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ABSTRACT 

 

Most seismic attributes are originally designed and computed on time-migrated 

data. While some papers show the values of attribute analysis on depth-migrated data, 

few have compared the images to corresponding time-migrated volumes. I therefore 

use time- and depth-migrated volumes from Bohai Bay Basin, China, to show not only 

the values of depth-migration, but also the necessary data-conditioning, algorithmic 

modification, and interpretation of attributes computed from depth data.   

 

     Since one of the goals for depth migration is to image steep dips, depth 

migration also allows steeply dipping noise to overprint the image. I suppress this 

noise through careful structure-oriented filtering. Fault plane reflections are imaged 

well by depth migration, and give rise to dips that conflict with those of the underlying 

reflectors.  

 

In depth-migrated data, spectral components are now measured in cycles per 

kilometer or cycles per kilofeet (wavenumber) rather than in cycles/s or Hertz 

(frequency). While smoothly varying velocity models used in Kirchhoff depth 

migration give rise to smoothly varying wavenumber stretch, discontinuous velocity 

models used in wave equation and reverse time migration will give rise to 

wavenumber artifacts straddling the velocity discontinuity boundary. Furthermore, 

imaging of steep dips results in a shift by cosθ of true to lower apparent spectral 

components.  
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In order to quantitatively evaluate the coherence, I follow early work on the 

significance of events seen in semblance-based velocity spectra and use an F-statistic 

to quantify the significance of coherence measures at each voxel.  The accuracy and 

resolution of such measures depend on the bandwidth of the data, the signal-to-noise 

ratio, and the size of the spatial and temporal analysis windows used in their numerical 

estimation. In 3D interpretation, low-coherence estimates not only seismic noise, but 

also geologic signal, such as fault planes and channel edges. 

 

     Ideally, vertical attribute analysis windows should be scaled by some fraction 

of the dominant wavelength. Unfortunately, the dominant wavelength increases with 

depth in time-migrated data due to attenuation. Moreover, since the size of the 

dominant wavelength changes as a function of velocity in depth-migrated data, a 

single fixed-sized window may be too large for shallower data and too small for 

deeper data. Therefore, I construct laterally and vertically smoothly varying analysis 

windows based on the spectral content of the data resulting in data-adaptive attribute 

computation. 

 

I demonstrate the value of these algorithmic modifications to a survey acquired 

over the Bohai Bay Basin, China. The complex faulting gives rise to a laterally 

variable velocity, so that depth migration of the data is necessary. After data 

conditioning, I obtain a relatively clean, noise-free, well-focused depth-migrated 

image. Artifacts in the time-migrated data such as fault shadows give rise to false 

coherence anomalies, while velocity pull-up and pushdown give rise to false curvature 
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anomalies. These artifacts are minimized and a more accurate image of the fault 

network is constructed in the depth-migrated data. Finally, structural features such as 

folds and flexures are directly linked to the depth-structure of the data via the laterally 

variable velocity model.  

 

Prestack data conditioning, including residual moveout correction, reduction of 

migration stretch, and suppression of coherent noise, is critical to subsequent prestack 

inversion and anisotropy analysis.  The Radon transform is a powerful noise 

suppression tool, and is routinely used to suppress multiples. Traditional Radon 

transforms are often smeared in the transform domain, limiting the signal to noise 

separation. We prototype a Radon transform based on a matching pursuit method, to 

minimize smearing and suppress data stretch. Specifically, the algorithm will ask 

“which Ricker wavelet with which moveout, best represents the seismic gather”. After 

each estimate, that event is removed from the data, forming a residual. The algorithm 

will iterate until all events are described. My hypothesis that the wavelet-based Radon 

transform will provide improved separation between primaries and multiples, which is 

proved through the application to a marine data volume acquired by KIGAM in the 

Jeju Basin, Korea. 
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ABSTRACT 

 

Spectral decomposition is a powerful analysis tool that has been successful in 

delineating channels, fans, overbank deposits and other relative thin architectural 

elements in clastic and carbonate depositional environments. Because of its success in 

characterizing fluvial-deltaic and basin floor turbidite-fan systems, most publications 

on spectral decomposition discuss time-migrated data. Interpreting spectral 

components and spectral attributes such as peak frequency on depth-migrated data 

requires a slightly different perspective. First, the results are computed as cycles/km 

(or alternatively as cycles/1000 ft) rather than as cycles/s or Hertz, with the dominant 

wavenumber decreasing with increasing velocity at depth. Second, interpreters resort 

to depth migration when there are significant lateral velocity changes in the 

overburden and/or steep dips. All present-day implementations compute spectral 

components along vertical traces rather than perpendicular to the strata, giving rise to 

tuning and other anomalies at an apparent rather than at a true frequency or 

wavenumber. 

 

We illustrate the interpretational differences of spectral decomposition 

between time- and depth-migrated data using a simple synthetic model and a modern 

3D data volume. We show how one can approximately compensate for reflector dip by 

normalizing each spectral magnitude component by 1/cosθ, where θ is the volumetric 

dip magnitude commonly computed in seismic attribute analysis. We demonstrate the 
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algorithm through application to two 3D surveys, which indicates the significance of 

dip compensation of spectral decomposition in seismic data, especially for the depth-

migrated seismic volumes. 

 

LIST OF KEYWORDS 

 

Spectral decomposition, Dip compensation factor. 
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INTRODUCTION 

 

Most published applications on seismic attributes have used time-migrated 

data. Interpreting seismic attributes such as coherence on depth-migrated data requires 

a slightly different perspective. First, the samples are in meters or feet rather than in 

milliseconds. Second, the Fourier Transform is commonly used during the estimation 

of seismic attributes, where spectral components are computed in cycles/km (or 

alternatively as cycles/1000 ft) rather than in cycles/s or Hertz, with the dominant 

wavenumber decreasing with increasing velocity at depth. Third, we typically use a 

constant user-defined window to calculate window-based attributes. Such a constant 

window size cannot adapt to the lateral and vertical variation in seismic resolution, 

giving suboptimum results. This becomes especially noticeable with depth-migrated 

data where the dominant wavelength increases with depth due both to attenuation and 

increasing velocity.  

 

Seismic attributes have been applied to depth-migrated data since their 

inception. Because the dominant wavelength increases with increasing velocity, which 

in turn increases with depth, attributes such as coherence benefit by using shorter 

vertical analysis windows in the shallow section and longer vertical analysis windows 

in the deeper section. Since most coherence implementations require a fixed vertical 

analysis window, the interpreter simply runs the algorithm using an appropriate 

window for each zone to be analyzed. Curvature is naturally computed in the depth 
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domain, with most algorithms requiring a simple conversion velocity for time-

migrated data. For more accurate results, the interpreter uses different conversion 

velocities for different target depths, or simply converts the entire volume to depth 

using well control. Both coherence and curvature are structurally driven attributes, 

with coherence computed along structural dip and curvature computed from structural 

dip. 

 

Spectral decomposition is computed trace by trace, which implicitly ignores 

any dipping structures. One of the most common uses of spectral decomposition is to 

map fluvial (e.g. Partyka et al., 1999; Peyton et al., 1998) and deep-water (e.g. 

Bahorich et al., 2002) depositional systems. Key to interpreting these spectral 

components is the thin-bed tuning model. Widess (1973) used wedge model to 

quantify the detection of thin-bed anomalies. The maximum constructive interference 

occurs when the wedge thickness is the tuning thickness (one-half of the two-way 

travel-time period for the time-migrated data or one-quarter of the wavelength for the 

depth-migrated data). Using this model, Laughlin et al. (2002) showed that thicker 

channels exhibited a stronger response at lower frequencies, while the thinner flanks 

of the channel exhibited a stronger response at higher frequencies. Although this is the 

most common use of spectral decomposition, spectral components are currently the 

method of choice in spectral blanking, estimating attenuation (1/Q). Spectral 

components are also used in pore-pressure and seismic discontinuities prediction 

(Davagustto et al., 2013), as well as some implementations of seismic 

chronostratigraphy. 
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In this chapter, we show hot to correct the spectrum for dipping reflections. We 

begin with an overview of spectral decomposition and dip estimation. We then use the 

dip to correct the spectrum. We them show the value of this correction through 

application to a depth-migrated data volume from Bohai Bay Basin, P.R. China.  
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THEORETICAL ANALYSIS 

 

Short-window Discrete Fourier Transform (SWDFT), Continuous Wavelet 

Transform, and Matching Pursuit Estimates of Spectral Components 

 

There are currently three algorithms used to generate spectral components: 

short-window discrete Fourier transforms (SWDFT), continuous wavelet transforms, 

and matching pursuit. Leppard et al. (2010) found that matching pursuit provided 

greater vertical resolution and lesser vertical stratigraphic mixing than the other 

techniques. We suspect the fixed-window length least squares spectral analysis 

technique described by Puryear et al. (2008) provides similar spectral resolution to the 

(least squares) matching pursuit algorithm. While all of  our examples here are 

generated using a matching pursuit algorithm described by Liu and Marfurt (2007),  

the concept of apparent vs. true frequency is perhaps easiest to understand using the 

fixed length analysis window used in the SWDFT. For time-migrated data, the 

window will be in seconds, such that the spectral components are measured in cycles/s 

or Hz. For depth-migrated data, the window will be in kilometers; such that the 

spectral components are measured in cycles/km. Significant care must be taken when 

loading the data into commercial software, where the SEGY standard stores the 

sample interval in microseconds. For everything to work correctly, a depth sample 

interval of 10 m will need to be stored as 10000 “microkilometers”. If the units are not 

stored in this manner, the numerical values of the data may appear to be in fractions of 
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cycles/m. Many commercial software packages will not operate for cycles/s (or 

cycles/km) that fall beyond a reasonable numerical range of 1-250. Once the data are 

loaded, the range of values will be different. If the time domain data range between 8-

120 Hz, depth domain data will range between 2-30 cycles/km at a velocity of 4 km/s, 

such that anomalies will be shifted to lower “frequencies”.  

 

We create a wedge model using a 5-10-90-120 Ormsby wavelet and calculate 

the relevant peak frequency in Figure 1.1. White arrows indicate the top and bottom of 

the wedge. Peak frequency will increase with decreasing thickness. 

Dip Compensation 

 

If the dip angle is 𝜃, and the real thickness hr, then the apparent thickness ℎ𝑎 =

ℎ𝑟/ 𝑐𝑜𝑠 𝜃 (Figure 1.2). The tuning frequency (and tuning wavenumber) will therefore 

decrease with increasing values of θ. The shift to lower apparent frequency is familiar 

to those who examine data before and after time migration, where dipping events on 

unmigrated stacked data with moderate apparent frequency “migrate” laterally to 

steeper events with lower apparent frequency (Lin et al., 2013). 

 

Since spectral decomposition is calculated trace by trace in the vertical 

direction, the results are accurate for perfectly flat horizon where θ = 0. However, for 

dipping reflectors, spectral decomposition tuning effects will be in terms of the 
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vertical apparent thickness, which is always greater than the true thickness for dipping 

layers. According to tuning phenomenon and the schematic diagram in Figure 1.2:  

                         ℎ𝑎 =
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where ha is the apparent thickness along the vertical axis, hr is the real thickness 

perpendicular to the thin layer, and  𝜃  is the dip angle of the thin layer. The 

relationship between fa, the apparent tuning frequency in the vertical direction, and fr, 

the real tuning frequency of the thin layer is 

                                                𝑓𝑟 ≈
𝑓𝑎

𝑐𝑜𝑠 𝜃
.                                                          (2) 

 

Figure 1.3a shows a synthetic example of a layer with a constant vertical 

thickness of 100 ft; the apparent tuning frequency should be 50 Hz for a velocity of 

10000 ft/s. The apparent thickness is constant (gray line) across the model when 

measured vertically. The spectral analysis results in a constant value of fpeak = 50 Hz 

rather than the variable peak frequency indicated by the red line. Correcting the 

apparent thickness by 1/cosθ gives the correct result.  

 

In Figure 1.3c, the real (perpendicular) thickness of the thin bed is 100 ft. In 

this example, the apparent tuning frequency will change laterally (gray line). In 

contrast, the dip-corrected tuning frequency of the real thickness would be constant 

(50 Hz, red line) across the model. 
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APPLICATION 

Application to Time-Migrated Data from the US Gulf of Mexico 

 

The Texas-Louisiana shelf of the Gulf of Mexico are characterized by salt domes 

and salt withdrawal basins resulting in both changes in thickness due to changes in 

accommodation space and changes in in apparent thickness due to post deposition 

changes in dip. Our objective is to use spectral components to map lateral changes in 

true dip vs. apparent dip. Figure 1.4a shows a horizon slice through apparent 

frequency co-rendered with coherence. Figure 14.b shows the dip magnitude, 𝜃, with 

high dip magnitude at the edges of the minibasin. Moreover, Figure 1.4c indicates the 

dip compensation factor, with high values at the flanks of the minibasin. 

 

In general, accommodation space decreases towards the flanks of the basin. 

However, Figure 1.4a indicates a decrease in tuning frequency, as increase in 

thickness towards the flanks. The decrease in tuning frequency is an artifact due to the 

dip. Figure 1.4d shows the same horizon slice after dip compensation, which now 

introduces thinning towards the edges of the minibasin. White arrow in Figure 1.5 

indicates a channel, in which the peak frequency increases a lot after dip compensation 

due to the large dip magnitude. 
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Comparison of Time- vs. Depth-Migrated Data from East China 

 

Figure 1.6 shows the time- and depth-migrated seismic profiles from an oilfield 

of East China, known to have multiple fault-controlled reservoirs. This phenomenon, 

along with the increase in wavelength and decrease in apparent resolution is a result of 

the increase of velocity with time (depth). 

