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Abstract

While initially thought to be laterally homogeneous, operators quickly realized
that unconventional resource plays can exhibit considerable geologic heterogeneity.
Since this realization, 3D surface seismic analysis has played a significant role in
identifying drilling hazards and sweet spots. Much less effort, however, has been
invested in mapping the heterogeneity of the drilling process itself, where some zones
drill faster, some slower, and still others result in costly casing trips to change the bit.
Given the current low oil price, there is an increased need for efficiency and cost
reduction in the drilling process. A method to better predict drilling speed could make a
significant impact.

In this thesis, | correlate the rate of penetration to surface seismic measurements
made over the heterogeneous Mississippi Lime resource play in Woods County,
Oklahoma. 50 horizontal wells with mud logs measuring the rate of penetration (ROP)
in minutes/foot fall within a 70 mi? seismic survey. Exploratory data analysis shows that
geomechanical attributes of P-impedance, inverted-porosity, Ap and up and the
geometric attribute curvedness have good correlations with ROP. | then evaluate a
Proximal Support Vector Machine (PSVM) and an Artificial Neural Network (ANN) to
predict classifications of the speed of drilling — or cost of penetration in minutes per
foot — for lateral segments of the wells. Because the objective is to develop a technique
to reduce the cost of drilling, | weighted each well segment by the time it took to drill,
and then defined discriminant boundaries between classes defined as equally weighted
percentiles. | initially attempted to assign 40 of the wells, irrespective of driller, into 5-

class and 2-class PSVM and ANN models, but obtained poor validation with the 10

XVi



wells not used in the training. Hypothesizing that a given directional drilling company
will follow consistent, if not rigid, company specific operating protocols, | used these
smaller data sets to generate three 2-class (fast and slow) PSVM and ANN models. |
obtained increased validation of 2-class PSVM of 17-32%; however, the results for the
ANN were weaker with a decrease in validation for some cases. More specifically, the
2-class PSVM correctness increased from 57% for the entire data set to 85%, 70% and
70% when the data were separated by the three directional drillers. The 2-class ANN
correctness changed from 66% for the entire data set to 73%, 64% and 66% when the
data were separated by directional driller.

In an effort to further lower drilling costs, | correlate bit trips in the lateral
segments of wells to Gray Level Co-Occurrence Matrix (GLCM) texture attributes.
Using eight GLCM attributes — contrast, correlation, dissimilarity, energy, entropy,
homogeneity, mean and variance — and building off the knowledge that the directional
driller had an effect on the results of the PSVM, | was able to obtain strong correctness
for a 2-class (high number of bit trips and low number of bit trips) PSVM model. The 2-

class PSVM correctness obtained ranged between 90-93%.
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Chapter 1: Introduction

The Mississippian Limestone carbonates in north-central Oklahoma have
yielded stellar oil and gas reservoirs since the early 1900’s (Koch et al., 2014). While
wildcatters once targeted geographic structural traps, the advent of unconventional
drilling and completion techniques has allowed for the exploitation of stratigraphic traps
by exploration and production companies (Lindzey, 2015). This thesis strives to
improve well planning and reduce drilling costs through the use of mudlogs and 3D
seismic data.

In today’s industry, drilling a horizontal well is one of the largest expenses of
the petroleum production process. The controlling factor in the cost of drilling a well is
time and the majority of the time is consumed either while drilling or making a bit trip
(Bourgoyne et al., 1986). More specifically, the time can be broken down into the
rotating time, nonrotating time and trip time (Bourgoyne et al., 1986). Ideally, one
would like to — safely and efficiently — drill the well as quickly as possible while
maximizing rotating time and minimizing nonrotating and trip time to decrease the
overall cost of drilling. Drilling rate in the petroleum industry is referred to as rate of
penetration and primarily depends on weight on bit, speed of bit rotation, drilling fluid
flow rate, and the drilled formation (Bourgoyne et al., 1986). Values of rate of
penetration used in this thesis will be in units of minutes per foot and will be referred to
herein as cost of penetration or COP (Qi et al., 2016). By predicting COP values and bit
trips throughout the study area, my goal is to statistically analyze the cost of the drilling

process for a given well trajectory.



The basis for this thesis extends preliminary work done to predict COP by Qi et
al. (2016). Juxtaposed with this thesis, some aspects remain the same; however, many
changes were made in this study to further characterize the COP prediction and
classification process. The two major points that remain constant between this thesis
and the work done by Qi et al. (2016) are the use of the same geometric and
geomechanical attributes and the use of a 2-class proximal support vector machine. The
altered methods in this study differentiate the thesis. Data sampling in this project was
defined to be that of the seismic bin size, in other words data samples for COP,
geometric and geomechanical attributes were taken at every 110 ft, as opposed to every
2 ft. Each data 3D voxel along the well was then classified by this upscaled COP. For
this study, classification was also tested using an artificial neural network which was
not used in the study by Qi et al. (2016). After preliminary exploratory data analysis,
wells are segmented by their respective directional driller and COP is analyzed
separately. Furthermore, bit trips in the lateral segments of wells are segmented by their

individual directional driller and analyzed separately.



Chapter 2: Geologic Background

Regional Geology

The wells and seismic survey in this study lie in the northeastern corner of
Woods County, Oklahoma. Figure 1 shows the surrounding structural members and
study area within Woods County. The study area is within the Anadarko Shelf and is
bound by the Cimarron Arch to the west, the Anadarko Basin to the south and the
Nemaha Uplift to the east. These structural elements formed primarily between the Late
Cambrian and Early Pennsylvanian (Johnson and Luza, 2008). Figure 2 shows a cross
section displaying structural features from southern Oklahoma up to the Anadarko Shelf
in northern Oklahoma. Figure 3 shows a similar cross section; however, this figure runs
from western Oklahoma through the Anadarko Shelf and to the eastern edge of the
state.

Figure 4 shows the approximate location of the study area during the
Mississippian Period. During the Paleozoic Mississippian (345 Ma), shallow seas
covered the majority of Oklahoma (Johnson and Luza, 2008) and shallow-water
carbonates were deposited (Figure 5) creating the Anadarko Shelf. Figure 6 shows the
primary depositional environments during this time period — the inner, middle and outer
ramp. Seven lithofacies are represented within this carbonate-ramp: argillaceous
dolomitic mudstone, argillaceous dolomitic mudstone with chert nodules, clean
dolomitic mudstone with chert nodules, nodular to bedded chert, autoclastic chert,

autoclastic chert with clay infill and bioclastic wacke-grainstone (Watney et al. 2001).



Local Geology

The stratigraphic units of interest for this study are from the Paleozoic Era.
Figure 7 shows the established stratigraphic column in northeast Woods County and the
series that are present in the study are the Kinderhookian, Osagean and Meramecian.
Figure 5 shows that these Mississippian rocks are primarily limestone with minor
amounts of chert, sandstone and shale. Thicknesses range between 400 feet and 1,400
feet; this variability is due to erosion after the Mississippian period (Bowles Jr., 1961).

The lower portion of the Kinderhookian series is characterized by the Woodford
shale which is a brown, carbonaceous, shale. The upper portion of the Kinderhookian is
a sucrosic limestone that is light-gray in color (Bowles Jr., 1961). Overlying the
Kinderhookian series is the Osagean series. The Osagean is primarily dolomite and
limestone; however, a characteristic feature for this series is the blue-gray chert
contained within (Bowles Jr., 1961). The Meramecian series overlies the Osagean. It
contains dolomite with interbedded chert at the base, but becomes a gray fossiliferous
limestone at the top (Bowles Jr., 1961).

The horizontal wells in the study area penetrate and produce mainly from the
Osagean series — more specifically, from a section known as the Mississippi Chert or
“chat.” The term “chat” is a colloquialism created by drillers due to the chattering sound
the drill bit makes as it bounces of the Osagean Mississippi Chert. Subaerial exposure
of the Mississippian Limestone caused porous and reworked chert to form which ranges
between 50-70 feet (Bowles Jr., 1961). Chat is made through dissolution of excess
amounts of calcite in meteoric waters (Rogers, 2001). Furthermore, the formation of

chat is controlled by elevation and erosion; higher elevation areas allow for more



erosion to occur, regulating the distribution of carbonate that exists for later
replacement by silica-saturated waters (Rogers, 2001). The Mississippi Chat is,

therefore, only found in localized areas such as northeastern Woods County, Oklahoma.



"(G66T ‘l199dwed pue 1INdYHON WOy payipow 8002

“8ZN7] pue UOSUYO() PaJ Ul Paulfno si yaiym ‘Ajunod

SPOO UIYUM Sal| pue uaalb ul pauljino Si ease Apnis sy “ewoyeO 40 ssoulnoid 21601086 ay3 Jo dey T 8unbi4

