on 100 wells. (a) Cross plot between actual relative EUR 

and predicted EUR on training wells. (b) Plot of actual vs predicted for training wells and 

validations wells. Notice the training correlation is 54% and validation correlation is 38%. 
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 : CONCLUSIONS 

 

In this dissertation I examine the need and developed workflow for seismic data 

reprocessing and conditioning for quantitative interpretation of unconventional 

reservoirs.  

 In chapter 2, I demonstrated that seismic data conditioning and careful data QC 

are keys to avoiding pitfalls that hinder accurate results of quantitative interpretation. 

Detailed gather by gather seismic data QC is impractical for large mega merge surveys 

on the order of 50 GB. I developed a workflow based on angle-limited stacks that allows 

an interpreter to determine the usable limits of the data. Subsequent inversions should be 

offset- (and implicitly, angle-) limited to include only those offsets with physically 

reasonable amplitudes. RMS error maps of the modeled-to-measured data misfit should 

be used to validate the result and in subsequent risk analysis. 

In Chapter 3, I present the use of seismic modeling to determine common pitfalls 

in seismic analysis. The attribute expression of the subsurface depends not only on the 

impedances and geometric configuration of the various facies, but also on the acquisition 

and subsequent processing and imaging of the seismic data.  

In Chapter 4, and Chapter 5 I show the effect of highly aliased ground roll and 

presented a method to suppress such ground roll. Reprocessing can significantly enhance 

the data quality on legacy seismic data of North-central Texas. My proposed workflow 

of coherence based ground roll suppression helped to remove the highly aliased broad 

band ground roll. The explicit search for sample-by-sample phase velocities allows the 

filter to adapt to dispersive groundroll wave trains. The short, overlapping 3D window 
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implementation allows the filter to model piecewise continuous groundroll events that are 

broken by irregular topography and discontinuities in the weathering zone. Edge 

preserving structure oriented filter and 5D interpolation improved significantly the data 

quality.   

  

In chapter 6, I investigate the value of integration of core, well and seismic data 

for estimating TOC and brittleness volumes, through quantitative interpretation on the 

Barnett Shale of the Fort Worth Basin. My analysis shows that TOC estimated on the 

well logs (on the cored well) with non-linear regression (using Passey’s TOC, normalized 

stratigraphic height and other well logs)  provides higher correlation on a blind well 

compared to Passey’s method derived TOC. BI (computed by Wang and Gale’s formula) 

on the cored well was correlated to the well logs and the established non-linear regression 

relationship showed a good correlation on the blind well test. Neural network volumetric 

prediction of TOC and BI, utilizing seismic attributes, seismic inversion products, TOC 

and BI well logs, showed a decent match on the blind wells.  

   


