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Abstract

Utilizing a modern 3D survey acquired for a deeper resource play one can also
examine potential drilling hazards and behind pipe pay in shallower formations. This
study concentrates on the Red Fork sands that have been one of the major
Pennsylvanian sandstone targets since the early 1900s. Many historical producers in
this study had been found prior to any seismic data, while all of the producers were
drilled prior to access to 3D seismic.

Armed with a modern 3D seismic survey, opportunities exist to evaluate
overlooked and under drilled sand bodies. Using state of the art 5D interpolation and
pre-stack inversion, justified by the deeper resource plays, allows one to image and
evaluate the subtler features of more conventional sandstone reservoirs above the
resource target formations. Well logs and historical production data aid in evaluating
any potential upside potential for hydrocarbons that has remained undrilled.

Pre-stack acoustic impedance inversion highlights previously untapped reserves
in the Red Fork formation that can be commercially viable. 5-dimensional trace
interpolation regularizes the data and is instrumental in refining the impedance
estimation and overall image quality of the seismic data. This allows for a better
statistical correlation of Z, to net sand thickness allowing it to be used as a proxy in

identifying potential targets.
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CHAPTER I: INTRODUCTION

With the prevalence of resource plays stemming from horizontal drilling and
hydraulic fracturing, the Cherokee Platform of Northern Oklahoma has seen a
resurgence of activity resulting in an economic “unconventional” Mississippian Lime
play in the suppressed oil price environment. Exploration and production operators
have been producing oil and gas from Pennsylvanian aged sands on the Cherokee
Platform for over 100 years (Mills-Bullard 1928). With the new Woodford and
Mississippi Lime resource plays that economically justify the acquisition of modern
wide azimuth 3D seismic data, one can now image more subtle components of the
previous conventional plays that were tagged by vertical wells and sparse 2D seismic
data.

Landing horizontal wells in the deeper resource plays requires careful mapping
of potential geohazards in the shallow section, which may encounter gas or result in the
loss of expensive drilling mud. At the very least, the operator should modify the drill
path to avoid such hazards (Figure 1). However, these “hazards” may hold economic
reserves, particularly if the infrastructure and drilling has been previously justified by
the deeper resource play. Such shallow targets that could hold reserves that the operator
can target with new vertical drilling or catalogue an inventory of horizontal wells that
could be recompleted at the shallower objective after the deeper reservoir plays out.

Seismic reflection data are used to image the subsurface indirectly (Zhou 2014),
where ideally the reflected waves correspond to geological boundaries of changing
lithologies (Russell 2006). Reflections are generated wherever there is a change in P-
velocity, vp, S-velocity, vs, and density, p, between the different geologic layers.
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With stacked data, one is only able to estimate P-impedances, Zp=pvp. In
contrast, pre-stack migrated seismic data provides measures of amplitude variation with
offset (AVO). As Del Moro (2012) showed for a Red Fork play to the west, coupled
with well log control and an accurate low frequency model, these AVO effects can be
pre-stack inverted to estimate not only Zp, but also shear wave impedance, Zs=pvs. For
high quality data and shallower targets (more specifically surveys that afford larger
angles of incidence), one may also estimate the density, p. While the elastic parameter
pair (Zp, Zs) or (Zp,v) where v is Poisson’s ratio are commonly used in conventional
clastic reservoirs, particularly in more unconsolidated rocks, the pair of (Zp,up) is more
commonly used in more lithified rocks like shale resource and limestone plays
(Goodway, 2009). The information content in these alternative cross plots is identical,
but the breakout of different lithologies slightly different. Foster (2010) shows that
these estimations provide greater insight to the mechanical properties of lithified
Paleozoic rocks.

5-dimensional trace interpolation allows an interpreter to obtain a better image
when surface constraints hamper regular seismic data acquisition (Trad, 2009).
Downton (2008) also shows the impact interpolating the data has on overall signal to
noise ratio and how regularizing the azimuthal and offset bins while preserving AVO
has on improving a pre-stack impedance inversion.