£ SO 0S 0
ot A 2\ L 4 . —
9 " | uleld |e1se0 JINO
A Ve N 4!%&%’/ N ASpf] | swory 08 0 wiseooins [\\\
re—1\ YWB N, : ANAPGONTT g
GRITAN 4'# . m.mv.v./ _ v.Nm,v/ o Y R
AN (AL 2% > @i QL LIS e N paziesoual Jo ejens jo Bujuaxoy) jo gjes vy abuey) === ===
i n : }I\I&O\Vﬁfr./. &‘Vv R \h.?.
- hd W : U 9
<..F—._ﬂ.-w“:o : == VY QQV.WJ TR e .sm..“..b GO S PUGJ} [BINJONIS JO “INOJUOD [BINONIIS 'JORIUOD POUNG  <mmmmmmsmmen
b 3 .EJQD ..... \ Loeb s NN
. N\a 5 u..va.-.OD@Q( kl:.hdl..r 7y X % VO%\ pezieseusb Ajjeso] so pejewixosdde
- ..\«’...quﬁwoz., -.....“... ; T ;4. I[ VQ\V R .....,... 8q ARy "SHUN %20J USIMIAG 1OBIU0D BoBUNS
R e ! NG =T b, A
22 AT Youp A D4 e &$0 " 4201q l1es BuiBuey uo
t— : i 1 : % #.lAtn .nh A4 A \Aﬂ [ SQIEQ PIOS YIM PEyRUSP! SINE) ISIIYLEAD Aedaaba
Rans - » i ' PRty nuA.b.L. .MY ,,,,,,
o - 1\ dope . Sl sjnej aoepnsqns Jofep] aleebaala
'NISVE VWONEY ) & riv; I A s
R s .N < YM — %901q UMOJYIUMOP
: 4 S ey Fomei Al9Ane|9) uo $2INYIRY AG PAYNUIP! SHNEJ [BWION s
: 7 — JUAWBAOW [BIU0Z110Y
3 s 4-Sgmmancncqges ‘ z_m<m °v—¢<ﬂ<z< QAIIE18J B1BDIPUI SMOLY HO0Iq |1em Buibuey uo sqieq
..4, ' \ ' co S PIOS YIIM payjuep! sjinej 1SnIyueAQ "eoeuns ayj P
: 7 : : ' — : ‘1€ 1n290 0} PalaIdIBIUI JO 1e pasodxa sine; sofey b”\bl?
> N G e e s ' : - )
14ndn 141ndn : NOILLYNVY1dX3
HUVZO VHVIW3N m
: it ’ 4 — I _ﬂ 21
.~ N¥O4LVd v disreeni]) =
........ |~ '33N0¥IHD ] HONY \\ {  Nisvg
Lo - . Nowmwwiy 3 A¥VHIVG
| o - e - WID & ]
— - _— e e
5 T T 1 T _' S m
g . an " Rl y
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Figure 2. Cross section through Oklahoma running from the Hollis Basin in the south,
through the Anadarko Basin and up to the Anadarko Shelf in the North (Modified from
Johnson and Luza 2008).
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Figure 4. Paleogeographic map during the Paleozoic Mississippian (345 Ma). The red
star shows the approximate location of the study area (Modified from Blakey, 2014).
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Figure 5. A map displaying the Mississippian Period rock types deposited when
shallow-water seas covered Oklahoma (Johnson and Luza, 2008).
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Figure 6. A map displaying the carbonate facies of the Anadarko Shelf. Our study area
contains majority middle ramp facies (Modified from Koch et al., 2014; Lane and
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DeKeyser, 1980; Watney et al., 2001).
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Figure 7. A stratigraphic column of the study area. Units of interest are outlined by the
red box (Modified from Mazullo, 2011).
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Chapter 3: Data

Data Available

The 3D Survey for this project was provided by Chesapeake Energy Corporation
and was processed by Kelman Technologies in 2011. The survey is approximately 70
mi® and Figure 8 shows a time slice at the approximate Mississippian horizon through
the seismic amplitude volume at t=1.02 s. The processing workflow carried out included
gain recovery, spiking deconvolution, refraction statics, velocity analysis, residual
statics, fxy pre-stack noise rejection, pre-stack Kirchhoff time migration, migration
stretch mute, and a 6-12-80-90 Ormsby bandpass filter. Table 1 shows detailed survey
parameters. The source and receiver spacing were 220 ft. The bin size was 110 ft x 110
ft with a sampling increment of 2 ms. The wavelet amplitude is laterally continuous
throughout the Mississippian Limestone unit, exhibiting a high signal to noise ratio.
Well data, including open-hole logs and well logs, from 50 horizontal wells and 32
vertical wells were included.

Mudlogs

The mudlog was the primary piece of data used in this study. A mudlog is a
suite of data analyzed and compiled during a well’s drilling process by an on-site
geologist better known as a mudlogger. Figure 9 shows a sample mudlog using
WellSight Log Viewer courtesy of WellSight Systems. This figure shows COP, weight-
on-bit, gamma ray, depth, cuttings analysis, and mud cake analysis. Every piece of data
is critical to the drilling process; however, the COP values are what is crucial to this

study.
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Survey Parameters

County: Woods
Projection: NAD27 Oklahoma North
Receiver Spacing: 220 ft
Receiver Line Spacing: 440 ft
Source Spacing: 220 ft
Source Line Spacing: 880 ft
Datum: 1500 ft
Replacement Velocity: 9000 ft/s
Sample Interval: 2 ms
Record Length: 3000 ms
Azimuth: 90.45°

Processing Type:

Post-Stack Migration

Bin Size:

110 ftx 110 ft

Table 1. 3D Survey Parameters.
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Figure 9. An example mudlog. The suite of data shown was compiled and analyzed by
the mudlogger while this well was drilled (Courtesy of WellSight Systems).
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Chapter 4: Methods

Geometric Attributes

| hypothesize that natural fractures either impede or facilitate the cost of
penetration. Nelson (2001) finds that in addition to lithology, natural fractures are also a
function of strain. Curvature, computed from 3D seismic data, is a direct measure of
strain, and commonly used as a proxy for fractures (Lisle, 1994; Ghosh and Mitra,
2009). With no reason to favor most positive curvature, ki, over most negative
curvature, k2, I combine them and use curvedness, C, defined by Chopra and Marfurt
(2007) as

€= +1k3), (1)

| further hypothesize that textural homogeneity — or lack thereof — will have an
effect on the ease of drilling. Texture will be analyzed through eight GLCM texture
attributes — contrast, correlation, dissimilarity, energy, entropy, homogeneity, mean,
variance — computed from 3D seismic data. The GLCM describes arrangements of gray
levels that occur in a given space — providing quantitative texture measurements (Hall-
Beyer, 2007). Gao (2004, 2007, 2009) has correlated these texture attributes to well
logs using both supervised and unsupervised learning techniques.

Geomechanical Attributes

Gong and Zhao (2007) found that brittleness of a rock affected the rate of
penetration for Tunnel Boring Machines. More specifically, as rock brittleness
increased, rate of penetration increased. Geomechanical attributes can aid in the
analysis of brittleness, and therefore in cost of penetration analysis. A simultaneous

elastic inversion is generated on this data set in order to estimate values of porosity, Ap,
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up and P-impedance using commercial software. These geomechanical attributes are
used as inputs for classification as they relate to the lithology and brittleness of the
drilled formation and, in turn, may have a direct effect on the COP. 16 wells with
density and P-wave sonic logs are used; however, only one S-wave sonic log was
available. Prior to the inversion, the data were preconditioned by applying a 10-15-110-
120 Hz bandpass filter, a parabolic Radon transform and trim statics, the latter to correct
for alignment errors at far offsets. Correlations between the inverted and the upscaled,
measured P- and S- impedance logs at individual well locations ranged between 0.964
and 0.985 indicating a strong relationship.

Time to Depth Conversion

To relate seismically derived geometric and geomechanical attributes to cost of
penetration, the volumes in the time domain must be converted to the depth domain. A
velocity model was created for the Mississippian Limestone using built on interpreted
seismic horizons in the time domain combined with well tops picked from logs in the
depth domain.

The target zone in this study is defined by the top of the Mississippian
Limestone as the upper bound and the top of the Woodford Shale as the lower bound.
Next, the well tops for the Mississippian Limestone and the Woodford Shale are entered
as correction data. The well tops make alterations to the velocity model and create a
more accurate model in the depth domain. The zone of the velocity model must next be
defined. Because there is little compaction with depth for the Mississippi Lime
Formation and dip was less than 2%, the velocity was chosen to be constant throughout

the zone where V =V, = V;,;.
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The last step is to change the correction and output settings for the model.
Tolerance for depth and time thickness of 60 ft and 40 ms were selected, respectively.
The commercial software used disregards intervals where the difference between
horizons is less than the tolerance. Surface interpolation increments of 500 ft were
chosen for both X and Y. The interpolation method chosen was a moving inverse
distance squared weighted average, such that closer points receive a higher weight than
points further from the node.

The resulting velocity model can now be used to convert the seismically derived
geometric and geomechanical attributes from time to depth. Figure 10 shows the
seismic amplitude in the time domain with a well that is stretched because it is in the
depth domain. Figure 11 shows the seismic after being converted to the depth domain
using the new velocity model. The well fits much better and is no longer stretched. This
model can now be applied to the rest of the data.

Correlation using a Support Vector Machine Training

Support vector machine and artificial neural networks are both supervised
learning techniques, wherein, the interpreter graphically (e.g by picking) or otherwise
defines (e.g. by extracting voxel vectors about a well bore) a subset of the data that are
correlated to “truth” data such as facies labels or well log measurements. In this work,
the truth data will be a subset of the ROP measurements in the horizontal well logs.
Voxels vectors are extracted along horizontal wellbore portions of 50 wells within the

3D survey.
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Proximal Support Vector Machine

Support vector machines were originally created as a means of non-
linear data classification (Cortes and Vapnik, 1995). Initially used for binary
classification through the use of decision-boundaries (Figure 12), SVM’s have evolved
into proximal support vector machines where classification is driven by the use of
decision-planes (Figure 13) (Fung and Mangasarian, 2005). Support vector machines
are more frequently being used as classification tools in geology and geophysics.
SVM’s have recently been used as a method of lithofacies classification, a means to
estimate TOC from well logs, a method to map mineral prospectivity, (Zhao et al.,
2014; Zhao et al., 2015; Zuo and Carranza, 2011). In this study, a PSVM will be used to
classify drilling rate by analyzing the geometric and geomechanical attributes
curvedness, P-impedance, Ap, up and inversion porosity.

To begin, a training file with a significant portion of the data is entered.
Controlling parameters are chosen to define the misclassification rate and Gaussian
kernel. Figure 14 shows a representative output. In this case, the application correctly
classified 25 of the 40 testing points or 63% of the validation points.

Artificial Neural Network

Artificial neural networks are comprised of an arrangement of variables
functioning simultaneously, and are considered to be similar to the human nervous
system (Demuth and Beale, 1993). ANN’s are able to efficiently distinguish
relationships between data that may, initially, seem to have no connection (Hsu et al.,
1995). Figure 15 shows the ANN training process. Inputs are entered into the neural

network where they are weighted and linked creating an output. The output is then
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compared to the target output and the neural network iterates by adjusting weights of
each input variable until an optimal output is found. Figure 16 shows the structure of an
ANN.

I used a commercial Neural Pattern Recognition toolbox is used in this study as
a means of classification for the data. The percentage of samples for the training,
validation and testing steps are selected as well as the number of hidden neurons. The
model is trained and iterates until the best possible result is reached. A generalized
sample output is shown in Figure 17. The results for this test are poor; the cross-entropy
values are too high meaning that the model is unsatisfactory.

