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ABSTRACT 

Seismic data are an essential resource for interpretation, providing abundant 

information about geological structures, sedimentation, stratigraphy and reservoir 

quality. Geophysicists have dedicated tremendous efforts in fully utilizing the 

information content in seismic data.  

Time series analysis and frequency (spectral) analysis are the two most common 

tools used to characterize seismic data. Multi-spectral analysis highlights geological 

features at different scales. The spectral sensitivity is not only from the tuning effects, but 

also from the geological structures and rock properties, including attenuation. To analyze 

the additional information in the spectral components rather than in the broad-band data, 

I begin by examining the spectrally limited coherence responses of multiple stages of 

incised valleys of Red Fork formation, Anadarko Basin, Oklahoma. Later, I combine 

covariance matrices for each spectral component, add them together, and compute multi-

spectral coherence images.  

Spectral ratio and frequency shift methods are traditional attenuation estimation 

methods. However, the assumptions of each method introduce errors and instabilities into 

the results. I propose a modified frequency shift method to estimate attenuation (the 

reciprocal of the quality factor, Q), that relaxes some of these assumptions. Synthetic and 

field applications show robust and accurate results. Thin-bed layering also modifies the 

spectra, causing simple attenuation estimation to be inaccurate. To address this limitation, 

I use well logs based impedance inversion results to calculate a spectral correction for 

elastic variability in the spectra prior to estimating the inelastic attenuation contribution. 

The spectral correction can be viewed as a pre-conditioning step, following which both 

spectral ratio and frequency shift methods can produce better results. 



xix 

Traditional attenuation estimation methods work well in high porosity and high 

permeability gas sands. However, the well accepted squirt model does not apply to low 

permeability shale reservoirs. Rather, micro-cracks generate strong geometric or 

scattering attenuation, which combined with the intrinsic attenuation produced by TOC 

(total organic carbon) result in complicated spectral responses. Rather than estimating Q, 

I evaluate a suite of attenuation attributes. Even though the mechanism underlying may 

be unknown, these attenuation attributes can be statistically linked to the production and 

geology.  

Using the classic Fourier transform, the available spectral band often falls 

between 10 and 80 Hz. Nevertheless, interpreters observe lower frequency patterns in the 

data, for example, a 200 ms thick (5 Hz) pattern of low reflectivity sandstone and a 400 

ms thick (2.5 Hz) pattern of high reflectivity responses (e.g. sabkhas or cyclothems). I 

introduce an adaptive intrinsic mode decomposition method called variational mode 

decomposition to analyze the “rhythm” in the seismic data. The intrinsic modes are 

defined as combinations of AM modulated signals, which are analyzed in the frequency 

domain with carrier frequencies (that fall within the 10-80 Hz limit), to characterize the 

buried stratigraphy information seen in the longer wavelength patterns. Because intrinsic 

modes are able to model seismic signals, but unable to model the noise component, the 

random noise lies within the residual of the intrinsic mode decomposition. Unlike filtering 

methods with predefined parameters, I develop a fully data-driven denoising method to 

suppress random noise, thereby enhancing the data quality.   
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CHAPTER 1 

MULTI-SPECTRAL ANALYSIS1 

ABSTRACT 

Seismic coherence is routinely used to delineate geologic features that might 

otherwise be overlooked in conventional seismic amplitude volumes. In general, one 

wishes to interpret the most broadband data possible. However, because of the thickness 

tuning effects, certain spectral components often better illuminate a given feature with 

higher signal-to-noise ratio than others. Clear images of channels and other stratigraphic 

features that may be buried in the broad-band data may “light up” at certain spectral 

components. For the same reason, coherence attributes computed from spectral voice 

components (equivalent to a filter bank) also often provide sharper images, with the 

“best” component being a function of the tuning thickness and the reflector alignment 

across faults. While one can co-render three coherence images using RGB blending, a 

display of the information contained in more than three volumes in a single image is 

difficult. I address this problem by summing a suite of structure-oriented covariance 

matrices computed from spectral voices resulting in a “multi-spectral” coherence 

algorithm. 

I demonstrate the value of multi-spectral coherence by comparing it to both RGB 

blended volumes and the coherence computed from spectrally balanced, broad-band 

seismic amplitude volume from a mega-merge survey acquired over the Red Fork 

                                                 

1The first part of this chapter is published as - Li, F., J. Qi, , and K.J. Marfurt, 2015, Attribute mapping of 

variable-thickness incised valley-fill systems: The Leading Edge, 34(1), 48-52. The second part of this 

chapter has been submitted for publication in Interpretation. 
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Formation of the Anadarko Basin, Oklahoma. The multi-spectral coherence images 

provide better images of channel incisement and are less noisy than those computed from 

the broad-band data. Multi-spectral coherence also provides several advantages over 

RGB blended volumes: first, one can combine the information content from more than 

three spectral voices; second, only one volume needs to be loaded into the workstation; 

and third, the resulting gray-scale images can be co-rendered with other attributes of 

interest, for example, petrophysics parameters, plotted against a polychromatic color bar.  
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INTRODUCTION 

Twenty years after its inception in the mid-1990s, seismic coherence volumes are 

routinely used to delineate structural and stratigraphic discontinuities such as channels, 

faults and fractures, to highlight incoherent zones such as karst collapse and mass 

transport complexes, and to identify subtle tectonic and sedimentary features that might 

otherwise be overlooked on conventional amplitude volumes (Ogiesoba and Hart, 2009; 

Sun et al., 2010; Li et al., 2015; Qi et al., 2017). Estimates of seismic coherence (Bahorich 

and Farmer, 1995; Marfurt et al., 1998; Gersztenkorn and Marfurt, 1999; Lu et al., 2005; 

Wu, 2017; Yan et al., 2017) that highlight changes in seismic waveform or amplitude 

across a discontinuity provide quantitative measures of the geological discontinuity.  

In general, the quality of a coherence image is a direct function of the quality of 

the seismic amplitude from which it is computed. For this reason, the most important step 

in coherence computation is to ensure that the processed data exhibit high bandwidth, are 

accurately imaged, and are free of multiples and other types of coherent noise. Once in 

the interpreter’s hands, many seismic amplitude volumes benefit from subsequent post-

stack structure-oriented filtering and spectral balancing (Chopra and Marfurt, 2007).  

The broad-band seismic response of a given geological feature is composed of its 

response of its constituent spectral bands. However, such boundaries and edges computed 

from broad-band seismic data does not give a measure of the vertical scale of the 

discontinuity. Through constructive and destructive interference, the resulting vertical 

and horizon slices often represent the response of the strongest, or dominant frequency 

corresponding to the structure and stratigraphy of given time tuning thickness in the 

analysis window.  
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Spectral decomposition methods transform a 1D seismic amplitude trace into 2D 

time-frequency spectral magnitude and phase components (Partyka et al., 1999). Certain 

spectral components will exhibit a higher signal-to-noise ratio than others. In addition, 

thin beds that are tuned might be expected to better exhibit discontinuities at their higher 

amplitude tuning frequency than at other frequencies (Peyton et al., 1998). For the same 

reason, spectral attributes of relatively narrow band components often delineate 

anomalous geological features that are otherwise buried within the broad-band seismic 

response.  

Not all spectral components contain signal, while others may be overly 

contaminated by noise. For example, Fahmy et al. (2005) recognized that a deep reservoir 

tuned at 11 Hz was masked by strong, higher-frequency multiples. By simply removing 

this high frequency components they could obtain a clear image of the reservoir and 

perform an accurate AVO analysis. Gao (2013) noticed that subtler structural details in 

reservoirs are revealed using a higher frequency wavelet as the spectral probe. Abele and 

Roden (2005) found that the curvature computed at certain spectral components better 

correlated to microseismic events than others. Sun et al. (2010) used discrete frequency 

coherence cubes in fracture detection and found that high frequency components can 

provide greater details.  

Recently, Li and Lu (2014) showed that coherence computed from different 

spectral components can be combined to provide a qualitative measure of the scale of 

geological discontinuities such as faults, channels, caves, and collapse features. I propose 

a multi-spectral coherence method to map variations of thickness and edges to map the 

different stage fills of incised valley system. I use RGB color blending technique to 
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integrate attributes computed at different spectral components. The data volume is part 

of mega-merge survey from CGGVeritas over the Anadarko Basin, Oklahoma, and 

incorporates a survey which was one of the first applications of spectral decomposition 

interpreted by Peyton et al. (1998) using 36 Hz spectral component and full band 

coherence. While my analysis of mega-merge survey corresponds well with the original 

incised valley interpretation, the improved data quality due to the surface consistent 

deconvolution and statics as well as the larger migration aperture results in much sharper 

channel images. 

 

METHODOLOGY 

The Covariance Matrix and Energy Ratio Coherence 

Gersztenkorn and Marfurt (1999) describe the first implementation of coherence 

based on the eigenvectors of the covariance matrix. Since then, several details have been 

modified, including computing the covariance matrix, C, from the analytic trace, 

composed of the original data, d, and its Hilbert transform, dH along structural dip: 

 



K

Kk

nnk

H

mmk

H

nnkmmkmn yxtdyxtdyxtdyxtdC ),,(),,(),,(),,(  ,       (1.1) 

where tk is the time of a structurally interpolated sample at a distance (xm,ym) to the 

analysis point at (x=0, y=0,t=0). Computing the eigenvectors of C provides a means of 

computing a Karhunen-Loève filtered version of the data, dKL and dH
KL. If the data d 

have been previously spectrally balanced, the broadband energy ratio coherence (Chopra 

and Marfurt, 2007), sbb, can then be defined as 
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Filter Banks and Spectral Decomposition 

Hardage (2009) recognized that because of the variable signal-to-noise ratio at 

different frequencies, that faults were more easily identified in his data on the low 

frequency components that were less contaminated by strong interbed multiples. The 

continuous wavelet transform can be viewed as the application of a suite of filter banks 

to the original seismic data. Li and Lu (2014) and Honorio et al. (2016) computed 

coherence from a suite of spectral components and combined them using RGB color 

blending, resulting in not only improved discontinuity images, but also an estimate at 

which spectral bands the discontinuities occurred. The main limitation of this approach 

is that only three spectral components can be co-rendered at any one time. 

To address this limitation, Dewett and Henza (2015) combined multiple 

coherence attributes images using self-organizing maps. Each energy-ratio coherence 

volume was computed along structure from spectral voices, u(f): 

)],,,(exp[),,,(),,,( mmklmmklmmkl yxtfiyxtfayxtfu  ,            (1.3) 

which is constructed using a spectral decomposition algorithm, where a is the spectral 

magnitude and φ the spectral phase of each component.  

Sui et al. (2015) also noted the value of multispectral coherence and 3-component 

limitations of RGB display, and computed coherence based on spectral magnitudes, 

a(fl,tk,xm,ym), using the covariance matrix 

 
1

( , , , ) ( , , , )
L K

mn l k m m l k n n

l k K

C a f t x y a f t x y
 

  .               (1.4) 



7 

By not using the phase component, the covariance matrix is less sensitive to dip, 

allowing the use of a simpler, non-structure-oriented computation. 

I build on the above work, but rather than use the spectral magnitude computed 

along time slices used in Equation 1.4, I use the spectral voices and their Hilbert 

transforms computed along structure described by Equation 1.3 to obtain the covariance 

matrix (Marfurt, 2017):  

1

( , , , ) ( , , , )

( , , , ) ( , , , )

L K
k l m m k l n n

mn H H
l k K k l m m k l n n

u t f x y u t f x y
C

u t f x y u t f x y 

 
  

 
  .               (1.5) 

I will then compute coherence from the original broad-band data, from each 

spectral voice component, and compare them to the multispectral coherence computed 

using Equation 1.5. 

 

DATA DESCRIPTION 

The study area is located in the eastern part of Anadarko Basin, Oklahoma (Figure 

1.1). Pennsylvanian rocks throughout most of the Anadarko Basin are dominated by 

shallow shelf marine clastics. The target is the Red Fork sand of Middle Pennsylvanian 

age which lies at an approximate depth of 2700 m (∼9000 ft) and is composed of clastic 

facies deposited in deep-marine (shale/silt) to shallow water fluvial-dominated 

environment. The Red Fork sand is sandwiched between limestone layers, with the Pink 

Lime on the top and the Inola Lime on the bottom. The Oswego Lime that lies above the 

Pink Lime and the Novi Lime that lies below the Inola Lime, are very prominent reflectors 

that can be readily mapped on the seismic amplitude data, providing an approximation to 

a fixed geologic time. The Upper Red Fork incised valley system consists of multiple 
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stages of incision and fill, resulting in a stratigraphically complex internal architecture 

(del Moro et al., 2013).  

The survey of interest was recorded at various times, beginning in the mid-1990s. 

CGGVeritas acquired licenses for these surveys, shot infill data in 2009 where necessary, 

and carefully reprocessed them, resulting in a mega-merge survey. In addition to more 

modern statics and deconvolution algorithms, the most significant advantage of the mega-

merge survey is the inclusion of a wider migration aperture, providing the diffraction 

energy needed to image faults and stratigraphic edges (Del Moro et al., 2013; Li et al., 

2015). The incised valleys are characterized by discontinuous reflections of varying 

amplitude which are difficult to interpret laterally (Peyton et al., 1998). It is difficult to 

interpret the Red Fork incised valley using traditional interpretation techniques (auto 

picking horizons, amplitude mapping, etc.). Individual stages of fill are almost impossible 

to identify. 

 

ATTRIBUTE EXPRESSION ON VALLEY FILL 

Figure 1.2 displays Red Fork stratal slices through the seismic amplitude and 

coherence volumes. Vertical slices through the seismic amplitude provide an indication 

of erosion, but do not allow one to identify the various stages of valley fill. The coherence 

attribute in Figure 1.2b was computed volumetrically from the broad-band seismic data 

after spectral balancing using 5-trace, 11-sample (±20 ms), and as expected, image the 

boundaries of the valley as well as some internal incisements; however, the overall 

internal detail is diffuse. The main reason of this lack of detail is that the coherence was 

computed from the broad-band seismic amplitude data volume, and thus measures a mix 
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of valley fill stages in the same image. In contrast, lateral changes in sedimentary layers 

and channel incisement of a given thickness are often better imaged near their tuning 

thickness.  

The Red Fork incised valley can be mapped by using spectral components 

between about 20 Hz and 50 Hz. Peyton et al. (1998) chose 36-Hz amplitude slice as the 

best images of the valley throughout the survey area resulting in the image shown in 

Figure 1.3. Their coherence example, represents channel features illuminated by the 

dominant frequency components.  

The cartoon by Laughlin et al. (2002) in Figure 1.4 shows how thicker and thinner 

stratigraphic features will be tuned in at correspondingly lower or higher frequency 

components. In practice, the interpreter animates through a suite of spectral components 

and stops the animation when a particular feature of interest is well delineated. The same 

strategy should be also adopted in valley fill analysis. Figure 1.5 shows the dominant 

frequency map of Red Fork formation. Different types of geological structures and 

different stages of valley fill each with its own tuning thicknesses give rise to anomalies 

at different dominant frequencies.  

 

MULTISPECTRAL ANALYSIS 

Spectral magnitudes and coherences corresponding to these tuned frequencies 

provide clearer images. Though the spectral decomposition reveals more details, it 

generates a series of maps or volumes at different frequencies, which are analyzed one 

by one or through animation. Blending RGB (red-green-blue) images have long been used 

to express multiple spectral components in a single image (Balch, 1971). A more recent 
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exposition on the value of RGB in rendering multiple spectral images of channels can be 

found in Leppard et al. (2010). I use RGB color blending technique in Figure 1.6 to 

display the 20, 35 and 50 Hz spectral components. As shown in the RGB color map, if 

the energies in all three colored channels are at or above the threshold amplitude, the 

blended color is white, while if the energy of one channel is stronger than the other two, 

its color would dominate. The new information is revealed by the color changes. The 20 

Hz component is plotted against red and better delineates Stages II, III and V. The 35 Hz 

component is plotted against green and delineates medium thickness Stage V channels. 

The 50 Hz component is plotted against blue and delineates thinner Stage V channels and 

part of Stage III. Compared with the interpretation in Figure 1.3, which is a part of the 

survey, note that the stages interpreted by Peyton et al. (1998) also display in different 

colors. Stage I is not clearly separated from Stage II or III, which cannot be achieved 

neither on single frequency slice interpretation as Peyton et al. (1998) did. In other parts 

of the survey, other stages as well as some geological structures are displayed with 

different temporal tuning thickness in different colors. There are other good methods that 

can analyze tuning thickness variance, but none are as easy to create or as routinely used.  

I selected 20, 35 and 50 Hz to compare to Peyton et al.’s (1998) 36 Hz component 

image in Figure 1.6. Next, in Figure 1.7 I compute coherence from each of these spectral 

components, providing a measure of the edges sensitive to the relative thicknesses of the 

different stages of valley fill. Color blending of coherence is slightly different with the 

color blending of spectral magnitudes, where the result is subtractive rather than additive. 

If all spectral magnitudes are zero, one obtains a black image. If all spectral coherences 

are unity, one obtains a white image. A high spectral magnitude at the 20 Hz component 
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results in a red anomaly. In contrast, a low spectral coherence at 20 Hz results in less red, 

or a cyan anomaly. The black (dark gray) lines are the channel boundaries which appear 

on all the selected frequency components. The boundaries of relative thick channels 

showing on lower frequency component painted red would appear as cyan after blending 

(the opposite color of red on the color wheel), while edges of thinner channels in part of 

Stage III and V appear magenta or yellow. Since the channel edges can be characterized 

by other frequency bands, the channel edges shown in Figure 1.7 are not as many as those 

in Figure 1.2b. In addition, for the most area of the image without channel boundaries, 

the color delegates the change of coherent energy, for example, the large magenta (which 

is the opposite of green) area implies that lower coherent energy in middle frequency 

component. Figure 1.8 adds a fourth broadband coherence image shown in Figure 1.2b 

using opacity to the RGB blended map shown in Figure 1.7. Comparison between Figures 

1.7 and 1.8 shows the advantage brought by spectral component coherences. Through the 

colorful attribute integration image, one is no-longer thickness unaware.  

Until now, the coherence images have been directly computed from different 

spectral voice components. However, thin beds that are tuned might be expected to better 

exhibit discontinuities at their higher amplitude tuning frequency than at other 

frequencies. For this reason, one may wish to not only examine coherence computed from 

different voices, but also somehow combine them into a single composite image. 

Figure 1.9 shows coherence computed from six spectral voices (equivalent to six 

band-pass filtered data volumes) beginning with corner frequencies of 10-15-25-30 Hz 

and ending with 110-115-125-130 Hz. As discussed above, different spectral bands 



12 

highlight different geological features. Note that in Figures 1.9e and 1.9f that the noise 

becomes equal to, and then even stronger than signal. 