I hypothesize that pre-stack impedance inversion will yield a clear image that
contrasts porous sandstone reservoirs in the Red Fork formation. Because impedance
data is correlated to porosity, I anticipate a correlation between acoustic impedance and

net sandstone thickness. With these correlations, I then hope to further refine my



reservoir image utilizing self-organizing mapping algorithms to differentiate sands from
shales, channel sands from marine sands, and producing sands from non-producing
sands. These data can then be used in exploration to high-grade prospective locations.

I begin my thesis in Chapter 2 with a review of the geologic setting, focusing on
the Red Fork interval. Next, in chapter 3, [ summarize the 3D seismic, well control, and
production data available for the study. With the key wells tied to the 3D seismic data
volume, I then perform pre-stack and post stack seismic inversions in Chapter 4. These
data are then used to generate rock property volumes aiding in identifying potential
sandstone bodies.

In Chapter 5 I integrate the impedance volumes with conventional time structure
maps generated from seismic time horizons depth converted with well control. T also
generate geometric attributes to form an integrated interpretation for the Red Fork
interval. I use self-organizing maps to better delineate facies of interest. In addition to
3D visualization, I validate my interpretation using historical production data from
numerous Red Fork wells.

I conclude with a summary of the workflow and its applicability to the Red Fork

play in Oklahoma and shallower targets in general.
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CHAPTER II: GEOLOGIC OVERVIEW

Figure 2 highlights the early Pennsylvanian period. Specifically, the Red Fork
sand stone from the Krebs group will be the focus for this study. The Red Fork
deposition interval is underlain by the Inola Limestone and overlain by the Pink
Limestone. Figure 3 shows the location of the study area within northeastern
Oklahoma, which is roughly bound by the Nemaha Ridge to the west and the Wilzetta
Fault to the east (Figure 4). After deposition of the Woodford shale and Mississippi
limestone the platform was uplifted. This uplift exposed the Mississippian formation on
the platform and created the early Pennsylvanian unconformity at the top of the
Mississippi lime (Figure 5). This accounts for the thinner Mississippian section on the
Platform and the missing early Pennsylvanian formations. Figure 6 shows the Des
Moinesian depositional environment. The study interval focuses on the Krebs group,
specifically the Red Fork sandstone with the local depositional environment being
influenced by the compacting shales around the deposition of the Bartlesville sandstone
(Figure 7). Accommodation space created by the compacting shales from the
Bartlesville episode provided a preferential path for the Red Fork sand depositions.

Andrews (1997) describes the Red Fork sandstone as one of the most
widespread Cherokee plays in Oklahoma (Figure 8). Regional thickness (Figure 9) for
the Red Fork interval is generally 100 feet or less on the Cherokee Platform. Figure 10
shows the local Red Fork interval in the study area. The high stand depositions on the
platform are generally limited to one or two episodes unlike in the Anadarko Basin

where there are up to four identified Red Fork episodes (Andrews 1997). Post



deposition structural traps can be seen by identifying and mapping the overlying Pink
Limestone (Figure 11).

Figure 12 is the modern type log for the study area. Spectral gamma ray logs
measure uranium, potassium, and thorium. This allows for the removal of the uranium
component that can be influenced by uranium salts migrating into the formation from
water giving a false hotter gamma response (Petro Wiki 2012). However, in practice,
there is only one spectral gamma ray log in the survey and the difference in net sand
thickness between the full spectrum gamma and the uranium stripped gamma is only
two feet. This implies negligible effects of uranium salt migration and I can confidently
pick net sands on standard gamma ray logs. With this definition, the shaded green in
Figure 12 is my ideal definition of clean net sand where the stripped gamma response is
lower than 75 API. Clean net sand is my definition for reservoir quality sandstone for
the study area. Some older electronic logs include only spontaneous potential (SP)
curve. Here, the net sand is picked in a similar manner calibrated from multiple logs
that contain both gamma and SP curves (Figure 13).