Statistics

I use the four moments of statistics-mean, variance, skewness and kurtosis as
well as the median to make compare variability and consistency between three
directional drillers. This suite will help to give measures of center, spread and shape for
our data (Hall, 2016).

Seiler and Seiler (1989) define the first moment of statistics, mean, by

1$n

X = R Li=1%i (2)
The mean is the arithmetic average of the data samples. Variance is the second moment

and is defined by

1 _
0% = —3, (- 07, ©)
Standard deviation, although not a moment of statistics, is important as it expresses the

variability of the data in the same units as the data (Hall, 2016). It is defined as the

square root of variance or
o=+Vo?, 4)
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The variance describes how the data are distributed about the mean (Seiler and Seiler,

1989. The third moment of statistics is skewness, defined by

s K
skew = % i [xLJ x] : ®)
and defines the asymmetry of the data about the mean (Seiler and Seiler, 1989). The

fourth moment, kurtosis, measures the peakedness of a distribution of data (Seiler and

Seiler, 1989) and it is defined by
1on Xi—X 4
kurt = L &i=1 [T] -3, (6)

The median is computed by first ordering the samples x; from low to high values and

then taking the middle sample of the ordered array as the result.
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Figure 10. A cropped amplitude volume of the 3D seismic survey in the time domain.
A single well displayed that is incorrectly lined up with the seismic.
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Figure 11. A cropped amplitude volume of the 3D seismic survey after being converted
to the depth domain. A single well is displayed and it is now correctly lined up with the
seismic.
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Figure 12. An example of a support vector machine in 2D space. The decision
boundary, separating the two classes, is displayed by the solid green line. The margins
are denoted by the dashed crimson line and the support vectors are highlighted by the
blue boxes (After Cortes and Vapnik, 1995).
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Figure 13. An example of a binary class PSVM. The upper graph is in 2D space and the
decision boundary is defined by the red line. The lower picture shows a set of points in
3D space where the decision boundary is now defined by the red plane (Modified from
Zhao et al. 2014).
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BN ChWindows\system32\cmd.exe !

item[bhar1=1688
itemImpbarl1=28
item[CUmaxloopl=18

[psum_welllogs _exel
[CUmax1loop=1A1
[har=1881

[nonlinear_result_fn=psun_welllogs MorthAlva Train+Test_txt]
[nzkip=11

[suffix=Train+Test]

[testing_fn=C:“Users snyd?584~Desktop~PS5UM_2_ PointBased-Test.txt]
[training_fn=C::\Usersssnypd?584~Desktops\PSUM_2_PointBased“\Train.txt]
[unigue_project_name=MorthfAlval

[v=2088 1

Program iz running in testing mode.

Data read finished.

Boundary Ho. 1 iz generating...

Mumber of samples used for generating this boundary is
a

B Matrix inverse finished
Matrix nu generated
hefore matmul
after matmul
Boundary Ho. 1 iz generated successfully
Nonlinear PSUM finished
The number of correct classification uwusing nonlinear PSUHM is 25 out of

48
The correlation coefficient uwusing nonlinear PEUM iz @_25831308
Testing result hasz heen saved to file:
psum_welllogs_MorthAlva Train+Test._txt

normal completetion. routine psvm_welllogs

—
Figure 14. A sample PSVM output. In this test, the model successfully classified 25 of
the 40 testing points, or about 63%.
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Neural Metwork

—— | including connections
(called weights)

Input between neurons

Compare

Output

Adjust
weights

Figure 15. A generalized ANN workflow. Inputs are entered into the network where
hidden neurons are defined and weights are given to each input variable. The output is
compared to the targets and the neural network completes iterations until an optimal
model is created (Demuth and Beale, 1993).
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Results

) Samples =] CE
W Training: 1574 1.22527e-1
';i Validation: 338 1.447%e-0
W Testing: 338 1.45028e-0

Figure 17. An output from MATLAB’s Neural Pattern Recognition toolbox. “CE”

stands for Cross-Entropy and values for this example are high meaning that this is a
poor output model.
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Chapter 5: Exploratory Data Analysis

The data for the following results and analysis was sampled at every 110 ft. Cost
of penetration is sampled at every two feet; however, the seismic was sampled every
110 ft. For this study, the COP data sample interval was upscaled to that of the seismic
sample. Unlike ROP, the upscaled value of COP in (min/ft) is simply its arithmetic
average (over 110 ft). Values of COP were estimated, through interpolation, at every
110 ft and corresponding values for geomechanical and geometric attributes were found
at each sample point. This constitutes the data for this thesis.

Visualization

The first step to understanding the data is through visualization. Figure 18 shows
the entire raw and normalized COP histograms. Both histograms show that the COP is
biased to the left, with about 66% of the total lateral length drilled faster than 1.82
min/ft and 37% drilled slower than 1.82 min/ft This distribution will be used to
determine the threshold COP (or discriminator) for each class.

Figure 19 shows boxplots of the input geomechanical and geometric attributes
for this data set. The histograms are broken up into five classes based on their respective
COP value at each point - Class 1 representing low COP and 5 representing high COP.
At first glance, it is difficult to discern between classes as there appears to be a great
amount of overlap among all five classes. In other words, there is not a clear decision
boundary.

Figure 20 displays box plots for P-impedance, inverted porosity, curvedness, Ap,

and up. Two classes are displayed; Class 1 representing low COP while class 2
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represents high COP. The classes are easier to distinguish in these figures; however,
there still does not appear to be high amounts of separation within the data.
Proximal Support Vector Machine
Five Classes
The first set of data tested in the PSVM was the collection broken up into five
classes. Figure 21 shows the results between the training and testing data. The PSVM
correctly classified 67 of the 292 data points, or about 23%. The results of this test are
disappointing.77% of the time, the PSVM misclassified the points based on the input
values. In an attempt to increase the correctness, the range of classes was decreased
from 5 to 2.
Two Classes
Figure 22 displays the results from a 2-class PSVM test on the entire data set.
The model created correctly classified 154 of the 292 data points. About 53% of the
times, the model will correctly classify points based on the input variables. While this is
an increase of 30% from the 5-class model, it is still inadequate for the purpose of
classification.
Artificial Neural Network
Five Classes
Figure 23 shows output confusion matrix from an artificial neural network that
created a 5-class model. The model used 70%, 15% and 15% of the data for training,
validation and testing, respectively. The confusion matrix shows that the ANN correctly
classified the data points about 24% of the time. Figure 24 shows that the cross-entropy

for this model is 0.78, 1.36 and 1.43 for the training, validation and testing data,
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respectively; an ideal value for cross-entropy is 0 meaning no error. Following suit, a 2
class model was developed in an effort to increase the classification correctness.
Two Classes
An ANN was used to create a 2 class COP model for the data. The model used
70%, 15% and 15% of the data for training, validation and testing, respectively. Figure
25 shows an output confusion matrix for this set of data. The model correctly classified
about 66% of the tested data, but incorrectly placed almost every class 2 point. In
addition, the cross-entropy shown in Figure 26 is about 0.45, 0.68 and 0.68 for the
training, validation and testing data, respectively.
Discussion
Overall, the results for the initial exploratory data analysis were unfortunately
poor. Both 5-class models performed significantly worse than the 2-class models. This
is most likely due to the inability for the PSVM and ANN to create a decision boundary
between the classes of data. In other words, it is more difficult to cluster data split into 5
classes than it is to cluster data split into 2 classes. Another issue may be due to drilling
techniques. If a well is drilled in a different manner, or with a separate set of standards
than another well, the COP could vary accordingly making the classification technique

more difficult.
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Figure 18. Two histograms showing the distribution (upper) and normalized
distribution (lower) for cost of penetration. Both graphs are skewed right showing that
the majority of the values of COP are on the lower end of the distribution.
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Boundary MNo. 6 iz generated successfully

Boundary MNo. 7 is generating...

Mumber of samplesz used for generating thiz houndary
a

B Matrix inverse finished
Matrix nu generated
before matmul
after matmul
Boundary Mo. 7 is generated successfully
Boundary Mo. 8 iz generating.._.
Mumber of szamples used for generating thiz bhoundary

B Matrix inverse finished

Matrix nu generated

before matmul

after matmul

Boundary MNo. 8 iz generated successfully

Boundary HNo. 9 is generating...

Mumber of samples used for generating thiz houndary
a

@ Matrix inverse finished
Matrix nu generated
before matmul
after matmul
Boundary MNo. ? iz generated successfully
Boundary MNo. 1A is generating...
Mumber of gamples used for generating this boundary

B Matrix inverse finished
Hatrix nu generated
before matmul
after matmul
Boundary MNo. 18 is generated successfully
Monlinear PSUM finished
The numher of correct classification using nonlinear PSUM i=s 6% out of

292
The correlation coefficient using nonlinear PSUM iz —1.7227214E-82
Testing result has heen saved to file:
psun_welllogs_MorthAluva_Train+Test.txt

normal completetion. routine psum_welllogs

Figure 21. Output for the 5-class PSVM. This model correctly classified 67 of the 292
testing points, or about 23%.
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itemlmphar 1=28 -
item[ClUnmaxloopl=1

[psum_welllogs.exe ]l
[CUmaxloop=11

[nonlinear_result_fn=psvm_welllogs_ MorthAlva Train+Test.txt]

[nekip=11

[suffix=Train+Test]

[testing_fn=C:*Useprs znyd?584-Desktop~Data Analyzis_ REDUX-~PEUM_2~PSUMZ2_Test.txt]

[training_fn=C:s\Users snyd?5@84-Dezktop~Data Analysisz_REDUESPSUM_Z2“PSUMZ_Train -t
t1

[unigue_project_name=MorthAlual
[v=280081

Program iz punning in testing mode.

Data read finished.

Boundary No. 1 is generating...