Figure 1.10b shows the multi-spectral coherence computed from all seven filter 

bank voices defined by the covariance matrix in Equation 1.5. Compared with the 

broadband coherence shown in Figure 1.10a, random noise (indicated by red dashed 

ellipses) has been suppressed and the channel boundaries sharper at some locations. 

While the computational effort of multispectral coherence increases linearly with 

the number of spectral components analyzed, the actual increase is somewhat less because 

of fixed i/o and data transfer overhead. Most of this cost is in computing the individual 

covariance matrices defined by Equation 1.5. In my implementation, I allow the 

computation of the individual components as well, providing the images shown in Figure 

1.7. While I find the multispectral coherence image to be “better” than the bandlimited 

and broad-band coherence images, co-rendering the individual images (Figure 1.11) still 

provides additional insight. Analysis of such images provide insight into which spectral 

component is a meaningful indicator of a given structural or stratigraphic feature.   

Thus, by more fully using the spectral components, the corresponding coherence 

map and multi-spectral coherence attribute, the stage identification and valley fill 

boundary delineation can be more completely interpreted. 

 

CONCLUSIONS 

The interpretation of incised valley fill can be difficult on conventional amplitude 

volumes. Multispectral coherence provides improved images over traditional coherence 

images, even if the seismic amplitude data have been previously spectrally balanced. 
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While much of this improvement can also be found in RGB blended volumes, 

multispectral coherence provides several advantages: (1) one can combine the 

information content of more than three coherence volumes, (2) there is only one rather 

than three volumes to be loaded into the workstation, which may be a limitation for very 

large data sets, and (3) the grey-scale image can be co-rendered with other attributes of 

interest plotted against a polychromatic color bar, such as P-impedance vs. Poisson’s ratio 

or SOM (self organizing map) cluster results. Although the computation cost increases 

with the number of spectral voices, the additional time savings in interpreting ambiguous 

channels and the revelation of previously hidden features is of significant value for the 

human interpreter. 
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CHAPTER 1 FIGURES 

 

 

 

Figure 1.1. Location map of Anadarko basin area on map of Oklahoma, and the study 

survey is located inside the study area marked by red boundary (after del Moro et al., 

2013). 
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Figure 2a 

 
Figure 2b 

 

Figure 1.2. Stratal slices through (a) seismic amplitude and (b) coherence volumes along 

the top Red Fork Formation from a mega-merge survey. Note the edges of the incised 

valley are shown on the coherence slice. Data courtesy of CGG-Veritas. 
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Figure 1.3. Peyton et al.’s (1998) original slice with interpretation through the 36-Hz 

spectral magnitude computed from the original 1995 seismic data volume. This same data 

volume formed part of the mega-merge survey shown in Figure 1.2.  

 

 

 

 

Figure 1.4. A cartoon of thin bed tuning. In thin reservoirs with varying thickness (left) 

seismic data with higher dominant frequency would highlight the thinner parts of the 

reservoir on amplitude maps (middle), while seismic with a lower dominant frequency 

would highlight the thicker parts on an amplitude map (right). (after Laughlin et al., 2002) 
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Figure 1.5. Dominant (or peak) spectral frequency image of the Red Fork horizon, which 

shows that the target horizon has different tuning thickness. The magnitude of the spectral 

component is plotted against a gray scale, thereby modulating the image. 

 

 

 

Figure 1.6. RGB blended spectral magnitude components at 20 Hz (in red), 35 Hz (in 

green) and 50 Hz (in blue). 
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Figure 1.7. RGB blended image of coherence corresponding to Figure 1.6 computed from 

the 20 Hz (in red), 35 Hz (in green) and 50 Hz (in blue) spectral components.   
 

 

 
 

Figure 1.8. The same image shown in Figure 1.7 but now co-rendered with that of Figure 

2b. Edges that are not overprinted in black were delineated by coherence computed from 

the corresponding spectral components, but not by the broad band coherence 

computation.   
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Figure 1.9a 

 
Figure 1.9b 

 

Figure 1.9. Coherence attributes calculated from different spectral bands (a) 10-15-25-

30 Hz, (b) 30-35-45-50 Hz, (c) 50-55-65-70 Hz, (d) 70-75-85-90 Hz, (e) 90-95-105-110 

Hz, (f) 110-115-125-130 Hz. Note that different spectral bands highlight different 

features, and the high frequencies include noises. 
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Figure 1.9c 

 
Figure 1.9d 
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Figure 1.9e 

 
Figure 1.9f 
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Figure 1.10a 

 
 

Figure 1.10b 

 

Figure 1.10. (a) The same horizon slice along the top Red Fork Formation shown in 

Figure 1.2 through broad-band coherence, and (b) through multi-spectral coherence 

computed using all six spectral bands. Yellow arrows indicate channel boundaries are 

poorly delineated on the broadband coherence image. Red dashed ellipses indicate noisy 

areas that have been suppressed.  
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Figure 1.11. Co-rendered coherence for three of the six spectral bands. Red: 10-15-25-

30 Hz, Green: 30-35-45-50 Hz, Blue: 50-55-65-70 Hz.  
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CHAPTER 2  

SEISMIC ATTENUATION ESTIMATION USING A MODIFIED 

FREQUENCY SHIFT METHOD2 

ABSTRACT 

As a powerful tool for structural interpretation, reservoir characterization, 

hydrocarbon detection, quality factor Q provides useful information in seismic processing 

and interpretation. The popular methods, like spectral ratio (SR) method, central 

frequency shift (CFS) method, peak frequency shift (PFS) method, are based on the 

spectral variations between different spectral components supposedly brought from 

attenuation. However, there are respective limitations in field seismic data applications. 

The lack of a reliable method for estimating Q from reflection seismic data is an issue 

when utilizing Q value for hydrocarbon detection. In this chapter, I derive an approximate 

equation and propose a dominant and central frequency shift (DCFS) method by 

combining the quality factor Q, the travel time, dominant and central frequencies of two 

successive seismic signals, along the wave propagating direction. Based on multi-layered 

analysis, I then propose a method to obtain continuous volumetric Q estimation results. 

A test on synthetic data and statistical experiments show the proposed method can achieve 

higher accuracy and robustness compared with existing methods, and field applications 

also show its potential and effectiveness in estimating seismic attenuation. 

                                                 

2 This chapter contains content from a published article - Li, F., H. Zhou, N. Jiang, J.X. Bi, K.J. Marfurt, 

2015, Q Estimation from Reflection Seismic Data using a Modified Frequency Shift Method: Journal of 

Geophysics and Engineering, 12, 577-586. 
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INTRODUCTION 

Seismic attenuation is a fundamental mechanism of elastic waves propagating 

through the earth. Attenuation acts as a time-variant low-pass filter with a monotonically 

increasing phase spectrum, which leads to that the seismic wavelet becomes more 

stretched and its amplitude becomes exponentially smaller with time or depth. 

Attenuation, if quantified, can be used as a seismic attribute to characterize rock 

properties, reservoir heterogeneity, subtle geological structures, and the success of 

completion processes (Parra and Hackert, 2002; Korneev et al., 2004). For example, in 

fractured media, the magnitude of attenuation change with azimuth has been shown to be 

a useful indicator of fracture direction (Clark et al., 2001; Maultzsch et al., 2007). 

Attenuation is also sensitive to changes in gas saturation in partially saturated media 

(Winkler and Nur, 1982). For this reason, anomalously high attenuation can be viewed as 

a hydrocarbon indicator (Toksöz et al., 1979; Hedlin et al., 2001) especially if quantitative 

attenuation measurements can be made. Once attenuation is measured, it is possible to 

mitigate the resolution loss by applying processes such as inverse-Q filtering to raise the 

high-frequency content of later times in seismic sections to compensate for attenuation of 

the seismic wave (Wang, 2002; Zhang and Ulrych, 2002; Wang, 2006; Wang, 2008) to 

aid with structural interpretations (Kaderali et al., 2007), amplitude versus offset (AVO) 

analysis (Luh 1993), and anisotropic attenuation characterization (Maultzsch et al., 2007; 

Zhu and Tsvankin, 2007). Attenuation, therefore, can provide important information 

about the subsurface to facilitate seismic interpretation. 

Seismic attenuation is usually quantified using quality factor, Q. The anelasticity 

and inhomogeneity in the subsurface dissipate high frequency seismic energy, which 
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decreases seismic amplitude. Ricker (1953) developed a wavelet broadening technique to 

determine attenuation. After that, much research work has been made for Q estimation. 

In the time domain, Q can be estimated by pulse amplitude decay (Brzostowski and 

McMechan, 1992), pulse rise time (Kjartansson, 1979), and pulse broadening (Wright 

and Hoy, 1981). However, amplitude information of seismic pulses is often influenced 

by scattering, geometric spreading and other factors. In the frequency domain, Q 

estimates include the spectral ratio (SR) (Hauge, 1981; Raikes and White, 1984; Sams 

and Goldberg, 1990; White, 1992), central frequency shift (CFS) (Quan and Harris, 

1997), peak frequency shift (PFS) (Zhang and Ulrych, 2002), improved peak frequency 

shift (IPFS) (Hu et al., 2013), and Gabor-Morlet joint time frequency analysis (JTFA) 

(Singleton et al., 2006) methods, all of which require time-frequency transforms to 

calculate the spectra of seismic records.  

Additionally, Q can also be estimated by variation of instantaneous frequency (IF) 

of a seismic signal. Barnes (1991), Tonn (1991), and Engelhard (1996) developed the 

relations between the measured instantaneous spectra and seismic attenuation. Assuming 

that the source wavelet is a band-pass wavelet, Barnes (1991) obtained the relation 

between Q and IF variations to establish a Q estimation approach. Matheney and Nowack 

(1995) proposed the IF matching (IFM) method. Li et al. (2006) suggested using peak 

scale variations in the wavelet domain to estimate Q by assuming an idealized pulse as 

the seismic source wavelet. Gao et al. (2009) estimated Q using the variation of the IFs 

at the envelope peaks of two successive seismic wavelets. As it is based on the 

instantaneous attributes, this kind attuation estimation method is called an instantaneous 
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Q method. However, Yang and Gao (2010) finds these relationships between attenuation 

and IF are qualitative or implicit, resulting in unstable or unreliable estimation results. 

Among the many methods available for measuring seismic attenuation, 

frequency-based methods are common in exploration geophysics because of their 

reliability and ease of use. The most classic approach is the spectral-ratio (SR) method, 

which measures the log of the ratio between two amplitude spectra computed as a function 

of frequency. Unforturnately, the SR method is sensitive to noise. As opposed to the SR 

method, the frequency-shift methods, such as CFS and PFS, use the statistics of the 

spectra rather than the entire spectrum, which improves the accuracy of the estimation. 

In subsequent sections, I first analyze the presuppositions of CFS and PFS 

method. Then, I derive an approximate equation combining Q, and variance of dominant 

and central frequencies, and propose a method called the dominant and central frequency 

shift (DCFS) method.  

 

EXISTING METHODS AND THEIR ASSUMPTIONS 

The underlying theory of Q and associated measurement methods are well 

established (White, 1992; Reine et al., 2009). For frequency independent intrinsic Q in 

the bandwidth of interest, a seismic signal will have its spectral amplitude 
0A (f)modified 

to 1A (f)  after traveling time t  at frequency f : 

( ) ( )exp1 0

ft
A f A f

Q

 
  

 
,                                          (2.1) 

where the amplitude decay or increase caused by frequency-independent effects is 

ignored. The observed difference in the frequency spectrum of a Ricker seismic pulse at 
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t=0 s and time t=0.1 s are shown in Figure 2.1 where the source wavelet propagates 

through attenuating media with different Q values. 

Based on Equation 2.1, the SR method can be represented as, 

1

0

( )
ln( )

( )

A f ft

A f Q


 .                                                 (2.2) 

An estimate of Q can be derived by curve fitting within the common effective 

bandwidth of the two spectra using the least-squares method. An effective bandwidth 

should be chosen to avoid high frequency fluctuation caused by additive noise or 

numerical errors due to finite precision. 

Quan and Harris (1997) proposed the CFS method by correlating Q with the 

changes in the central frequency of the seismic signal. For the reference seismic signal 

0A
 
and the target seismic signal 

1A , the central frequencies denoted by 
0cf  and 

1c
f . 

Assuming that ( )A f  is of Gaussian shape, Q can be quantified by, 

0

0 1

2

A

c c

t
Q

f f

 



,                                                        (2.3) 

where 
0

2

A  is the spectrum variance of 
0A , defined by, 

0

0

2

02 0

0
0

( ) ( )

( )

c

A

f f A f df

A f df











.                                       (2.4) 

Compared to the SR methods, the CFS method is quite robust, because the 

estimation of the central frequency is relatively insensitive to noise. However, the CFS 

method assumes a Gaussian shape of the seismic spectrum and the stationary spectral 

variance. In practice, the seismic spectrum is rarely a Gaussian and attenuation changes 

the spectral variance, introducing inaccuracies to this method.  
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Zhang and Ulrych (2002) proposed a peak frequency shift (PFS) method to 

estimate Q. For a shallower reference wavelet 
0b and a deeper target wavelet 

1b , denote 

the peak frequencies by 
0pf and 

1pf .  Assuming that the seismic source can be represented 

by a Ricker wavelet,  the PFS estimate of Q is 

1 0

0 1

2

2 22( )

p p

p p

tf f
Q

f f





.                                                      (2.5) 

Recall that spectrum of a Ricker wavelet (Ricker, 1953) is  

2 2

3 2

2
( ) exp( )

m m

f f
A f

f f
  ,                                           (2.6) 

where 
mf  is the dominant frequency of the wavelet, the peak frequency is the dominant 

frequency for a Ricker wavelet. The Ricker-wavelet assumption is more representative of 

seismic data than a morlet wavelet with a Gaussian spectra assumed by the CFS method. 

However, the maximum value of the spectra amplitude is easily affected by the 

background noise, which cannot be ignored. Thus, in practice, the PFS method is less 

stable in field application than the CFS method. 

 

DOMINANT AND CENTRAL FREQUENCY SHIFT METHOD 

Combining Equations 2.1 and 2.6,  and assuming the seismic wave propagating 

in the earth media with a Q factor for t seconds, the amplitude spectrum of the received 

signal is 

2 2

3 2

2
( , ) exp exp

m m

f f ft
A f t

f f Q





   
     

  
,                              (2.7) 

where 
mf  

denotes the dominant frequency of the source wavelet. 
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The central or mean frequency of a signal ( )s t
 is usually defined as 

0

0

S( )

S( )
c

f f df
f

f df








,                                                 (2.8) 

where S( )f
 is the amplitude spectrum of signal ( )s t . 

Wang (2015) suggested that central frequency should be estimated using the 

power spectrum rather than the amplitude spectrum, and showed that such an estimate  

has a higher correlation to estimates  made using discrete Fourier spectra of seismic data. 

Wang’s (2015) central frequency is this: 

2

0

2

0

S ( )

S ( )
c

f f df
f

f df








.                                             (2.9) 

Such that, the central frequency of the received seismic signal amplitude spectrum 

( , )A f t
 is 

2
2 2

2
3 20

0

2 2
2 2

0
3 20

2
exp exp

( , )

2( , )
exp exp

m m

c

m m

f f ft
f df

f A f t df f f Q
f

f f ftA f t df
df

f f Q















    
     

    
    

     
   



 

.

                

(2.10) 

Simplifying Equation 2.10, one can obtain 
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(2.11) 

where 
2

m

m

f tf
x

f Q


  . 
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Separating the factors, computing the integrals, and using the first-order Taylor 

series approximation, I obtain 

   

 

6 5 4

3 2
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To validate the correctness of Equation 2.12, I compute
cf  

of the source signal, 
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When there is no attenuation, Q equals infinity in Equation 2.12, the central 

frequency of the source signal becomes 

16 4 2

32 3 2

m
c m

f
f f


  ,                                            (2.14) 

which has the same form as Equation 2.13, thereby conforming the approximations  about 

central frequency, dominant frequency and Q made in Equation 2.12 are correct. 

As my goal is to estimate Q factor, I rearrange Equation 2.12 to obtain a six order 

polynomal equation in one variable. An approximate solution is  

2

2
4 3

m

m c

f t
Q

f f




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
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.

                                             

(2.15) 
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Equation 2.15 summarizes the relationship between the central frequency 
cf , 

dominant frequency 
mf and Q. I call this estimation the dominant and central frequency 

shift (DCFS) method. DCFS is a modified CFS method, substituting a Gaussian spectrum 

by that of a Ricker wavelet, which better approximates seismic data acquired with 

dynamite sources prior to spectral balancing. 

Two aspects should be noticed: first, the constant Q model assumes that the 

attenuation effect is “constant” in the target horizon, so I can only get “average” 

attenuation estimation; second, whether using the CFS or the DCFS method, the first-

order Taylor approximation has been employed during the simplification process. For this 

approximation to be accurate, the travel time t should be small. Thus, when a target 

horizon is relatively thick, for both physical and mathematical aspects, one needs to treat 

it as a multi-layered model, separate it into some thin layers, and do the Q estimation 

layer by layer (Zhang and Ulrych, 2002; Wang, 2008). As the time interval t becomes 

smaller and smaller, the Q estimation result changes from piecewise constant, discrete 

volumes to represent continuous values.  

 

MULTI-LAYERED IMPLEMENTATION 

First, consider a case of two layers with quality factors Q1 and Q2, and travel times 

1t  
and 

2t  
, where the total travel time 

1 2t t t  and the total equivalent quality factor is Q. 

Applying Equation 2.1 gives 

1 2
0 0

1 2

( , ) ( )exp ( )exp exp
ft ftft

A f t A f A f
Q Q Q

        
      

     
.             (2.16) 

Knowing Q and 
1Q , 

2Q
 
can be expressed by 



35 

 
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2
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t Q Q
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t t Q t Q
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 
.                                           (2.17) 

From Equation 2.16, the equivalent Q can be estimated using the dominant 

frequency of the source wavelet and central frequency at time t . Since the dominant 

frequency 
mf  

of the initial wavelet and Q1 have already been determined from upper-

layer arrivals with the known travel time parameters 
1t  

and 
2t , 

2Q
 
can be computed using 

Equation 2.17. 

Suppose that the subsurface medium is divided into N layers, separated at times

0 1 1, , , , , ,i N Nt t t t t  
, where Nt t , with a total equivalent quality factor Q, the 

amplitude spectrum is defined by  
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where 
1 0i i it t t    

 
and 

iQ
 
are the travel time and quality factor in the ith layer, 

respectively. 

For the last layer with the thickness 
1N Nt t t    , the amplitude spectrum is  
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Similar to Equation 2.17, the equation for 
NQ becomes 
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.                                                 (2.20) 

Now, the Q factor values can be computed layer by layer. Then one can get a 

“continuous” attenuation estimation result. 
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Inspired by Wang (2008), in order to stabilize this procedure and make the result 

more robust, I normalize the amplitude spectrum ( , )A f t  between 
1nt   

and 
nt : 
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,           (2.21) 

where the threshold   is related to signal to noise ratio. 