 

The sample increment for time-migrated data is ∆𝑡 = 0.002 s, and for the depth-

migrated data ∆𝑡 = 0.01 km. Red dashed lines indicate three faults, which are much 

clearer in the depth-migrated data. The fault planes are also more continuous. Orange 

arrows indicate migration artifacts. In this case, the depth-migrated data suffer from 

more artifacts than the time-migrated data. The green arrow in the depth-migrated data 

indicates a lower frequency response compared to the time-migrated data. The blue 

arrow in the depth-migrated data shows a clear fault plane, which is poorly imaged in 

the time-migrated data.  The frequency range is 4 – 40 Hz for the time-migrated data, 

while the wavenumber range is about 2 – 20 cycles/km for depth-migrated data 

(Figure 1.7). We find that the numerical value of the wavenumber for depth-migrated 

data is about half of the frequency for time-migrated data.  
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Figures 1.7a and b show the peak frequency co-rendered with seismic amplitude 

for both the time- and depth-migrated data. Both of images exhibit a similar peak 

frequency trends, even though the numerical values of peak wavenumber in depth-

migrated data are nearly half of the peak frequency in the time-migrated data. Low 

peak frequency anomalies are lithogically bound (consistent with increasing velocity 

with age) along the horizon, except for the zone seriously blurred by the migration 

artifacts, indicated by white arrow in Figure 1.7b. The peak frequency tracks the 

horizons for the time-migrated data in Figure 1.7a. The steeper “depth” dip than time 

dip as well as some steeply dipping migration artifacts gives rise to the low frequency 

zones.   

 

We filter the dip along structure to remove artifacts and compute dip 

compensation spectra and blend the results with seismic amplitude in Figures 1.9a and 

b where the dip in Figure 1.8 is zero (flat), the dip compensation factor is 1.0 and the 

peak frequency remains unchanged. When there is a steeply dipping reflector, the dip 

compensation factor is greater than one, shifting the result to a higher (true) peak 

frequency. The dip compensation factors follow faults and horizons. Because of the 

greater noise in the depth-migrated data, some of the dip estimates are erratic, giving 

rise to the erratic dip compensation values shown in Figure 1.9b.  
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Figures 1.10a and b show the real peak frequency of the time-migrated data and 

depth-migrated data. For the shallow part, the corrected peak frequency changes 

slightly, since the dip is small and the dip compensation factor is close one. For the 

steeply dipping deeper layers, the corrected peak frequency is significantly (~50%) 

higher than the original apparent peak frequency. The corrected peak frequency better 

correlates to the horizons than that in Figures 1.7a and b, especially for the depth-

migrated data.  

 

A dipping horizon A is picked (in Figure 1.11) in both time- and depth-migrated 

seismic volume. Red arrows indicate the main faults. Extracting the apparent peak 

frequency in Figure 1.12, we can found that the apparent peak frequency of the faulted 

zones indicated by white arrows is about 12 Hz for time-migrated data, and 10 

cycles/km for the depth-migrated data. While the dip compensation makes them 

approach 14 Hz and 12 cycles/km, respective in Figure 1.13, which means the true 

thinning thickness of the faulted zones marked by white arrows should be smaller than 

the apparent one before dip compensation. 
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CONCLUSIONS 

 

In the presence of strong lateral variations in velocity, time-migration fails to 

properly image the subsurface. To avoid such pitfalls, an interpreter needs to carefully 

calibrate the attribute anomalies to conventional vertical slices through the seismic 

amplitude volume. Accurate prestack depth migration removes most of these artifacts 

but presents its own unique challenges. First, coherent fault plane reflections will be 

indistinguishable from stratigraphic reflections by most attributes. Second, depth-

migrated data are in general noisier than time-migrated data and may need to be 

conditioned using structure-oriented filtering prior to attribute computation. Third, 

because of the increase in velocity with depth, the change in wavelength from top to 

bottom of a survey in depth-migrated data is much greater than the change in period in 

time-migrated data.  This longer wavelength will require different sized attribute 

analysis window to maintain a similar signal-to-noise ratio. 

 

Depth migration is designed to handle complex structure which in many cases 

implies steep dips. In the presence of such steep dips, one need to correct spectral 

estimates made on vertical traces by 1/cosθ and then re-interpolates the spectrum.  

Spectral decomposition also provides the means to develop data-adaptive attribute 

analysis windows.  
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CHAPTER 1 FIGURES
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Figure 1.1. (a) The impedance, (b) reflectivity, (c) synthetic seismic amplitude with 5 

percent random noise, and (d) envelope of the wedge model. The dominant frequency 

of the seismic wavelet is 40 Hz.  
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Figure 1.2. A schematic diagram showing differences between the apparent thickness 

ha and the real thickness, hr with respect to dip magnitude, θ. 
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Figure 1.3. (a) A constant apparent thickness thin bed model showing a layer with flat 

dip, strong negative dip and moderate positive dip; (b) The real (marked by red line) 

tuning frequency (the apparent tuning frequency is 50 Hz) of the layer. (c) A constant 

real thickness thin bed model showing a layer with flat dip, strong negative dip and 

moderate positive dip; (d) The real (marked by red line) tuning frequency (the real 

tuning frequency is 50 Hz) of the layer.  



21 

 



22 

 



23 

 



24 

 
  



25 

 

Figure 1.4. Vertical and horizon slice through (a) peak frequency, (b) dip magnitude, 

θ, (c) dip compensation factor and (d) corrected peak frequency. White arrows in (a) 

show a decrease in peak frequency indicating layer thickening towards the basin 

edges. After correction by 1/cosθ we see in (d) an increase in peak frequency 

indicating layer thinning towards the minibasin edges consistent with decreased 

accommodation space. (Data Courtesy of PGS).  
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Figure 1.5 Horizon slice through (a) peak frequency and (b) corrected peak frequency. 

White arrows in (a) show a decrease in peak frequency of the channel. After correction 

by 1/cosθ we see in (b) an increase in peak frequency indicating layer thinning 

towards the minibasin edges consistent with decreased accommodation space. (Data 

Courtesy of PGS).  
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Figure 1.6. Vertical slice through (a) time- and (b) depth-migrated data. 
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Figure 1.7. Apparent peak frequency blended with seismic amplitude of (a) time- and 

(b) depth-migrated data. 
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Figure 1.8. Dip magnitude (1/cos𝜃) blended with seismic amplitude of (a) time- and 

(b) depth-migrated data. 
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Figure 1.9. Dip compensation factor (1/cos𝜃) blended with seismic amplitude of (a) 

time- and (b) depth-migrated data. 
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Figure 1.10. Dip-corrected peak frequency blended with seismic amplitude of (a) 

time- and (b) depth-migrated data. 
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Figure 1.11. Time-structure map of Horizon A through (a) time- and (b) depth-

migrated data. 
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Figure 1.12. Apparent peak frequency along Horizon A of (a) time- and (b) depth-

migrated data. 
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Figure 1.13. True peak frequency along Horizon A of (a) time- and (b) depth-

migrated data  
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ABSTRACT 

 

Semblance and other coherence measures are routinely used in seismic 

processing such as velocity spectra analysis, in seismic interpretation to estimate 

volumetric dip and to delineate geologic boundaries, and in poststack and prestack 

data conditioning such as edge-preserving structure-oriented filtering. While 

interpreters readily understand the significance of outliers for such measures as 

seismic amplitude being described by a Gaussian (or normal) distribution, and RMS 

amplitude by a log-normal distribution, the measurement significance of a given 

coherence of post stack seismic data is much more difficult to grasp.  

 

We follow early work on the significance of events seen in semblance-based 

velocity spectra and use an F-statistic to quantify the significance of coherence 

measures at each voxel.  The accuracy and resolution of such measures depend on the 

bandwidth of the data, the signal-to-noise ratio, and the size of the spatial and 

temporal analysis windows used in their numerical estimation. In 3D interpretation, 

low-coherence estimates not only seismic noise, but also geologic signal, such as fault 

planes and channel edges.  

 

We therefore estimate the signal to noise ratio as the product of coherence and 

two alternative measures of randomness – the first being the disorder attribute and the 

second estimate based on eigenvalues of a window of coherence values. The disorder 
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attribute is fast and easy to compute while the eigenvalue calculation is 

computationally intensive and more accurate.  

 

We demonstrate the value of this measure through application to two 3D 

surveys, where we modulate coherence measures by our F-statistic measure to show 

where discontinuities are significant and where they correspond to more chaotic 

features.  

LIST OF KEYWORDS 

 

 Seismic Attributes, Significance, Coherence. 
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INTRODUCTION 

 

Semblance and other coherence measures are routinely used in seismic 

processing such as velocity spectra analysis (Taner and Koehler, 1969; Neidell and 

Taner, 1971), seismic edge detection and volumetric dip estimation (Marfurt et al., 

1998), and edge-preserving structure-oriented filtering (Hoecker and Fehmers, 2002; 

Marfurt, 2006). The application of seismic attributes to depth-migrated data where the 

wavelength extend by increasing velocity with depth justifies the use of data-adaptive 

analysis windows, where the window size is proportional to a percentile of the time- or 

time and space-varying spectra (Lin et al.,  2014 and 2015). 

 

In this paper, we reexamine the analysis by Douze and Laster (1979) on the 

significance of velocity-based semblance analysis in order to evaluate the significance 

of coherence anomalies within a noisy background, and the choice of parameters for 

structure-oriented filtering. These same concepts are readily generalized to eigen-

structure type coherence estimates.  

 

We begin with a summary of semblance and KL-filter (energy ratio) coherence 

algorithms as well as the use of the F-statistic. The F-statistic requires an estimate of 

the signal-to-noise ratio. We therefore evaluate Al-Dossary et al.’s (2014) disorder 

attribute and introduce a new signal-to-noise estimate based on the eigenvalues 

computed from a window of coherence. With these definitions in place, we apply our 
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new metric to a coherence volume computed from a survey acquired in China. We 

conclude with a discussion on how such estimates may be useful in risk analysis, 

differentiating different geologic features by their coherence expression, and for 

improved edge-preserving smoothing applications.   
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THEORETICAL ANALYSIS 

 

Following Douze and Laster (1979) work, we generate a suite of figures to 

show the significance of typical windows used in edge detection and structure-oriented 

filtering. First, we define the significance of similarity (coherence) as the cumulative 

probability of a non-central F-distribution. A high value of significance means the 

calculation of similarity is more reliable. In contrast, a low value of significance 

always indicates an unreliable similarity value. The range of the significance is 0~1 

(see Appendix). 

 

Examining equation (22), we identify four basic parameters in computing 

significance: bandwidth, fB, temporal analysis window size, 2KΔt, spatial analysis 

window size, J, and the signal to noise ratio, S/N. With these values we can compute 

the significance of a given semblance estimate using the non-central F-distribution. 

The product of the bandwidth and the vertical analysis window 2KΔtfB determines the 

first degree of freedom, the number of seismic traces, J, determines the second degree 

of freedom; while S/N determines the non-centrality parameter. 

 

Douze and Laster (1979) demonstrate that the correlation between bandlimited 

experimental data and the theoretical cumulative probability distribution for broad 

band data is quite good,  allowing us to use this formalism for not only their velocity 

anomalies, but also our coherence attribute and structure-oriented filtering application. 
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Meanwhile, considering the complex of the significance algorithms, the calculation 

takes five times longer than the coherence code for typical parameters. 
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APPLICATIONS 

 

Example 1: A 2D Synthetic of a Normally Faulted Layers 

 

Figure 2.2a shows a simple model used to generate a suite of 200 finite 

difference common shot gathers. These gathers were then prestack time-migrated to 

generate the image shown in Figure 2.2b. There are five main layers B, C, and D, each 

of which contains five sub-layers. To address the issue of signal to noise, we also 

added different levels of bandlimited incoherent noise in layers B and C.  The white 

arrow indicates a fault plane reflection.   

 

The images in Figure 2.3 form a matrix with vertical window sizes 

corresponding to 0, 10 and 20ms along column, and lateral window sizes of 5, 9 and 

13 analysis points along rows, by blending the similarity and the significance of 

coherence to illustrate the influence of spatial (number of seismic traces) and temporal 

analysis window size on the significance of similarity. With the increase of temporal 

analysis window size, the significance value of similarity is higher, which indicates 

that the coherence value is more reliable. The increase in the number of seismic traces 

shows a similar phenomenon, but the resolution of the fault zone decreases. 
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Example 2: 3D Seismic Data over Bohai Bay Basin, China 

We next compute the significance coherence computed from a 3D seismic 

volume acquired over Bohai Bay Basin, China that images a channel reservoir. Given 

the influence of 1d  (the vertical analysis window size) on significance, we introduce a 

self-adaptive window attribute calculation, defining the temporal window to be 

propotional to the average frequency of each time slice. Figure 2.4 shows time slices 

at t = 0.5 s through seismic amplitde, peak frequency and spectral bandwidth volumes 

using matching pursuit algorithm. The black arrow indicates a fault, the red arrow a 

channel, the blue arrow an oxbow which can be clearly seen in the coherence image 

shown in Figure 2.5. 

 

Figure 2.5 shows slices at t = 0.5 s through coherence volumes computed using 

a self-adaptive temporal analysis window size, respectively. Black arrows indicate the 

main fault through the seismic slice. The inner bank of the oxbow lake can be 

indicated by the blue, and three distinguished channels by the red arrows.  

 

Figure 2.6 shows the S/N corresponding to Figure 2.5 computed using equation 

(11). The temporal analysis window size not only affects the degrees of freedom, but 

also influences S/N, which indirectly controls the non-centrality parameter, 𝜀.  