Humbher of samples used for generating this boundary is
5]

B Matrix inverse finished
Hatrix nu generated
bhefore matmul
after matmul
Boundary No. 1 iz generated successfully
Monlinear PEUM finished
The number of correct classification wsing nonlinear PSUM is

292
The correlation coefficient using nonlinear PSUM iz 7.2135732E-82
Testing result has been saved to file:
psum_welllogs_MorthAlva_Train+Test.txt

m

normal completetion. routine psvm_welllogs

—
Figure 22. Output for the 2-class PSVM. This model correctly classified 154 of the 292
testing points, or about 53%.
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All Confusion Matrix

Output Class

1 2 3 4 B
Target Class

Figure 23. Confusion matrix for the 5-class ANN. This model correctly classified about
24% of the testing points.
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Results

ﬁ Samples (=] ce
'a Training: 1462 1071671
r!i Validation: 450 1.36451e-0
W Testing: 338 1.43030e-0

Figure 24. Output results for the 5-class ANN. The cross-entropy for the training,
validation and testing data is about 0.78, 1.36 and 1.43, respectively.
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All Confusion Matrix

Output Class

1 2
Target Class

Figure 25. Confusion matrix for the 2-class ANN. This model correctly classified about
66% of the testing points.
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Resulis

) Samples CE
'i' Training: 1549 4.48406e-1
'ii Validation: 332 B.83312e-1
W Testing: 332 6.82476e-1

Figure 26. Output results for the 2-class ANN. The cross-entropy for the training,
validation and testing is 0.45, 0.68 and 0.68, respectively.
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Chapter 6: Directional Driller Analysis

One variable not used in the previous chapter was that of the directional drilling
company. Many oil and gas service companies contract out directional drillers to drill
the lateral segments of wells. Different companies may have different drilling practices,
or the drillers they employ may have differing amounts of experience than other drillers
in the area. That being said, COP rates may vary greatly between directional drilling
services. When time is of the essence, and time is money, the most efficient directional
drilling service is a sought-after asset.

This chapter seeks to remove the directional drilling factor by looking at three
individual sets of wells drilled by three different directional drillers. By doing so, wells
that were drilled in similar fashion will be compared with each other. Previously, the
conglomerate of wells compared had been drilled by many different companies and,
most likely, with different drilling practices. In multivariate statistical analysis, the
drilling company is another attribute that needs to be addressed. Classes will be defined
by mean COP. By doing this, we can visualize the percentage of time — or cost — that is
spent drilling Class 1 and Class 2 portions of a drillers lateral wellbore.

Directional Driller 1
Visualization

Directional Driller 1 drilled five laterals in the study area (Figure 27). The
distribution for COP and normalized COP can be seen in Figure 28. Combining this
with Table 2, Directional Driller 1 can be better characterized. We can see that
Directional Driller 1 spent 50% of the time drilling on 27% of the lateral segments of

the five wells. This driller had a mean COP of 0.99 min/ft and a median of 0.63 min/ft.
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The standard deviation was about 0.96 min/ft. The COP is skewed right with a
skewness of 3.47. Hypothetically, Directional Driller 1 would be able to drill a 5000 ft
lateral in 3.44 days.

Two classes, high and low COP, were defined by the mean COP value for each
set of wells. Figure 29 displays five input boxplots for Directional Driller 1.Visual
decision boundaries are more evident than in the previous chapter for the data points.
This should yield an increase in correctness.

Proximal Support Vector Machine

Figure 30 displays the output from the PSVM for Directional Driller 1. The
input variables are P-impedance, inversion porosity, curvedness, Ap and pup. The PSVM
correctly placed 34 of the 40 testing points into the correct class. This corresponds to a
correctness of about 85%. This is a significant increase from the previous models
generated with the PSVM.

Artificial Neural Network

Figure 31 shows the output confusion matrix of an ANN created for Driller 1.
The model correctly classified 73% of the data, but misclassified every class 2 point.
The cross-entropy for the training, validation and testing data was 0.46, 0.73 and 0.75,
respectively, as shown by Figure 32. This shows a correctness increase from the
previous ANN; however, the cross-entropy values for the validation and testing samples

increases.
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Directional Driller 2
Visualization

Five laterals were drilled by Directional Driller 2 in the study area (Figure 33).
Figure 34 displays the distribution and normalized distribution of COP for these wells.
Table 3 displays a statistical breakdown for the COP. We can see that Directional
Driller 2 spent 50% of the time drilling on 36% of the lateral segments of the five wells.
Directional Driller 2 had a mean COP of 1.16 min/ft, a median of 0.98 min/ft and a
standard deviation of 0.80 min/ft. Theoretically, Directional Driller 2 would drill a 5000
ft lateral in approximately 4.03 days.

Figure 35 shows five boxplots for the input geomechanical and geometric
attributes for this driller. As with Directional Driller 1, decision boundaries have
become clearer — the data is more easily separated.

Proximal Support Vector Machine

The results of the 2-class PSVM for Directional Driller 2 are shown in Figure
36. Of the 40 testing points, the PSVM correctly classified 28, or about 70%. The
PSVM correctness for Directional Driller 2 is lower than the correctness for Directional
Driller 1. Again, this is an increase from the PSVM model created using the entire set of
data.

Artificial Neural Network

The confusion matrix displayed in Figure 37 shows that the model created by
the ANN correctly classified 64% of the data, but misclassified every class 2 point.
Figure 38 shows that the cross-entropy for the training, validation and testing data was

0.45, 0.69 and 0.69, respectively. The correctness values are lower than those of

45



Directional Driller 1. This model has a decrease in correctness from the ANN model
created using the whole data set, but the cross-entropy values remain about the same.
Directional Driller 3
Visualization

Directional Driller 3 drilled the lateral portion of seven wells in this study area
(Figure 39). Figure 40 shows the distribution of COP as well as the normalized
distribution of COP. We can see that Directional Driller 3 spent 50% of the time drilling
on 32% of the lateral segments of the seven wells. Statistical parameters for the COP of
this driller are displayed in Table 4. Directional Driller 3 has a mean, median and
standard deviation COP of 2.91 min/ft, 2.03 min/ft and 2.77 min/ft, respectively. This
Direction Driller could drill a 5000 ft lateral in about 10.1 days.

Figure 41 displays five boxplots for the input attributes from these seven wells.
Similar to the input histograms for Directional Driller 1 and Directional Driller 2, it is
discriminators between the two classes are easier to visualize.

Proximal Support Vector Machine

Figure 42 shows the results from the 2-class PSVM for Directional Driller 3.
The PSVM correctly classified 28 of the 40 testing points or about 70%. The
correctness is similar to Directional Driller 2 and an increase from the PSVM created
for the entire data set.

Artificial Neural Network

Figure 43 displays the confusion matrix from an ANN for Directional Driller 3;

the network makes correct classifications about 66% of the time; however, the model

misclassified almost every class 2 point. The cross-entropy displayed in Figure 44
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shows that the values for the training, validation and testing data is 0.45, 0.69 and 0.69,
respectively. These values are comparable to Directional Driller 2 mentioned
previously, but this is not improvement from the 2-class ANN created for the entire data
set.

Discussion

With the hypothesis that different drilling companies follow different drilling
protocols and safety procedures that effect weight on bit and other parameters, |
conducted a simple statistical analysis as well as PSVM and ANN prediction of COP
for the three directional drilling companies. By separating the drillers and using a 2-
class PSVM and ANN, | found that the classification correctness increased from the 2-
class PSVM and ANN used to classify COP in the previous chapter.

Statistically, the COP varied between the three directional drillers. Direction
Drillers 1, 2 and 3 had mean COP 0f 0.99, 1.16, and 2.91 min/ft, respectively. Median
values of COP for these drillers are 0.63, 0.98 and 2.03 min/ft, respectively. Standard
deviation of COP was 0.96, 0.80 and 2.77 min/ft, respectively. The variability in mean,
median and standard deviation of COP between the 3 drillers supports the idea that
there are differing variable affecting the speed of the drillers and therefore the
directional drillers should be evaluated separately.

When using the PSVM as a classification tool, the correctness for Directional
Drillers 1, 2 and 3 is about 85%, 70% and 70%, respectively. This is an increase of
32%, 17% and 17% for Directional Driller 1, 2 and 3, respectively from the PSVM

classification for the entire data set. The increase in correctness was significant.
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Results were not as strong when using the ANN. The ANN generated for
Directional Drillers 1, 2 and 3 classified points with correctness of about 73%, 64% and
66%, respectively. The correctness from the 2-class ANN used on the entire data set
increased for driller 1, decreased for driller 2, and remained constant for driller 3. The
increase in correctness was not as significant as the increase with PSVM. The results
using the ANN lead me to believe that the PSVM is a stronger tool for classification.

By separately analyzing the three directional drillers, correctness for the PSVM
increased; however, in some instances, the correctness of the ANN decreased.
Previously, the data was analyzed without factoring in the directional driller.
Accounting for the directional driller in the analysis helps to remove differences in
drilling practices which, in turn, may affect the overall COP. This leads to — in four of
the six cases — more correct classification results as can be seen in the previous

discussion.
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Figure 27. Cropped amplitude slice showing the location of Directional Driller 1’s five
lateral wells.
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COP Distribution

Class 2

HNumber of Samples

] 1 2 3 4 5 6 T 8 8
Low COP - Fast - Cost of Penetration, minft

DﬁHiﬂh COP — Slow . Normalized COP Distribution

04

0.3

Class 2

0.2

Percentage of Samples

0.1

= _
4 5 6 T 8 2]

Cost of Penetration, minft

Figure 28. Two histograms showing the distribution (upper) and normalized
distribution (lower) for cost of penetration for Directional Driller 1. Both graphs are
skewed right showing that the majority of the values of COP are on the lower end of the

distribution.
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Directional Driller 1

Center:
Mean 0.99
Median 0.63
Mode 0.47
Spread:
Range 8.67
Variance 0.92
Standard Deviation 0.96
Shape:
Skewness 3.47
Kurtosis 18.46

Table 2. Basic statistics for cost of penetration of Directional Driller 1. Values to better
characterize the center, spread and shape of the distribution are shown.
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ting mode .

i generating. ..
F sanples used For gene ting this bouwndary is

]

B Hatpix inversze Finizhed
Hatrix nu generated
before matmul
after matmul
Boundary Ho. 1 iz generated suwccessfully
Honlinear PEUM Fin 1

The number of corr classification using nonlinear PEUM is
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normal completetion. routine psvm_welllogs

Figure 30. Output for the 2-class PSVM for Directional Driller 1. This model correctly
classified 34 of the 40 testing points, or about 85%.
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All Confusion Matrix

Output Class

1 2
Target Class

Figure 31. Confusion matrix for the 2-class ANN for Directional Driller 1. This model
correctly classified about 73% of the testing points.
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Results

) Samples (=] ce
] Training: 136 4.58126e-1
';i Validation: 40 7.34113e-1
W Testing: 40 7.45507e-1

Figure 32. Output results for the 2-class ANN for Directional Driller 1. The cross-

entropy for the training, validation and testing data is about 0.46, 0.73 and 0.75,
respectively.
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Figure 33. Cropped amplitude slice showing the location of Directional Driller 2’s five
lateral wells.
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Class 2

Nun‘bgf of Sarn_pﬁ&s

15 2 28 3
Cost of Ponatration, minf

0 08 1

Low COP — Fast [

High COP — Slow . Normalized COP Distribution
D4 - - =

3

=]

Class 2

=

Percentage of Samples

=]

[ =]

1 0s 1 15 2 15 3 is 4 45 5
Cosl ol Penelration, min

Figure 34. Two histograms showing the distribution (upper) and normalized

distribution (lower) for cost of penetration for Directional Driller 2. Both graphs are
skewed right showing that the majority of the values of COP are on the lower end of the

distribution.
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Directional Driller 2

Center:
Mean 1.16
Median 0.98
Mode 0.68

Spread:
Range 4.83
Variance 0.64
Standard Deviation 0.80

Shape:

Skewness 2.25
Kurtosis 6.47

Table 3. Basic statistics for cost of penetration of Directional Driller 2. Values to better
characterize the center, spread and shape of the distribution are shown.
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Program is eunning in testing mode .

ata read Finizhed.

oundary No. 1 is generating...