In this way, the small amplitude samples are ignored in the Q analysis, so I can 

suppress noise interference, on the other hand, which is more important, the unphysical 

negative Q value can also be eliminated.  

 

SYNTHETIC TEST 

In order to confirm the effectiveness and stability of the DCFS method, I estimate 

Q values on both noise-free and noise-added synthetic data and analyze the results 

calculated by SR, CFS and DCFS methods. 

I use a Ricker wavelet with a dominant frequency of 40 Hz to produce a noise-

free synthetic with Q = 80, 50, 40 and 30 shown in Figure 2.2a. The results of Q estimation 

obtained by SR, CFS and DCFS methods show that three methods perform well in the 

noise-free case, as shown in Figure 2.2b. 

It is known that to ensure the stability in evaluating Q factor is challenging when 

the data are contaminated by noise. Therefore, I evaluate the SR, CFS, and DCFS methods 

for SNR=30, 10, 5, 0, and -1 dB (Figure 2.3). There are noticeable differences between 
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the three methods even in the high SNR situation. For the SR method computed between 

30 and 50 Hz, accuracy and stability of the estimation is highly dependent on the SNR of 

original data. When the SNR falls below 5 dB, the DCFS method performs more robustly, 

with the results calculated by DCFS closer to the true Q values than those of the other 

two methods (Figures 2.3h and 2.3j).  

 

NUMERICAL TEST AND ERROR ANALYSIS 

Systematic and random errors are the key factors that influence the accuracy and 

robustness of most Q estimation methods. Figure 2.4 shows the result of 100 independent 

realization for the fourth layer of the synthetics (shown in Figure 2.2) with different 

SNR=30, 10, 5, 0, and -1 dB to estimate the Q value. The actual noise pattern for each 

realization is different. These experiments show that the DCFS method (red curve) is 

more robust than the SR and CFS methods. Note the negative Q values for the low SNR 

case that occur when using the SR and CFS methods in Figures 2.4d and 2.4e. 

Table 2.1 summarizes the results of these 100 realizations. The mean value of Q 

from DCFS is closer to the actual Q value 30, while the standard deviation is stable even 

when the noise level is greater than effective signal (SNR=-1dB).  In contrast, the 

anomalously large values of mean and standard deviations using the SR and CFS method 

imply that these two methods are less robust. 

 

APPLICATION TO FIELD DATA 

In order to test the validity of the proposed method, I applied the DCFS to a 3D 

land survey acquired in western China, showing the value in delineating a known gas 
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reservoir. Figure 2.5 shows a geological cross section through three wells, displaying the 

gas reservoir distribution, lithology and well logs (e.g. gamma ray (GR), resistivity (RT), 

acoustic (AC) and density (DEN)). The sandstone reservoir is full of gas displayed by 

yellow under the layer L2 at Well A and B, while there is no oil or gas response at well 

C. The information from the well logs is used to provide guidance in discriminating the 

lithological boundaries and indicating gas reservoir. Figure 2.6 shows the location the 

three joint wells on the 3D seismic survey. 

Figure 2.7a shows a vertical slice through the three wells through the seismic 

amplitude volume. Wells A and B are productive wells, while Well C is nonproductive. 

The sampling interval is 1ms.  Figure 2.7b shows the same slice through the Q volume 

calculated using Equations 2.15 and 2.20. Note the low Q values of the target layer L2 

are highlighted by red curve at the location of productive wells A and B, which implies 

strong absorption or attenuation in the gas-bearing sandstone. In contrast, there is no 

attenuation anomaly at the nonproductive Well C. The gas distribution denoted by the red 

ovals from the well logs (Figure 2.5) is consistent with Q value estimation results (Figure 

2.7b). In order to further show the advantage of DCFS method, I extract Q along phantom 

horizon slices 10 and 20 ms below the L2 horizon using the three methods, while the SR, 

CFS and DCFS show similar trends. The DCFS Q estimation more accurately correlates 

to the well control, distinguishing productive Well B and dry-hole Well C. Figure 2.7d 

shows phantom horizon slices 10 ms below L1 through the three Q estimates. All three 

methods show mudstone strata to have high Q values. Therefore, by analyzing the result 

calculated by DCFS, the reasonable range of Q value implies that the low Q value area 
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corresponds well to gas reservoir whereas nonproductive well is identified by high Q 

value. 

 

CONCLUSIONS 

In this chapter, I developed a Q estimation method based on changes in the spectra 

of the original wavelet (defined by fm) and the attenuated wavelet (defined by fc). This 

method provides more robust estimation of Q than the most commonly used spectral ratio 

and central frequency shift algorithms. For reasons of mathematical clarity, the algorithm 

assumes a Ricker wavelet spectrum at the top of the target reservoir. However, the same 

workflow can be applied to data that have been spectrally balanced to exhibit a higher 

resolution. In this latter case, the relation between central frequency at depth and the 

dominant frequency of the original spectrum will provide a table look-up Q estimation. 

  



40 

CHAPTER 2 TABLES 

 

SNR(dB) 
SR CFS DCFS 

Mean SD Mean SD Mean SD 

30 30.38 0.56 28.60 0.87 31.20 0.15 

10 32.32 7.25 34.53 13.52 31.53 0.85 

5 38.54 29.30 39.37 42.41 31.84 3.25 

0 159.77 1540 28.36 89.35 32.36 3.28 

-1 52.17 209.28 308.95 3103 32.63 3.65 

 

Table 2.1. Statistical data calculated from 100 realizations using the SR, CFS and DCFS 

methods. The actual Q value is 30. SD denotes the standard deviation. Note that Q values 

from the SR and CFS methods can be negative. 
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CHAPTER 2 FIGURES 

 

 

 

Figure 2.1. The frequency spectra of a Ricker wavelet with 30 Hz dominant frequency at 

time t=0 (red) and time t=0.1s in different attenuating medium with different Q values 

showing the loss in frequency and amplitude reduction.  

 

 

 

Figure 2.2. An example of Q estimation. (a) A noise-free synthetic generated using a 40 

Hz Ricker wavelet with Q values of 80, 50, 40 and 30. (b) The results of Q estimation 

using the SR, CFS, and DCFS methods.   
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Figure 2.3. Comparison between SR, CFS and DCFS methods for a synthetic (same as 

Figure 2.2a) with additive random noise. (a), (c), (e), (g) and (i) respectively show the 

synthetic with SNR=30, 10, 5, 0, and -1 dB. (b), (d), (f), (h) and (j) show the 

corresponding the results of Q estimation using SR, CFS and DCFS methods. Note that 

the results applied by DCFS method are closer to the true Q values than those of the other 

two methods with decreasing SNR. 
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Figure 2.4. Estimation results of 100 independent experiments for the same layer of the 

synthetics with SNR = 30 (a), 10 (b), 5 (c), 0 (d), and -1 dB (e) using SR, CFS, and DCFS 

methods. The actual Q value is 30. Note that the results of the estimation, as denoted by 

the red curves, show that the DCFS method has the best robustness. 

  



44 

 

 

Figure 2.5. Geologic cross section through three wells showing the gas reservoir 

distribution, lithology, and well logs: gamma ray (GR), resistivity (RT), acoustic (AC) 

and density (DEN) through three joint wells. Red ovals denote the zones withn the target 

layer L2. 

 

 

 

Figure 2.6. The configuration of the 3D land survey. Red dots show the positions of three 

wells. Black line denotes the random line shown in Figure 2.5. 
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Figure 2.7. Application to the field data. (a) Vertical slice through the seismic amplitude 

volume connecting the three wells. (b) The continuous Q profile obtained by DCFS 

method. (c) Estimation of average Q values calculated by SR, CFS, and DCFS methods 

for target layer L2 20 ms below and (d) 10 ms below the top of L1. Results using the 

DCFS method are denoted by a red dashed line in (c) and (d).  
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CHAPTER 3 

SPECTRALLY CORRECTED ATTENUATION ESTIMATION3 

ABSTRACT 

Unconventional resource play is critical in petroleum exploration and 

development. Fluid-filled formations directly modify the effective impedance of rocks, 

attenuate amplitude and distort seismic spectrum, which all make the seismic attenuation 

estimation a promising tool for characterizing fracture system. However, existing 

methods for seismic attenuation are usually based on a “Constant Q” model, which 

ignores the interference from reflectivity anomalies. For unconventional reservoirs, the 

spectrum of the reflected wave may be affected by the presence of thin beds (shales) in 

the formation, which makes Q estimates less reliable. I employ a non-stationary Q model 

to characterize attenuation, and correct the reflected spectrum by using the inverted 

reflectivity sequence to remove local thin-bed effects from seismic reflection data. In 

synthetic examples, significantly less variance in the estimated values and fewer 

unphysical negative Q values are obtained. Following the workflow, I also applied this 

attenuation estimation on Barnett shale data. The recovered Q estimates have a good 

correlation with the production data. Though, the attribute is the average over a target 

horizon, this may be sufficient to find evidence of fluid-filled fractures, change in 

lithology, or high TOC content. 

                                                 

3 This study is published as a journal paper - Li, F., H. Zhou, T. Zhao, K.J. Marfurt, 2016, Unconventional 

Reservoir Characterization based on Spectrally Corrected Seismic Attenuation Estimation: Journal of 

Seismic Exploration, 25, 447-461.  
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INTRODUCTION 

Identifying highly fractured zones or sweet spots in naturally fractured reservoirs 

is important where fractures often act as significant conduits for fluid flow (Burns, 2004). 

Lynn (2015) reports changes in attenuation as a function of fracture orientation for natural 

fractures. In addition to fractures, shales are also expected to exhibit strong attenuation 

associated with microcracks with possibly new loss mechanisms linking attenuation to 

kerogen maturity and organic content (Lynn and Beckham, 1998). Thus, seismic 

attenuation may play a crucial role in the exploration and exploitation of unconventional 

hydrocarbon resources. 

Existing basic methods for seismic attenuation, such as the spectral ratio method 

(White, 1992), the frequency shift methods (Quan and Harris, 1997; Zhang and Ulrych, 

2002), measure quality factor (Q) based on the variance of the seismic wavelet spectra. 

However, the classic “constant Q” model ignores the change in spectra due to reflectivity 

anomalies. For unconventional reservoirs, the spectrum of the reflected wave may be 

affected by the presence of thin beds in the formation, which makes Q estimates less 

reliable.  

Hackert and Parra (2004) proposed using the known reflectivity sequence from a 

nearby well log to correct the local spectrum. Inspired by their work, and considering 

unconventional reservoirs, I employ a new Q model to estimate seismic attenuation, and 

correct the reflected spectrum by removing local thin-bed effects from seismic reflection 

data. One can use well logs to build a background model, estimate a source wavelet, and 

invert seismic amplitude volume to construct an impedance volume of the whole survey. 

I will use this impedance volume to compute the reflectivity sequence to correct the 
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reflected spectrum. I validate my workflow on synthetic data and apply it to a Barnett 

Shale survey. 

 

TIME-VARIANT SPECTRAL MODEL 

When a seismic wave propagates in a viscoelastic medium in a constant linear 

frequency attenuation model, the spectral amplitude decreases exponentially with travel 

time and 1/Q (Aki and Richards, 2002) 

   , exp
ft

A f t S f
Q

 
  

 
,                                        (3.1) 

where,  S f  is the source wavelet spectrum, t is the travel time,  and  ,A f t is the 

received signal spectrum including all geometric spreading, source, and receiver effects. 

In this model, the quality factor Q is constant on all frequencies.  

Sheriff and Geldart (1995) use a simple convolution model (noise free) to define 

the reflected signal,  a t : 

( ) ( ) ( )da t s r t  



  ,                                        (3.2) 

where,  s t  is source wavelet, and  r t  is reflectivity series. In this model, seismic signal 

is the convolution of source wavelet and reflectivity sequence. 

The frequency expression of convolution model is 

     A f S f R f ,                                          (3.3) 

where,  A f  ,  S f and  R f  are the Fourier transforms of seismic signal, source 

wavelet, and reflectivity series, respectively. If the medium is attenuating with constant 

Q, then the spectrum will be reduced: 
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     , exp
ft

A f t S f R f
Q

 
  

 
.                                      (3.4) 

Compared Equation 3.1 with Equation 3.4, constant Q model ignores the 

reflection coefficient effects. The approximation is valid if the reflectivity coefficient is 

assumed to be random with a white spectrum, as if constant Q model is mainly dealing a 

single layer. Although the reflectivity may be white at a large scale, the local reflectivity 

spectrum is not white. Shale resource plays are in general comprise of alternating brittle 

and ductile layers. Thus, one should consider the local reflectivity change, which would 

distorts the seismic spectrum. 

Grossman et al. (2001) introduced a non-stationary convolution model, which is 

actual a more generalized form of Equation 3.4, to do the attenuation estimation: 

       , ,A f t S f f t R f ,                                   (3.5) 

where  ,f t  is the attenuation factor expression in the frequency domain. This formula 

can be rearranged to (Grossman et al., 2001) : 

 

 
   

,
,

A f t
S f f t

R f
 .                                          (3.6) 

If I can obtain the estimation of the local reflectivity coefficient sepctra R(f), I can 

suppress the interference of the local geology, which can lead to more accurate Q 

estimation.  

LOCALIZED SPECTRAL CORRECTION 

Assume that there are two local subset of reflectors r1(t) and r2(t) near time t1 and 

t2, respectively. Then, I can express their spectra as: 
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                                    (3.7) 

Taking the logarithm of their ratio, 

 

 

 

 

 1 1 1 1 2

2 2 2

,
ln ln

,

A f t R f f t t

A f t R f Q

    
       

   
.                               (3.8) 

If there is no reflectivity anomaly, the ratio of R1 and R2 is independent of 

frequency, so the first term on the right-hand side is constant, and Q can be estimated 

form the slope of the log-spectral ratio of A1 and A2. However, if there are spectral 

anomalies associated with layering, then the first term on the right-hand side varies with 

frequency, and the spectral slope is not simply related to Q.  

Therefore, one needs to correct for the interference from the reflectivity 

coefficient. When the well-log impedance data available, I can compute the reflectivity 

of the well position. In my work, I use a commercial software package to invert the 

amplitude volume for the seismic impedance. I then compute reflection coefficients to 

correct the spectra. 

After computing the reflectivity spectrum, one moves the first term on the right-

band side of Equation 3.8 to the left-hand side to obtain: 

   

   

 1 1 1 1 2

2 2 2

,
ln

,

A f t R f f t t

A f t R f Q

  
   

 
 .                                    (3.9) 

Note that the 
 

 

,A f t

R f
 is a local spectrum correction, after which one can use the 

Q estimation methods, for example, central frequency shift method, on the spectrally 

corrected results. 
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To sum up, this method has the following steps (Figure 3.1): 

(1) Select a reference reflection and some target reflections; at the same time, 

invert the seismic amplitude data to obtain impedance; Then, compute 

reflectivity from the impedance; 

(2)  In order to estimate the local reflection spectra, computation of a windowed 

time-frequency transform should be applied in a local (short time window) 

period. The time window should be short enough to select the reflection of 

interest but long enough to assure the frequency resolution; 

(3) Correcte the spectrum using R(f); 

(4) Use a Q estimation method to compute Q values. 

 
INTERFERENCE FROM ILL-SPACED REFLECTORS 

As we know, the reflected data come from the convolution of the source wavelet 

with the reflectivity series. For a relatively long time range, the reflectivity sequence is 

often assumed to be random and may be approximated by a white spectrum. However, 

the localized reflection spectrum can be distorted by ill spaced reflectors. Figure 3.2 

shows a possible interference phenomena. For a single reflector (Figure 3.2a), there is no 

spectral distortion. For the three evenly spaced reflectors shown in Figure 3.2c, the 

reflection spectrum is enhanced near 45Hz and suppressed near 15Hz and 75Hz, which 

shows that local reflectivity can result in constructive and destructive interference at 

certain frequencies. Figure 3.2e shows closely but randomly spaced reflectors, the 

reflected spectrum may be affected irregularly. It could suppress low-frequency content 

in the combined reflection because of the possible low frequency notches, as in this case, 
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which will give the appearance of negative Q through increased amplitude at high 

frequencies. 

 

SYNTHETIC THIN-BED EXAMPLE 

I built a synthetic example consisting of five layers (four reflectors), each with 

different Q and P-velocity (Figure 3.3). The source pulse is a Ricker wavelet of 100-Hz 

central frequency. I set up two cases on this model: one with no thin beds, and the second 

case with thin beds added, as shown in Figure 3.3. From Figure 3.2, one can infer that the 

reflectivity sequences with thin beds are distorted. 

The uncorrected and corrected normalized local spectra of the four reflections are 

shown in Figure 3.4. The blue curves are the ideal reflected spectra without thin beds, 

while red curves are the uncorrected spectra for reflections including thin beds, and the 

black dotted lines are the spectrum with the local spectral correction. Ideally, the 

corrected spectrum (dashed line) would exactly match the ideal spectrum (blue curve). 

This does not happen because I have smoothed out the zeroes in the spectrum of the 

reflectivity sequence.  

The first reflection is the reference. One computes the average Q between the 

reference and each later reflection using both the uncorrected and corrected spectra (Table 

3.1). Only the central frequency shift (CFS) method is used. Without thin beds present, 

the method recovers the Q of each layer almost exactly. The thin beds at the layer 

boundaries of the second model, however, interfere with the reflection spectra in the 

manner discussed above, so that Q values of the uncorrected CFS method are quite poor. 

Applying the well-log–based spectral correction substantially removes this effect, and the 

corrected Q values are of reasonable accuracy. 
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FIELD DATA APPLICATION 

The Barnett Shale is a very important unconventional shale gas system in the Fort 

Worth Basin (FWB), Texas where it serves as a source rock, seal, and trap (Perez, 2009). 

The reservoir was deposited between the Mable Falls Limestone and Viola unconformity 

and separated by the Forestburg Limestone into the Upper Barnett and the Lower Barnett. 

The Viola and Forestburg formations are not producible and provide barriers to fracture 

growth. Figure 3.5 shows the seismic data and the interpreted Upper Barnett Shale and 

Lower Barnett Shale.  

Figures 3.6 and 3.7 show the time structure map and curvature attributes along the 

base Lower Barnett Shale. Seismic attributes show great promise in delineating fracture 

systems (Chopra and Marfurt, 2008), and has proven to be successful. From Figure 3.7, 

because the fracture scale is below the seismic resolution, we can only infer potential 

fracture locations, which might be larger along more strained (curved) parts of the survey.  