 

Figure 2.7 shows the sensitivity of significance to temporal analysis window 

size and bandwidth. Black arrows indicate the faults characterized by low coherence 

and significance. Red arrows indicate channel deposition or sheet sand characterized 
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by high coherence and high significance. By computing the variable bandwidth and 

using a self-adaptive temporal analysis window size, we are able to improve  the 

significance of coherence image, while maintaining  the sharp contrast of faults and 

channel edges.  

Example 3: Structure-Oriented Filtering Based on the Statistical Significance of 

Coherence 

 

We now apply the significance analysis of coherence to a 3D seismic volume 

provided by Schlumberger. Figure 2.8 shows a time slice at t = 0.7 s through seismic 

amplitude, a white arrow indicates a meandering channel, orange arrows three main 

faults and red arrows North-South acquisition footprint noise.  

  

Figure 2.9 shows the coherence slices corresponding to Figure 2.8 using 

different color bar, that aids in illustrating the interactive workflow of structure-

oriented filtering used to define weights, w, for the similarity data volumes 

(Davogustto and Marfurt, 2011), using the color bar to choose appropriate color ramp 

values of slow and shigh. Specifically, we set the color to be white if s> shigh, black if s< 

slow and shades of gray if slow <s< shigh. The resulting image will be the weights 

applied to the filtered data on output such that all black discontinuities will be 

preserved and all white areas will be filtered. 
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By modifying the threshold values for s, we increase or decrease the smoothing 

weights thereby changing the aggressiveness of the filter. In Figure 2.9a (shigh=0.9, 

slow=0.7), we adjust the color bar to enhance the footprint noise (red arrows) as well as 

structural and stratigraphic features (white and orange arrows). Figure 2.9b (shigh=0.99, 

slow=0.97) indicates the preservation of structures indicated by green arrows, greater 

improvement of features indicated by blue arrows, and clearer suppression of the 

footprint noise in the significance of coherence slice. Furthermore, according to the 

definition of the significance of the coherence, it shows us the statistical conclusion, 

which holds physical meaning. By estimating the significance of coherence, we can 

easily suppress the footprint noise as well as other radom noise, because they can be 

seperated from structural anomlies compared with the ones in coherence. 

Consequently, more null hypothesis (no anomaly) are rejected in structure-oriented 

filtering using significance than statistical significance of coherence, which can be 

found the in Figure 2.10. 

 

Figures 2.10a and b show the result of filtering the data in Figure 2.8 using 

structure-oriented filtering based on similarity and statistical significance of coherence. 

Red arrows in Figure 2.8 indicate footprint, the amplitude of the footprint Figure 2.10 

is diminished while the sturctural features are sharpened. While there are still 

remnants of footprint noise visible in Figure 2.10a , it is almost removed in Figure 

2.10b using the significance low threshold. Yellow arrows indicate residual footprint 

noise that can not be removed, this is because the values of the coherence and 
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significance of the artifacts are similar to those of the stratigraphic features. We have 

to keep the artifacts features in order to preserve the real features of coherence. 
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CONCLUSIONS 

 

We have generalized analysis on the significance of velocity spectra to grantify 

the significance of coherence anomalies used in 3D interpretation and to control 

structure-oriented filtering. Four factors control the significance calculation: vertical 

window size, bandwidth, the number of seismic traces number and the S/N. The 

vertical window size is the most important of these four factors, and plays an 

important role in both the degrees of the freedom as well as the non-centrality 

parameter: 𝜀. We estimate the signal to noise ratio using a dissimilarity calculation. 

This estimate is the data adaptive windows improve the significance. Besides, the 

estimation of significance is subjected to the calculation cost; while equally important, 

the use of significance helps determine parameters for edge-preserving structure 

oriented filtering. The footprint noise as well as other radom noise can be 

distinguished from structural anomalies contrast to the one as shown in coherence. 

Therefore, more null hypothesis (no anomaly) can be rejected in structure-oriented 

filtering using statistical significance of coherence than the one using statistical 

significance of coherence. In the future, we will keep our study in realizing the 

variable-horizontal window size. 
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CHAPTER 2 FIGURES 

 

 

Figure 2.1. 2D diagram of similarity calculation. 
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Figure 2.2. (a) The fault model and (b) the resulting image after forward modeling 

using a finite difference algorithm and prestack Kirchhoff time migration.  

Bandlimited random noise has been added resulting in PS/PN  = 1.0. 
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Figure 2.3. Vertical slices through similarity blended with significance of coherence 

computed from the seismic data shown in Figure 2.2b using a variable temporal 

analysis window size (0.0, 1.0, 2.0 of mean period) and variable number of trace (J = 

5, J = 9 and J = 13). 
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Figure 2.4. Time slices at t = 0.5 s through (a) seismic amplitude, (b) peak frequency 

and (c) bandwidth. The dominant frequency is approximately 25 Hz, corresponding to 

a period of 40 ms.  
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Figure 2.5. The coherence slice using self-adaptive (0.5~2.0 of the mean period of 

20~80 ms) temporal analysis window size of seismic slice in Figure 2.4a.  

 

 

Figure 2.6. Time slice at t = 0.5 s through signal to noise ratio volumes computed 

using a self-adaptive temporal analysis window size (0.5~2.0 time of the mean 

period).  
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Figure 2.7. The significance slice using a self-adaptive temporal analysis window size 

1.0 times the peak period corresponding to Figure 2.4b and variable bandwidth from 

Figure 2.4c. 
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Figure 2.8. Time slice at t = 0.75s through seismic amplitude. 
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Figure 2.9. Time slices at t = 0.75s through (a), coherence using a self-adaptive 

temporal analysis window size and (b) significance of coherence of Figure 2.8.  
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Figure 2.10. Time slices at t = 0.75s through the output (filtered) seismic amplitude 

using structure-oriented filtering based on (a) similarity and (b) statistical significance 

of coherence. 
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APPENDIX 

The Covariance Matrix, Semblance and KL-filter Estimates of Coherence  

 

Taner and Koehler (1969) define the semblance, s, of a collection of J seismic 

traces uj within a 2K+1 sample vertical analysis window to be the ratio of the energy 

of the average trace to the average energy of the individual traces (as shown in Figure 

4.1). The traditional estimate of semblance is thus: 
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where, 𝑢𝑗(𝑧) denotes the measured amplitude of the jth trace at sample z, 𝛼𝑘 are the 

weights applied to the kth sample and βj the weights applied to the jth trace. 

Traditionally, βj=1/J where the J traces fall within a user-defined elliptical or 

rectangular analysis window. Lin et al. (2015) show how one can generalize equation 

(1) for radially tapered analysis windows, where the radius and tapering of the analysis 

window are defined by some measure of the time- or time and space-varying 

spectrum. Generalization of equations requires one to first compute the covariance 

matrix, C,   
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Along dipping horizon zj, where we have augmented the data sample vectors uj 

by its Hilbert transform, uj
H to provide more robust estimates for small windows about 

zero crossings. We will use the same tapering windows described by Lin et al. (2015), 

although the subsequent description is appropriate for any tapering function. 

Specifically, we define: 

    

                                   𝑎𝑘 = {
    

1

2
[1 + 𝑐𝑜𝑠 (

𝜋𝑘∆𝑧

𝑍
)]         𝑘∆𝑧 < 𝑍

    0                                        𝑘∆𝑧 ≤ 𝑍
 ,                              (3) 

where: 

                                                    zzKZ
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)1( ,                 (4) 

where κref is the reference wavenumber (a percentile, p, of the local wavenumber 

spectrum) and where γ represents a fraction of this reference window (e.g. 1.0 times 

the reference window). The final term Δz increases the computational window such 

that samples K will always have a non-zero value. 

 

The radial analysis window will have weights: 

                                             𝛽𝑗 = {
    

1

2
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𝜋𝑟𝑗

𝑅
)]        𝑟𝑗 < 𝑅

    0                                     𝑟𝑗 ≤ 𝑅
,                             (5) 
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Using these weights, Lin et al. (2015) compute the semblance of a radially 

tapered analysis window to be:    

                                      
)Tr(

)(
C

aTCa
zcs ,                             (8) 

where the mathematical trace Tr(C) of the covariance matrix, C, is defined as:  
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We will wish to apply our F-statistic estimate of the significance to not only 

semblance, but also to KL-filtered (energy ratio) coherence anomalies. This later 

estimate is (Lin et al., 2015): 

                         

 

  

 



 



 






















K

Kk

J

j

j

H

jjjk

K

Kk

J

j

j

H

jjjk

KL

zkzuzkzu

zkzUzkzU

zc

j

j

1

2

1

22

)()(

)()(

)(





,              (11) 

where Ul(zl) and Ul
H(zl) are the Karhunen-Loeve filtered versions of the original data.  
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Since they considered coherent energy to be signal and incoherent energy to be 

noise on common midpoint seismic gathers, Douze and Laster (1979) were able to 

estimate the signal to noise ratio from the numerator and denominator of the 

semblance computation: 
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In this case, the signal to noise ratio PS/PN is simply:   
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which varies between 0 and infinity. 

 

For our attributes calculation, the signal to noise ratio for equation (11) is: 
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For seismic interpreters, high coherence indicates a high signal to noise ratio. 

However, low semblance or coherence has four interpretations: 
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1. A sharp discontinuity which may indicate the presence of a fault, channel edge, 

or erosional surface (i.e. the presence of planar geologic features),  

2. A relatively diffuse low coherence pattern which may indicate the presence of 

karst collapse, hydrothermally-altered dolomite, and mass transport complexes 

(i.e. the presence of chaotic geologic features), 

3. A relatively diffuse low coherence pattern that is associated with low 

reflectivity or inaccurate velocities and hence inaccurate imaging which may 

indicate the presence of salt diapirs, overpressured shales, and gas chimneys 

(i.e. an indicator rather than an image of the geology at a given voxel), and 

4. A relatively diffusive low coherence pattern associated with random noise, 

operator aliasing, acquisition footprint, or overprinted multiples (i.e. the 

absence of geologic signal, and hence the presence of seismic noise). 

 

While we will not be able to differentiate cases 3 and 4 described above, our 

more limited goal is to differentiate diffuse low coherence anomalies from high 

coherence reflectors and planar low coherence anomalies. One way to estimate such a 

signal-to-noise ratio is to use the disorder attribute. 
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Disorder 

 

Al-Dossary (2014) introduces a “disorder” attribute that passes not only 

coherent reflectors but also vertically and horizontally oriented low coherence 

anomalies as signal and thus separates these two geologic patterns from diffuse low 

coherence patterns. His original algorithm cascades second derivatives in the x, y, and 

z directions on a window of the energy (or the power) of the data. This is equivalent to 

squaring the data and then filtering it with a 3x3x3 operator: 
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The original algorithm suffers from two main drawbacks: (1) it is sensitive to 

the local average amplitude, and (2) it gives rise to diagonal artifacts. To compensate 

for the local average amplitude sensitivity, Ha and Marfurt (2014) slightly modified 

the algorithm to compute disorder, D, by normalizing the attribute by the RMS 

magnitude of the windowed data: 

                                                                            





eL
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D  ,                              (16) 

where L is given by equation 15, e is a volume of amplitude energy, the dot

 

indicates a 

triple inner product, ||L|| and ||e|| indicate the L2 norm, or magnitude, of the operator 

and data, and ε is a small number to prevent division by zero. To minimize diagonal 

artifacts, we compute the standard deviation of this attribute along structural dip.  
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Estimation of Fault Plane Dip and Azimuth Using Eigenvector Analysis 

 

Randen et al (2000) showed how one could estimate the dip and azimuth of a 

fault (or other planar) discontinuity using the eigenvectors of a coherence-weighted 

distance matrix, G, defined over a window of M=J*(2K+1) data points within an 

analysis window by: 
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 ,                           (17) 

where γm=1-cm is the similarity, cm is the coherence at the mth data point, and xim is the 

distance from the center of the analysis window along axis i of the mth data point. 

Since we are interested in estimating anomalous behavior, we use γm where most 

values are close to 0.0, rather than coherence, cm, which has values close to 1.0. The 

matrix G has three eigenvalues, λj, and eigenvectors, vj. By construction, 

                                                   λ1  ≥ λ2 ≥ λ3 .                         (18) 

The first eigenvalue, λ1, represents the amount of variance defined by the first 

eigenvector, v1. Similarly, the second eigenvalue, λ2, represents the amount of 

variance defined by the second eigenvector, v2. These first two eigenvalues and 

eigenvectors represent the amount of variance defined by v1 and v2. Following Kirlin 

and Done (1999), a truly chaotic pattern will have:  
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               λ1 = λ2 =λ3.                 (19) 

The third eigenvalue, λ3, can thus serve as an estimate of noise-to-signal ratio if 

it is normalized. To be large, there are two conditions to be taken into consideration. 

First, there need to be some nonzero values of γm if any of the eigenvalues are to be 

non-zero. Second, the distribution of these finite values needs to be random rather than 

linear or planar, thereby representing either seismic or geologic noise as described by 

scenarios 3-4 above.  

Statistical Significance of Coherence Estimates 

 

With this background, we can now estimate the significance of a given 

semblance or energy ratio coherence estimate. Following Douze and Laster’s (1979), 

we approximate the F-statistic with d1 and d2 degrees of freedom and non-centrally 

parameter 𝜀 (Blandford, 1974) as: 
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and  
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where: 
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where fB is the bandwidth of the signal in Hz, and S/N is the signal to noise ratio we 

obtain from equation (13) and (14). 
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ABSTRACT 

 

Geometric seismic attributes such as coherence are routinely used in seismic 

interpretation and reservoir characterization to describe faults, channels, and other 

geological features. Traditionally, we use a single user-defined analysis window of 

fixed size to calculate attributes for the entire seismic volume. In general, smaller 

windows produce sharper geological edges but they are more sensitive to noise. In 

contrast, larger windows reduce the effect of random noise, but might laterally smear 

faults and channel edges and vertically mix the stratigraphy. For data exhibiting a low 

signal-to-noise ratio, stratigraphic edges seen in coherence generally improve with 

increasing window size up to the dominant period of the data, while windows larger 

than the dominant period slightly improve the image at the expense of mixing 

shallower and deeper stratigraphy in the result. The vertical and lateral resolution of a 

3D seismic survey changes with depth due to attenuation losses and velocity increase, 

such that a window size that provides optimal images in the shallower section is often 

too small for the deeper section. A common workaround to address this problem is to 

compute seismic attributes for a suite of fixed windows and then splice the results at 

the risk of reducing the vertical continuity of the final volume.  