Humber of sanples wsed for generating this boundary is
5]

A Hatrix inverse finished
nu generated
matmul
after matmul
Boundary Mo. iz generated successfully

The number of cor . classification using nonlinear PEUH is

44
The correlation coeffi t using nonlinear PSUM iz @.2882784
Tes r ved to file:
pzum_uell

nopmal I.'II-IH'J‘II:.'T.H'. ion. Poutine pEUm I.Jl-.*]]-hllj:-;

out ¢

Figure 36. Output for the 2-class PSVM for Directional Driller 2.
classified 28 of the 40 testing points, or about 70%.

60

This model correctly



All Confusion Matrix

Output Class
[R5 ]

1 2
Target Class

Figure 37. Confusion matrix for the 2-class ANN for Directional Driller 2. This model
correctly classified about 64% of the testing points.
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Results

a Samples =N
'ii Training: 1584 4.49450e-1
'ii' Validation: 40 6.87515e-1
W Testing: 40 6.92588e-1

Figure 38. Output results for the 2-class ANN for Directional Driller 2. The cross-
entropy for the training, validation and testing data is about 0.45, 0.69 and 0.69,
respectively.
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Figure 39. Cropped amplitude slice showing the location of Directional Driller 3’s
seven lateral wells.
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COP Distribution

8

Class 2

Number of Samples
& 2

8

]

o

15 20

0 3 W0
Low COP — Fast . Cost of Penétration, minm

High COP - Slow. Normalized COP Distribution

Class 2 1

—_— S
10 15 20 %

Cost of Penetration, minm

Figure 40. Two histograms showing the distribution (upper) and normalized
distribution (lower) for cost of penetration for Directional Driller 3. Both graphs are
skewed right showing that the majority of the values of COP are on the lower end of the

distribution.



Directional Driller 3

Center:
Mean 2.91
Median 2.03
Mode 0.45

Spread:
Range 20.53
Variance 7.67
Standard Deviation 2.77

Shape:

Skewness 2.61
Kurtosis 9.81

Table 4. Basic statistics for cost of penetration of Directional Driller 3. Values to better
characterize the center, spread and shape of the distribution are shown.
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P —

B CiWindows\system32\cmd exe -

in testing mode.

o. 1 iz g ing...
Humber of zamples wsed for g ng thisz bowndary is
i}

B Hatrix inverse finizhed
MHatrix nu generated
hefore matmul
after matmul
Bound 4 1 is generated suc
Hon1ir Findished

T
The num 2 t classzification wsing nonlinear PSUR is 28 ownt

4H
The correlation coeffi iz @.18588%7
T x

normal completetion. routine psum_welllogs

T

Figure 42. Output for the 2-class PSVM for Directional Driller 3. This model correctly
classified 28 of the 40 testing points, or about 70%.
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All Confusion Matrix

Output Class

1 2
Target Class

Figure 43. Confusion matrix for the 2-class ANN for Directional Driller 3. This model
correctly classified about 66% of the testing points.
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Results

o Samples CE
'i' Training: 193 4.48911e-1
'ii Validation: 42 0.899%90e-1
W Testing: 42 6.89788e-1

Figure 44. Output results for the 2-class ANN for Directional Driller 3. The cross-

entropy for the training, validation and testing data is about 0.45, 0.69 and 0.69,
respectively.
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Chapter 7: Bit Trip Analysis

Tripping in and out of the borehole to replace a drill bit is a costly process when

drilling a well. Bourgoyne et al. (1986) outlined the drilling cost equation as

_ Cp+Cr(tp+tcotty)
Cf - AD ! (7)

where Cs is the drilled cost per unit foot, Cy, is the cost of drill bits, C; is the fixed
operating cost, ty is the rotating time, t; is the nonrotating time, t; is the trip time and AD
is the change in measured depth. When a bit breaks or fails and the operator must trip
out of the borehole the trip time, t;, increases and, with that, so does the overall cost. As
an operator, minimizing the number of bit failures and bit trips can help to decrease
drilling costs.

This chapter seeks to quantify bit trips in the lateral for two sets of horizontal
wells drilled by two different directional drillers. As with the previous chapter, this
seeks to minimize the amount of human error and differences between directional
drillers. Class 1 is defined as 2-5 bit trips in the lateral and Class 2 is defined as 6-9 bit
trips in the lateral (Figure 45). Using these two classes, Directional Driller 1 and
Directional Driller 3 from the previous chapter are analyzed using a PSVM with inputs
of eight GLCM texture attributes. One well was removed from the analysis on
Directional Driller 3 as | believe the reported data on bit trips may be incorrect.
Directional Driller 2 was removed from this Chapter as all of their wells fell within

Class 1.
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Directional Driller 1
Visualization

Two classes were defined for bit trips. Figure 46 shows the distribution of the
eight input GLCM texture attributes by bit class. The input variables are GLCM
contrast, correlation, dissimilarity, energy, entropy, homogeneity, mean and variance.
Visually, differences in these input values can be made for Class 1 and Class 2 points
from the boxplots. This allows for easier discrimination between the two classes.

Proximal Support Vector Machine

Figure 47 shows the results from the 2-class PSVM for Directional Driller 1.
The PSVM correctly classified 37 of the 40 testing points or about 93%. This is a very
strong correctness factor which means the accuracy for a bit trip model would be quite
high.

Directional Driller 3
Visualization

Figure 48 displays eight input boxplots for Directional Driller 3. Visual decision
boundaries are evident between the two classes. As with Directional Driller 1, this
should be indicative of higher PSVM correctness results.

Proximal Support Vector Machine

Figure 49 displays the output from the PSVM for Directional Driller 3. The
PSVM correctly placed 36 of the 40 testing points into the correct class. This
corresponds to a correctness of about 90%. As with Directional Driller 1, these are

strong results.
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Discussion

Through the use of a PSVM, | was able to correlate the number of bit trips in the
lateral to GLCM texture attributes. By separating the drillers and using a 2-class PSVM,
| found that the classification correctness to be 93% for Directional Driller 1 and 90%
for Directional Driller 3. As with the previous chapter, | believe that the results would
have been significantly weaker had I carried out this analysis on the data set as a whole.
By successfully correlating these eight attributes with number of bit trips, an operator
could better predict the number of bit trips and bits a specific driller would use when

drilling a specific area.
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Drill Bit Usage Distribution

Number of Samples

Number of Bits Used

Drill Bit Usage Distribution - Normalized

b
£
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a o
2 3 4 5 6 7 8 9
Number of Bits Used

Figure 45. Two histograms showing the distribution (upper) and normalized
distribution (lower) of bit trips for the 50 horizontal wells in the survey. Class 1
corresponds to wells that had 2-5 bit trips in the lateral, while Class 2 corresponds to
wells that had 6-9 bit trips in the lateral.
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& C:\Windowshsystem32Z\cmd.exe

[delta=8.11

[mode =1 1

[mphar=2@a1

[n=81

[Inonlinear_result_Fn=psvm_welllogs MHAGLCM_DD1.txt]

ill Bitss\DDi“test.txt]
WDrill Bit Distrain.txt]

Program is » g in testing mode.
Data read
Boundary HNo. 1 is generating...

Number of samples used for generating this boundary is
A

B Hatrix inverse finished
MHatrix nu generat
hefore matmul
after matmul
Boundary Ho.
Monlineawr M finished
The number of correct classification using nonlinear PSUM is 37 out of

48
orrelation coefficient ng nonlinear PEUM iz 8.8432742
i esult has been saved to file:
welllogs MAGLCHM_DD1 . txt

normal completetion. routine j

—
Figure 47. Output for the 2-class PSVM for Directional Driller 1. This model correctly

classified 37 of the 40 testing points, or about 93%.
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Eﬂ'CﬁHUMdawfﬁyﬂEMBTmnuLam-IIIIIIIII

[psvm_welllogs .exe]
[CUmaxloop=11
[har=1881

[mphar=281

[n=81

[nonlinear_result_fn=psum_welllogs_ MAGLCHM_DD3.txt]
[nskip=11]

[testing_fn=C:“Users snyd?584-Desktop~Drill Bits~DD3xtest.txt]
Bltraining_fn=C:“Usersssnyd?584-Desktop~Drill Bits~DD3“train.txt]

[unigue_project_name=NAGLCH]

[u=28881

Program iz running in testing mode.

Data read finished.

Boundary No. 1 is generating...