I applied central CFS method to estimate Q value, as shown in Figure 3.8, in which 

attenuation means 1/Q. This result has high correlation with the attributes in Figure 3.7 

as well as the production data (productive well locations). Almost all the well locations 

show high attenuation. What’s more, this result also display high correlation with the 

TOC prediction by Verma et al. (2012). Although it seems so good, there are so many 

unphysical negative Q values in the result. 

In order to compensate for the spectral interference from thin beds, following the 

workflow in Figure 3.1, I do the Q estimation again. The reference and target reflections 

are already picked. First, I invert the seismic impedance volume using well logs (e.g. 
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density and Vp) and the seismic amplitude volumes. Figure 3.9 shows two vertical well 

logs. The reflectivity is not random, which means the spectral correction is important. 

Figure 3.11 shows the improved attenuation estimation result. Compared to 

Figure 3.8, the upper left area of Figure 3.11 has more positive Q values, which makes 

more sense. But for the bottom right area, there are still many negative values. This error 

inspired the construction of the DCFS algorithm described in Chapter 2. 

CONCLUSIONS 

The current “constant Q” model is inadequate to describe attenuation caused by 

fracture system and unconventional reservoirs. Reflected wavelets can be distorted by the 

thin beds, which makes it more difficult to estimate reliable attenuation information. 

Based on non-stationary convolution model, I demonstrated the successful use of a 

spectral correction method for improving Q estimation. I applied the method on synthetic 

examples, and Q values computed using the corrected spectra have less variance and 

fewer negative values than those computed with uncorrected spectra.  

Using the local corrected spectra of the target and reference reflections, I compute 

Q of the Barnett shale using the centroid frequency shift method. The recovered Q 

estimates have a good correlation with the production data with less negative Q values. 

With the comparison between the results I obtained and the attributes associated with 

fracture delineation, I can determine that the estimation of seismic attenuation can be a 

useful tool to evaluate the fracture density, when the valuable information from the well 

log tied to the seismic data is adopted appropriately. In the future work, detailed 

attenuation models should use specific and spatially localized and unambiguous physical 

properties, if possible. 
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CHAPTER 3 TABLES 

 True Value 

Estimation  

without thin 

beds 

Estimation  

with thin beds 

(uncorrected) 

Estimation  

with thin beds  

(corrected) 

Layer 1 40 37.2 81.5 37.9 

Layer 2 30 31.2 16.5 31.1 

Layer 3 50 47.2 -307 44.6 

Layer 4 20 20.6 5 20.4 

 

Table 3.1. True and computed values of Q from the synthetic test data, for cases of no 

thin beds and thin beds added. When thin beds are present, Q values are computed with 

and without the spectral correction technique. 
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CHAPTER 3 FIGURES 

Select reference and 

target reflections

Local (short windowed) time-frequency transform 

on seismic data and inverted reflectivity

Invert seismic impedance 

based on well logs 

Spectral Correction

Q estimation

 

Figure 3.1. Workflow of the well-log based local spectral correction Q estimation. 

 

 

Figure 3.2. Three hypothetical spike reflectivity sequences and their corresponding 

spectra.   
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Figure 3.3. Velocity models for synthetic seismic reflection data without and with thin 

beds added. 

 

 

Figure 3.4. Comparison between uncorrected and corrected normalized local reflection 

spectra. In each figure, the blue line is the spectrum if there are no thin beds. The red line 

is the spectrum with thin beds. The black dashed line is the corrected spectrum. Note that 

not all frequency axes span the same range. 
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Figure 3.5. Seismic data and interpreted horizons. 

 

 

 

Figure 3.6. Time structure map of Lower Barnett shale. 

 

 

 

 

Figure 3.7. Attributes horizon slices from Lower Barnett Shale with (left) most positive 

curvature, (right) most negative curvature. 
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Figure 3.8. Attenuation estimation from uncorrected spectra using the CFS method. 

White circles denote productive well locations. 

 

 

 

Figure 3.9. Well log examples in the survey. Red frames denote the lower Barnett Shale, 

which doesn’t have a white spectrum. 



63 

 

 

 

Figure 3.10. Inverted seismic impedance profile along an arbitrary line shown on the 

right. Note the inverted result has a good correlation with the well logs. 

 

 

Figure 3.11. Attenuation estimation from the corrected spectra using the CFS method. 

White circles denote productive well locations. 
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CHAPTER 4 

SEISMIC ATTENUATION ATTRIBUTES WITH APPLICATIONS 

ON CONVENTIONAL AND UNCONVENTIONAL RESERVOIRS4 

ABSTRACT 

Seismic attenuation, generally related to the presence of hydrocarbon 

accumulation, fluid-saturated fractures, and rugosity, is extremely useful for reservoir 

characterization. The popular constant attenuation estimation model, focusing on intrinsic 

attenuation, intentionally detects the seismic energy loss because of the presence of 

hydrocarbons, but it works poorly when spectral anomalies, due to the existence of 

rugosity, fractures, thin layers and so on. Instead of trying to adjust the classic attenuation 

model to such phenomena, I evaluate a suite of seismic spectral attenuation attributes to 

quantify the apparent attenuation response. I apply these attributes to a conventional and 

an unconventional reservoir, and find those seismic attenuation attributes are effective 

and robust for seismic interpretation. Specifically, the spectral bandwidth attribute 

correlates to production of a gas sand in the Anadarko Basin, whereas the spectral slope 

of high frequencies attribute correlates to the production in the Barnett Shale of the Fort 

Worth Basin. 

  

                                                 

4 The major part of this study is published as a journal paper - Li F., S. Verma, H. Zhou, T. Zhao, and K. 

J. Marfurt, 2016, Seismic attenuation attributes with applications on conventional and unconventional 

reservoirs: Interpretation, 4(1), SB 63–SB77. 
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INTRODUCTION 

Seismic attenuation can be reduced to a simple concept: when a seismic wave 

moves through a body of rock in the subsurface, higher frequencies of an incident seismic 

wave will attenuate faster than lower frequencies, showing a net loss of energy (Raikes 

and White, 1984). Extensive work has been done to measure energy attenuation in rocks 

under a variety of conditions. Some studies (Knight et al., 2010; Piane et al., 2014: Parra 

et al., 2015) show attenuation varying in response to changes in water saturation, clay 

content, porosity, pore geometry, permeability, micro-fracturing, and pressure. Seismic 

attenuation can be a powerful tool in indicating lithology, pore structure, fractures, and 

fluid content (Klimentos, 1995). In metals and crystalline rocks, the major contribution 

to energy loss is the movement of dislocations (Mason et al., 1978). 

The seismic attenuation phenomenon is often closely related to the velocity 

dispersion effect in the laboratory and field applications. Velocity is affected by two main 

fluid-related modes at the pore scale when waves propagate in fluid-saturated rocks 

(Dvorkin and Nur, 1993): Biot’s or global flow and local flow or squirt flow (Dvorkin et 

al., 1995). Calculation of the velocity of elastic waves that propagate in saturated rocks 

is complicated by many dispersion and attenuation mechanisms. The experiments based 

on different models have detected attenuation as well as dispersion due to dry bulk 

modulus with pressure, pore-scale, local-flow mechanism and fluid properties (Gurevich 

et al., 2010; Yao and Han, 2013; Spencer and Shine, 2016; Sayar and Torres-Verdín, 

2017). In this dissertation, velocity dispersion is not studied, and only attenuation is 

discussed.  



67 

Attenuation can be ten times more sensitive to changes in saturation, clay content, 

pore fluids or pore pressure than velocity and densities (Klimentos, 1995; Clark et al., 

2009). Castanga et al. (2003) and others provide case studies indicating that the presence 

of known overlying hydrocarbons gives rise to deeper low-frequency “shadows”. For 

resource plays, if attenuation arises from intercrack flows (i.e. flow though aligned flow 

conduits between parallel fractures), then attenuation anisotropy may be related to the 

anisotropy of horizontal permeability (Lynn, 2004a). Lynn (2004b) hypothesized that one 

can estimate open fractures by measuring the quality (Q) factor (1/attenuation). Gao 

(2013) showed how the spectral response can change with offset and azimuth for rugose 

surfaces. Cho et al. (2013) found anomalous spectral response after hydraulic fracturing. 

In addition, the apparent attenuation caused by the scattering effect was more pronounced 

when the shear-wave polarization was perpendicular to the crack plane, and the crack 

aperture had the same magnitude as the source wavelength (de Figueiredo et al., 2011). 

Robust attenuation measures from seismic data have great potential for reservoir 

characterization and direct detection of hydrocarbons, especially natural gas. For 

example, based on an understanding of the relationship between frequency decay and 

effective stress, an attenuation-based pore pressure prediction technology reveals the 

relationships between the geometry of the pore pressure distribution, the structure of the 

rocks, and the accumulation of hydrocarbons (Young et al., 2004). Studies show that 

attenuation is frequency selective, with seismic energy loss typically occurring in the high 

frequency end of the spectrum. Such behavior suggests that signal processing algorithms 

targeting anomalous high frequency energy may provide accurate attenuation measures. 
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Conventionally, energy loss per cycle is represented by Q, however, despite 

different authors having used the identical name, Q value computation in different 

contexts are not the same (Morozov and Ahmadi, 2015). Several attenuation estimation 

methods measure the apparent attenuation without classifying its type (Quan and Harris 

1997; Zhang and Ulrych 2002). Specific attenuation estimation of a given type implies a 

specific energy loss mechanism. In their study, O’Doherty and Anstey (1971) concluded 

that the apparent seismic attenuation includes the intrinsic attenuation, as well as the 

interaction among multiple receivers, geometric spreading, scattering, frequency-

independent transmission loss or gain, and frequency-dependent thin layer interfaces. For 

reflection seismic data, geometric spreading can be compensated during migration, while 

thin layer interferences can be corrected using well logs and impedance inversion (Li et 

al., 2015a). Intrinsic losses due to conversion from mechanical to heat energy, as well as 

scattering losses due to fracture heterogeneities and rugose surfaces occure in both 

conventional and unconventional reservoirs. For this reason, the characterization of 

apparent attenuation can be beneficial for both kinds of reservoirs. 

In this chapter, I first discuss the classification of attenuation. Then, I evaluate 

seven seismic attenuation attributes for reservoir identification: energy reduction of the 

normalized spectra of high frequencies and full bands, spectral bandwidth, skewness, 

kurtosis, spectral slopes of both low and high frequencies. (For comparison, I also 

examine the central frequency shift (CFS) method (Appendix 4.C) to produce an apparent 

attenuation value). I apply these attenuation measures for a conventional sand reservoir 

and an unconventional hydraulically-fractured shale reservoir. 
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Q CLASSIFICATION 

As discussed above, despite the same name and similarity, the term Q does not 

have the same meaning in different applications. A classification of the concept of Q is a 

complex task because this concept represents a mixture of measurement techniques, 

empirical definitions, physical theories, mathematical transformations, and simplified 

assumptions. Morozov and Ahmadi (2015) categorized the attenuation effects into three 

types (Figure 4.1). One needs to differentiate these different uses of the Q factor: (1) a 

measure of “internal friction” implied in petrophysical interpretation, (2) apparent Q 

estimates arising from observations, and (3) the “axiomatic,” mathematical Q used in 

viscoelastic theory and numerical modeling. These three groups differ in physical 

meaning, underlying theory, method of measurement, attainable resolution and accuracy, 

and most importantly, their role in data analysis and interpretation. The measures of 

seismic attenuation used in different models and obtained from different measurements 

and inversion approaches are also different.  

Seismic attenuation classification is constructed based on the phenomenological 

aspects. The first type is the “true,” or “intrinsic” Q. As the first column in Figure 4.1, 

this Q is a property of the phenomenological “imperfect modulus” in seismology and 

materials science (Anderson and Archambeau 1964; Lakes, 2009), which comprises 

certain petrophysical properties of the wave-propagating medium. These underlying 

properties may be broadly variable (for example, granularity, dislocations, fluid content, 

as well as electric, magnetic, or thermal properties). The true internal-friction 

mechanisms are usually explained by first-principle physics and generally do not require 
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the notion of a Q. Their relations to Q models can be complicated and require further 

study. 

As a common tool of attenuation analysis, the second type, apparent Q (second 

column in Figure 4.1), is the empirical parameter reported from most observations, and 

has been studied in Chapters 2 and 3. Apparent Q may differ for different types of 

observations (for example, lab or field measurements of direct, refraction, reflection, or 

surface-wave events), and their relationships to the internal friction may be intricate and 

variable. For example, the “scattering Q” which is particularly important in seismology 

is difficult to formalize and measure. By the nature of wave-attenuation phenomena and 

measurements, the apparent Q is always averaged and statistical, and therefore its 

accuracy and resolution in time and frequency are strongly limited (item c in Figure 4.1). 

In contrast to the first two types, the axiomatic Q is attributed to the material 

mathematically, through the popular viscoelastic model (Lakes, 2009). The purpose of 

the measured attenuation is to represent the internal friction (material Q), while the 

numerical approximation is made through the use of the approach such as the relaxation 

times and strain-stress phase lags. These parameters link the apparent Q to the physical 

internal friction models. Although this model is convenient mathematically, broadly used, 

and seems intuitively appealing, its rigorous meaning and relation to petrophysical 

properties of materials is poorly understood. The viscoelastic model also contains a 

specific, inherent spatial averaging that is difficult to assess in Q results.  

Several theoretical models explain dissipation of elastic waves in solids, such as 

poroelasticity (Biot, 1956), squirt pore-fluid flows (Jones, 1986), thermoelasticity, and 

solid viscosity (Landau and Lifshitz, 1986). These physics-based models belong to the 
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“internal friction” category. Another theoretical approach to anelastic attenuation is 

represented by viscoelasticity (Aki and Richards, 2002; Lakes, 2009). Because of its 

simplicity and generality, this model is broadly used in exploration and observational 

seismology and lab studies. Modeling local flow, also known as squirt, cannot be done in 

a similar manner because local flow depends on various parameters describing pore 

shapes and orientations. Most theoretical models of squirt-flow attenuation are based on 

the analysis of aspect ratio distributions (Palmer and Traviolia, 1980; Jones, 1986) and 

pressure relaxation time (Murphy et al., 1986). The observations of internal friction are 

explained by a specialized parameter (viscoelastic Q) associated with the elastic modulus. 

Similarly to the modulus, the viscoelastic Q is free from the statistical constraints 

discussed above, and its images can be arbitrarily detailed. For example, to explain wave 

attenuation in porous rocks containing heavy oil or melts, viscoelastic moduli and Q are 

attributed to pore fluids or solids, i.e., to the microscopic level (Mavko, 2013). 

Nevertheless, the viscoelastic model still does not fully correspond to reality, and its Q 

should be differentiated from the internal friction and the various apparent Q. 

From the above descriptions of the different aspects of Q, most of the existing 

estimates of Q belong to the apparent Q category and not to the internal friction (i.e., 

representing a material property) as it may be implied. Moreover, these values are only 

robust (as “interval” or scattering Q in contrast to the structural Q) when averaged over 

substantial time and/or spatial intervals. The apparent structural Q contains effects of 

colored transmission and reflections on layered structures, as well of the underlying 

theoretical models. A statistical, averaged character is an important characteristic of any 
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self-consistent type of Q, because many apparent Q models suggest that the estimates are 

likely influenced by deterministic local structures (Chapter 3).  

In practical seismic data processing and inversion, exact estimates of Q are 

sometimes unimportant. The goal of attenuation analysis may be limited to enhancing the 

data or aiding the interpretation. By contrast, when numerically modeling seismic 

wavefields, it is important to ensure that the algorithms adequately represent the physical 

mechanisms of wave attenuation.  

Seismic interpreters commonly are not interested in the absolute attenuation 

value, but in the relative attenuation effects between an area and its surroundings. Li et 

al. (2015b) proposed a suite of seismic attenuation attributes that quantify the spectral 

changes between a shallower reference and a deeper target horizon to detect anomalous 

spectral energy loss. The sketches in Figure 4.2 summarize these seismic attenuation 

attributes. Simple mathematical derivations are in Appendix 4.A - Appendix 4.D. 

 

APPLICATIONS 

A CONVENTIONAL RESEROIR – RED FORK SANDSTONES 

The study area is in the eastern part of the Anadarko Basin, Oklahoma (Figure 

4.3). Pennsylvanian rocks throughout most of the Anadarko Basin are dominated by 

shallow-shelf marine clastics. The target is the Red Fork Sand of the middle Pennsyl-

vanian age, composed of clastic facies deposited in a deep-water (shale/silt) to shallow-

water fluvial-dominated environment. The Red Fork Sandstone is sandwiched between 

the shallower Pink Limestone and the deeper Inola Limestone. The Oswego Limestone 

that lies above the Pink Limestone and the Novi Limestone that lies below the Inola 



73 

Limestone are prominent reflectors that can be mapped easily on seismic-amplitude data, 

and are used to generate stratal slices that approximate a fixed geologic time. The Upper 

Red Fork incised-valley system consists of multiple stages of incision and fill, resulting 

in a stratigraphically complex internal architecture. 

Figure 4.4a shows the time structure map of the base of the channels in the Red 

Fork, where the channels are clearly visible. Figure 4.4b shows a horizon along the Red 

Fork through inverted seismic impedance, where zones of sandstone deposited in the 

channels exhibits lower impedance, while other areas and surrounding matrix shows 

higher impedance. Figure 4.5 shows the vertical seismic section along line AA’ (location 

displayed in Figure 4.4a). Seismic amplitude is displayed in variable area format and 

overlain by instantaneous envelope in color. The Red Fork channel base is displayed as 

the yellow solid line. The Redfork channel thickness varies from location to location. In 

addition, the incise channels and four well locations are also denoted. 

In Figure 4.6, I extract the seismic trace at CDP (common depth point) 170 

denoted by the red triangle along arbitrary line AA’ in Figure 4.5 and analyze its spectrum 

in a sliding window. I picked three positions on the selected trace and highlight them by 

red, black and blue rectangles, from Oswego, Pink Lime and Red Fork, respectively. The 

amplitude spectrum plotted with the red curve corresponds to the wavelet in the red 

rectangle, while the black and blue amplitude spectra correspond to the wavelets in the 

black and blue rectangles. I corender all three amplitude spectra in last subfigure of Figure 

4.6. Examination of the cartoons in Figure 4.2 suggests that I can apply seismic 

attenuation attributes to characterize these spectral changes.  
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Figure 4.7 shows the seismic attenuation attribute values calculated using the 

central frequency shift (CFS) method (Appendix 4.C) between the top Pink Lime and 

bottom of the incised Red Fork formation in Figure 4.5. The light blue curve in Figure 

4.7a indicates strong attenuation (1/Q) at the locations of channels, which implies strong 

absorption or attenuation in the gas-bearing sandstone. However, I can also find some 

unphysical (negative attenuation) values on this curve, which is inconsistent with the 

constant attenuation model. As mentioned previously, the apparent attenuation includes 

not only intrinsic attenuation, scattering attenuation, but also the spectral interference 

which I attribute to thin layers and also changes the seismic spectra. Given this 

shortcoming, I compute the other seven seismic attenuation attributes: energy reduction 

of high frequencies, energy reduction of full spectral band, spectral bandwidth (Figure 

4.7a), skewness, kurtosis, spectral slopes of low frequencies, and spectral slopes of high 

frequencies (Figure 4.7b). From the appendixes and sketches in Figure 4.2, it is clear that 

the attributes capture different aspects of spectral changes. Almost all the seismic 

attenuation attributes have higher values at the channel locations. And, at the original 

negative attenuation locations, some attributes are showing more reasonable results. 