 

Our proposed solution is to define laterally and vertical smoothly varying 

analysis windows based on the spectral content of the data. The construction of such 

tapered windows requires a simple modification of the covariance matrix for 
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eigenstructure-based coherence and a less obvious, but also simple modification of 

semblance-based coherence. We demonstrate the values of our algorithm by applying 

it to a vintage 3D seismic survey acquired offshore Louisiana, USA. 

 

LIST OF KEYWORDS 

 

 Seismic Attributes, Coherence, Spectral Decomposition, and Resolution. 
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INTRODUCTION 

 

 Geometric seismic attributes such as coherence measure changes in reflector 

shape and continuity (Chopra and Marfurt 2007) that can be tied to structural and 

depositional environments. While instantaneous and spectral attributes are computed 

trace by trace, geometric attributes are computed from a window of neighboring traces 

and samples.  “Coherence” can be computed using cross-correlation (Bahorich and 

Farmer, 1995), semblance or variance (e.g., Marfurt et al., 1998; Marfurt, 2006; 

Pepper and Bejarano, 2005), Sobel filters (Luo et al., 1996; Barka, 2015), eigenvectors 

of the data covariance matrix (Gersztenkorn and Marfurt, 1999), eigenvectors of the 

gradient structure tensor (van Bemmel and Pepper, 2011), and prediction error filters 

(Bednar, 1998). 

 

        Most implementations of these algorithms use a fixed number of traces and 

samples for the entire volume to be analyzed. However, due to frequency losses in the 

overburden, as well as the increase of seismic velocity and decreasing range of 

incident angles with depth, the seismic data lose both temporal and lateral resolution 

with depth.  Hence, a fixed analysis window optimized for the shallow section might 

provide suboptimal results in the deeper section.    

 

A workaround is to approximate a time-variant algorithm by splicing the 

results of a suite of coherence computations run with different vertical and lateral 
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window dimensions. Unfortunately, the blended output generally lacks vertical 

continuity.  

 

 To address these problems, Barka (2015) defined the vertical size of a Sobel 

filter edge detector based on the frequency content. Lin et al. (2014a) showed how 

smoothed estimates of peak spectral frequency could help to define the data-adaptive 

vertical analysis windows to compute volumetric dip and coherence.  

 

 In this paper, we generalize Lin et al.’s (2014b) data adaptive workflow to define 

both  the vertical and lateral size of the analysis window to be a function of the 

smoothed local spectral content, where the spectral magnitudes m(t,f,x,y) are computed 

using spectral decomposition. We begin with a review of the sensitivity of the quality 

of coherence images to analysis window size. Next, we review the computation of 

energy ratio coherence based on the Karhunen-Loeve (KL) filter (Marfurt et al., 1998; 

Chopra and Marfurt, 2007) and show its relation to semblance. We then show how to 

construct the covariance matrix for vertically and radially tapered analysis windows, 

which in turn provide estimates of coherence.  Given these definitions, we apply our 

modified algorithms to a 3D seismic volume and show the value of using data 

adaptive windows.  

  



78 

 

REVIEW – SENSITIVITY OF COHERENCE IMAGES TO WINDOW SIZE 

 

 Most geometric attributes including volumetric estimates of dip, coherence, 

curvature, amplitude gradients, and GLCM texture are computed within a 3D analysis 

window that shifts with each voxel analyzed. The lateral and vertical resolution of 

these attributes is limited by the temporal and spatial sampling intervals, spectral 

content of the data, and the signal-to-noise ratio. Lin et al. (2016) studied the 

sensitivity of coherence estimates to random noise using an F-statistic and found that 

the confidence of finding a coherent event increases with (1) the number of traces, and 

(2) the product of the bandwidth with vertical window size. Since the seismic 

bandwidth generally decreases with depth, their analysis suggests adaptation of the 

analysis window size to the spectral content of the seismic data to ensure consistent 

attribute image quality.  

 

 In general, larger analysis windows reduce random noise and “stack” vertically 

aligned discontinuities of interest, but will increase computational cost and may smear 

lateral discontinuities or mix vertical stratigraphy. High frequency data require smaller 

sampling intervals. Older seismic surveys were often sampled at 4 ms, while newer 

surveys are commonly sampled at 2 ms. Seismic data for tar sands, coal mining (e.g., 

Walton et al., 2000) or geotechnical purposes (e.g., Dana et al., 1999) are commonly 

sampled at 0.5 ms.  
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For this reason, many coherence algorithms define the analysis window by the 

number of vertical samples and lateral traces. Thus, common default 11-sample 

vertical windows for 4 ms, 2 ms and 0.5 ms sample intervals result in 20 ms, 10 ms, 

and 2.5 ms, respectively.  

 

Vertical Mixing of Stratigraphy  

 

 To understand the impact of the size of the analysis window on the resulting 

coherence image, one needs to examine the seismic reflectivity model: 

                                                        k

M

Mm

mmkk nwrd  


 ,                           (1) 

where 

dk is the measured seismic data at the kth sample, 

rk is the reflectivity at the kth sample, 

wm is a temporally limited seismic wavelet, where M ≤ m ≤ M, and 

nk is the noise at the kth sample.  

 

The seismic wavelet w mixes reflectivity from adjacent depths to the depth of 

interest. The amount of mixing is a function of the bandwidth of the data. For most 

seismic surveys, we lose higher frequencies with depth, while the lower frequencies 

remain, thereby decreasing the bandwidth. For this reason, a reasonable estimate of 

resolution is the half period (Tmin, in two- way travel time) or quarter wavelength (λmin, 
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in depth-converted data) of the highest useable frequency in the spectrum, while a 

reasonable estimate of vertical mixing is the dominant period (Tdom in two-way travel 

time) or dominant wavenumber (λdom in depth converted data). These two numbers 

provide a means of estimating an optimum analysis window. 

 

Lin et al.’s (2016) work shows that the confidence in coherence estimates for 

fixed signal-to-noise ratio increases with fbT, where fb is the bandwidth measured in 

Hertz, and T is the temporal analysis window measured in seconds. We therefore 

expect the quality of our images to improve with increasing window size up to T=Tmin, 

improving slightly, but with the risk of more mixing, up to T= Tdom. For values T> 

Tdom, any improvement in the signal-to-noise ratio of the image at the target Horizon 

A3an be offset by increased mixing of geologic features from shallower and deeper 

events. For these reasons, we hypothesize that analysis windows that adapt to the 

bandwidth of the data will provide superior, better balanced images than those 

computed using a fixed window. 

 

  



81 

 

Stair-step Artifacts of Dipping Faults 

 

While time slices through coherence volumes provide excellent images of the 

continuity and orientation of faults, the lateral location of these faults are often shifted 

from one manually picked on vertical slices through the seismic amplitude data by a 

human interpreter.  Careful examination of vertical slices through the corresponding 

coherence volume shows the well-known and routinely encountered “stair-step” 

artifact (Figure 3.1). Eigenstructure-, semblance-, variance-, and gradient structure 

tensor based coherence as well as Sobel-filter estimates of discontinuities are 

dominated by the stronger amplitude events within the analysis window. Increasing 

the size of the vertical analysis window beyond the dominant period of a high-

amplitude discontinuity undesirably propagates the discontinuity both shallower and 

deeper within the coherence image. For listric faults, these artifacts become worse 

than the annoying than stair step artifacts, such that the discontinuities of a given fault 

may appear more than once on time slice (Marfurt and Alves, 2015). 

 

We evaluated two remedies to this problem, neither of which worked. First, we 

balanced the amplitude of each sample vector within the analysis window to have 

approximately the same contribution. Such balancing reduced, but did not eliminate 

the contribution of the stronger discontinuities within the analysis window. Second, 

we reduced the vertical size of the analysis window. As shown in Figure 3.1a, even a 
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window size of 1-sample results in a stair-step artifact, suggesting that the artifact is 

due to the seismic amplitude data and not to the size of the coherence window. 

 

Reflectivity, Seismic Imaging, and the Seismic Wavelet 

 

The stair-step artifact has perplexed the last author of this article since the 

inception of coherence some 20 years ago. Recent publications in diffraction imaging 

(e.g. Mosher, 2008) provide the insight into the cause of these artifacts. While the 

typical migration algorithm assumes that each subsurface image point is a point 

diffractor, those algorithms that explicitly include an obliquity factor actually assume 

each subsurface point is part of a specular reflector. In prestack migration, the 

obliquity factor is a function of the  unit vector from the source to the image point, ps, 

the unit vector from the receiver group to the image point, pg, and the normal to the 

hypothesized reflector, n (Figure 3.2). In diffraction imaging, one computes n, 

defining the normal to the reflector dip, from a previous image of specular (or 

conventional) imaging. In this case, the obliquity factor, Ω, is 

                                              n
pp gs





2

 ,     (2) 

which geometrically is the cosine of the angle between the average of the angle of 

incidence and reflection and the normal. Examination of Figure 3.2 shows that for 

specular reflection, the angle of incidence equals the angle of reflection about the 

normal, such that =1. Furthermore, migration ray pairs, ps and pg, skewed to the left 
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of the specular angle will generally be accompanied by migration ray pairs skewed to 

the right. In most migration algorithms, the seismic image is built up point diffractor 

by point diffractor. The net result is that the seismic wavelet will be oriented 

perpendicular to the reflector, parallel to n. 

 

 Since we do not believe this phenomenon is well recognized by most 

interpreters, we generate a suite of synthetic shot gathers using a finite difference 

algorithm, prestack migrate the results to obtain images in both time and depth 

domain, and compute coherence (Figure 3.3). Note that the seismic wavelets near the 

fault edges are aligned perpendicular to the horizontal reflectors. Since these 

terminations occur at discrete layer boundaries, the result is a discrete stair step, with 

the vertical extent of the stair step defined by the size of the seismic wavelet. 
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ADAPTIVE WINDOWS 

 

 The above observations suggest that for a fixed signal-to-noise ratio that the ideal 

analysis window should be a function of the local seismic spectrum. Mathematical 

details of computing energy ratio and semblance based coherence within tapered 

windows are described by Lin et al., (2016) produced at chapter 2. Figure 3.4 is a 

cartoon showing how the input amplitude data are weighted both vertically and 

radially from the center. We will smooth our spectra to estimate λdom and λmin defined 

above. Furthermore, we will assume our data have been depth converted, either 

through depth migration or through a simple velocity conversion. Finally, since we are 

as concerned about lateral resolution and mixing as well as vertical resolution and 

mixing, our analysis windows will vary both vertically and laterally, where “lateral” is 

defined as parallel to the local structural dip.  
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APPLICATION 

 

        We apply our data-adaptive coherence algorithm on a time-migrated data volume 

from the Gulf of Mexico, The 3D seismic data (Figure 3.5a) have been spectrally 

balanced and subjected to structure-oriented filtering to further improve the vertical 

and lateral resolution (Figure 3.5b). 

 

 Red arrows on the vertical slice of Figures 3.5a and b indicate four faults cutting 

from them shallower to the deeper section; the wavelength increases with depth as 

well. The frequency spectra in Figures 3.6a and b, respectively, ranges between 10 to 

80 Hz, with a bandwidth that due to attenuation and poor imaging to range between 

10~40 Hz. Based on Lin et al., (2016) F-statistical anomalies, one cannot define a 

image to generate coherence images with equal confidence.  

 

Figures 3.7a-d show slices through energy ratio coherence using four different 

window sizes. Note higher volumes computed resolution in the shallower zone nearby 

Horizon A2, which allows for a relative small window size (Figure 3.7a). In Figure 

3.7b and 3.7c, events shallower zone nearby Horizon A2 mix together due to the taller 

window (20 or 40 ms), making it harder to characterize faults and channel edges in the 

shallower section. In contrast, a larger window should be applied in the deeper section, 

to generate a more continuous, though lower resolution fault anomalies. The fault in 

the red dashed rectangular window shows the improvements of fault imaging 
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gradually in Figures 3.7b and c, despite the horizontal blur. Calculations using 

smoothly tapered data-adaptive windows provide a sharper and cleaner fault imaging 

in both shallower and deeper sections (Figure 3.7d).   

 

Figure 3.8 indicates the zoomed in section of seismic profile of Figure 3.5b 

showing Horizon A1 and several normal faults. White arrows indicate two channels 

that fall on Horizon A1. Figure 3.9 shows a time-structure map of Horizon A1 along 

with a horizon slice through the coherence volume. Red lines in the profile pick 

normal faults, and the two channels are marked by the white arrows, which are crossed 

by Horizon A1. 

 

By extracting seismic amplitude values along Horizon A1, which is located in 

the peak the seismic waveform (Figure 9b). Red arrows indicate several normal faults 

and two channels are marked by white arrows.  

 

Energy ratio similarity is calculated in Figures 3.10a-d, using ±4 ms, ±20 ms, 

±40 ms and 5 traces, and data-adaptive (varying between ±12 ms and 5 traces, and 

±100 ms and 13 traces) window size, resulting in fault and channel images with 

different resolution. Smaller windows (±4 ms) suffer from more random noise. Larger 

windows ((±40 ms) suppress thin noise. 