Figure 14 shows idealized log responses from multiple depositional
environments. The environments in the study area include meandering channels and
regressive barrier islands or marine bar sands. Figure 15 shows a representative log for

each depositional environment.
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CHAPTER III: SEISMIC DATA QUALITY, DATA

CONDITIONING, AND WELL CONTROL

The seismic data for the study are of modern vintage acquired in 2014. The data
were acquired with a wide azimuthal design and a high frequency effort (Table 1). The
company elected to use predominately Vibroseis sources with dynamite infill to
minimize acquisition gaps with total project costs in mind. The data were with the goal
of preserving amplitude and special attention to phase matching the different sources.

The data for the study was processed with the ultimate goal of pre-stack
inversion in mind. Aisenberg (2013) shows the importance that careful processing
plays in the confidence of the inverted data. Quality control of the shot gathers were
followed by a relative amplitude scaling and surface consistent deconvolution.
Tomographic refraction statics preceded velocity analysis and surface consistent
residual statics. 5-dimensional trace interpolation was performed on the input to
migration velocity analysis and the final pre-stack migrated dataset.

Figure 16 shows a representative line through the 3D survey. The data contain
minimal noise and are of exceptional quality. Looking in more detail, Figure 17
highlights the channel visible on the stacked data. In this area, there are two Red Fork
episodes visible that appear compartmentalized to the east and west but could be treated
as one flow unit in the heart of the channel where there appears to be no shale
separation. As evident by viewing the stacked data, picking the sand top, base, and the
shale stringers is difficult. Barber (2010) showed picking the Red Fork to be easier and

more consistent on inverted data.
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The vertical resolution is roughly defined as the 4 wavelength of the data (Zohu
2014). Figure 18 describes the bandwidth and velocity for the Red Fork interval.
Averaging the velocity over that interval gives 12,500 ft/s with 135Hz signal yielding a
calculated "2 wavelength of 23ft.

I constructed a simple wedge model to quantify the seismic response that can be
seen from the sand and what the data driven tuning frequency may be. Figure 19 shows
the well used for the wedge model and eventually the inversions. Figure 20 lays out the
wedge model. I use the original thickness from the well, then copy that well to a
location with roughly a mile in separation. I can then edit the lower portion of the Red
Fork until it reaches zero sand in the transposed well. Using a wavelet extracted from
the seismic data, the shallow nature of the study area allows for high frequency
penetration to the Red Fork yielding a tuning frequency of roughly 20 ft in thickness,
matching the calculated "4 wavelength (Figure 21).

The company also provided pre-stack migrated gathers were not SD
interpolated. Figure 22 shows a before and after comparison between the original data
and the conditioned gathers to be used as input to pre-stack impedance inversion. The
data were muted followed by a light application of trim statics. Spectral balancing was
also applied to increase the temporal resolution and balance the spectrum (Figure 23).

The study area is both well data rich and poor. There are 6279 wells within the
study area of which 2404 have a variety of raster logs and 154 have digital gamma ray
logs. 1945 of these logs cover the Pink Lime to the Inola Limestone which encompass
the Red Fork formation (Figure 2). Of these only 12 wells have sonic logs, 2 with

compressional logs over the Red Fork formation and only a single shear wave sonic log.
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These data, with the seismic data, provide measures of the thickness and structure of the
Red Fork formation and constrain the net sand values. There are also 203 wells that
have cumulative production data from the Red Fork formation to aid in evaluating

potential prospective locations.
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Receiver Spacing:

165 ft

Receiver Line Spacing: 660 ft
Source Spacing: 165 ft
Source Line Spacing: 660 ft

Source Type:

Vibrator with dynamite infill

Sweep Frequencies:

4-134Hz Linear Sweep

Trace Length:

3s

Sample Rate:

2 ms

Bin Size: 82.5 ft X 82.5 ft
Recording Patch: 20 lines x 96 channels per line
Offset Coverage: 82.5 ft — 7,590 ft

Table 1. Acquisition Parameters
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CHAPTER IV: INVERSION

Inversion affords the interpreter the ability to leverage the higher spatial
resolution that 3-dimensional seismic data yields over the sparse nature of well logs.
Inversion merges the well log data and pre or post stack seismic data to create a seismic
volume consisting of rock property values. Acoustic impedance, Zy, is the product of
P-wave velocity, V;, and the density p of the medium (Russel 2006).

As Russel (2006) shows, a post-stack impedance inversion can be modeled as
the earth’s reflectivity series convolved with a band limited seismic wavelet

St = W *T1, (1)
where s; is the seismic trace, w; is the band limited seismic wavelet, and r; is the

reflectivity. The acoustic impedance of the earth is related to the reflectivity by

— Zpi+1—Zpj (2)
Zpiy1+Zpi

Tpi
rp; is the zero-offset P-wave reflection coefficient, Zpi=piVpi , p is density, V, is P-wave
velocity and * denotes convolution where the i interface of a stack of N layers is the i
p-impedance of the i layer (Russel 2006). Lindseth (1979) showed that by assuming

the recorded seismic data as given in equation 2, one can invert to recover the P-

impedance from the recursive equation

Zpivr = Zpi ||, 3)

1-7p;
Equation 3 allows an inversion of the seismic reflection data to P-impedance. One
problem with this method is that the seismic trace is not a reflectivity series but the
convolutional model as shown in equation 1 (Russel, 2006). The approach to correct

this is to use a low frequency model based from well log data and perturb the model

33



until we obtain a reasonable approximation to the measured seismic data and a synthetic
trace (Russel 2006).
Goodway (2009) provides an excellent overview of obtaining Lamé parameters

from our pre-stack inversion data. Specifically:

Vs = \/%, and (4)

A+2
Vp = +p K (5)

If one has values for A and p one can derive:

Compressional P-wave Modulus M= A+ 2u, (6)

, _ uBA+2p)
Young’s Modulus E==r—O
Bulk Modulus K=21- Z?H, )]
. b M — _A
Poisson’s ratio V=0 o )
Ap = (Vp * p)*> = 2(Vs * p)?, and (10)
up = (Vs * p)°. (11)

Figure 19 shows the well log and synthetic used for the inversions within the
Pink Lime and Inola Lime bounding the Red Fork interval. Utilizing this well log, I can
check the ability to see different fluids in the matrix with a fluid substitution model.
Figure 24 is a petrophysical analysis provided by the company for the well with
compressional and shear wave data over the Red Fork. This analysis will feed into the
fluid substitution model seen in Figure 25. The reservoir is modeled as a clean sand
with an average porosity of 16% and water saturation of 75% and a small amount of gas

at 3%. Figure 26 highlights the expected p-wave and s-wave sonic velocities for
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idealized brine, gas, or oil filled reservoirs. Brine has the fastest velocity with gas as
the slowest and oil in between. These log responses are then modeled to generate
synthetic seismic traces. It is evident that an amplitude anomaly is evident from brine,
to oil, and to gas (Figure 27). Figure 28 shows the modeled traces side by side to
visualize and chart the amplitude responses similar to a wedge model but as a fluid
substitution model.

As noted by Trad (2009), an improved inversion result can be obtained by an
amplitude preserving 5-dimensional trace interpolation. This inversion result has been
provided by the company. To check the hypothesis this study was provided with the
previously mentioned pre-stack migrated gathers that do not have 5-dimensional trace
interpolation. Figure 29 highlights the cross plots between Z,, Zs and between Z; and p
in the well log. The breakouts from the trendline highlight the fluid anomalies present
in the data (Russel, 2006). The well tie created for the inversion was obtained with very
minimal stretching and has a 0.92 correlation (Figure 30). The data, being high
frequency and relatively free from noise, affords a good tie to the well log synthetic.