Multiple seismic attenuation attributes should be analyzed together to provide better 

interpretation because a single attribute may be unable to lead to a conclusive result. 

Interpreters can analyze all the attributes and can decide the best attributes which provide 

valuable information assisting for interpretation.  

Figure 4.8 shows maps of the eight seismic attenuation attributes along the whole 

Red Fork formation. Note that almost all the attributes highlight the incised channel 

system, which verifies our hypothesis that sandstone would produce stronger attenuation 
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than surrounding matrix. Most of the productive wells are also located in the high 

attenuation areas. Wells, which produced at high initial volumes, correspond to areas of 

high energy absorption at the producing horizon. It is particularly interesting to note that 

the spectral bandwidth attribute helps to identify the location of potential hydrocarbon in 

the stratigraphic trap. First, from the seismic inversion and well locations in Figure 4.4, I 

can locate the fluvial system, and spectral bandwidth shows the best correspondence. 

Second, there is an area in the south of the major channel showing low impedance on 

Figure 4.4b, which should be anomalous. Spectral bandwidth result shows low 

attenuation. 

The Southwest area (higher impedance on Figure 4.4b) exhibits high attenuation, 

is painted as strong attenuation in Figure 4.8a, 4.8b and 4.8c. According to the interpreted 

horizons on Figure 4.5, I believe this is because the Red Fork formation is quite thin at 

certain areas, so the thin-bed effect would introduce spectral interferences, which 

damages the attribute evaluation. 

 

AN UNCONVENTIONAL RESERVOIR – THE BARNETT SHALE 

The Barnett Shale is one of first shale resource plays in the Fort Worth Basin 

(FWB), Texas (Figure 4.9) Shale acts as the source rock, seal, and trap (Perez, 2009). 

Completion is often more expensive than drilling the horizontal well. Ideally, operators 

use image logs, production logs, chemical tracers, and microseismic monitoring to 

determine the effectiveness of a given completion process. The survey shown in Figure 

4.8 was acquired after hydraulic fracturing using about 200 vertical and 200 horizontal 

wells (Thompson, 2010). Seismic data were acquired for this survey area after the wells 
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were drilled and hydraulically fractured. In the survey area, the relatively brittle Barnett 

Shale reservoir falls between the more ductile Marble Falls and Viola Limestones which 

form the frac barriers (Perez and Marfurt, 2014). A thin Forestburg Limestone which can 

acts as an imperfect frac barrier separates the reservoir into the Upper Barnett and the 

Lower Barnett sections. Figure 4.10 shows the seismic data with the interpreted Upper 

Barnett shale and Lower Barnett Shale, and a time structure of the top Lower Barnett 

shale. 

Figures 4.11 shows the curvature attributes of the Lower Barnett shale. Curvature 

maps paleo deformation in this survey. Because the fracture scale is below the seismic 

resolution, curvature does not “see” any small scale fractures. Curvature measures strain, 

which is a component of natural fracture formation and thus zones of weakness and/or 

strength for subsequent stimulation. In this survey, the ridges form fracture barriers with 

most microseismic events occurring within structural bowls (Perez and Marfurt, 2014). 

Production appears to be compartmentalized by these ridges.  

Cho et al. (2013) evaluated a Canadian shale resource play using a careful time-

lapse seismic survey, I note strong spikes in the spectra which they attributed to the 

addition of discrete gas-filled fractures. For an unconventional survey, such scattering 

attenuation would contribute to the apparent attenuation effect. I applied CFS method to 

estimate apparent attenuation values, shown in Figure 4.12a. Apparent attenuation has 

high correlation with curvature attributes in Figure 4.10. Horizontal well paths are also 

shown on Figure 4.12. The locations of productive wells should display high attenuation. 

But in some areas where the well density is high, the attenuation attribute shows low 

values. In addition, note that there is “negative” attenuation shown in blue. Such 
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attenuation would be unphysical for the classic constant Q model. However, the 

“attenuation” mapped here is due to increased scattering due to new, gas filled fractures. 

Figures 4.12b to 4.12h display the remaining seven seismic attenuation attributes.  

Verma et al. (2012) evaluated TOC (Total Organic Carbon) based on the low 

density, low velocity with Neural network method, shown in Figure 4.13a. Using a similar 

approach, I obtain the BI (brittleness index) map in Figure 4.13b, which indicates the 

brittleness, one of the most important factors for hydraulic fracturing. And, high and low 

production areas from Thompson (2010) are denoted on Figure 4.13. TOC indicates the 

organic material accumulation. Shales have very low permeability, and the hydrocarbons 

do not migrate, but it can migrate through fractures, or it can also stay in fractures. 

Hydrocarbon saturated fractures would show high TOC, but not only gas/oil 

accumulation can show high TOC, other nonproducible hydrocarbon can also show high 

TOC. In addition, layers with high TOC could be ductile, which can hinder hydraulic 

fracturing. Thus, unconventional reservoir evaluation requires considering both the TOC 

and BI.  

From Figures 4.12 and 4.13, I observe that there is no directly decisive 

relationship among production, TOC and BI. For example, the south end of the survey 

shows low BI and low production, but high TOC, while there are many horizontal wells 

in that area. High TOC doesn’t ensure high production for horizontal wells, because, first, 

high TOC doesn’t equal gas/oil reservoir; second, low brittleness is bad for hydraulic 

fracturing, so this area has a low production. Another example is the northern high BI 

area in Figure 4.13b. Since the seismic data is acquired after hydraulic fracturing, the high 

BI indicates high density fracture. Fracture system can produce scattering attenuation. 
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Thus, in the attenuation attributes in Figure 4.12, the northeast part of the survey usually 

shows high attenuation. 

Figure 4.14 displays two vertical sections of seismic impedance at different 

locations shown on well location map. For BB’, most of the attributes in Figure 4.12 show 

high attenuation values, and the impedance section shows two major internal layers. For 

CC’, most attributes show low attenuation (negative value), and the impedance profile 

shows layering effect. Li et al. (2015a) showed thin beds can alter the seismic spectrum, 

which results in unreliable attenuation estimation. Considering the influences of TOC, BI 

and thin-bed tuning effect, the attenuation characterization is very complex. In actual 

drilling and production, there are still some more factors, which should be taken into 

account, e.g. stress/strain field. Spectral slope of high frequencies is the only seismic 

attenuation attribute, which highlights both the high TOC and high BI areas. 

 

DISCUSSION  

Barnes (2007) warned that after many years of attribute development many 

attributes are redundant, and some are even useless. I have evaluated a suite of attenuation 

attributes, all of which are based on input spectral decomposition volumes. For the 

conventional porous gas reservoir analyzed, the classic Q model computed using the CFS 

algorithm provides a good discrimination between the presence and absence of gas. In 

contrast, the assumptions of the classic Q model are radically violated as a model for 

induced, gas-filled fractures of the Barnett Shale. For this situation, Q becomes an 

attribute, and is no longer a rock property. However, correlation with production and 
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microseismic measures of fractured rock indicates that it may become an important tool 

in estimating reservoir completion.  

The proposed seismic attenuation attribute suite is not a gas indicator per se, nor 

does it deliver a quantitative Q value. Rather, the process detects local areas where high 

frequency energy has been rapidly lost over a target horizon, and as such should be 

thought of as a qualitative way of detecting intervals of anomalous energy attenuation in 

the subsurface. Because numerous petrophysical mechanism causes give rise to energy 

attenuation, the presence of gas is only one of the several possible mechanisms considered 

by the interpreter. Nevertheless, I have seen numerous data sets in which absorption 

anomalies were coincident with gas reservoirs, and in many cases, the absorption attribute 

identifies the gas reservoirs where other seismic attributes (e.g., amplitude, AVO) do not 

(Mitchell et al., 1996). I are thus encouraged to pursue seismic attenuation as a reservoir 

characterization attribute.  

Words of caution are appropriate. While attenuation attributes can measure high 

frequency energy loss in the data caused by presence of gas and fractures, it can also 

measure non-geological factors. Possible non-geological seismic attenuation pitfalls 

include seismic acquisition (the data need to have an adequate frequency range to target 

the loss of high frequency energy), as well as data contamination of data in seismic 

processing (AGC, spectral whitening, deconvolution, stacking and other processes can 

alter frequency content). For these reasons, I recommend true amplitude processing 

common to AVO and prestack inversion analysis. 
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CONCLUSIONS 

After describing a suite of seismic attenuation attributes, I apply them to the field 

data to detect hydrocarbon and evaluate fracture system. Almost all of the attributes have 

good correspondences with production. Thus they are useful and promising for seismic 

interpretation as well as reservoir characterization. However, because different attributes 

measures different spectral changes, they demonstrate different aspects of seismic 

apparent attenuation. According to the application situations, I should adopt suitable 

attributes. In future, multiattribute clusters and statistical analysis tools will be really 

helpful for choosing the most appropriate attribute or producing the combination of 

seismic attributes.  



81 

APPENDIX 

4.A Apparent Attenuation on Seismic Spectrum 

When a seismic wave propagates in a viscoelastic medium in a constant linear 

frequency attenuation model, the apparent Q arises by considering a traveling wave 

whose spectral amplitude exponentially reduces with traveltime as (Aki and Richards, 

2002) 
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where, 2 f   is the angular frequency,  S   is the source wavelet spectrum,   is the 

travel time, and  ,A    is the received signal spectrum including all geometric 

spreading, source, and receiver effects.  

Here, it clearly shows that the apparent Q is not related to certain specific rock 

properties. It is just a symbol for apparent attenuation in frequency domain. Hence, 

adopting seismic attributes to characterize this effect is not inapproriate. 

 

4.B The Ricker Wavelet and Its Frequencies 

I assume the seismic signal is propagating as a Ricker wavelet, which is suitable 

for empirical situations. Wang (2015) discussed frequencies of the Ricker wavelet, which 

inspired some of the following derivations. 

The Fourier transform of the Ricker wavelet can be expressed as  
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where is the angular frequency and m is the dominant frequency (the most energetic 

frequency, also in radians per second). This is an amplitude spectrum, so it is real and 

nonnegative. 

I can set the derivative of the amplitude spectrum  R   to zero to get the 

corresponding peak frequency p : 
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m mm
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This leads to p m  . 

Replacing the  S   in Equation 4.A-1 by  R   in Equation 4.B-1, I can obtain 

the attenuated seismic spectral expression. Then I adopt the way in Equation 4.B-2 to 

calculate the peak frequency after attenuation: 
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Note that when attenuation is stronger ( 1Q is larger), the peak frequency value is 

smaller. 

By substituting the p m   to Equation 4.B-1, one can obtain the peak of the 

Ricker wavelet amplitude spectrum is 
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In the following work, I adopt the normalized Ricker wavelet amplitude spectra. 

It is obtained by dividing the spectra with its maximum value to unity. Hermana et al. 

(2013) also adopted this normalization approach in attenuation based hydrocarbon 

prediction, because the spectral amplitude deceases significantly after attenuation which 

changes the spectral shape properties without appropriate conditioning. 

The normalized Ricker wavelet amplitude spectrum is formulated as: 
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4.C Attenuation Estimation Methods 

Spectral Ratio (SR) Method 

For the reference seismic signal 0A and the attenuated seismic signal 1A , based on 

Equation 4.A-1, the Spectral Ratio (SR) method can be represented as, 

1
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A f
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  .                                      (4.C-1) 

An estimate of Q can be derived by curve fitting within the common effective 

bandwidth of the two spectra using the least-squares method. An effective bandwidth 

should be chosen to avoid high frequency fluctuation caused by additive noise or 

numerical errors brought by finite precision. 

Central Frequency Shift (CFS) Method 

Quan and Harris (1997) proposed the Central Frequency Shift (CFS) method by 

correlating Q with the changes in the centroid frequency of the seismic signal. The 
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centroid frequencies of reference and attenuated seismic signals are denoted by
0cf  and

1c
f , assuming that ( )A f  is of Gaussian shape, Q can be quantified by, 
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where 
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As an alternate Q estimation method of SR methods, CFS method is a milestone 

for frequency shift methods. It is quite robust as the estimation of centroid frequency is 

not as sensitive as SR method to noise. However, I notice that the preconditions of CFS 

method are the Gaussian shape of the seismic spectrum and the unchanged spectrum 

variance. However, the seismic spectrum is usually a non-Gaussian distribution and the 

attenuation effect would certainly change the spectrum variance, which brings 

inaccuracies to this method.  

 

4.D Seismic Attenuation Attributes 

My objective is to propose attributes to measure the spectral changes caused by 

attenuation. I assume the decrease in peak frequency is the main change, and after 

attenuation the seismic spectrum is still a Ricker wavelet spectrum. Set the reference 

spectrum without attenuation to 
0 ( )R   with peak frequency 0m . The received 

attenuated spectrum is 
1( )R  with peak frequency 

1m . According to Equation 4.B-4, 1m  
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should be smaller than
0m , and the difference between reference and received peak 

frequencies shows the attenuation strength: larger difference, stronger attenuation. 

Higher-order Statistics 

As is known, the amplitude spectrum of the Ricker wavelet is the Gaussian 

distribution multiplied by a factor 2 , and thus is asymmetric and “unGaussian” in the 

frequency domain. In mathematics, I would usually use Higher-order Statistics (HOS) to 

quantify the shape (McGrew and Monroe, 2009). Here, I use skewness (third order 

moment) and kurtosis (fourth order moment) to measure the spectra’s shapes: 
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Note the lower peak frequency, the larger skewness, and larger kurtosis. So, I can 

measure their changes to estimate the relative attenuation. 
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Spectral Bandwidth 

The frequency bandwidth is defined by the frequency components spreading at 

some proportion of the spectrum peak (maximum value). Here, I set the frequency band 

to be measured at  1   of the peak, which is 1 in the normalized spectrum, so I get: 
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exp 1 =
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R
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which leads to the inverse exponential equation 
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with an analytical solution expressed in terms of the Lambert W function: 
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The solution of an inverse exponential equation  exp =z z x  is  =Wz x , where W(x) 

is the Lambert W function, displayed in Figure 4.D1. Then the frequency band [ , ]low high 

is given by 
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The spectral bandwidth is  

1 0W Wb m
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The variable  is fixed in each situation, so the bandwidth in frequency domain 

is only related to the peak frequency. Thus, after attenuation, the peak frequency will be 

lower, and the spectral bandwidth will be narrower. 
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Spectral Slopes 

I compute the expressions of spectral slope averages of low frequencies (from 

m
 to m

 , 1  ) and high frequencies (from m
 to m

 , 1  ), respectively. 
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Both of the slopes have a format of Lambert function in Figure 4.11, so I can 

estimate their values. The peak frequency and low frequency slope have an inverse 

relationship. A decrease in peak frequency will indicate an increase in low frequency 

slope. The low frequency slope is always positive and the high frequency slopes is always 

negative. The decrease in peak frequency causes the high frequency slope to become more 

negative but with a larger absolute value. 

Energy Reduction 

Let’s compute the energy difference between normalized reference and received 

spectra on the whole band, from 0 to infinity: 
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This formula shows that spectral energy will decay after attenuation even they are 

both normalized, and the stronger attenuation, the larger energy reduction. 

 0 1( ) ( )
c

highER R R d


  


  .                              (4.D-11) 

Actually, in Equation 4.18 I can also just compare the spectral energies of higher 

frequency components, (e.g. Mitchell et al. (1996) proposed a similar energy absorption 

analysis (EAA) attribute.), starting from their crossover frequency c . As ml is 

smaller, c is smaller, and the differences at frequencies larger than previous c will 

be larger, so the energy in higher frequencies will reduce more, when the attenuation is 

stronger.
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CHAPTER 4 FIGURES 

 

 

Figure 4.1. The taxonomy of attenuation (Q-1) from Morozov and Ahmadi (2015). The 

columns are the three general attenuation types, and the rows (labeled on the left) are the 

aspects by which these types are differentiated. The footnotes refer to selected 

(incomplete) literature. 
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Figure 4.2. Schematics of the proposed seismic attenuation attributes: (a) normalized 

reference and attenuated spectra, (b) skewness and kurtosis, overlaying their peak 

frequency axes, (c) spectral bandwidth, (d) spectral slopes at low and high frequencies 

and (e) energy reduction in high frequencies and all frequency band. 

 

 

 

 

Figure 4.3. Location map of the Anadarko Basin area on a map of Oklahoma. The study 

area lies inside the red boundary. (After Del Moro et al., 2013).  
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Figure 4.4a 

 

 
Figure 4.4b 

 

Figure 4.4. (a) Time structure map of the base of the incised channels in the Red Fork 

channels showing dip to the SW. (b) Horizon slice along base of Red Fork through 

seismic impedance. Note that the sandstone in the channel shows low impedance in 

yellow, red and black, while the surrounding matrix shows higher impedance in green, 

blue, and magenta. The cross circles denote the positions of 19 productive wells. 
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Figure 4.5a 

 
Figure 4.5b 

Figure 4.5. Vertical slice along line AA’ shown in Figure 4.4a through amplitude 

overlain by the seismic amplitude (Figure 4.5a) and instantaneous envelope (Figure 4.5b). 