 

Figures 3.11-3.30 indicate the phantom horizons, which are 8 ms, 16 ms, 24 

ms 32 ms and 40 ms above/below Horizon A1. The coherence are calculated by ±4 
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ms, ±20 ms, ±40 ms and data-adaptive (±12~100 ms) window size. The channel 

indicated by white arrow 2 are detected in Figures 3.10a-d, and disappears in Figure 

3.16a as it reaches the phantom 24 ms below Horizon A1 and 24 ms above Horizon 

A1. While it shows up again in Figure 3.12c, this is because the large window size 

(±40 ms) combines too much geological information together and smears the channel 

edges, making them hard to separate. The approximate frequency nearby Horizon A1 

is 20 Hz, and its relevant window size in coherence algorithm is 25 ms, a little larger 

than the average window size applied in the while survey. Therefore, the coherence 

using data-adaptive window gives us perfect results, less random noise, sharper fault 

anomalies and reduced leakage.  

 

Figures 3.31-3.51 indicate the Horizon A2 of the shallow zone, and its 

phantom horizons 8 ms, 16 ms, 24 ms, 32 ms and 40 ms above/below the Horizon A2. 

The red arrow shows a major fault. The data quality is low due to the footprint as well 

as the radon noise. A smaller window size should be applied because of the high 

frequency in the shallow zone. The energy ratio coherence along phantom horizons 

using constant window size of ±4 ms and 5 traces shows better imaging, this is 

because the too taller window size of  ±20 ms and ± 40 ms mix too much geological 

together and the S/N of the shallow zone is relative low, generating lots of dark zones. 

This phenomenon is partly suppressed and improve the coherence values overall while 

keeping the geological information (fault) being easy to separate by the coherence 

using data-adaptive window. 
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Figures 3.53-3.74 indicate the Horizon A3 of the shallow zone, and its 

phantom horizons 8 ms, 16 ms, 24 ms, 32 ms and 40 ms above/below the Horizon A2. 

Red arrows show the major faults. For the coherence using constant window size, the 

geological can be imaged clearer, and mixed together at the same time. The 

application of the data-adaptive window perfectly suppresses the random nose, 

preserves the useful geological information belonging to the target horizon, and 

prevents the data leakage, to generate the perfect result from shallow to the deep 

section of the seismic data in coherence calculation. 
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CONCLUSIONS 

 

The “optimum” window height for attributes such as coherence is a function of 

the dominant period in the window. In general, the analysis window used in geometric 

attribute calculation should be large enough to improve the signal-to-noise ratio of the 

estimate, yet small enough to avoid mixing the seismic signal of adjacent stratigraphy 

or discontinuities. In general, the computational cost of these attributes, as well as all 

coherence algorithms, increases linearly with the window height and with the square 

of the its radius. However, the reduction in interpretation time owing to the improved 

quality of the results compensates for the increased computational time.  

  

 Since the seismic amplitude response is the convolution of the reflectivity with 

the seismic wavelet, the “natural” way to define the analysis window should be a 

function of the effective wavelet within the area of interest.  We define our window 

size to be a fraction of the 𝑝80 percentile of the balanced spectrum. 

 

Attributes computed with a fixed user-defined window will generate good 

images within a given target zone. In the case of laterally variable changes in layer 

thickness, considerable improvement can be made by adaptively defining the vertical 

analysis window as a function of the frequency spectrum. Laterally abrupt jumps in 

window radius and height are minimized by including smooth tapers along the edges. 
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In this manner, while images at different depth may vary with data quality from high 

to low resolution, to significance of the anomalies will be similar.  
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CHAPTER 3 FIGURES 

 

 

Figure 3.1. Vertical slices through a seismic amplitude volume co-rendered with 

coherence computed using a 5-trace by (a) ±0 ms, (b) ±4 ms, (c) ±20 ms, and (d) ±40 

ms analysis window. Sample increment = 4 ms, bin size =12.5 m x 25 m. Note the 

stair-step artifacts in (a) indicated by the red circles, even for a vertical analysis 

window of a single sample. In this image, the stair step is due the vertical orientation 

of the seismic wavelet, perpendicular to the nearly horizontal reflector. (Data courtesy 

of NZPM). 
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Figure 3.2. The geometry of seismic migration, using the notation of the diffraction 

imaging community. n defines the normal to the hypothesized reflector at the image 

point. If no hypothesis is made, most algorithms assume n to be vertical, while some 

eliminate the obliquity factor completely. ps and pg define unit vectors at the image 

point. The obliquity factor is the cosine of the angle between the yellow vector and the 

average of the blue and red vectors. 
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Figure 3.3. (a) A simple reflectivity model showing faults with dips of 500, 600, 700, 

and 800. Synthetics were generated using a 2D finite difference solution of the wave 

equation. (b) The resulting prestack time-migrated image. Note that the seismic 

wavelets are perpendicular to the reflector, including near the fault edges. The images 

suffer from fault shadows (Fagin, 1996). Fault plane reflectors were not imaged due to 

the finite migration aperture of 2000 m. (c) The coherence image computed from the 

seismic data (b) displayed in (a) using a vertical analysis window of 1 sample. (d) The 

resulting prestack depth-migrated image. (e) The coherence image computed from the 

seismic data (d) displayed in (a) using a vertical analysis window of one sample. Note 

the stair step artifacts are about the size of the seismic wavelet seen in (d). Depth 

migration has eliminated the fault shadows.  

 

 

Figure 3.4. The diagram of the (a) fixed, small windows, (b) fixed, large window, and 

(c) the adaptive window tapered radially and vertically. 
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Figure 3.5. Vertical slice AA’ through (a) origional seismic amplitude volume, and 

the seismic amplitude volume after (b) spectral balancing and (c) structural-oriented 

filtering. (sample interval: 4 ms). 
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Figure 3.6. The frequency spectrum of seismic amplitude volume (a) and (b) after 

spectral balancing. 
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Figure 3.7. Vertical slice AA’ through energy ratio coherence using a constant 

window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms and (d) a data-adaptive window 

(±12~100 ms)  of Figure 3.5c. 
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Figure 3.8. Zooned in section of seismic profile of Figure 3.5c (ranges 800~1150 ms). 

 

 

Figure 3.9. (a) Time-structure map of Horizon A1 and (b) a horizon slice through 

seismic amplitude. Horizon A1 was picked as a trough. 
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Figure 3.10. Energy ratio coherence along Horizon A1 using constant window size of 

(a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and (d) a data-adaptive window 

varying between ±12 ms and 5 traces, and ±100 ms and 13 traces. 



108 

 

  

Figure 3.11. Phantom horizon 8 ms above Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.12. Energy ratio coherence along phantom horizon 8 ms above Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.13. Phantom horizon 16 ms above Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.14. Energy ratio coherence along phantom horizon 16 ms above Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.15. Phantom horizon 24 ms above Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.16. Energy ratio coherence along phantom horizon 24 ms above Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.17. Phantom horizon 32 ms above Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.18. Energy ratio coherence along phantom horizon 32 ms above Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.19. Phantom horizon 40 ms above Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.20. Energy ratio coherence along phantom horizon 40ms above Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 

 



118 

 

 

Figure 3.21. Phantom horizon 8 ms below Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.22. Energy ratio coherence along phantom horizon 8 ms below Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.23. Phantom horizon 16 ms below Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.24. Energy ratio coherence along phantom horizon 16 ms below Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 



122 

 

 

Figure 3.25. Phantom horizon 24 ms below Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.26. Energy ratio coherence along phantom horizon 24 ms below Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.27. Phantom horizon 32 ms below Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.28. Energy ratio coherence along phantom horizon 32 ms below Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.29. Phantom horizon 40 ms below Horizon A1 extracting along seismic 

amplitude data. 
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Figure 3.30. Energy ratio coherence along phantom horizon 40 ms below Horizon A1 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 



128 

 

REFERENCES 

 

Bahorich, M.S., and S. L. Farmer, 1995, 3-D seismic coherency for faults and 

stratigraphic features: The coherence cube: The Leading Edge, 14, 1053-1058. 

Barka D S., 2015, Sobel based edge detection algorithm with adaptive operator size 

applied to post-stack seismic data, Master thesis of University of Stavanger. 

Bednar, B., 1998, Least-squares dip and coherency attributes: The Leading Edge, 17, 

777-778. 

Chopra, S., and Marfurt, K. J., 2007, Seismic attributes for prospect identification and 

reservoir characterization. Geophysical Developments Series 11. SEG. 

Dana, D., C. Zelt, and A. Levander. 1999, High-resolution seismic survey over a near-

surface contamination site: 69th Annual International Meeting, SEG, Extended 

Abstracts, 579-583.  

de Matos, D. C., and K. J. Marfurt, 2014, Complex wavelet transform spectral 

broadening: 84th Annual International Meeting, SEG, Extended Abstracts, 

1465-1468. 

 Douze, E. J., and S. J. Laster, 1979, Statistics of semblance: Geophysics, 44, 1999-

2003. 

Fagin, S., 1996, The fault shadow problem: Its nature and elimination: The Leading 

Edge, 17, 1005-1013. 



129 

 

Gersztenkorn, A., and K. J. Marfurt, 1999, Eigenstructure based coherence 

computations as an aid to 3-D structural and stratigraphic mapping: 

Geophysics, 64, 1468-1479. 

Kirlin, R. L., and W. J. Done, 1999, Covariance analysis for seismic signal processing: 

Geophysical Developments Series, SEG. 

Lin T., B. Zhang, S. Zhan, Z. Wan, F. Li, H. Zhou, and K. J. Marfurt, 2014a, Seismic 

attributes of time- vs. depth-migrated data using self-adaptive window: 84th 

Annual International Meeting, SEG, Extended Abstracts, 1659-1662.  

Lin T., D. Chang, B. Zhang, J. Guo and K. J. Marfurt, 2014b, Seismic attributes 

estimation using a self-adaptive window: 84th Annual International Meeting, 

SEG, Extended Abstracts, 1654-1657. 

Lin, T., T. Ha., K. J. Marfurt and K. Deal, 2016, Quantifying the significance of 

coherence anomalies: Interpretation, 4, T205-T213. 

Liu, J., and K. J. Marfurt, 2005, Matching pursuit decomposition using Morlet 

wavelets: 75th Annual International Meeting, SEG, Expanded Abstracts, 786-

789. 

Luo, Y., W. G. Higgs and W. S. Kowalik, 1996, Edge detection and stratigraphic 

analysis using 3D seismic data: 66th Annual International Meeting, SEG, 

Expanded Abstracts, 324 – 327. 

Marfurt, K. J., 2006, Robust estimates of 3D reflector dip and azimuth: Geophysics, 

71, 29-40. 



130 

 

Marfurt, K. J., R. L. Kirlin, S. H. Farmer, and M. S. Bahorich, 1998, 3-D seismic 

attributes using a semblance-based coherency algorithm: Geophysics, 63, 

1150-1165. 

Moser, T. J., and C. B. Howard, 2008, Diffraction imaging in depth: Geophysical 

Prospecting, 56, 627-641. 

Marfurt, K. J., and T. M. Alves, 2015, Pitfalls and limitations in seismic attribute 

interpretation of tectonic features, 3(1), A5-A15 

Neidell N. S., and M. T. Taner, 1971, Semblance and other coherency measures for 

multichannel data: Geophysics, 36, 482-497. 

Partyka, G., J. Gridley, and J. A. Lopez, 1999, Interpretational applications of spectral 

decomposition in reservoir characterization: The Leading Edge, 18, 353-360. 

Pepper, R., and G. Bejarano, 2005, Advances in seismic fault interpretation 

automation, AAPG Search and Discovery Article 40170, 

http://www.searchanddiscovery.com/documents/-2005/pepper/. 

Puryear, C. I., O. N. Portniaguine, C. M. Cobos, and J. P. Castagna 2012,  Constrained 

least-squares spectral analysis: Application to seismic data:  Geophysics, 77, 

V143-V167. 

Van Bemmel, P. P., and R. E. F. Pepper, 2011, Seismic signal processing method 

and apparatus for generating a cube of variance values: US Patent, 8, 

055,026. 

Walton, C., B. Evans, and M. Urosevic, 2000, Imaging coal seam structure using 3-

D seismic methods: Exploration Geophysics, 31 (3), 509-514. 