Humber of szamples used for generating this boundary is

B Matrix inverse finished
Matrix nu generated
before matmul
after matmul
Boundary No. 1 is generated successfully
MWonlinear PSUM finiszshed
The number of correct classification using nonlinear PSUM is 36 out of

The correlation coefficient using nonlinear PSUM iz B.8164966
Testing result has heen saved to file:
psum_welllogs NAGLCM_DD3.txt

normal completetion. routine psvm_welllogs

Figure 49. Output for the 2-class PSVM for Directional Driller 3. This model correctly
classified 36 of the 40 testing points, or about 90%.
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Chapter 8: Conclusions

Using a Proximal Support Vector Machine to predict cost of penetration has the
potential to improve drilling practices not only in this study area, but in other fields as
well. I believe that further research into this subject could yield stellar results. By
removing the factor of the directional driller, I was able to increase the correctness by
about 17-32% for a 2-class PSVM, but the 2-class ANN was not as strong. Through
further analysis of drilling practices and input geomechanical and geometric attributes,
this correctness would likely increase.

A Proximal Support Vector Machine is also a strong tool for predicting the
number of bit trips in a lateral. When the factor of the directional driller was removed, I
was able to achieve correctness of 90-93% for a 2-class PSVM. Similar to the COP
analysis, | believe that additional investigation into other drilling parameters could yield
stronger models with more classes.

| believe that this workflow can be used to statistically predict drilling costs for
an operator who is established in a specific area. PSVM predictions, based on
geomechanical and geometric attributes and updated with mudlog data from new wells,
can provide the operator with statistical data to better estimate drilling costs. An
operator, coupling these data with estimates of TOC and completion success, could
better plan their drilling schedule and location of wells.

Recommendations for Future Work

| believe that further study into this subject could produce strong results and

change the way wells are planned and drilled in the future. I suggest that the following

things ideas be evaluated:
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Capture directional driller and service company name in addition to rig name to
better classify COP and bit trips,

Explore factors such as drill bit design, drilling fluid and pump operation,
Evaluate correlation with 3D lithologic geocellular models,

Correlate bit wear to lithologic facies, and

Correlate fracture density from image logs to COP and bit trips.
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Appendix B: AASPI — Generate Training File

1826853.74 687343, B8 -3784.05 1
1826851, 58 687446, 56 -3823.01 1
1826853.93 687555.19 -3838.37 1
1826859.95 687665 -3840. 38 1

1826866, 33 GB7774.77 -3843.52 1
1826872, 57 6E7EE4. 56 -31845.66 1
1826877. 66 687994 .4 -3842.92 1
182687E.47 688104, 33 -31839.932 1
1826876, 32 688214, 3 -3840.97 1
1826873, 85 688324, 25 -3843.02 1
1826871, 34 688434, 22 -31843.96 1
1826869, 35 688544.19 -3842.72 1
1826867.12 68E8654.13 -3839.55 1
1826864.032 6EE764.07 -31837.82 1
1826859, 64 688873, 98 -3837.42 1
1826855, 39 6889E2.9 -3836.49 1
1826851, 36 689093, 81 -3834.71 1
1826847, 36 689203.73 -3833.35 1
1826844, 81 6893132.7 -3832.63 1
1826845, 35 689423.68 -3831.11 1
1826848, 39 689533.62 -31829.232 1
1826851.99 689643, 56 -382E.486 1
1826854, 88 689753.52 -3827.27 1
1826857.71 689863, 48 -3826.45 1
1826859.91 689973.46 -3825.71 1
1826860.69 690083.45 -3825.52 1
1826859.42 690193.44 -31825.16 1
1826858 690303.44 -3824.75 1

1826857 690413.43 -3824.322 1

1826856.63 690523.43 -3823.16 1
1826856.7 690633.43 -3822.39 1
1826856, 32 6907432, 41 -31820.46 1
1826855.9 690853, 37 -3817.42 1
1826854, 97 6909632. 2 -3813.58 1
1826853.12 6910732.2 -3809.31 1
1826851, 07 691183.11 -3805.32 1
1826848, 87 6912932.02 -3801. 34 1
1806074.95 703103.75 -3651.51 2
1806080.23 703212.72 -3664. 28 2
1806084, 94 703322.61 -3665.4 2

1806089.77 703432.5 -3664. 85 2
1806094, 31 703542, 39 -3664.9 2

1806096, 57 703652, 33 -3667.25 2
1806098, 01 703762.25 -3663.67 2
1806099.19 J03872.22 -3661.99 2
1806100. 51 703982,22 -3662.23 2
1806101, 66 704002, 21 —3661. 06 2

Figure A 2. A sample input well path file for the AASPI Generate Training File
program. Column 1 corresponds to the X coordinates. Column 2 corresponds to the Y
coordinates. Column 3 corresponds to the Z coordinate. Column 4 corresponds to the
well number.
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5.30064964 0. 00000649 -0.00002412 19. 92660332 23.23864365 19242.07812500
3.98776674 0.00003202 -0.00001383 42.22288895 52.40589905 39466.98828125
4,25733137 0. 00005252 0.00001205 37.64720917 44,68894958 36854. 62500000
3.92470336 0. 00004006 -0.00001410 39.87992096 49,94456100 38688. 62109375
3.76442242 0.00013533 -0.00001652 46.45366669 43.45014954 37754.21093750
4.53472853 0.00004619 -0.00001271 40.16915131 62.76888275 41939,94531250
4.15953636 0.00004544 -0.00019829 38, 84847260 46.77622604 37736.79687500
3.46088886 0.00001313 -0.00006144 40.10825729 30.46758270 32890. 55078125
3.42214704 0.00008592 -0.00004983 39.98212433 45.27419281 36793.22656250
3.38548374 0. 00002003 -0.00003541 39.96343613 36.15473557 34552.02343750
3.36603093 0. 00004420 -0.00000763 24.27015305 7.93516541 19342.53320312
3.36842918 0. 00000320 -0.00003511 19. 20298004 11.81979370 15407.50976562
3.39321280 0.00004176 -0.00008704 19,27039719 12.94020557 15769. 93457031
3.40597248 0.00003418 -0.00003202 35.82022095 30. 59718895 30499. 03515625
3.39566612 0. 00000575 -0.00002307 21.61027336 19.94732285 20293.43554688
3. 39607096 0.00000111 -0.00002119 17.96881676 17.50300026 16621.07617188
3.38995147 0. 00002803 -0.00014113 42.80359650 40.11868668 32618. 84375000
3. 37688780 0. 00002510 -0.00011117 40.61742401 7.59307480 34539.76562500
3. 36002207 0. 00008755 -0.00014297 32.93798065 29.97253036 31452.75781250
3.35114670 0.00007978 -0.00010551 41.02380371 50.62543488 38495.49218750
3.35713053 0. 00002299 -0.00002381 41.88037109 54.26789093 39814.83593750
3.36418438 0. 00002995 -0. 00001097 38.68943024 44.60488892 37056.24218750
3.39703989 0.00004792 -0.00010022 44.32722473 40.26551819 36571.48828125
3.42004919 0.00006342 -0.00007798 41.44715118 52.41900635 39507. 54687500
3.43101978 0. 00007082 -0.00004910 37.96696472 77.53401974 45047.10937500
3.42182159 0.00004768 -0.00004107 39.09505081 55.75143814 39557.41406250
3.41034293 0. 00000090 -0.00005322 38.16582108 34.74153137 33809. 75390625
3.40715075 0. 00000805 -0.00006965 40.07424927 42.26329803 36032. 91406250
3.40709448 0. 00009468 -0.00006733 44.72991943 38.98822403 35945. 31250000
3.42436838 0. 00006136 -0.00003149 30.13012695 20. 36404037 23187.72070312
3.58694100 0. 00000529 -0.00000914 18.59731102 11. 50165367 15115. 28222656
3.89387178 0. 00000390 -0.00001099 19.19662285 12.98633003 15720.74804688
3.97693300 0.00000768 -0.00000698 19.00784111 19.81016350 17649,53125000
3.90867901 0.00002779 ~0.00000581 17.85845566 20.60534477 17571.40234375
3.97822642 0.00004836 -0.00001417 19.32777405 18.09620094 17124.29101562
4.24785137 0. 00002906 -0.00005033 30. 34845352 41.17798233 20721.47265625
4.65513945 0.00000228 ~0.00007045 36. 30726242 48.69564056 37330.13281250
5.76913261 -0. 00001584 -0.00010366 38.93412399 53.90245056 39586. 85156250
5.08219051 0. 00001054 -0. 00007900 37.41194153 50. 31188965 38458.46875000
5.19445753 0.00005949 -0.00000180 39.43675995 54.22332764 39902. 85156250
5.35744190 0.00005176 0.00001715 39.33733368 55.75967407 40289. 79687500
5.08437347 -0. 00000172 -0.00005792 37.54501343 43, 57864380 36579.13671875
4.75462627 0.0000457 0.00001309 37.16233444 38.66822052 34815. 97656250
4.99592161 0. 00000083 -0.00007257 39.5018844% 37.03659821 34406. 91406250
5.05901337 0. 00001440 -0.00001809 38.61925888 32.54703522 33229.69921875
4.99142456 0.00000127 -0.00001387 14.85146999 9.49345398 12143.12597656
5.20312881 0.00003704 -0.00000284 22.21689224 19.73146820 19809. 84179688
5.30567932 0.00004032 -0.00004001 36. 73806000 40.15357971 34967. 36718750
5.28026056 0. 00002301 0. 00000090 24.68889618 31.70503616 24801.28320312
5.33096886 0.00000181 -0.00003122 23.72334480 27.01618767 22852.56250000
5.15953541 0.00008472 0.00000939 32.38167953 34.53219604 32176.19531250
5.15240049 0.00003283 -0.00001380 39. 50788879 50.08804321 38583.16406250
5.12057829 0. 00001995 -0.00001418 40.53171539 55.25986481 40152.73437500
5.36633205 0.00001921 -0.00001193 31.86429787 28.99834061 30534,57031250
5.39134359 -0. 00000562 -0.00007640 35.78742599 58.62365723 40222.62500000
5.88492012 0. 00000627 -0.00003151 41.02923584 60.16811371 41577.60156250
5.96686840 0.00003331 -0. 00002966 37.91510773 55.67502975 39930. 25000000
6.23055315 0. 00006183 -0.00001312 39.56903076 55.12878036 39966, 90234375
6.27935696 -0. 00001904 -0.00007293 39. 34635925 59.21543121 41126. 56640625
5.89832640 0.00002618 -0.00001551 41.13487625 59.28740692 41321.19140625
5.59237003 0. 00000081 -0.00006081 38.11697388 42.93080902 36333.64843750
5.67664909 0. 00004028 -0.00005011 36.49868774 30. 53863525 32149.63671875
5.53873396 0. 00006290 0.00003203 39.53560257 40.12309265 35137.90234375
5.46339512 0.00004161 -0.00000213 38.60312653 31.38107491 32991. 97265625
4,94367599 0.00001472 -0.00001488 16.73046494 12.40272331 14184,08886719
4.61281157 0.00003399 -0.00003330 33.27459717 35.64449692 31809. 72265625
4.68551445 0.00003412 -0. 00000408 37.38875580 41.20976257 35646.78125000
4.82635784 0. 00001968 ~0.00003539 27.08851814 31.94961166 26299.53710938
4.774641390 0. 00000038 -0.00007659 16.39320564 1434871769 16997. 87695312
4.79511690 0.00000214 -0.00004256 33.33964920 49.39965439 34059. 56640625
4.76899147 0.00002791 -0.00001886 41.77083206 56.17040634 40463.20312500
4.69190979 0. 874 0.00000121 37.63370895 40.25542450 35519. 82421875
4.71998930 0. 00008083 0. 00000835 32.03402328 27.82876778 30522. 58789062
5.04310513 0.00003675 -0.00001466 37.69886017 40.86277008 35558.57812500
5.27448416 0. 00005641 -0.00001101 36.72830963 38. 68768311 34753.07421875
5.45845127 0. 00001983 -0.00004343 37.85982132 53.24945068 39089.19140625
4.95938301 0.00003951 -0.00004931 37.83252716 7.39429092 37560.27734375
4.94701815 0.00003463 -0.00002374 36.04987335 7.96180725 40170.73828125
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Figure A 3. A sample output file from the AASPI Generate Training File program.
Column 1 through 6 corresponds to the extracted geometric and geomechanical
attributes. Column 7 is the well number of each point.
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Interactively pick a suite of training clusters on seimsic volumes for supervised classification