The Oswego Lime (blue pick) and Pink Lime (red pick) form regional markers. Because 

of incisement, the amplitude and phase of Red Fork (yellow pick) change across the 

survey.  
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Figure 4.6. Single trace example (extracted from CDP 170, denoted as a red triangle in 

Figure 4.5) of seismic spectral changes with increasing depth.  
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Figure 4.7a 

Figure 4.7b 

 

Figure 4.7. Seismic attenuation attributes between the pink and yellow horizon shown in 

Figure 4.5. (a) Attenuation estimation using the central frequency shift (CFS) method, 

spectral bandwidth, energy reduction in full bands and high frequency bands, (b) Spectral 

slopes of low and high frequencies, skewness and kurtosis.  
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Figure 4.8a 

 
Figure 4.8b 

Figure 4.8. Seismic attenuation attributes of the Red Fork formation using: (a) CFS, (b) 

energy reduction of high frequencies, (c) energy reduction of full spectral bands, (d) 

skewness, (e) kurtosis, (f) spectral bandwidth, (g) spectral slope of low frequencies and 

(h) spectral slope of high frequencies. Cross circles denote positions of productive wells.  
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Figure 4.8c 

 

 
Figure 4.8d 
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Figure 4.8e 

 

 
Figure 4.8f 
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Figure 4.8g 

 

 
Figure 4.8h 
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Figure 4.9. Location map of the Fort Worth Basin. The study area lies inside the red 

boundary. (After Pollastro et al., 2007). 
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Figure 4.10a 

 
Figure 4.10b 

 

Figure 4.10. (a) Vertical slice through seismic amplitude and interpreted horizons. (b) 

Time structure map of Lower Barnett Shale. 
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Figure 4.11a 

 
Figure 4.11b 

 

Figure 4.11. Horizon slices along the top Lower Barnett Shale through (a) most positive 

and (b) most negative curvature volumes. 
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Figure 4.12a 

 
Figure 4.12b 

Figure 4.12. Seismic attenuation attributes of the Lower Barnett shale using (a) CFS, (b) 

energy reduction on the high frequencies, (c) energy reduction on the full spectral bands, 

(d) skewness, (e) kurtosis, (f) spectral bandwidth, (g) spectral slope of low frequencies, 

and (h) spectral slopes of high frequencies. Horizontal well paths are also denoted. 
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Figure 4.12c 

 

 
Figure 4.12d 
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Figure 4.12e 

 

 
Figure 4.12f 
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Figure 4.12g 

 

 
Figure 4.12h 
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Figure 4.13a 

 
Figure 4.13b 

 

Figure 4.13. Maps of average (a) TOC (total organic carbon) and (b) BI (brittleness 

index) of Lower Barnett Shale. 
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Figure 4.14. Vertical sections of seismic impedance at BB’ and CC’, denoted at well 

location map on the right. Red circles highlight high production areas shown in Figure 

4.13, while cyan circle highlights a low production area with high density horizontal 

wells. 

 

 

 

Figure 4.D1. Lambert W function, modified from Wang (2015). 
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CHAPTER 5 

SEISMIC SEQUENCE STRATIGRAPHY ENHANCEMENT USING 

SEISMIC VARIATIONAL MODE DECOMPOSITION5 

ABSTRACT 

Subtle variations in otherwise similar seismic data can be highlighted in specific 

spectral components. Highlighting repetitive sequence boundaries can help define the 

depositional environment, which in turn provides an interpretation framework. 

Variational mode decomposition is a novel data-driven signal decomposition method that 

provides several useful features compared to commonly used time frequency analysis. 

Rather than using predefined spectral bands, the variational mode decomposition method 

adaptively decomposes a signal into an ensemble of band-limited intrinsic mode 

functions, each with its own center frequency. Because it is data adaptive, modes can vary 

rapidly between neighboring traces. I address this shortcoming of previous work by 

constructing a laterally consistent variational mode decomposition method that preserves 

lateral continuity, facilitating the extraction of subtle depositional patterns. I validate the 

accuracy of our method using a synthetic depositional cycle example, and then apply it 

to identify seismic sequence stratigraphy boundaries for a survey acquired in the Dutch 

sector, North Sea. 

  

                                                 

5
This study is published as a journal paper- Li, F., B. Zhang, R. Zhai, H. Zhou, and K. J. Marfurt, 2016, 

Depositional sequence characterization based on seismic variational mode decomposition: Interpretation, 

5(2), SB97-SB106. 
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INTRODUCTION 

Seismic stratigraphy often forms one of the key components of seismic 

interpretation. Seismic stratigraphy requires the analysis of reflection amplitude, 

continuity, reflection configuration, and external form (Mitchum et al., 1977; Cross and 

Lessenger, 1988). Seismic stratigraphy provides a means to identify sequence 

stratigraphy and sedimentary cycles. Patterns in the seismic data, including onlaps, 

offlaps, downlaps, truncations and other features allow a skilled interpreter to define 

whether a given sequence corresponds to a transgressive, regressive, or other stage. 

Ligtenberg et al. (2006) used the Wheeler (or chronostratgraphic) transform based on the 

principal of superposition to define geologic events and lithologic units representing a 

relative geologic time scale. Such seismic stratigraphy and hence sequence stratigraphy 

information is buried in conventional seismic amplitude volumes (Hart, 2013), though 

sometimes the quality of seismic data itself limits the extraction of this information. 

In the presence of coherent and random noise, sequence boundaries may be buried 

and thus overlooked on amplitude volumes. Fortunately, this noise may exhibit spectral 

responses different than those of the underlying signal, suggesting that one may be able 

to separate the two. Zeng (2013) finds the expression of sequence boundaries to be 

frequency dependent, where their seismic expression appears quite different if different 

frequency bands are used. For this reason, spectral decomposition should be able to aid 

in distinguishing between transgressive and regressive facies in seismic data (Liu et al., 

2015). And, I wish to evaluate data-driven signal decomposition as an alternative to 

commonly used spectral decomposition methods.  
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The Fourier transform forms the basis of most spectral analysis tools, and provides 

stationary (not time variant) frequency information. Han and van der Baan (2013) report 

that since the seismic spectrum changes with time, that non-stationary data analyzed using 

time frequency analysis (TFA) methods can be beneficial. The short-time Fourier 

transform (STFT) (Partyka et al., 1999; Lu and Li, 2013) and the continuous wavelet 

transform (CWT) (Sinha et al., 2005) are two popular TFA tools. These linear analysis 

methods are constrained by the Heisenberg uncertainty principal that trades off increased 

temporal resolution with decreased spectral resolution, or increased spectral resolution 

with decreased temporal resolution (Tary et al. 2014). Matching pursuit (MP) based TFA 

approaches achieve the highest vertical resolution, whereby the waveforms that are drawn 

from a mother wavelet library are matched to a seismic trace in an iterative process 

favoring events with the highest spectral energy (Wang, 2007; Wang et al., 2016). The 

choice of wavelet library and fitting methods is critical to the performance of MP 

methods, which sometimes fail to match lower energy events at the low/ high frequencies.  

Huang et al. (1998) proposed the popular data-driven empirical mode 

decomposition (EMD) signal decomposition method to analyze non-stationary signals 

(Kaplan et al., 2009; Han and van der Baan, 2013; Tary et al., 2014; Honorio et al., 2016). 

Because EMD decomposes the data into non bandlimited intrinsic mode functions (IMF), 

it suffers from frequency mixture issues, making the meaning of the results more difficult 

to interpret. To address this drawback, Dragomiretskiy and Zosso (2014) developed the 

variational mode decomposition (VMD) to decompose a non-stationary signal into an 

ensemble of band-limited IMFs. Liu et al. (2016) compared VMD to the alternative of 

EMD based methods, and found that VMD can express the same seismic data with fewer 
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intrinsic modes. The STFT, CWT, and MP spectral decompositions provide laterally 

consistent images for each spectral component. Unfortunately, since each trace is 

decomposed independently, the characteristics of the “first” or most important EMD or 

VMD component will vary laterally. While one can use these trace-by-trace algorithms 

to suppress noise components (Li et al., 2017), vertical slices through any given VMD or 

EMD component provides little interpretational value. It is the lateral continuity that one 

wishes to improve.  

First, there is a review of the basic theory of VMD. I then describe a laterally 

consistent VMD method designed to better delineate laterally continuous seismic 

stratigraphic patterns. I use a synthetic sedimentary model to validate VMD’s capability 

in sedimentary pattern recognition. Finally, I apply VMD to a survey containing deltaic 

facies acquired in the Dutch sector, North Sea, and conclude with an evaluation of 

adaptive signal decomposition in analyzing its seismic sequence stratigraphy.  

 

VARIATIONAL MODE DECOMPOSITION (VMD) 

Huang et al. (1998) proposed EMD to decompose a data series into a finite set of 

IMFs. In EMD, the IMF, which represents different oscillations embedded in the data, is 

calculated in the time domain. To be an IMF, a signal must satisfy two criteria: 1) the 

number of local maxima and the number of local minima differ by at most one, and 2) 

the mean of its upper and lower envelopes (a smooth curve outlining signal extremes) 

must equal zero. EMD has the form: 

     
1

+
K

k K

k

s t IMF t r t


 ,  
                                     

(5.1) 
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where kIMF is the kth IMF of the signal, and
Kr stands for the residual trend. The number, 

K, of EMD outputs cannot be controlled. Liu et al. (2016) also finds that very small 

unexpected oscillatory interference patterns can change the number of final output modes. 

In contrast to EMD, VMD obtains IMFs that exhibit specific sparsity properties 

in the frequency domain. In VMD, the IMFs are defined as elementary 

amplitude/frequency modulated harmonics that can model the non-stationarity and the 

nonlinearity of the data (Appendix 5.A). The frequency spectrum of every IMF is shifted 

to the baseband by mixing with an exponential function tuned to the respective estimated 

center frequency. The sparsity of every IMF is constrained by its bandwidth in the 

frequency domain with the IMF relatively compact about an “oscillation” ωk, which needs 

to be determined as part of the decomposition.  

In VMD, the IMFs are extracted concurrently instead of recursively, which is 

achieved by solving the following optimization problem: 
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

,
min

. .

,                        (5.2) 

where ku and k are modes and their center frequencies, respectively.   • is a Dirac 

impulse.  s t are the data to be decomposed. The term    k

j
t u t

t




 
  

 
is the Hilbert 

transform of ku , which is defined in Appendix 5.B. The constraint condition requires that 

the summation over all modes should approximate the input data.  
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To solve the optimization problem in Equation 5.2, the alternate direction method 

of multipliers (ADMMs) (Hestenes, 1969) is employed to estimate IMFs (modes) in the 

frequency domain as: 

 
     

 
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1 1 1
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ˆ ˆ ˆ

ˆ ,                         (5.3) 

where,  s ˆ ,  iu ˆ  and   ˆ are the Fourier transform of  s t ,  iu t  and  t , 

respectively, and n denotes the iterations,   denotes the Lagrangian multiplier for 

rendering the problem unconstrained, while  represents the balancing parameter of the 

data-fidelity constraint. 

Traditionally, VMD determines the IMFs trace by trace, such that lateral 

consistency across the survey may not be preserved. Because seismic data represent the 

depositional environment, preserving lateral continuity where it exists is critical. Honoro 

et al. (2016) apply the EMD based methods trace by trace, and observe gaps and “jumps” 

between neighboring traces. To address this problem, I add lateral consistency constraints 

in the optimization object function. VMD is achieved by solving the following problem: 
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. . ，
             (5.4) 

where is the gradient operator, and where  ku t are the 2D modes and their analytic 

formats  ,k Au t described by Equation 5.B-3. k are the center frequency vectors.  s t is 

the signal to be decomposed, and in the seismic application, it is the vertical seismic 

section. Ps is the 2D Wiener prediction filter based on  ,k Au t . (Besides the constraint in 
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Equation 5.3, for the 3D application, I adopt the mode center frequencies from the 

neighboring lines as the initial value of the current line, which strengthens the continuity 

between different lines.) 

Figure 5.1 displays a vertical seismic section with IMF-1, IMF-2 and IMF-3 

computed using the traditional trace-by-trace VMD method. Note that the lateral 

consistency is lost. Even a small oscillation can totally change the decomposition results. 

Such instabilities are a common drawback of high resolution decomposition methods, 

where it is difficult to suppress noise and structural artifacts can appear. IMF-2 and IMF-

3 in Figure 5.1 have almost no interpretational value because of these artificial 

discontinuities between neighboring traces. Figure 5.2 shows the IMFs from the laterally 

consistent VMD. The events in Figures 5.2c and 5.2d are continuous and reasonable. 

Note, the events in Figure 5.2b-5.2d can be combined to explain the reflection changes in 

Figure 5.2a, which can be helpful for seismic interpretation. Thus, the lateral consistency 

reinforcement is necessary and effective. In addition, Appendix 5.C explains why it is 

valid to decompose seismic data into IMFs. 

 

SYNTHETIC DEPOSITIONAL SEQUENCE CHARACTERIZATION 

Besides seismic reflection analysis, sequence stratigraphy interpretation can be 

made based on rock composition, grain size characteristics, spontaneous potential, and 

Gamma Ray log shapes (Rider, 1999). The transgressive/regressive facies recognition is 

the key for the stratigraphic sequence division. Well logging, which is usually the source 

of the geology information, is limited to discrete and widely spaced sampling points 
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within a survey area.  For this reason, one wishes to determine the sedimentary and 

depositional environment for most areas of interest from the seismic data.  

Following Rider (1999) and Martins-Neto and Catuneanu (2009), I build a single 

cycle of a delta progradational model. The percentage of sandstone increases upward, 

grain size changes from fine to coarse, with the sandstone interbedded with similar thick 

shale layers. Figure 5.3 shows the Gamma Ray log decreases upward, annotated by the 

depositional settings.  Figure 5.4 shows the synthetic reflectivity series and corresponding 

60ms long seismic amplitude response. The reflectivity series follow the same pattern as 

the Gamma Ray in Figure 5.3. Because the grain size changes, the seismic reflectivity 

between shale and sandstone also changes with depth. I apply VMD to the synthetic 

seismic data, and obtain IMF-1, IMF-2, and IMF-3, shown in Figure 5.4. Note the IMF-

1 exhibits the same trend as the Gamma Ray log in Figure 5.3. IMF-2 and IMF-3 display 

other high frequency information. 

 

FIELD APPLICATIONS 

The field data set used in the examples is from the Southern North Sea Basin. 

After complex multiple stages of orogeny, rift and subsidence that occurred during 

Paleozoic and Mesozoic time, the Southern North Sea Basin experienced an inversion 

during the Tertiary. High sediment influx from neighbouring highlands that uplifted in 

late Miocene filled the basin, resulting in a prograding fluvio-deltaic system. This system 

(part of the giant Eridanos delta) constitutes the siliciclastic shelf deposits within the 

Pliocene interval, the thickness is from 350 m to 430m in study area (Overeem et al., 
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2001). Several localized unconformities were formed during the deposition process 

(Sales, 1992; Ghazi, 1992; Gautier, 2003).  

The 3D prestack time migration seismic data clearly image the large scale 

sigmoidal stratal configuration. The dominant frequency is approximate 45Hz, effective 

bandwidth is from 10Hz to 60 Hz in the study time window. Four wells are used in 

seismic-to-well calibration (Figure 5.5a). The deltaic cycles in the Dutch sector range 

from a river-dominated to wave-tide dominated stages. These cycles exhibit classic 

clinoform geometries prograding towards the basin (Petruno et al., 2015). Figure 5.5b 

shows our sequence stratigraphy interpretation. Based on the recognition of seismic 

reflection termination patterns (toplap, onlap, downlap and truncation, shown in Figure 

5.5b), five regional and local subaerial unconformities, two maximum regressive surface, 

two maximum flooding surface and three basal surface of forced regression are defined 

using a seismic sequence stratigraphic interpretation workflow (Vail et al., 1977, 1987; 

Mitchum et al., 1977; Posamentier et al., 1999). According to sequence boundaries, 

position and parasequence stacking pattern, the Pliocene strata of study area can be 

divided into four third- order sequences. Furthermore, a complete depositional sequence 

is divided into four system tracks: Lowstand Systems Tracts (LST), Transgressive 

Systems Tracts (TST), Highstand Systems Tract (HST) and Falling Stage Systems Tract 

(FSST), on the basis of the principles of quadripartite division for sea level cycle (Hunt 

and Tucker,1992, 1995; Plint and Nummedal, 2000), such as SQ-1 and SQ-2 in Figure 

5.5b. Because of the erosion when relative sea level dropped, SQ-3 and SQ-4 form 

incomplete depositional records. The delta system that prograded across the continental 
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shelf during the FSST stage deposited thick sandstone. In the base level rising stage (TST 

and HST), nonuniform thickness mudstone draped over the delta sandstone. 

 

THE DRAWBACK OF FILTER BANK 

The most common spectral component extraction method is to bandpass filter the 

seismic data. The vertical seismic section in Figure 5.5a shows deltaic facies. I extract a 

trace (denoted by a red triangle on Figure 5.5a) and display its spectrum in Figure 5.6, 

and note that the main energy of the spectrum falls between 3 and 80Hz. I design a suite 

of bandpass filters (0-27Hz, 28-55Hz, and 56-83Hz) to separate the spectral components. 

Figure 5.7a demonstrates the bandpass filter design. Figure 5.7b displays the filtered 

spectra of the different spectral bands (SB), which have been normalized on every SB. 

Figure 5.8 shows the bandpass filtered data. Similar expressions can be found on different 

SBs. As expected, the thicknesses of the seismic events change from large to small with 

the frequency increasing. Figure 5.8a displays the low frequency component, which is 

relatively continuous. However, there are discontinuous artifacts between neighboring 

traces on Figures 5.8b and 5.8c, which should be brought from the bandpass spectral 

decomposition. The filter bank breaks the seismic spectrum based on the predefined 

frequency ranges instead of the intrinsic modes of the data, resulting in discontinuities of 

waveforms.   

 

THE VALUE OF ADAPTIVE MODE DECOMPOSITION 

To obtain the sequence stratigraphy interpretation in Figure 5.5b, I spend efforts 

on sequence boundary identification, especially when the seismic reflections are not clear. 
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As discussed above, signal decomposition methods can highlight specific components 

commonly buried in the seismic data. Since the filter bank method failed in assisting 

seismic stratigraphy interpretation, I apply VMD, a data-driven mode decomposition 

method, on the seismic data. Figure 5.9 shows the spectra of IMFs of the trace denoted 

by a red triangle on Figure 5.5a. Unlike the spectra in Figure 5.7b, every IMF is an 

ensemble spectral component, which is not strictly limited to a certain band. Figures 5.10a 

- 5.10c display the vertical sections of IMF-1, IMF-2, and IMF-3, respectively. The IMF-

1 in Figure 5.10a shows the low frequency background. Compared to Figure 5.8a, IMF-

1 has a lower dominant frequency, but it also shows some details brought from the high 

frequencies. The IMFs from VMD are more continuous, as there are no artificial 

discontinuities between neighboring traces. Compared with the results in Figure 5.8 and 

those in Figure 5.10, the conflicts between human defined methods and data-driven 

approaches are obvious. The parameter pre-defined decomposition arbitrarily divides 

seismic data into spectral bands, and could result in the deformation of a geological 

structure in waveform. Nonetheless, the adaptive decomposition I adopted can keep the 

relative completeness of intrinsic modes buried in the seismic signal, which reveals 

hidden geology information. 

On Figure 5.10, stratigraphic terminations, such as onlap, toplap, downlap, and 

truncation, are labelled, like Figure 5.5b. In Figure 5.10a, the subaerial unconformities 

(SUs), maximum flooding surfaces (MFSs) and basal surface of forced regression 

(BSFR) show strong energies. One can also observe the onlap, toplap, downlap, and 

truncation features. In Figure 5.10b, the onlaps, toplaps and downlaps are very clear, as 

well as the stratal clinoforms, which is low amplitude and hard to observe on Figure 5.5a. 