  

http://library.seg.org/doi/abs/10.1190/geo2011-0210.1


131 

 

APPENDIX  

 

  

Figure 3.31. (a) Time-structure map of Horizon A2 and (b) a horizon slice through 

seismic amplitude. Horizon A2 was picked as a trough. 
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Figure 3.32. Energy ratio coherence along Horizon A2 using constant window size of 

(a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and (d) a data-adaptive window 

varying between ±12 ms and 5 traces, and ±100 ms and 13 traces. 
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Figure 3.33. Phantom horizon 8 ms above Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.34. Energy ratio coherence along phantom horizon 8 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.35. Phantom horizon 16 ms above Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.36. Energy ratio coherence along phantom horizon 16 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.37. Phantom horizon 24 ms above Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.38. Energy ratio coherence along phantom horizon 24 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 



139 

 

 

Figure 3.39. Phantom horizon 32 ms above Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.40. Energy ratio coherence along phantom horizon 32 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.41. Phantom horizon 40 ms above Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.42. Energy ratio coherence along phantom horizon 40 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.43. Phantom horizon 8 ms below Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.44. Energy ratio coherence along phantom horizon 8 ms below Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.45. Phantom horizon 16 ms below Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.46. Energy ratio coherence along phantom horizon 16 ms below Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.47. Phantom horizon 24 ms below Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.48. Energy ratio coherence along phantom horizon 24 ms below Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.49. Phantom horizon 32 ms below Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.50. Energy ratio coherence along phantom horizon 32 ms below Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.51. Phantom horizon 40 ms below Horizon A2 extracting along seismic 

amplitude data. 
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Figure 3.52. Energy ratio coherence along phantom horizon 40 ms below Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.53. (a) Time-structure map of Horizon A3 and (b) a horizon slice through 

seismic amplitude. Horizon A1 was picked as a trough. 
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Figure 3.54. Energy ratio coherence along Horizon A1 using constant window size of 

(a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and (d) a data-adaptive window 

varying between ±12 ms and 5 traces, and ±100 ms and 13 traces. 
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Figure 3.55. Phantom horizon 8 ms above Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.56. Energy ratio coherence along phantom horizon 8 ms above Horizon A2 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.57. Phantom horizon 16 ms above Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.58. Energy ratio coherence along phantom horizon 16 ms above Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.59. Phantom horizon 24 ms above Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.60. Energy ratio coherence along phantom horizon 24 ms above Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.61. Phantom horizon 32 ms above Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.62. Energy ratio coherence along phantom horizon 32 ms above Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.63. Phantom horizon 40 ms above Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.64. Energy ratio coherence along phantom horizon 40 ms above Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.65. Phantom horizon 8 ms below Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.66. Energy ratio coherence along phantom horizon 8 ms below Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.67. Phantom horizon 16 ms below Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.68. Energy ratio coherence along phantom horizon 16 ms below Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.69. Phantom horizon 24 ms below Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.70. Energy ratio coherence along phantom horizon 24 ms below Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.71. Phantom horizon 32 ms below Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.72. Energy ratio coherence along phantom horizon 32 ms below Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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Figure 3.73. Phantom horizon 40 ms below Horizon A3 extracting along seismic 

amplitude data. 
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Figure 3.74. Energy ratio coherence along phantom horizon 40 ms below Horizon A3 

using constant window size of (a) ±4 ms, (b) ±20 ms, (c) ±40 ms using 5 traces, and 

(d) a data-adaptive window varying between ±12 ms and 5 traces, and ±100 ms and 

13 traces. 
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ABSTRACT 

 

In general, depth migration is necessary in the presence of strong lateral 

velocity variation and avoids some of pitfalls that occur in time-migrated data. Fault 

shadows in time-migrated data give rise to discontinuity artifacts mapped by 

coherence. Depth migration eliminates velocity pull-up and push-down, and in general 

results in better focused image. Fault termination of reflectors may be misaligned, 

giving rise to “wormy” coherence anomalies. Channel and other stratigraphic features 

may be diffused making them hard to interpret. We illustrate these differences by 

analyzing seismic attributes computed from time- and depth-migrated seismic volumes 

from Bohai Bay Basin, China.  

 

LIST OF KEYWORDS 
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INTRODUCTION 

 

Coherence algorithm measure lateral changes in seismic reflection amplitude, 

phase and frequency. (Bahorich and Farmer, 1995, 1996). Like other attributes, 

coherence is sensitive to noise.  

 

In contrast to random noise, all coherence algorithms are sensitive to fault 

shadows seen in time-migrated data. Fagin (1991) uses forward ray trace modeling to 

illustrate the fault shadow problem. A more complete description of the “fault 

whisper” problem on prestack data is given by Hatchell (2000). Fault whisper is the 

phenomenon of transmission distortions, which are produced by velocity changes 

across buried faults and unconformities and related to the phenomenon known as fault 

shadows. 

 

Depth-migrated data presents its own challenges. In time-migration the major 

impact of velocity is to focus or defocus reflectors and diffractors with some lateral 

movement. In depth-migration, these features are also moved both laterally and 

vertically. If the velocity model is inaccurate, depth-migrated data may be inferior to 

time-migrated data. Even if the data are properly imaged, the wavelet spectrum is no 

longer in Hertz, but in wavenumber that decreases with increasing velocity as depth 

increases.  



178 

 

SYNTHETIC MODELS 

 

Figure 4.1 shows a fault model as well as its prestack time migration data 

(PSTM) seismic profile. The purple and green horizons indicate us two high velocity 

layers.  

 

Looking in detail at these oscillations of PSTM seismic profile in Figure 4.2a, 

point A-H are the points located at the main fault of the model. The semi-transparent 

yellow zone indicates the fault shadow zone, where the reflectors are highly distorted 

compared to the original structural model. Pushdown from high velocity layer 1 occurs 

between point A and D; similarly, pushdown from high velocity layer 2 occurs 

between point E and H, which are pointed by red arrows. On the time-migrated section 

a near-vertical structural axis can be drawn which links the position of each of these 

anomalies for each underlying reflection. The pitfall is that these axes could be easily 

misinterpreted as conjugate faults, consistent with the normal fault. Another velocity 

pushdown and pull-up are caused by the slower (white arrow) and faster (black arrow) 

velocity objects, respectively. Fagin (1991) shows how one can predict these 

pushdown and pull-up phenomenon using simple zero-offset synthetics. The human 

interpreter sees a crest followed by a trough. Seismic attributes will see the same. On 

the depth-migrated section in Figure 4.2b, all of the artifacts are removed and give 

back the real structure of the fault model.  
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Figures 4.3a and b indicate the PSDM coherence profile computed from PSTM 

and PSDM seismic data, respectively. The horizon distortions (push down) marked by 

red arrows are imaged in coherence profile of PSTM seismic data, which is suppressed 

in Figure 4.3b. Another structural artifacts caused by differential objects indicated by 

white and black arrow are also removed. The 2D curvature profiles of PSTM in Figure 

4.4a shows the conjugate curvature anomalies. Red and while arrows gives us push-

down phenomenon distributing parallel negative curvatures inside and parallel positive 

curvatures outside; while the black arrow shows opposite pull-up phenomenon, with 

parallel positive curvatures inside and parallel negative curvatures outside. 
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APPLICATION 

Geometric Attributes Computed from Prestack Time-Migrated Data 

 

Figures 4.5 indicate us the seismic profile of PSTM amplitude volume. The 

survey is located in Hebei Province, which was acquired by BGP Inc., China National 

Petroleum Corporation.  

 

F1 and F2 are two major faults, H1-H5 are horizons in the seismic profile. 

Seismic pitfalls (pull-up) are indicated by red arrows, which should be caused by the 

existence of high velocity zone between H3 and H5. The structural high zone seems 

unreasonable. This is because they are at upthrow, which means they should be 

structural low zone. 

 

Coherence is an important aid in fault interpretation. Figure 4.6 indicates the 

vertical slice through coherence co-rendered with seismic amplitude for PSTM data. 

The grey curved solid line indicated by grey arrow can be interpreted as sub-fault 

splays to the main fault F2.  

 

I co-render the most-positive curvature, most-negative curvature and seismic 

amplitude of time-migrated and depth-migrated data in Figure 4.7. The blue zone 

indicated by blue arrows for fault F2 and F3 indicates the syncline with most negative 

curvature, while the red zone indicated by red arrows for fault F2 and F3 indicates the 
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anticline with most positive curvature. Considering that F2 and F3 are normal faults, 

the parallel most positive- and negative- curvatures are unreasonable. 

 

Geometric Attributes Computed from Prestack Depth-Migrated Data 

 

Considering the pitfalls existed in seismic profile of the fault modal for PSTM 

in Figures 4.2-4.4, the prestack depth-migrated data (PSDM) shows its advantages in 

seismic attribute analysis, removing lot of artifacts caused by horizontal velocity 

variation.  

 

Figure 4.8 indicates the seismic profile of PSDM amplitude volumes, which 

can accurately describe the structure compared to the Figure 4.5. The pull-up zone 

indicated by red arrow as well as the fault shadow zone in Figure 4.5 disappears in 

Figure 4.8. The fault shadow zone can be described as the sub-fault splays to the main 

fault F2 in Figure 4.6. Figure 4.9 indicates the vertical slice through coherence co-

rendered with seismic amplitude for PSDM data, in which the sub-fault splays are 

removed. Figure 4.10 indicates vertical slice through most positive curvature co-

rendered with most negative curvature (with long wavelet) and seismic amplitude 

along for PSTM. The parallel syncline and anticline indicated by blue and red arrows 

in Figure 4.7 disappear in Figure 4.10, which correct many structural pitfalls.  
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CONCLUSIONS 

 

The seismic data from the Bohai Bay Basin in China are processed by PSTM 

as well as PSDM, separately, combining with seismic attributes to compare the 

seismic imaging quality. Several artifact sub-faults splays in coherence generate the 

fault-shadow zones under dipping main faults in PSTM data, but disappear in PSDM 

data. The curvature anomalies related to the lateral variations may be misinterpreted as 

real structures in PSTM data, which are removed in precise velocity PSDM data.  

 

In the presence of strong lateral variations in velocity, PSDM is better for 

interpreting complex structures comparing PSTM, which fails to properly image the 

subsurface.  First, fault shadows can give rise to a second (artificial) discontinuity 

coherence images computed from time-migrated data. Such artifacts are removed in 

accurate velocity depth-migrated data. Second, velocity pull-up and push down caused 

by the lateral changes in the overburden such as carbonate buildups and incised 

valleys will give rise to erroneous curvature anomalies in time-migrated data. These 

artifacts disappear in in properly depth-migrated data. Third, in complex structure 

time-migrated data may be poorly focused.   
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CHAPTER 4 FIGURES 

 

 

Figure 4.1. (a) The fault model with two high velocity layers. 

 

 

Figure 4.2. The (a) PSTM and (b) PSDM seismic profile of the fault model in Figure 

4.1. 
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Figure 4.3. The (a) PSTM and (b) PSDM coherence profile computed from Figures 

4.2a and b, respectively, of the fault model. 

 

 

Figure 4.4. The (a) PSTM and (b) PSDM 2D curvature profile corrended with 

coherence computed from Figures 4.2a and b, respectively, of the fault model. 
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Figure 4.5. Seismic profile of PSTM amplitude volume. 

 

 

Figure 4.6. Vertical slice through coherence co-rendered with seismic amplitude for 

PSTM data. 
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Figure 4.7. Vertical slice through most positive curvature co-rendered with most 

negative curvature (with long wavelet) and seismic amplitude along for PSTM data. 

 

Figure 4.8. Seismic profile of PSDM amplitude volume. 
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Figure 4.9. Vertical slice through coherence co-rendered with seismic amplitude for 

PSDM data. 

 

Figure 4.10. Vertical slice through most positive curvature co-rendered with most 

negative curvature (with long wavelet) and seismic amplitude along for PSDM data. 
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ABSTRACT 

 

Different approaches have been investigated and applied to the multiple 

attenuation problems. One of the most popular methods, the Radon transform, forms 

an industry standard workflow and is routinely used in seismic data conditioning. 

Because of cost, seismic data are often spatially undersampled and therefore aliased. 

“High resolution” Radon transform better on such aliased data. In this work, we 

generalize the high-resolution Radon transform to be to be wavelet based. 

 

In this study, Radon transform techniques are reviewed and analyzed, and a 

new Radon transform algorithm, wavelet-based Radon transform using matching 

pursuit method is introduced. We compute Radon transform of the largest events for 

each trace, and then convert them to the tau-p domain. The multiples are then modeled 

and subtracted from the original reflections, till to reach the maximum iteration, which 

provides a power tool for multiple suppression.  
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INTRODUCTION 

 

There are several computing de-multiple workflows: (1) deconvolution that 

predicts and then subtracts multiples from the measured seismic data, (2) separation of 

primary reflections and multiples in a transform domain, and (3) defining the multiple 

generators, modeling and then subtracting multiples from the measured seismic data. 

Parabolic Radon transform applied to NMO-corrected or migrated CMP gathers are 

routinely used in seismic data conditioning (Hampson, 1986; Russell et al. 1990a, 

1990b), while linear Radon transform are used to suppress head waves and ground roll 

(Zhou and Greenhalgh, 1994). Surface related multiple estimation (SRME) is a more 

recent innovation application to common shot gathers prior to migration, which 

provides excellent results for the long period multiples generated from the earth 

surface. In general, SRME performs poorly on interbed multiples and converted 

waves, while Radon transform performs reasonably well. 

 

Since Radon transform are applied to migrated gathers, they fit neatly into a 

quantitative interpretation toolbox, running well on modern desktop computers. 

Unfortunately, insufficient spatial sampling (aliasing) gives rise to artifacts that 

seriously prevent separating multiples and other noise from primary events of interest. 

 

The least squares Radon transform (LSRT) in frequency-space domain was 

introduced (Thorson and Claerbout, 1985; Hampson, 1986; Yilmaz, 1989) to minimize 

the horizontal and oblique smearing seen using simple “projection” Radon transforms. 
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Later, Sacchi and Ulrych (1995) proposed a high resolution frequency domain Radon 

transform (HRFRT), which used a nonlinear sparse-spike constraint, to better separate 

the multiple from primary events. Not surprisingly, increasing the number of events 

diminishes the superiority of HRFRT, since the reflection spikes are no longer 

“sparse”.  

 

Semblance and other coherence measures are routinely used in seismic 

processing such as velocity spectra analysis, in seismic interpretation to estimate 

volumetric dip and to delineate geologic boundaries, and in poststack and prestack 

data conditioning such as edge-preserving structure-oriented filtering. The energy of 

coherent event, which traditionally ranges from 0 to 1, can be used as a weighting 

function (Stoffa et al. 1981; Yilmaz and Taner, 1994; Ng and Perz, 2004) to give a 

semblance-weighted Radon transform (SWRT).  