Cluster Picking Generate Training File I

Input Polygon 1: [E:\Cygnr Probe\well_test.txt
Input Polygon 2:

rowse

Input Polygon 3:

Input Polygon 4:
Input Polygon 5:

Input Polygon 6:

Input Polygon 7:

I
I
l
I
|
l
Input Polygon 8: ]
l
[
I

Input Polygon 9:

Input Polygon 10:

Input Polygon 11:

Input Polygon 12: I B

Polygon file to be displayed (1 to 12): |1 View polygon fllel Convert DOS to Unrxl
Input Attribute 1C.H::  [E:\Cigar Probe\AASPIKLH &mel

Input Attribute 2("H): [E:\Cigar Probe\AASPTI2.H Browse|

Input Attribute 3(*.H): [E;\Cngar Probe\AASPT\Density.H MJ
Input Attribute 4("H): [Clgu Probe\AASPT\LambdaRho.H m_ej
Input Attribute S("H): [E:\Cigar Probe\AASPNMuRhoH  Browse|
Input Attribute 6("H): [E:\Cigar Probe\AASPIVpYs H M]

Input Attribute 7(* H): [E:‘-.C igar Probe\AASPINZp H Bwv-'.el
Input Attribute 8(*.H): [E:'\C-gar Probe\AASPNZsH wasel
Input Attribute 9(*,H): [ vael

*Unique Project Name: 'Nonhn'dvb .
Suffoc me,LR,MRVP‘-'S,ZpAZs

Number of polygon cluster files: I] Number of input sttributes: ’3

Multiple or zingle point files? |SINGLE| Click to change to MUtTlPLEI

Coordinates in the point file | X ¥ | Click to change to LINE, CDP]

In polygon files, LABEL is in column: |4 In polygon files, TIME is in column: I; .
In polygon fides, COP is in column: |3 In polygon files, X is in column: ll
In polygon files, LINE is in column: |4 In polygon files, Y is in column: !z

Radius around each pick 1 Vertical axis scale ratio: [1000 .
Execute]

Figure A 4. AASPI window showing the inputs and settings for the Generate Training
File program. 1) Input well path file. 2) Choose the amount of well path files to use. 3)
Insert the AASPI format 3D seismic volumes to have values extracted. 4) Give the
output a filename. 5) Choose the number of input attributes. 6) Change point file to
“SINGLE” and coordinates to “X,Y”. 7) Change values to correspond with their
respective columns. 8) Change the vertical axis scale ratio to match the data.
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Appendix C: AASPI — PSVM Welllogs

E‘or‘omty curvedness LR MR Zp Class
6.56495571 3. 51E-05 39. 6545677 50. 92187119 39040.125 1
6.80943203 4,01E-05 36. 84700284 32. 534854202 38696.03906 2
5. 30818653 3. 24E-05 38.02157593 51.00726318 38549. 55469 1
5. 20610609 3. 30E-05 44.,41124725 49, 00592804 38920. 38281 2
5.4274044 2.62E-05 53.0147934 45.14680481 39084.20313 1
5. 50149345 4.64E-05 41.69501495 54. 2892189 40107.12891 1
5.51593971 6. 49e-05% 40,23519135 63. 09860229 42211.82031 1
5.73B89732 3. 66E-05 39.62538147 61.35032272 41780, 00781 2
3.62603283 1.94-03 38.31437083 7.01576233 37705.70313 2
5.67691994 2.11e-05 30. 82867432 30.19813347 32768.02344 1
5.80524158 2.69e-05 41.09545517 33. 35551453 33658. 66016 1
5. 89804649 3. 64E-05 39. 9889679 34. 90312958 34141. 89844 1
5.6568861 3.14E-05 26.31309128 20.15510559 22125.53711 2
5.60686922 2. 07E-0% 44, 53142929 52.13999939 39519.49219 2
5.48581409 3. 30E-05 41.72026062 48.41295624 38375.77344 2
3.32234935 2.33E-03 7.10244751 38, 31884384 34954.63281 1
5.40377522 3.79e-05 38.29949188 43.05760193 36564. 98438 1
5.27405691 8.27e-05 7.20510101 7.21269989 37604. 96875 1
5.14859533 3. 52E-05 7.6674881 92. 90206909 48377.61719 2
5.05835533 7.01E-05 41.62443542 7.26384735 37559. 89453 1
4.96620083 4,41E-05 39.27134705 7.09128571 34535.92578 1
5.11258602 3. 70E-05 40.03457642 34.15407562 34366. 54297 1
3.23020411 2.72E-03 40,25521088 35. 37184143 34501.85938 1
5.20252148 2.67E-05 19. 39978409 13. 28970242 16052. 56445 2
5.32B48263 3. 22E-06 7.82202721 11. 09734631 14471.85547 2
5. 3602581 5.02E-05 38. 30978012 34. 6048584 33145.375 2
5.31104469 3.15E-05 21.11671257 23.75973129 20072.39258 1
5.21419334 2.12E-0% 16.37385368 19.51022148 17544.07227 2
5.12170601 4,34E-05 32.99009323 31. 87964439 32219. 64844 2
3. 26492596 0. 000106096 7.08355942 39. 83054352 35342.19531 2
5.42189407 4.,67e-05 40.07480621 59. 33811188 41081.10547 1
5.68288136 6.57E-05 38. 87952042 53. 35803604 39459. 33594 1
5. 89080906 2.69e-05 40.68300247 7.26581573 36110. 96484 1
5. 89882469 3. 26E-05 39. 89983368 51.17838287 39099. 82813 1
5.69300365 3.46E-05 42, 37667084 54.45101166 40337.16406 1
2.70977163 3. 72E-05 40.63347244 54.16940308 39983. 83594 1
3.94221687 3.03e-05 38.73390961 46,408859235 37713.14063 1
9.49766731 3. 25e-05 35. 3480151 35. 28047562 33673.27344 1
6.34712601 3. 29e-05 35. 59173584 38.70409012 34825.9375 1
7.29908228 3.49g-05 39.73114777 70. 23806763 43478.15625 1
3.92065716 4.50E-05 7.1062355 44.1711731 36602.10156 1
6.79483223 4,22E-05 22, 86280441 21.79943085 23136. 54102 2
6.78514147 2. 74E-06 3.61305809 3.98911214 3345.436523 1
3.29190922 2. 34E-03 21.78354073 20.53117943 20291.19141 2
5.48097992 2. 78E-06 1.61764264 1.38872683 1575. 843018 1
5. 68079853 1.53e-05 24.63747978 13.39109993 17716. 58203 1
4.8424377 1.54E-05 29. 86405373 19. 08909035 23774. 38867 2
3.23760676 2. 26E-05 35.19823456 32.96055222 31417.22852 2
3.91111302 3. 31E-05 39. 38546371 40.94643402 35959. 42188 2
4.,27895975 4,93eE-05% 38. 98844528 46.18271637 37357.49609 2
4.36762123 2.43E-03 39.01462173 45.44050217 37178.17909 1
4.63461685 9. B7e-06 54. 28926086 49, 56069946 40320.43359 2
4.45298195 2.98e-05 49,29312515 54.27125549 41078.42969 2
4.34650421 3.77e-05 38. 8396377 51.24954224 38820. 39453 2
4.61195564 5.02E-05 7.3981514 42.32215881 36041.51953 1
5. 28023958 2. 85E-05% 36. 70796967 25.91266823 28703.46875 2
5.29591703 3. 64E-05 31.19310951 18.63003159 24138.09375 1
5.170825 4,10E-05 34.48175812 25.5123291 29061.55859 1
5.1158843 2. 68E-05 38. 84073639 38.16072845 35027.40234 1
5.27257967 6. 61E-05 48.95862579 39. 63868713 3GBEB8. 85547 2
5.42521763 5.49g-05 44.41637802 43.71666718 37409.60156 2
5.74245071 3.76E-05 44, 82409668 42.26101303 37213.37891 2
6.16789818 1.98E-05% 42.4344902 49, 85801697 36843.03125 2
6. 34677172 1.84E-05% 38.79706192 51.48247528 38950. 53125 2
6.21063948 3. BGE-05 7.26685333 53.49143982 392E89. 67188 2
6.17021418 0. 000116008 44,34501648 42.85333633 37141.32031 2
6.4849391 7.09e-05 42.63181305 7.83164215 35450.19141 2
6. 38022329 3. 94E-05 44, 64889526 55. 92641068 40710. 30078 2
6.03867292 5. 31E-05 36.18516922 7.49900436 33322.15234 2