123 

The SUs and MFSs show high amplitudes on IMF-3. Though the stratigraphy details are 

not clear on Figure 5.10c, one can have a rough conception where is the clinoform. In 

Figure 5.10d, IMF-1 and IMF-2 are color blended together. Two depositional sequences, 

SQ-1 and SQ-2, show up more clearly, compared to the original seismic section. Thanks 

to the new details, the VMD does assist the stratigraphy interpretation.   

DISCUSSIONS 

 Machine learning facies analysis tools usually project n attributes residing in an 

n-dimensional space onto a lower (in my case, 2D) dimensional deformed manifold. In 

general, there is little large scale spatial information provided to the classification. Since 

the IMFs provided by VMD provide such large scale (specifically, sedimentary layering) 

patterns. Because of the improved lateral consistency, VMD IMF components form an 

excellent candidate as input to machine learning based seismic facies classification (Zhao 

et al., 2017).  I also hypothesize that by their addition, one can incorporate the seismic 

stratigraphy patterns effectively used by skilled interpreters into the classification result. 

such patterns into the result (Li et al., 2016b). The choice of which IMF or collection of 

IMFs to use requires calibration with geologic control. Ideally, well logs provide the 

necessary ground truth.  

CONCLUSIONS 

Using the seismic data and a limited number of well logs, I evaluate the use of 

VMD in the identification of the depositional sequences. I find laterally consistent VMD 

provides images amenable to detailed sequence stratigraphic interpretation, providing 

components that are easier to interpret than either the broad band input data, or more 

commonly used band-pass filtered (spectral voices) versions of the data.   
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APPENDIX 

5.A INTRINSIC MODE FUNCTION (IMF) 

Intrinsic Mode Functions (IMFs) are amplitude-modulated-frequency-modulated 

(AM-FM) signals, written as: 

      cosk k ku t A t t ,
                                        

(5.A-1) 

where the phase  k t is a non-decreasing function,   0k t   , the envelope is non-

negative   0kA t  . Both the envelope  kA t and the instantaneous frequency

   k kt t   vary slower than the phase  k t (Gilles, 2013). In other words, on a 

sufficiently long interval, the mode  ku t can be considered as a pure harmonic signal. 

 

5.B ANALYTIC SIGNAL 

Let  s t be a real signal, then the complex analytic signal is defined as 
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H ,                       (5.B-1) 

where  •H is the Hilbert transform, anddenotes the convolution operation . 

The analytic signal of IMF in Equation 5.A-1 can be expressed as 
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.                                   (5.B-2) 

Following a definition in Bülow and Sommer (1999), we can define the 2D 

analytic signal of IMF as: 
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,                 (5.B-3) 
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where k is the frequency vector in 2D plane. Here, the transform is separable: the analytic 

signal is calculated line-wise along the direction of k . The two dimensions are 

processed independently, and show the properties as 2D Fourier transform. 

 

5.C SEISMIC SPECTRUM WITH LINEAR EVENTS 

I adopt plane wave assumption to characterize seismic propagation. If there is a 

linear event, the seismic signal can be expressed as a plane wave: 

 ,
x

d t x w t
c

 
  

 
,                                           (5.C-1) 

where x , t  stand for the coordinates of offset axis and time axis. The w is the waveform, 

such as Ricker wavelet. c is the wave propagation velocity. 

Applying Fourier transform along t axis of Equation 5.C-1, the f-x spectrum can 

be obtained: 

   
2

,

fx
i

cD f x W f e



 ,                                       (5.C-2) 

where f is the frequency, W is the Fourier transform of w . 

For the discrete situation, I assume the sampling interval in x axis is x , then 

    1 2, , , , ,fD m D m x f m M   ,                      (5.C-3) 

where m is the trace number, M is the total number of the traces. 

In addition, there is a constant exponential relationship between two adjacent 

traces: 

    
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f x
i

c
f fD m D m e
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  .                                    (5.C-4) 



126 

From Equation 5.C-4, I know the frequency slice fD includes one complex 

harmonic in f-x domain. Bekara and van der Baan (2009) conclude that the superposition 

of p linear events in the t-x domain is equivalent to the superposition of p complex 

harmonics in f-x domain. 

Thus, based on the IMF definition in Appendix 5.A and the series theory, it is 

valid to decompose seismic data into IMFs. 
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CHAPTER 5 FIGURES 

 

 

Figure 5.1. IMFs from traditional VMD. (a) Seismic and (b-d) IMF-1, IMF-2, and IMF-

3. Note that the low frequency mode section is continuous, but IMF-2 and IMF-3 show 

poor lateral consistency. 

 

 

 

 

 

 

Figure 5.2. IMFs from laterally consistency constrained VMD. (a) Seismic and (b-d) 

IMF-1, IMF-2, and IMF-3, corresponded with Figures 5.1b-5.1d, respectively. All the 

decomposed modes are continuous laterally because of the constraint in the VMD 

calcuation equation. 
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Figure 5.3. Gamma Ray log shape and depositional setting of deltaic progradational 

depositional trends, modified from Rider (1999). The sandstone is coarsening upward, 

and its thickness is also increasing upward interbeded with similar thick shale. The 

Gamma Ray value becomes smaller upward. 

 

 

 

Figure 5.4. Reflectivity series, corresponding seismic trace, and IMF-1, IMF-2 and IMF-

3 of the delta progradational model in Figure 5.3. Note that the amplitude of IMF-1 

decreases upward like the Gamma Ray log in Figure 5.3. 
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Figure 5.5a 

  
Figure 5.5b 

 

Figure 5.5. A vertical well with posted Gamma Ray log, and a vertical slice through the 

seismic amplitude volume perpendicular to the shore face (a) without, and (b) with 

sequence stratigraphy interpretation. According to the recognized isochronous 

stratigraphic interfaces, the Pliocene strata are divided into four third-order sequences 

(SQ). From the onset of base level rise to the end of base level fall, one complete base 

level cycle is divided into four stages, LST, TST, HST, and FSST. SQ-1 and SQ-2 contain 

relative complete system tracts, SQ-3 and SQ-4 only retain the strata records of base level 

rising because of regional erosion.   
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Figure 5.6. Spectrum of the trace denoted by a red triangle on Figure 5.5a. 

 

 
Figure 5.7a 

 
Figure 5.7b 

 

Figure 5.7. (a) Bandpass filter design with three spectral bands (SB): 0-27Hz, 28-55Hz, 

and 56-83Hz. (b) Filtered spectra with normalization on every spectral band. 
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 Figure 5.8a 

 
Figure 5.8b 

  

Figure 5.8. Bandpass filtered components: (a) 0-27Hz, (b) 28-55Hz, and (c) 56-83Hz. 

The apparent vertical discontinuities in the resulting images are due to changes in tuning 

and have little to do with the depositional environment or structural changes, making 

analysis of such images difficult. 
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Figure 5.8c 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Spectra of IMFs of the trace denoted by the red triangle on Figure 5.5a with 

normalization of each mode. 
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Figure 5.10a 

 
Figure 5.10b 

Figure 5.10. Sequence stratigraphy interpretation on (a) IMF-1, (b) IMF-2, and (c) IMF-

3, corresponding to Figure 5.5b. Note the improved lateral continuity compared to the 

spectral decomposition image shown in Figure 5.8. The high amplitudes on IMF-1 

highlight SUs, MFSs and BSFR. Stratigraphy terminations are clear in both IMF-1 and 

IMF-2, with the clinoform more clearly imaged by IMF-2. The SUs and MFSs exhibit 

high amplitudes on IMF-3, but the stratigraphy details seen in IMF-1 and IMF-2 are not 

clear. In general, the components needed to generate a sequence stratigraphic 

interpretation are more clearly imaged on IMFs than in the broad band input data shown 

in Figure 5.5a and bandpass filtered data in Figure 5.8. (d) By blending addition IMF-1 

and IMF-2, one can delineate the two depositional sequences, SQ-1 and SQ-2 (dotted 

triangle). 
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Figure 5.10c 

 

 
Figure 5.10d 
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CHAPTER 6 

SEISMIC SIGNAL DENOISING USING THRESHOLDED 

VARIATIONAL MODE DECOMPOSITION6 

ABSTRACT 

Noise reduction is an important step prior to seismic interpretation. In this chapter, 

I describe an adaptive denoising method based on data-driven signal mode 

decomposition, where the noise is represented by the residual. First, I use signal mode 

decomposition methods to decompose noisy data. I assume that the residual/last mode 

component represents noise, which is determined by detrended fluctuation analysis. Then, 

I subtract the residual/last mode from the noisy data to obtain the denoised result. The 

advantage of this approach is that the noise is adaptively extracted with depending on the 

statistics of data, rather than defining a fixed priori threshold. Removing the unwanted 

noisy component yields a signal with less noise while preserving its intrinsic 

characteristics. To illustrate the effectiveness of the proposed workflow, I apply it on both 

synthetics and field seismic data to demonstrate its potential in filtering noise and 

enhancing seismic data quality. 

 

 

 

 

                                                 

6 This chapter is accepted to Exploration Geophysics titled as “Seismic Signal Denoising Using 

Thresholded Variational Mode Decomposition” in June 12, 2017. 
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INTRODUCTION 

Seismic data are non-stationary because of intrinsic attenuation, attenuation from 

rugose surfaces, reverberations, and both random and coherent noise. Most filters 

represent the seismic data by a suite of components. The processor then identifies and 

mutes the noise components, where the simplest means of identification is to use a 

threshold (Donoho and Johnstone, 1994; Bekara and van der Baan, 2009; Chkeir et al., 

2010; Fang et al., 2011; Kabir and Shahnaz, 2012; Gan et al., 2014; Li et al., 2015). 

Lahmiri and Boukadoum (2014) and He and Bai (2016) summarize the advantages and 

disadvantages of spectral filtering, wavelet transform and adaptive filters. Based on the 

Fourier transform, (shown in Figure 6.1), these algorithms underperform when the signal 

is composed of multi-frequency and/or non-stationary components; Wavelet transform 

based denoising methods (in Figure 6.2) requires choosing an appropriate wavelet library 

and decomposition level, which in return requires considerable expertise and experience, 

and are therefore difficult to use by an average interpreter(Mert and Akan, 2014; Liu et 

al., 2016b). 

Empirical mode decomposition (EMD) is a data-driven signal decomposition 

method. It analyzes non-stationary signals and adaptively decomposes the data into a suite 

of oscillatory components called intrinsic mode functions (IMF) and a residual (Huang et 

al., 1998). Recently, several researchers have applied EMD to contruct a “hybrid” 

denoising algorithm, which combines signal decomposition and thresholding (Bekara and 

van der Baan, 2009; Chkeir et al., 2010; Gan et al., 2014; Li et al., 2015). Figure 6.3 

shows a typical workflow of the mode decomposition based methods. The IMFs are 

adaptively obtained from the input data, giving EMD-based hybrid denoising methods 
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some advantages over wavelet thresholding techniques, avoiding the need to select a 

priori an appropriate basis function. However, as it is not based on an assumption of 

bandlimited data, EMD suffers from mode mixing issues, especially in low SNR 

environments (Huang et al., 1998; Kabir and Shahnasz, 2012). To overcome this 

drawback, several improments to EMD have been developed, including ensemble 

empirical mode decomposition (EEMD) (Wu and Huang, 2009), complete ensemble 

empirical mode decomposition (CEEMD) (Torres et al., 2011) and improved complete 

ensemble empirical mode decomposition (ICEEMD) (Colominas et al., 2014). Although 

the mode-mixing problem is significantly reduced using the EEMD, CEEMD, and 

ICEEMD techniques, all these methods still extract local extrema and require 

interpolating the envelopes. Furthermore, the empirical nature of EMD lacks a solid 

mathematical foundation (Gilles, 2013; Colominas et al., 2014; Liu et al., 2016a). 

To address these limitations, Dragomiretskiy and Zosso (2014) proposed a 

variational mode decomposition (VMD) algorithm. VMD decomposes a signal into an 

ensemble of band-limited IMFs. The IMFs are acquired by solving an optimization 

problem in the frequency domain to best isolate different spectral components. Thus, 

VMD has a solid mathematical foundation and is less sensitive to noise (Liu et al, 2016a). 

This transform has been successfully applied to ground roll attenuation (Liu et al., 2015), 

seismic time-frequency analysis (Liu et al., 2016a) and seismic stratigraphy analysis (Li 

et al., 2017).  

Working on the adaptively decomposed data components, EMD-and VMD-based 

denoising methods require a criterion to separate noise from the signal (Li et al., 2015; 

Liu et al., 2016b). In general, the decomposed IMFs represent most of the signal while 
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the residual and some of the mode components represent the noise. Peng et al. (1994) 

proposed detrended fluctuation analysis (DFA) to analyze different trends of unknown 

duration. The scaling exponent,  , estimated from DFA is then used to evaluate the 

variation of the average root mean square (RMS) fluctuation around the local trend. The 

scaling exponent value is also an indicator of signal roughness: the larger the value, the 

smoother the time series or the slower the fluctuations (Horvatic et al., 2011; Berthouze 

and Farmer, 2012). Hu et al. (2001) and Chen et al. (2002) applied DFA to complex noisy 

signals exhibiting varying local characteristics and investigated the strategies for 

nonstationary signal analysis. I use DFA to characterize different components to 

adaptively separate the noise residual from the signal IMFs. In general, the seismic signal 

is a harmonic signal or a combination of harmonic signal components, while the noise 

component is random and uncorrelated with the signal component. 

In this chapter, I propose an adaptive signal denosing method based on VMD and 

DFA. First, I introduce the basic principles of EMD methods and VMD method. Then, I 

compare VMD with EMD as well as its derivations, including EEMD, CEEMD, and 

ICEEMD using synthetic signals and field seismic traces. Next, I provide an empirical 

equation based on the DFA to adaptively determine the number of IMFs required for 

accurate signal reconstruction. Later, I use a scaling exponent obtained from the DFA as 

a threshold to distinguish random noise and signal between the multiple IMFs and the 

residual. Finally, I apply the proposed thresholded VMD denoising method to the 

synthetic examples and a noisy legacy 3D data volume acquired over a north Texas 

Mississippi Lime play. 
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THEORY 

BRIEF REVIEW OF EMD AND ITS DERIVATIONS 

To suppress the noise, one first needs to differentiate the signal from noise 

components in measured data, either in the original measurement domain or in an 

appropriate transform domain. EMD is one of the most popular signal analysis methods 

which adaptively decomposes a complex signal into a finite set of IMFs in the time 

domain (Huang et al., 1998; Han and van der Baan, 2013; Gan et al., 2014). In EMD, 

IMF components are the mean value of upper and lower envelopes interpolated from the 

local maxima and local minima of the original signal. The residual, obtained by 

subtracting the original measured data and the summation of the acquired IMFs, is used 

as input data in the next iteration. EMD will stop when the residual satisfies a certain 

stoping criterion. In this manner, EMD acts as a sifting process. The original signal can 

be reconstructed by the IMF components with the following representation: 

     
1

K

k K

k

s t IMF t r t


  ,  
                                       

(6.1) 

where, kIMF is the kth IMF of the data, and Kr stands for the residual trend. In EMD, low 

order IMFs represent faster oscillations (high-frequency modes), and high order IMFs 

represent slower oscillations (low-frequency modes).   

EMD is a fully data-driven separation of data into fast and slow oscillation 

components. Although EMD has shown numerous successful applications in different 

fields of signal processing, the lack of a mathematically defined model and the mode-

mixing problem affect its reliability (Han and van der Baan, 2013; Liu et al., 2016a).  
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Wu and Huang (2009) proposed a noise-assisted EEMD to overcome the mode  

mixing problem by injecting Gaussian white noise into the decomposition algorithm to 

stabilize its performance. Summing the ensemble IMFs, which are an average of all the 

corresponding IMFs generated from different realizations of noise-assisted EMD, does 

not perfectly reconstruct the original signal, although the reconstruction error decreases 

with the increasing number of noise realizations. Unfortunately,  increasing the number 

of noise realizations also increase the computation expense. 

The CEEMD technique is also noise-assisted, aiming at simultaneously solving 

the mode-mixing problem and maintaining the reconstruction performance at the same 

time (Torres et al., 2011). In the first iteration, CEEMD adds a fixed percentage of 

Gaussian white noise and obtains a unique first residual. The sifting process continues 

with the next modes obtained by adding the corresponding average EMD modes of white 

noise until a stopping criterion is reached. The recently developed ICEEMD approach 

helps avoid the spurious modes and reduces the amount of noise contained in the modes 

compared with the CEEMD approach, which grants more physical meaning to the 

decomposed IMFs (Colominas et al., 2014). 

 

VARIATIONAL MODE DECOMPOSITION 

VMD decomposes the input data into intrinsic modes in the frequency domain, 

with each IMF is compact around their respective central frequencies (Dragomiretskiy 

and Zosso, 2014). In VMD, the IMFs are defined as elementary amplitude/frequency 

modulated (AM-FM) harmonics to model the non-stationarity and the nonlinearity of the 

data: 
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     k k ku t A t t   cos , 
                                             

(6.2) 

where the phase  k t is a non-decreasing function,   0k t   , and the envelope is non-

negative,   0kA t  . Both the envelope  kA t and the instantaneous frequency    k kt t  

vary slower than the phase  k t (Gilles, 2013). In other words, on a sufficiently long 

interval, the mode  ku t can be considered to be a pure harmonic signal (Dragomiretskiy 

and Zosso, 2014). In contrast, noise is assumed to be additive Gaussian random noise. 

The IMFs are extracted by solving the following optimization problem: 
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where ku and k are modes and their central frequencies, respectively,   • is a Dirac 

impulse.  s t are the data to be decomposed, with the constraint that the summation over 

all modes should be the input signal.  

To solve the optimization problem in Equation 6.3, the alternate direction method 

of multipliers (ADMMs) (Hestenes, 1969) is employed to estimate IMFs (modes) in the 

frequency domain: 
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where,  d ˆ ,  iu ˆ  and   ˆ are the Fourier transform of  d t ,  iu t  and  t , 

respectively, and n denotes the iteration number, and   denotes the Lagrangian multiplier 

for rendering the problem unconstrained, while  represents the balancing parameter of 
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the data-fidelity constraint. In VMD, low order IMFs represent slower oscillations (low-

frequency modes), and high order IMFs represent faster oscillations (high-frequency 

modes). 

 

CHARACTERIZING SEISMIC SIGNAL USING VMD 

Since the noise components are not harmonic, the mode decomposition methods 

can be used to distinguish signal and noise. 