 

The matching pursuit algorithm was first proposed for seismic analysis by 

Mallat and Zhang (1993) and has been widely applied to seismic signal processing 

(Wang and Pann, 1996; Zhang et al. 2012) and spectral analysis (Liu and Marfurt, 

2005; Wang, 2006, 2010; Dao and Marfurt, 2013). Specifically, the algorithm asks 

“which Ricker wavelet with which moveout, best represents the seismic gather”. After 

each estimate, that event is removed from the data, forming a residual. The algorithm 

will iterate until all events are described. My hypothesis is that the wavelet-based 

Radon transform using matching pursuit method will provide improved separation 

between primaries and multiples. After prototyping my algorithm, I apply it to a 
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marine data volume acquired by KIGAM in the Jeju Basin, Korea to verify its 

performance.  
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THEORETICAL ANALYSIS 

 

The Radon Transform 

 

2D Linear Radon Transform 

 

The original 2D linear Radon transform (LRT) is the integral of seismic or 

other 2D data (such as photographs) over a suite of straight line trajectories in the 

time-space domain 𝑑(𝑡, 𝑥):  

𝑡(𝑥) = 𝑡0 +
𝑥

𝑣
= 𝑡0 + 𝑝𝐿𝑥 ,       (1) 

where v is velocity and 𝑝𝐿=1/v, or slowness. 

 

The data 𝑑(𝑡, 𝑥) are transformed to tau-p domain 𝑢(𝜏, 𝑝𝐿), where 𝜏 is defined 

as the intercept; and 𝑝𝐿 the slope of the straight line: 

𝑢(𝜏, 𝑝𝐿) = ∫ 𝑑(𝑡 = 𝜏 + 𝑝𝐿𝑥, 𝑥)𝑑𝑥
∞

−∞
.                                     (2) 

 

Consequently, a given constant slope, constant amplitude event in the time-

space domain will be represented by a discrete point in the tau-p domain. Thus head 

waves and ground roll are often represented by focused energy points with constant 

values of 𝜏 and 𝑝. Primary hyperbolic reflections and multiple appear as ellipses in the 

(𝜏, 𝑝𝐿) domain. 
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The cartoon of Figure 5.1s shows common shot gather events corresponding to 

a horizontally layered model. The direct wave exhibits a constant velocity, 𝑣𝐷, and 

intercepts at t = 0 s at zero offset. Because this even can be represented by a single 

constant amplitude linear event, it maps to a dot in tau-p domain (Figure 5.1b). In this 

cartoon, Ground roll also exhibits linear moveout with lower velocity, which is also 

represented as a dot similar to direct wave but with larger p=1 𝑣𝐺𝑅⁄  value. The 

primary reflection appears as a hyperbola with increasing slope (p) with offset. At 

critical angle, a linear head wave appears. The hyperbola maps to an ellipse while the 

head wave maps to a point p=1 𝑣𝐻𝑊⁄ . The multiple exhibits a similar pattern, but 

delayed in time since it arrives later. 

 

The 2D Velocity Radon Transform, or Velocity Analysis 

 

In seismology, a flat reflector results in a hyperbolic event in time-space 

domain with:  

                                                    𝑡(𝑥) = √𝑡0
2 +

𝑥2

𝑣𝑟𝑚𝑠
2 ,                                                                (3) 

where 𝑡0 is the zero-offset two-way travel time of the event, 𝑣𝑟𝑚𝑠 is the relative 

RMS velocity, and x is the source-receiver offset. 

 

The Velocity Radon transform (VRT) parameterizes the moveout curve with a 

hyperbola curvature, 𝑝𝐻,  
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                                   𝑢(𝜏, 𝑝𝐻) = ∫ 𝑑(𝑡 = √𝜏2 + 𝑝𝐻𝑥2, 𝑥)𝑑𝑥
∞

−∞
,                               (4) 

where 𝑝𝐻 = 1/𝑣𝑟𝑚𝑠
2 . 

 

Figure 5.2 gives the diagram of 2D Velocity Radon Transform for a 

horizontally layered model. There are two sets of reflection, primary wave 1 and its 

multiple 1, and primary wave 2 and its multiple 2. Since they are hyperbolic events, all 

of them will be transformed to dots in tau-p domain. Primary wave 1 exhibits smaller 

velocity compared to primary wave 2, which means that primary wave 1 in tau-p 

domain has larger p value. The two multiples are characterized as the same p value as 

the relevant primary waves, respectively, with lower 𝜏  values. If we set a closed 

polygon marked by red dashed circle and remove them, the multiples will be removed 

in time-space domain. This is a main application of the Radon Transform. 

 

2D Parabolic Radon Transform 

 

After sorting to CMP gathers, reflection events are corrected by interactively 

picking velocity 𝑣𝑖 (a stacking velocity), which defines a moveout curve: 

                                                       𝑡𝑖(𝑥) = √𝑡0
2 +

𝑥2

𝑣𝑖
2.                                                               (5) 

 

If the true RMS velocity is 𝑣𝑅𝑀𝑆, the time difference, or residual moveout after 

NMO-correction is: 
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                                                 ∆𝑡(𝑥) = √𝑡0
2 +

𝑥2

𝑣𝑟𝑚𝑠
2 −  √𝑡0

2 +
𝑥2

𝑣𝑖
2.                                         (6) 

The corrected event will appear at: 

                                                    𝑡𝑐(𝑥) = 𝑡0 + √𝑡0
2 +

𝑥2

𝑣𝑟𝑚𝑠
2 −  √𝑡0

2 +
𝑥2

𝑣𝑖
2.                              (7) 

 

Applying a Taylor series to equation 6, one obtains: 

                                                                        𝑡𝑐(𝑥) = 𝑡0 +
𝑥2

2𝑡0 𝑣𝑟
2 + ⋯,                                  (8) 

where 
1

𝑣𝑟
2 =

1

𝑣𝑟𝑚𝑠
2 −

1

𝑣𝑖
2. Higher order terms in equation 7 are ignored if 

𝑥2

𝑡0
2𝑣𝑟

2<<1. With 

these observations, Hampson (1986) introduced the parabolic Radon transform (PRT): 

                             𝑢(𝜏, 𝑝𝑃) = ∫ 𝑑(𝑡 = 𝜏 + 𝑝𝑃𝑥2, 𝑥)𝑑𝑥
∞

−∞
,                                 (9) 

where 𝑝𝑃 =
1

2𝑡0 𝑣𝑟
2 . 

 

Ignoring anisotropy, primary reflections will be flattened if the interactive 

picking velocity 𝑣𝑖  is correct ( 𝑣𝑖 = 𝑣𝑟𝑚𝑠 ), while multiple reflections will be 

undercorrected parabola. Velocities that are too slow ( 𝑣𝑖 < 𝑣𝑟𝑚𝑠 ) overcorrect 

hyperbolic events, while velocities that are too fast ( 𝑣𝑖 > 𝑣𝑟𝑚𝑠 ) undercorrected 

hyperbolic events, both of which result in parabolic reflects.  

 

Figure 5.3 shows a cartoon of a NMO-corrected (or time-migrated) CMP 

gathers and its parabolic Radon transform. The goal is to choose a velocity that 

provides a simple discrimination between faster primary and slower multiple events. 
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Least Squares Discrete Radon Transform 

 

By combing equations 2, 4 and 9, the forward discrete Radon transform can be 

written as:  

    𝑢(𝜏, 𝑝) = ∑ 𝑑(𝑡 = 𝜏 + 𝑝𝜑(𝑥), 𝑥)𝑥 .        (10) 

In addition, the matrix form as: 

𝒖 = 𝑹𝑻𝒅,      (11) 

where 𝑻 indicates the matrix transpose. The reverse Radon transform from the tau-p 

domain to the time-space domain is:  

𝑑′(𝑡, 𝑥) = ∑ 𝑢(𝜏 = 𝑡 − 𝑝𝜑(𝑥), 𝑝)𝑝 ,        (12) 

as in form: 

𝒅′ = 𝑹𝒖,     (13) 

where 𝒅′ is the modeled seismic data in time-space domain based on least squares 

method, 𝑷 is the Radon transform operator, and 𝒖 is the seismic data in tau-p domain. 

 

Following Yilmaz (1989), the difference, 𝒆, of the raw seismic data 𝑑(𝑡, 𝑥) and 

the modeled seismic data 𝑑′(𝑡, 𝑥) is: 

𝒆 = 𝒅 − 𝑹𝒖,     (14) 
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where the cumulative squared error S can be written as: 

𝑆 = 𝒆𝑇𝒆 = (𝒅 − 𝑹𝒖)𝑻(𝒅 − 𝑹𝒖).    (15) 

By minimizing S, we obtain the least squares solution: 

𝒖 = (𝑹𝑇𝑹)−𝟏𝑹𝑇𝒅.    (16) 

 

In order to keep the inversion of 𝑹𝑇𝑹  stable, a minimum energy solution is 

often introduced to equation 16: 

𝒖 = (𝑹𝑇𝑹 + 𝜀𝑰)−𝟏𝑹𝑇𝒅,   (17) 

where 𝜀 is an extreme small value, and 𝑰 is identity matrix.  
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Artifacts of the Radon Transform 

 

Aliasing 

 

For seismic data, data aliasing is most commonly caused by coarse spatial 

sample. The Nyquist frequency, 𝐾𝑛𝑦, of the seismic signal can be calculated by: 

𝐾𝑛𝑦 =
2𝜋

2∆𝑥
,    (18) 

where ∆𝑥 is the distance between traces. 

 

If the sample rate, ∆𝑥′, is smaller than the Nyquist sample rate, ∆𝑥, the seismic 

signal can be reconstructed perfectly. In contrast, if ∆𝑥′ > ∆𝑥, some of the original 

reflection signals will leak into the multiple domain, and treated as noise. 

 

For the linear Radon transform, 𝑝 is the slope of the linear reflection, which is 

related to both time and space axis. In order to avoid aliasing in the 𝑝 axis in the tau-p 

domain, the sampling interval, ∆𝑝𝐿 of 𝑝𝐿 can be derived by (Turner, 1990):  

∆𝑝𝐿 ≤
1

2(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)𝑓𝑚𝑎𝑥
,   (20) 

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum offsets, respectively; and 𝑓𝑚𝑎𝑥 

is the maximum frequency of the signal in time-space domain.  
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For the velocity Radon transform, the sampling interval, ∆𝑝𝐻  of 𝑝𝐻  can be 

derived by: 

∆𝑝𝐻 ≤
1

2(𝑥𝑚𝑎𝑥
2 −𝑥𝑚𝑖𝑛

2 )𝑓𝑚𝑎𝑥
,   (21) 

 

For the parabolic Radon transform, the sampling interval, ∆𝑝𝑃  of 𝑝𝑃  can be 

derived by (Hugonnet and Canadas, 1995):    

∆𝑝𝑃 ≤
1

2√(𝑥𝑚𝑎𝑥
2 −𝑥𝑚𝑖𝑛

2 +𝑧𝑟𝑒𝑓
2 )−𝑧𝑟𝑒𝑓𝑓𝑚𝑎𝑥

,   (22) 

 

Transform Artifacts 

 

Theoretically, a hyperbolic reflection in time-space domain should be 

transformed as a focused energy point in Radon domain. However, two artifacts after 

Radon transform can be detected: horizontal artifacts caused by near-offset truncation, 

and oblique artifacts caused by far-offset truncation (Kabir and Marfurt, 1999).  

 

Figure 5.4a shows a CMP gathers with only one hyperbolic event in time-space 

domain. According to the velocity stack (Thorson and Claerbout, 1985), the 

hyperbolic event will be focused on an energy point shown in Figure 5.4b by green 

arrow. At the same time, both the near and far offset artifacts are also detected.  
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Each hyperbolic event can generate an energy point with two artifacts, while 

this phenomenon smears the energy distribution in Radon domain, making it hard to 

separate events, especially for the multiples’ energy points from the primary energy 

points. Consequently, the conventional Radon transform’s capability of attenuating 

multiples is greatly compromised. 

 

Semblance-weighted Radon Transform 

 

The transform artifacts have seriously weakened the function of Radon 

transform. While the energy still concentrates in the energy point rather than the 

artifacts. If we calculate the semblance in Radom domain: 

𝑆(𝜏, 𝑝) =
∑ [∑ 𝑑(𝑡=𝜏+𝑝𝜑(𝑥),𝑥)𝑥 ]2

𝑙

𝑁𝑥 ∑ ∑ 𝑑2(𝑡=𝜏+𝑝𝜑(𝑥),𝑥)𝑥𝑙
,    (23) 

where l is the window size, and 𝑁𝑥  is the number of seismic trace included in the 

semblance calculation. 

   

For least squares discrete Radon transform, the semblance-weighted constraint 

in each iteration can be defined by an Ormsby filter: 

𝑤𝑆 = {

        0 𝑆 ≤ 𝑠1𝑜𝑟 𝑆 ≥ 𝑠4

       1 − 0.5 ∗ (1 + 𝑐𝑜𝑠 (𝜋(𝑆 − 𝑠1)/(𝑠2 − 𝑠1))) 𝑠1 ≤ 𝑆 ≤ 𝑠2

1     𝑠2 ≤ 𝑆 ≤ 𝑠3

   1 − 0.5 ∗ (1 + 𝑐𝑜𝑠 (𝜋(𝑆 − 𝑠3)/(𝑠4 − 𝑠3)))     𝑠3 ≤ 𝑆 ≤ 𝑠4

, (24) 

where 𝑠1, 𝑠2, 𝑠3 and 𝑠4 are corner values of the filter:  
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    𝑠1 = 𝜎1𝛾𝑛,              (24a) 

    𝑠2 = 𝜎2𝛾𝑛,              (24b) 

    𝑠3 = 1.01,              (24c) 

    𝑠4 = 1.01,              (24d) 

where 𝜎1  and 𝜎2  are the first and second points to pass high values of semblance, 

respectively, 𝛾 is the fractional values, and n is the number of iteration.  

 

Orange arrows in time-space domain in Figure 5.5a are primary reflections, 

white arrows are multiples and the yellow arrow is the linear head wave reflection. 

The relevant focused energy is displayed in tau-p domain in Figure 5.5b, using least 

squares discrete velocity Radon transform. The multiples are close to the nearby 

primary reflections, while the existence of the near- and far-offset artifacts and 

aliasing (red arrows) makes them difficult to separate.   