Figure A 5. Sample PSVM training data. The first five columns represent input
geomechanical and geometric attributes, while column 6 is the defined class of the well
— in this case, high or low COP.
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IPUrUS'ity curvedness LR MR Zp Class
5.6904583 2.45E-05 18. 06006622 11. 2859211 14757.60254 1
5. 828666609 2.63E-05 31.1836319 29.14260101 28021.19531 2
5. 57429504 3. 28E-05 39.63739777 33. 84627151 33565.73047 2
5.22154951 2.32E-05 20.92841721 16. 97684479 18900. 97266 2
5.07056141 2.52E-05 20.14515495 19. 9246006 17867. 64648 2
4.99498081 5.40E-05 7.19315338 46. 32849884 34819.17969 1
5.10396147 4.43e-05 38. 60116577 45.41955566 37281.18359 1
5.46157265 1.82e-05 34.7842865 31.69504547 32436. 95898 2
4.96321392 5.48E-05 38. 87738419 35.02817535 34072, 29297 1
4. 88985348 2. 25E-05 42.27478409 48. 02820969 38260, 30078 1
5.03214741 3.61E-05 43.06558228 39.09980392 35797.60938 2
5.21790838 3.653E-053 29.40742111 20.40594673 26835, 9082 2
5. 54135704 2.58E-05 33.85336304 40.69395447 34414, 84766 2
5.7552104 &.08E-086 16.9744339 21.44748497 17142, 82422 2
5.65832424 9.64E-06 9.45324707 8.14531326 7541.780273 2
5.46528149 2.21E-05 29.093709495 25. 52048874 24812, 06641 1
3. 26669407 2.28e-05 25.0766716 18.76497078 21115.6777 1
3.17988253 3.40e-05 38.4415741 36. 28738022 34079, 58984 2
3.13935947 2.14e-05 38. 84853363 42,.71669006 35737.95313 1
2.96778631 3.76e-05 39.8285141 36.48823547 34575, 80078 2
3.00665474 0.000104919 7.65122604 45.15362167 38127.24219 1
3. 07067108 3.22e-05 42, 84438705 77.57409668 45908, 92969 1
3.10006523 2.45e-05 39.82709122 48, BB256073 38331.48047 2
2.9848752 2.24e-05 7.30270489 51.723B884 38761.95703 1
5.25163269 2.43e-05 42, 59994507 42.49676895 36869,10547 2
4.43361473 4,40E-05 45, 38073349 48,.76399231 3BB37.46875 2
3.91254926 1.90e-05 7.35567474 54.24178314 41661, 67578 2
3. 64014864 3.43e-05 7.75387192 31.41906548 32655.75391 1
3. 59928751 2.73e-05 31. 84880829 19. 08310699 25687.39453 1
3. 50777078 6.19e-05 41. 87876129 32.14951324 33442, 60156 1
3.49334645 6. 79e-05 32.95717621 20.10925102 26196, 64063 1
3.49865484 2. BOE-05 31.6309B8526 18. 24483681 25249, 26367 1
5.5394659 3.43e-05 61.96512604 79.44598389 48546, 92188 2
5.75691175 2.74e-05 44, 5045166 64. 85276794 42944.5 1
5.99447155 2.93e-05 7.45478058 51.35670471 38665.20313 1
5.89102602 5.95e-05 36. 57868958 41, 81537628 35666.61719 1
5.64175367 7.38E-05 48,2319603 43.19086456 37855, 96094 2
5.48952818 4,.18E-05 46.02563477 53.96963882 40685, 28125 2
5.56992245 3.04E-05 44,13983536 42.43865204 37155, 80859 2
5.67767429 1.49e-05 31. 83831406 25.07796097 29124, 92969 2

Figure A 6. Sample PSVM testing data. The first five columns represent input
geomechanical and geometric attributes to be tested with the model created from the
inputs. Column 6 is compared to the testing outputs created from the training model.
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Generate a PSVM classifier on ASCI formatted well log data
to correlate certain input logs with a target petrophysics or engineering parameter

Input Training Filename: kop\PSVM_Z_PointBased\Train.brt Browsel.

View training file| Convert DOS to Unixl

Input Testing Filename:  kktop\PSVM_2_PointBased\Test.txt Browsel

View testing filel Convert DOS to Unixl

*Unique Project Name: INorthAlva

| Suffix ITraimTest .

Number of header lines to skip: I1 .
Data dimension: -[5

Number of classes: Iz -
Program running mode: .[testing :]
Controlling parameter for misclassification rate: I 2000 -
Controlling parameter for Gaussian kernel: .Io,ogs

Percentage of training samples used to generate a decision boundary: I100 -
Percentage of samples used for cross-validation: Izo

Number of running cycles for cross-validation: I10

Execute I

(c) 2008-2016 AASPI - The University of Oklahoma

Figure A 7. AASPI window showing the inputs and settings for a PSVM test. 1) Enter
the training points. 2) Enter the testing points. 3) Name the output file. 4) Skip header
lines. 5) Choose the number of input variables. 6) Choose the number of classes. 7) Pick
the testing mode. 8) Define the parameter for misclassification. 9) Define the Gaussian
kernel parameter. 10) Choose the number of samples to use when generating the
decision boundary.
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Appendix D: MATLAB — Artificial Neural Network Inputs

B.75462627 2.66965E-05
4,7199893 1.50269E-05
5.15240049 5.63751E-05
5.043105132 1.56151E-05
5.76913261 3.04133E-05
4,69190979 0.000100434
5.15953541 4.37237E-05
5.12057829 7.7BBOBE-O5
5.36633205 0.000100163
3. 33096886 2.03915E-05
5.27448416 2.8B748E-05
4,95938301 3.10932E-05
5.08437347 3.76574E-05
5. 8983264 1.32627E-05
4.94367599 2.2124E-05
5.19445753 g.32167E-05
5.45845127 2.4975E-05
4,7951169 5. 2968E-05
4.94701815 2.83455e-05
5.592370032 5.45372E-05
4,76899147 3.93237E-05
6.27935696 2.51141E-05
5.3574419 2.62324E-05
5.67664909 4.302032E-05
4.61281157 2.29303E-05
4,7746439 3.70394E-05
4.68551445 5.71994E-05
5.88492012 3.22426E-05
5.46339512 2.87793E-05
5. 28026036 1.71176E-05
4.99142456 2.60957E-05
5.39134359 7.87566E-05
6.23055315 1.34448E-05
4,82635784 5. 535382E-05
5.08219051 2.4455e-05
5.9668684 3.06659E-05
5.20312881 7.13054E-05
5.05901337 6. 37681E-05
4.99592161 5.64603E-05
5.30567932 1.62793E-05
5.53873396 6.72529E-05
5. 88816786 2.46632E-05
9.43953514 3.81022E-05
5.20593309 7.18596E-05
8.00834846 2.91862E-05
6.64570808 3.3758E-05
7.15505028 4.15104g-05
5.31360579 1.55541E-05
5.43B874454 3.45369E-05
5.19782972 6. 72878E-05
5.34178638 3.33948E-05
5.22897434 6. 57285E-05
5.23261118 2.68711E-05
5.10635662 0.000122536
5.08593941 9.60922e-05
4.65526581 6.05767E-05

and geomechanical values.

37.16233444
32.03402328
39. 50788879
37.69886017
38.93412399
37.63370895
32.38167953
40.53171539
31. 86429787
23.7233448
36.72830963
37.83252716
37.54501343
41.13487625
16.73046494
39.43675995
37.85982132
33.3396492
36. 04987335
38.11697388
41.77083206
39.34635925
39.33733368
36. 4986877
33.27459717
16.39320564
37.3B87558
41.02923584
38.60312653
24, 68889618
14, 85146999
35. 78742599
39. 56903076
27.08851814
37.41194153
37.9151077
22.21689224
38.61925888
39. 50188446
36. 73806

39. 53560257
38.4657402
39.99207306
38.92475128
38.61435699
37.65163803
40. 66156387
33. 88444138
5.3B8159275
27.97084999
5.48972153
40.04209927
40.20214462
37.94367218
36.44174576
4.56622744
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38.66822052
27. 8287077
50.08804321
40, 86277008
53.90245056
40,2554245
34.53219604
55.25986481
28.99834061
27.01618767
38.68768311
47.39429092
43, 5786438
59. 28740692
12.40272331
54.22332764
53.24945068
49, 39965439
57.96180725
42,93080902
56.17040634
539.21543121
55.75967407
30. 53863525
35.64449692
14, 34871769
41, 20976257
60.16811371
31.38107491
31.70503616
9.49345398
58.62365723
55.12878036
31.94961166
50.31188965
55%.67502975
19.7314682
32.54703522
37.03659821
40,15357971
40,12309265
47.64693832
50.27039337
37.14530563
50.57054138
52.29262924
57.53287888
26.26993179
6. 31899405
36.37742233
5.26645803
50.19681931
44, 28091812
52.94870758
29.9290657
3. 55095816

34815. 97656
30522, 58789
38583.16406
35558, 57813
39586. 85156
33519, 82422
32176.19531
40152. 73438
30534, 57031
22852.5625%
34753.07422
37560.27734
36579.13672
41321.19141
14184, 08887
39902, 85156
39089.19141
34059, 56641
40170. 73828
36333, 64844
40463, 203132
41126, 36641
40289, 79688
32149, 63672
31809, 72266
16997. 87695
35646, 78125
41577. 60156
32991. 97266
24801, 2832
12143.12598
40222. 625

39966. 90234
26299, 53711
38458, 46875
39930. 25

19809, 8418
33229, 69922
34406, 91406
34967, 36719
35137.90234
37828, 96484
38783.20313
34792, 04688
38519, 24609
39063, 1875
40741.47266
28927.51953
5229.023926
28219. 75781
4516, 538086
38706.14844
37149, 98438
39035, 06641
32176. 85156
4228.158203
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Figure A 8. Sample ANN input values. Columns 1 through 5 represent input geometric
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Figure A 9. Sample ANN target values. Columns 1 through 5 represent classes 1

through 5, respectively. A value of “1” indicates true, while a value of “0” indicates

false.
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