The seismic signal of a linear event can be expressed as a plane wave (Schuster, 

2007): 

 ,
x

d t x w t
c

 
  

 
,                                                 (6.5) 

where (x, t) are the coordinates of offset and time, w is the waveform (such as a Ricker 

wavelet), and c is the wave propagation velocity. 

The f-x spectrum can be obtained by applying a Fourier transform along the t

axis: 

   
2 fx

D f x W f j
c

 
  

 
, exp ,                                              (6.6) 

where f is the frequency, and  W f is the Fourier transform of  w t . 

For the discrete situation, if one assumes the sampling interval along x axis to be 

x , then 

    1 2, , , , ,fD m D m x f m M   ,                             (6.7) 

where m is the trace number, and M is the total number of traces. 

In addition, there is an exponential relationship between two adjacent traces: 
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    
2

1

f x
i

c
f fD m D m e

 

  .                                               (6.8) 

From Equation 6.8, I know the frequency slice fD includes one complex 

harmonic in the f-x domain. Bekara and van der Baan (2009) concluded that the 

superposition of p linear events in the t-x domain is equivalent to the superposition of p

complex harmonics in the f-x domain. According to the definition of IMF in Equation 6.2 

and the series theory, it is valid to decompose seismic data into IMFs. Since the seismic 

signal can be expressed as the combination of different IMFs, the residual will be 

interpreted as noise. 

 

THRESHOLDED DENOISING METHOD 

Previous sections suggest that signal decomposition is a straightforward way to 

express a singal in terms of different components. One can also use the noise thresholding 

estimator to determine which components are noise and which are signal (Fang et al., 

2011; Gan et al., 2014; Mert and Akan, 2014). Peng et al. (1994) proposed DFA to 

estimate  the data non-stationary properties based on scaling exponent. Because it obtains 

reliable estimators for signals with different trends and unknown duration (Horvatic et al., 

2011), DFA is a good candidate for non-stationary signal analysis.  

The DFA method is implemented in the following steps: 

(1)  y k is the cumulative sume of a series  x i , which has the mean value 

removed: 

   
1

, 1
k

i

y k x i x k N


      ,                                      (6.9)
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where x is the average of the time series in the range [1, N]，and N is the total 

number of samples. 

(2) The integrated series  y k is then divided into [ / ]nN N n non-overlapping 

segments of length n, called window size. For each window the local  ny k

is calculated by a polynomial fitting, which in this study is of order 2. 

(3) The RMS fluctuation  F n  is expressed as: 

     
2

1

1 N

n

k

F n y k y k
N 

     
.
                                  

(6.10) 

It is apparent that the fluctuation will increase with increasing segment duration n 

(Peng et al., 1994; Hu et al., 2001).  

(4) If the data are long-range power-law correlated, the fluctuation increases 

following a power law:
 

 F n n .
                                                 

(6.11)
 

The scaling exponent is defined as the slope of the curve  log / log( )F n n   , 

which is estimated in a similar way with the Hurst exponent in log-log scale (Mert and 

Akan, 2014). The special case,  =0.5, corresponds to uncorrelated white noise. When 0 

< < 0.5, the signal is called “anti-correlated” such that large fluctuations are followed 

by small ones and vice versa (Hu et al., 2001; Chen et al., 2002). When 0.5 < < 1.0, 

temporal correlations are possible(Mert and Akan, 2014). Using DFA, I determine which 

IMF is signal and which level exhibits noise. In signal mode decomposition analysis, the 

decomposition stops at this point with most of the incoherent noise components 

remaining in the residuals (Li et al., 2015).  
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SYNTHETIC EXAMPLES 

First, I apply EMD, EEMD, CEEMD, ICEEMD and VMD to decompose a noise-

free artificial mixed signal, containing a lower background frequency ( 1s ) and a gapped 

higher 51Hz frequency ( 2s ). The analyzed signal is 1 2d s s  with 

 

 

1

2

sin 13 1 1000

sin 51( 300) 300 700

0 300 700

s t if t ms

t if t ms
s

t ms t ms

  

   
 

 

 ,                     (6.12) 

Full decompositions of signal d for EMD and its noise-assisted derivations are 

presented in Figure 6.4. EMD presents strong mode mixing. Note that when mode mixing 

occurs in one mode, the entire subsequent decomposition process will be affected. For 

EEMD, IMF 3 as well as the following IMFs have little energy. For CEEMD, IMF 4 and 

onwards do not represent relevant information of the signal, and have little energy. The 

redundant IMFs or modes in EEMD and CEEMD appear because different realizations 

of signal plus noise have produced a different number of IMFs. Notice, CEEMD also 

produces a spurious IMF2. The ICEEMD nicely recovers the two components of the 

original signal. The VMD also accurately decomposes the two components. Because  

ICEEMD performs the best among the alternative EMD derivations, I only compare 

ICEEMD and VMD in the following sections. 

Second, I design noisy signal decomposition experiments based on the previous 

artificial mixed signal in Figure 6.4. In Figure 6.5, 10 dB noise has added. Because of the 

noise assisted sifting process, ICEEMD produces some redundant IMFs. Compared to 

VMD, which was constructed with only two components, the number of IMFs from 

ICEEMD changes from 2 to 7, and IMF1 as well as IMF2 becomes different with noise 

in the modes from those in Figure 6.4. Note that the noises included in IMFs from VMD 
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are much less than those obtained from ICEEMD. It is clear that VMD is a more robust 

signal mode decomposition method compared with ICEEMD, which is the best method 

among EMD derivations.   

  Next, in Figures 6.6 and 6.7, I use a field seismic trace with additive synthetic 

noise to validate that seismic data can be decomposed using IMFs from VMD. Figure 

6.6a shows the measured seismic trace. Figures 6.6b-6.6d show the IMF1, IMF2, and 

IMF3, respectively. Figure 6.6e displays the reconstructed signal from IMF 1-3. To test 

the VMD algorithm on a noisy signal, I add 10dB band-limited Gaussian noise to the 

signal (Figure 6.6a). Figures 6.7b-6.7d display the decomposed IMFs of the noisy signal, 

which are harmonic. Figure 6.7e shows the residual, which contains the noise component. 

Figure 6.7f shows the reconstructed signal, which is very close to the original signal in 

Figure 6.6a.  

 

HYBRID SIGNAL DENOISING WORKFLOW 

As discussed above, a typical signal mode decomposition based denoising 

workflow is shown in Figure 6.3. I decompose noisy data with EMD and its derivations 

and VMD and reconstruct the denoised signal by ignoring the residual/last mode 

components. Since I have observed that VMD shows better performances in signal 

decomposition in both noise-free and noisy situations compared with EMD based 

methods, I investigate a thresholded VMD denoising method. In the following examples, 

I use the corresponding ICEEMD based results for comparison. 

To make the proposed method adaptive, I need to determine the optimal VMD 

parameters in a data-driven way. In the VMD approach,   and K are the two most 

important parameters in Equations (6.3) and (6.4). The   controls data fidelity, which 
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could compromise the signal preservation of the decomposed IMFs if not well defined. 

In practice, the  value can be obtained by several trials.  

In addition, some researchers use the number of IMFs from EMD to be the K for 

VMD (Liu et al., 2016b). However, Figures 6.4 and 6.5 demonstrate that the IMF number 

of VMD could be very different from that of EMD. A larger value of parameter K possibly 

results in mode mixing, whereas a lower value greatly affects capturing the correct center 

frequencies of different modes (Liu et al., 2016a). Inspired by the empirical equation for 

wavelet based denoising methods (Mert and Akan, 2014), I propose an empirical equation 

to determine the optimal K (number of VMD outputs of a seismic signal decomposition):
 

  min | 2 lnK n n N    ,
                                  

(6.13) 

where is the scaling exponent from DFA of the signal. 

To validate Equation 6.13, I apply VMD to the nonstationary seismic trace shown 

in Figure 6.6a. According to Equation 6.13, K = 6 in this case. Figure 6.8 shows the 

variation of  values with different IMF numbers, and the values are listed in Table 6.1. 

The first IMFs with larger scaling exponent values contain the signal information, while 

the last IMFs with smaller scaling exponent values carry irrelevant noise components. As 

mentioned above, if the K is small, for example 3, 4 and 5 in Figure 6.8a, the IMFs contain 

both signal and noise components, so the scaling exponent values are larger than 0.1. 

Whereas, when the K is large, for example 9 and 10 in Figure 6.8c, mode mixing occurs, 

which causes the scaling exponent values to not decrease with the IMF number, and it is 

more obvious when K equals 10. Figure 6.8b shows the scaling exponent plots of K equals 

6, 7 and 8, where the  values of the last IMFs are always smaller than 0.1. Based on 
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these observations, I suggest adopting K equals 6, 7 or 8 to distinguish noise from signal. 

Therefore, in this application, 6 is an appropriate number of VMD outputs.  

Figure 6.9 illustrates the proposed denoising workflow. I use VMD to decompose 

the signal, and DFA to determine the number of IMFs from VMD, as well as the threshold 

for every IMF in the reconstruction process. In the end, the filtered signal is obtained by 

summing the first several IMFs with larger values. 

 

FIELD APPLICATIONS 

First in this section, I show a 1D field seismic trace denoising example. The testing 

signal is the same seismic trace from Figure 6.6a. I consider different SNR situations and 

test VMD and ICEEMD based approaches in 10 dB, 3 dB, 0 dB and -3 dB. Figures 6.10 

and 6.11 show the results from ICEEMD and VMD, respectively. I carry out 100 times 

random experiments.  

To numerically evaluate the filtering results, I measure the differences between 

the original signal and the filtered results from ICEEMD and VMD by means of mean 

squared error (MSE), mean absolute error (MAE), SNR and peak signal to noise ratio 

(PSNR). 

MSE can be estimated by 

   
2

1

1
ˆMSE ,

N

n

d t s t
N 

                                                (6.14) 

where N is the number of samples,  d t is the original signal, and  ŝ t  is filtered results. 

MAE is given by 

   
1

1
ˆMAE

N

n

d t s t
N 

  .                                             (6.15) 
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SNR is defined as the ratio of the power of the signal and the power of noise: 

 

 

 

 

2

ˆ ˆ

SNR
d t d t

n t n t

P A

P A

 
  
 
 

,                                               (6.16) 

where  n̂ t  is the filtered noise defined as 

       ˆ ˆn t s t n t s t   ,                                                        (6.17) 

where  n t  is the additive noise. 

The definition of PSNR is 

  2max
PSNR

MSE

s t
 .                                                        (6.18) 

Table 6.2 shows statistical comparison of the denoised results between ICEEMD 

and VMD based methods in terms of MSE, MAE, SNR and PSNR. Both methods can 

filter out noise and enhance the data quality, while the VMD based method outperforms 

for each measure. In addition, I evaluate the computation cost of ICEEMD and VMD for 

the synthetic signal and field trace. To further assess their performances, I also record the 

computational time of the two methods for the synthetic example in Figure 6.4 and field 

seismic trace example in Figure 6.6a, which is listed in Table 6.3. It can be seen that VMD 

is faster than the ICEEMD, which is very appealing for practical applications. All 

experiments are done on a PC station equipped with an Intel Core CPU clocked at 2.20 

GHz and 8 GB RAM. 

In the end, I apply the proposed method on a low-fold (The fold number for most 

of the CMPs is 15), noisy seismic survey acquired over North Central Texas, USA. The 

target formation is the high porosity Mississippian Chert (Verma et al., 2016). The 

originally acquired seismic data were contaminated with highly aliased ground roll. 
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Figures 6.12a and 6.13a show two vertical seismic sections after ground roll suppression 

by Verma et al. (2016), whose location is highlighted by dashed lines AA’ and BB’ in 

Figure 6.14a. Although a significant amount of ground roll was suppressed in this process, 

this low-fold seismic data are still contaminated with some residual ground roll, along 

with other noises. Figures 6.12b and 6.12c show the filtered result and rejected noise from 

a bandpass filter (0-10-60-70 Hz), Figures 6.12d and 6.12e show the filtered result and 

rejected noise from ICEEMD, while Figures 6.10f and 6.10g show the filtered result and 

rejected noise from VMD, respectively. The bandpass filter can filter out the noise within 

a specific band, or keep the signal within a given band, but it is not suitable for 

complicated seismic data. The ICEEMD can remove the random noise but VMD has 

better results with more continuouse events. Figure 6.13 has more dips, but VMD has 

better performance. 

Figure 6.14a shows the representative amplitude time slices through the target 

formation, Figures 6.14b and 6.14c display the filtered results from ICEEMD and VMD, 

respectively. The VMD based method suppresses the noise and keeps the reflections. In 

addition, compared with the ICEEMD based method, the reflections are more continuous, 

with more migration artifacts have been removed by the proposed method. Finally, I 

calculate the coherence attributes from the original seismic data (Figure 6.15a), ICEEMD 

filtered result (Figure 6.15b) and VMD filtered result (Figure 6.15c). Note that the 

discontinuities in Figure 6.15c are clearer and more continuous than those shown in 

Figures 6.15a and 6.15b, so the noise and artifacts have been suppressed and geologic 

edges are enhanced.  
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CONCLUSIONS 

I propose a DFA thresholded VMD based hybrid denoising method. A few IMFs 

of a noisy signal may be components of the noiseless signal, and the residuals belong to 

the noise. I adopt DFA as a metric to determine which IMFs are noisy oscillations and 

should be excluded in the reconstruction process, while other IMFs are utilized to 

reconstruct the signal. Compared with EMD, EEMD, CEEMD, and ICEEMD, VMD 

demonstrates its advantage on robustness, stability and computational efficiency. 

Synthetics and field examples show that the denoising performance of the proposed 

method is promising and appealing. 
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CHAPTER 6 TABLES 

 

Table 6.1. Scaling exponent table for different IMFs when the VMD output number 

changes. 

 

 

 

 

Table 6.2. Comparison between ICEEMD and VMD based denoising methods in terms 

of mean squared error (MSE), mean absolute value (MAE), signal to noise ratio (SNR) 

and peak signal to noise ratio (PSNR) of 100 times random experiments at different SNR 

situations. 
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Table 6.3. Computational costs of the ICEEMD and VMD methods for the examples 

shown. 
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CHAPTER 6 FIGURES 

 

 

Figure 6.1.  Workflow of Fourier filtering method. The frequency filter determines 

whether to keep or mute the certain Fouier coefficients. 
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Figure 6.2.  Workflow of wavelet transform based filtering methods, which involves  the 

thresholding rules applied to wavelet coefficients, and the inverse wavelet transform 

reconstruction. It shows straightforward like the Fourier filtering in Figure 6.1, however, 

the wavelet denoising efficiency depends on the choice of the mother wavelet, the level 

of decomposition, and the threshold methods. 
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Figure 6.3. Typical signal denoising workflow using signal mode decomposition 

methods, such as EMD and its deriviations as well as VMD. 
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Figure 6.4.  Decomposition of the artificially mixed signal by EMD, EEMD, CEEMD, 

ICEEMD and VMD. 
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Figure 6.5.  Decomposition of the artificially mixed signal with 10 dB additive noise by 

ICEEMD and VMD. 
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Figure 6.6. Seismic trace (a) and IMFs from VMD (b-d). The reconstructed signal is 

shown in (e). 

 

 

Figure 6.7. Noisy seismic trace with 10dB additive Gaussian noise (a) and IMFs from 

VMD (b-d). The residual between the noisy signal and summation of IMFs is displayed 

in (e). The reconstructed signal is shown in (f). 
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Figure 6.8. Scaling exponents , defined in Equation 6.11 on different IMFs, as a 

function of the number VMD components used. 
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Figure 6.9. Workflow of the proposed thresholded VMD denoising method. 
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Figure 6.10. ICEEMD based denoising method on the real seismic signal in Figure 6.6a 

at different SNRs: (a) 10 dB, (b) 3 dB, (c) 0 dB and (d) -3 dB. 

 

 

 

 

 

 

 

Figure 6.11. VMD based denoising method on the real seismic signal in Figure 6.6a at 

different SNRs: (a) 10 dB, (b) 3 dB, (c) 0 dB and (d) -3 dB. 
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Figure 6.12. Vertical sections along AA’ line through (a) noisy seismic data, (b) filtered 

result from a bandpass filter (0-10-60-70 Hz) and (c) difference between (a) and (b).  (d) 

Filtered result from ICEEMD and (e) difference between (a) and (d). (f) Filtered result 

from VMD and (g) difference between (a) and (f). Location of line AA’ shown in Figure 

6.14. (Data coustesy of Eagle Energy). 
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Figure 6.13. Vertical sections along as BB’ line through (a) noisy seismic data, (b) 

filtered result from a bandpass filter (0-10-60-70 Hz) and (c) difference between (a) and 

(b).  (d) Filtered result from ICEEMD and (e) difference between (a) and (d). (f) Filtered 

result from VMD and (g) difference between (a) and (f). Location of line BB’ shown in 

Figure 6.14. (Data coustesy of Eagle Energy).  
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Figure 6.14a 

 
Figure 6.14b 

 
Figure 6.14c 

 

Figure 6.14. Time slices at t=820 ms at the top Mississipi Lime interval through (a) 

original seismic amplitude data and filtered results using (b) ICEEMD and (c) VMD.   
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Figure 6.15a 

 
Figure 6.15b 

 
Figure 6.15c 

Figure 6.15. Coherence slices at t=820ms of (a) original seismic data and filtered results 

from ICEEMD (b) as well as VMD (c). Note that less noise interference makes the 

attribute clearer.  
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CHAPTER 7 

CONCLUSIONS 

In this dissertation, I analyse the information provided by both traditional Fourier 

transform and most recently introduced variational mode decomposition techniques. 

Fourier components provide a measure of enhancing discontinuities and estimating 

attenuation. In Chapter 1, I use spectral decomposition to highlight stratigraphic edges 

not seen in the original broad-band data. Combining covariance matrices to generate 

multi-spectral coherence provides improved images over traditional broad-band 

coherence images. In Chapter 2, I use spectral components to compute a novel frequency 

shift method for Q estimation built on time variant estimates of the dominant and central 

frequencies. The statistical analysis and application to both the synthetic data and field 

data calibrate the effectiveness of the proposed method. In Chapter 3, I showed how one 

can improve Q estimation by first correcting the spectra for elastic effects. I applied the 

correction to synthetic and field examples, and found Q values computed using the 

corrected spectra have less variability and fewer negative values than those computed 

using uncorrected spectra.  In Chapter 4, I apply a suite of seismic attenuation attributes 

to both conventional and unconventional field data to detect hydrocarbons and delineate 

fracture system. The attributes appear to be useful for both seismic interpretation and 

reservoir characterization. In Chapter 5, I developed a variational mode decomposition  

algorithm to better map depositional sequences. The resulting components provided 

images amenable to detailed sequence stratigraphic interpretation. In Chapter 6, I showed 

how variational mode decomposition algorithm can be used to denoise seismic data. 

 