 

The semblance in Radon transform in Figure 5.6a can be calculated based on 

equation 23, and the semblance-weighted constraint is displayed in Figure 5.6. Figure 

5.6c is the seismic profile in tau-p domain, using semblance-weighted least squares 

discrete velocity Radon transform, which is the product of Figure 5.5b and Figure 

5.6b. The application of the semblance-weighted constraint effectively suppresses the 

transform artifacts and the aliasing of Figure 5.5b. 
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Wavelet-Based Radon Transform 

 

Matching pursuit method has been widely used in spectral decomposition (Y. 

Wang, 2006, 2010), NMO correction (B. Zhang et al, 2013), and impedance 

estimation (Wen et al., 2015), all of which have inspired me to apply it to wavelet-

based Radon transform. 

 

Ricker wavelet or Morlet wavelet have been pre-computed at the beginning. 

We assume that a seismic trace can be decomposed into a suite of wavelets with 

certain amplitude, frequency and phase. The input seismic data, 𝑑(𝑡, 𝑥), is a common 

shot gather. By calculating the instantaneous envelope and frequency through Hilbert 

transform and setting a threshold, we can pick several envelope peaks above the 

threshold. For each picked peaks with known frequency, we can approximate its 

amplitude and phase using relevant wavelet using the least squares algorithm, to fit the 

instantaneous envelope. In this way, we can best describe the envelope peaks using the 

constructed wavelet with minimum error, and then convert each constructed wavelet 

using Radon transform. After that, we subtract the constructed wavelets of last picked 

peaks and loop the iteration. Once the residual energy reaches a user-defined value or 

a maximum number of iteration has reached, the wavelet Radon transform is perfectly 

executed for the final results.  
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In order to better illustrate the theory of wavelet-based Radon transform 

workflow in Figure 5.7, a seismic profile with only one live trace (the 100th trace) is 

introduced in Figure 5.8, which is plotted by wiggle in Figure 5.9a. White arrows 

indicate the reflections in the time-space domain.  The different iteration residual 

traces are shown in Figures 5.9b-d, and the relevant reconstructed traces are shown in 

Figures 5.10 a-c. We can see that after third iteration, the residual trace is extremely 

small and can be considered below the noise level, and most of the useful signals are 

transformed to the tau-p domain. Each point in time-space domain is transformed as a 

straight line in tau-p domain. 

 

Figure 5.11a indicates a seismic profile with five live traces in time-space 

domain, and five points on five seismic traces are shown by white arrows in Figure 

5.11a and a focused energy point is generated by the five straight lines indicated by 

white arrows in Figure 5.11b. For the whole seismic profile in Figure 5.5a, the 

wavelet-based Radom transform is displayed in Figure 5.12. The aliasing is perfectly 

removed compared with Figure 5.5b. The multiples can be more easily separated from 

primary reflections as well, even though the transform artifacts are still obvious. 

  

Generally, we need several steps to implement multiple suppression using 

wavelet-based Radon transform: 

1. Data conditioning of CMP gathers (AASPI: sof_prestack); 

2. Wavelet-based Radon transform (AASPI: anti_alias_drt_mp); 



207 

 

3. Pick polygons that include strong, coherent multiples, which are located at 

larger values of p (AASPI: aaspi_plot); 

4. Reserve the data inside polygons and perform reverse Radon transform to 

simulate multiples (AASPI: anti_alias_drt_mp); 

5. Subtract multiples of step 4 from CMP gathers to get filtered data 

(primaries) and loop to step 1. 
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SYNTHETIC ANALYSIS  

 

In order to test the wavelet-based Radon transform, a layered horizontal model 

(Figure 5.13) with a high velocity interbed zone (Table 5.1) is created. The source and 

receiver spacing are defined as 50m and 10 m, respectively, and a 50 Hz Ricker 

wavelet is chosen in the model (Table 5.2). The existence of the high velocity interbed 

will generate interbed multiples indicated by white arrows in Figures 5.14a and b. The 

weight function is applied before the calculation of Radon transform. 

 

Figures 5.14a and b indicate the seismic profile of the shot gather before and 

after NMO-correction, respectively of the layered horizontal model in Figure 5.13. 

Orange arrows give the primary reflections and multiples are shown by white arrows. 

The conventional velocity transform results of Figure 5.14a is shown in Figure 5.15a, 

the primary reflections (orange arrows) and multiples (white arrows) are concentrated 

on the energy points in Figure 5.15a. The black arrows indicate the aliasing artifacts. 

The wavelet-based velocity transform results in clearer imaging in tau-p domain and 

the aliasing is suppressed. Semi-transparent red shadows cover the multiples energy 

concentration, and are modeled using conventional and wavelet-based velocity 

transform as shown in Figure 5.16. The multiples are suppressed by subtracting the 

modeled ones (in Figure 5.16) from the original reflections in time-space domain 

(Figure 5.17). More multiples are suppressed by the application of the wavelet-based 

method, compared with the conventional velocity transform.  
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The NMO correction is applied and mute is applied in Figure 5.14b to avoid 

NMO stretching. The primary reflections have been flattened and the stretched zone 

has been muted, while the multiples exhibit parabolic events in the seismic gather due 

to the under-correction. The energy of the primary reflections (flatten events) will be 

transformed to the focused energy point near the 𝑝 = 0, and the multiples will be 

focused on the relative large  𝑝 value (𝑝 ≫ 0). By eliminating aliasing, we define the 

sampling interval of 𝑝, ∆𝑝 according to equations 21-23 for both conventional and 

wavelet-based Radon transform.  

 

Figures 5.18a and b indicate the conventional and wavelet-based parabolic 

forward Radon transform of Figure 5.14b, respectively. The primary reflections are 

focused on the  𝑝  values approaching zero, and the multiples are adjacent to the 

relevant primary waves and characterized as relative large  𝑝 values. We can find 

some aliasing pointed by red arrows from the conventional Radon transform, while the 

result of the wavelet Radon transform is clearer and aliasing is almost smeared.  

 

The semi-transparent red shadow zone depicts the distribution of the multiples. 

By reversing Radon transform to module multiples, we find the parabolic events are 

removed in Figure 5.20. The white arrows in Figure 5.20a indicate the residual 

multiples, which have been better suppressed in Figure 5.20b. The far-offset zone of 

the flattened primary reflections is scattered in Figure 5.16a, while they are converged 

better compared with the one in Figure 5.16b. 
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APPLICATION  

 

Figure 5.21 indicates one CMP gather after muted NMO-correction. The 

survey is acquired in Jeju Basin, Korean. The marine seismic data always suffer from 

the multiples in the seismic processing workflow. NMO-correction has been applied 

and the primary reflections are almost flattened. While the multiples shown by white 

arrows behave under-corrected, which seriously damage the data quality.  

 

Conventional and wavelet-based parabolic forward Radon transform are 

performed and shown in Figures 5.22a and b. White arrows indicate multiples being 

described as parabolic events in Figure 5.21, and are characterized by larger 𝑝 values. 

The zoomed in sections of Figures 5.22a and b clearly prove the higher resolution and 

less aliasing (red arrows) in Figure 23b compared with the one in Figure 23a. The 

semi-transparent red shadow zone indicates the multiples zone, which is reserved and 

modeled in Figure 5.24. The filtered data in Figure 5.25 is created after the subtraction 

of modeled multiples; the seismic reflections are flattened batter in Figure 5.25b than 

that in Figure 5.25a. 

  



211 

 

CONCLUSIONS 

 

Radon transform is an effective way to suppress multiple reflections in 

exploration seismology. Many methods have been developed to solve the resolution 

problem of Radon transform, and the matching pursuit algorithm, which has been well 

used in spectral decomposition, NMO correction, etc., is successfully applied to de-

multiple processing. 

 

The primary reflections are flattened by accurate velocity, while the multiples 

remain under correction due to lower velocity. The energy of the flattened reflections 

after NMO-correction will be focused on the 𝑝  values approaching zero in tau-p 

domain, while the multiples are still characterized as the positive 𝑝  values, which 

makes it possible to separate the multiples from the primary reflections.  

 

The application of the wavelet-based Radon transform opens another door for 

multiple suppression, which more effectively removes the multiples compared with 

the conventional least squares discrete Radon transform. 
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CHAPTER 5 FIGURES 

 

  

Figure 5.1. Cartoon of events in a seismic shot gather of a horizontally layered model 

and its resulting linear-moveout Radon transform. Note the ground roll have the 

slowest moveout (largest slowness p) followed by the direct p-wave. 
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Figure 5.2. Cartoon of events in a seismic shot gather of a horizontally layered model 

and its resulting hyperbolic-moveout Radon Transform. 
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Figure 5.3. Cartoon of events in a seismic gather after NMO correction of a 

horizontally layered model and its resulting parabolic-moveout Radon Transform. In 

general, primary reflection events are flattened, or alternatively overcorrected, while 

multiple are undercorrected. The application of the parabolic NMO correction results 

in residual moveout that is approximately parabolic. 
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Figure 5.4. A seismic gather with a single hyperbolic event in (a) time-space domain 

and (b) tau-p domain using a least squares discrete velocity Radon transform. The 

green arrow indicates the focused energy of the hyperbolic event of Figure 5.4a; white 

arrows indicate near- and far-offset artifacts described by Kabir and Marfurt (1999). 

 



217 

 

 

Figure 5.5. (a) A seismic gather and (b) its tau-p transform using a least squares 

discrete velocity Radon transform. Orange arrows indicate primary reflections, white 

arrows indicate multiples, and red arrows indicate aliasing artifacts. 
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Figure 5.6. The (a) semblance, (b) 

semblance-weighted constraint, and (c)  

tau-p transform of the CMP gather shown 

in Figure 5.5a using semblance-weighted 

least squares discrete velocity Radon 

transform. Orange arrows indicate primary 

reflections; white arrows indicate 

multiples. 

 

. 
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Figure 5.7. The flowchart for wavelet-based Radon transform.  
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Figure 5.8. The seismic CMP gather shown in Figure 5.5a where only trace 100 is 

alive. White arrows indicate the reflections in the time-space domain.  
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Figure 5.9. (a) Trace no. 100 from the gather shown in Figure 5.5a and (b-d) its 

Residual traces after 1, 2, and 3 matching pursuit iterations.  
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Figure 5.10. The tau-p transform for 

iterations 1-3 corresponding to the 

decimated CMP gather shown in Figure 

5.8. 
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Figure 5.11. (a) The seismic CMP gathers of Figure 5.5a with five live traces, and (b) 

its tau-p transform. White arrows indicate five points on five seismic traces. 
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Figure 5.12. The tau-p transform of the CMP gather shown in Figure 5.5a constructed 

using a wavelet-based Radon transform. Note that the aliasing seen in figure 5.5b is 

reduced. 

 

 



225 

 

 

Figure 5.13. The diagram of the horizontally layered model. 

 

 

Table 5.1. Elastic parameters of the horizontally layered model in Figure 5.13. 

 

 

Table 5.2. Geometry parameters of the horizontally layered model in Figure 5.13. 
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Figure 5.14. The CMP gather from Figure 5.13 (a) before and (b) after NMO-

correction. The mute is applied in Figure 5.14b to avoid excessive NMO stretch. 

Orange arrows indicate primary reflections; white arrows multiples. 
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Figure 5.15. (a) Conventional and (b) wavelet-based forward velocity transform of the 

CMP gather shown in Figure 5.14a. Orange arrows indicate primary reflections, white 

arrows indicate multiples, the red polygon indicates the mute zone, and red arrows 

indicate the aliasing artifacts. 
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Figure 5.16. Modeled multiples using (a) Conventional and (b) wavelet-based 

velocity transform of the CMP gather shown in Figure 5.14a. Orange arrows indicate 

primary reflections, white arrows indicate multiples. 
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Figure 5.17. Filtered data using (a) Conventional and (b) wavelet-based velocity 

transform of the CMP gather shown in Figure 5.14a. Orange arrows indicate primary 

reflections, white arrows indicate multiples. 
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Figure 5.18. (a) Conventional and (b) wavelet-based parabolic forward Radon 

transform of the NMO-corrected gather shown in Figure 5.14b. Orange arrows 

indicate primary reflections, white arrows indicate multiples, the red polygon indicates 

the mute zone, and red arrows indicate the aliasing artifacts. 
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Figure 5.19. Modeled multiples using (a) Conventional and (b) wavelet-based 

parabolic transform of the NMO-corrected gather shown in Figure 5.14a. Orange 

arrows indicate primary reflections, white arrows indicate multiples. 
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Figure 5.20. Filtered data using (a) Conventional and (b) wavelet-based parabolic 

transform of the NMO-corrected gather shown in Figure 5.14a. Orange arrows 

indicate primary reflections, white arrows indicate multiples. 
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Figure 5.21. The CMP gather after NMO-correction. White arrows indicate multiples 

that appear described as hyperbolic events. 
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Figure 5.22. (a) Conventional and (b) wavelet-based parabolic forward Radon 

transform of Figure 5.21. White arrows indicate multiples being described as parabolic 

events. 
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Figure 5.23. Zoomed in sections of (a) conventional and (b) wavelet-based parabolic 

forward Radon transform of Figure 5.21. White arrows indicate multiples being 

described as parabolic events, and the aliasing are shown by red arrows. 
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Figure 5.24. Modeled multiples using (a) Conventional and (b) wavelet-based 

parabolic transform of the NMO-corrected gather shown in Figure 5.21. White arrows 

indicate multiples. 
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Figure 5.25. Filtered data using (a) Conventional and (b) wavelet-based parabolic 

transform of the NMO-corrected gather shown in Figure 5.21a. White arrows indicate 

residual multiples. 
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