Comparing results is relatively straightforward. Figure 31 shows the post stack
p-wave inversion provided by the company. The data had 5-dimensional interpretation
and a proprietary high frequency bandwidth recovery process applied. The image is
unclear but could be worked with provided enough well control to constrain the
interpretation. Figure 32 is the pre-stack p-wave inversion calculated in this study.
Notice the better defined main channel cut and the more correct impedance result for
the east-west narrower channel. Neither result is as accurate as the 5-dimensional,

proprietary high frequency bandwidth p-wave inversion result (Figure 33).
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Post stack inversion has shortcomings as seen previously. The main obstacle is
the inversion is performed on a stacked dataset where the possible variations in
amplitude vs. offset have been stacked into a single trace. Thus, a peak at near offsets
turning into a trough at far offsets could sum to zero amplitude in the resultant stacked
dataset. These variations are meaningful and handled properly with a pre-stack
inversion. The driver behind the difference in the pre-stack inversions is twofold. First
the extracted wavelets will be different because the data are different. This difference
will impact the resultant outputs (Russel, 2006). The higher fold for the 5D dataset

will also yield a better signal to noise ratio in the data for the algorithm to work with.
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Z, (ft/s-g/cm3)

0 17.849
FEET

Figure 31. Horizon slice along the lowest impedance value in
the Red Fork formation from a post-stack P-wave impedance
volume. Input data have 5-dimensional interpolation and
bandwidth recovery applied. Red boxes highlight sand filled
channels that are not well delineated from the floodplain.
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0 17.849
FEET

Figure 32. Horizon slice along the lowest impedance value in the Red
Fork formation from a pre-stack P-wave impedance volume without
S-dimensional interpolation and bandwidth recovery. Note the better

detail the pre-stack inversion yields in the northern main channel sand,

the more appropriate lower impedance values for thinner east-west
channel, and the southern sand bodies highlighted by red boxes.
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Figure 33. Horizon slice along the lowest impedance value in the
Red Fork formation from a pre-stack P-wave impedance volume.
Input data have 5-dimensional interpolation and bandwidth
recovery applied. Note the improved delineation of low
impedance sand bodies.
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CHAPTER V: INTERPRETATION

Seismic data attributes are incredibly useful tools to quickly evaluate large
amounts of data. Curvature and semblance can be used to delineate faults and highlight
channels (Chopra and Marfurt, 2007; Chopra 2010). Figure 34 captures part of a
workflow to pick faults in this data. Most negative curvature in combination with the
seismic data and variance help to distinguish a subtle fault from a channel edge that is
not readily apparent on the seismic data alone at first glance.

The compressional sonic data are used in tying seismic data to the wells and
defining horizons in the seismic data. The shear sonic log is used in the pre-stack
impedance inversion and the estimation of the mechanical rock properties. The
remaining raster logs that cover the interval of interest will be used to aid in creating a
velocity model to depth convert the seismic data for depth structure analysis and
constrain the net sand thicknesses.

After picking horizons, faults, and well data, I am able to merge the data and
create an average velocity field to the top of the Pink lime and an interval velocity field
from the Pink lime to the Inola lime. This allows for a detailed depth structure map at
the top of the Pink lime (Figure 35). Evident is the multitude of structural and
stratigraphic trapping mechanisms within the survey. Several closed highs indicated by
the Pink Lime structure and numerous stratigraphic pinch outs with shallowing dip with
Red Fork sand present are exciting to a prospector. Rendering the Z, data with known
Red Fork producers validates the hypothesis that the Z, data delineates sandstone
targets (Figure 36).
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The Kohonen Self-Organizing Maps (SOM) algorithm is applied with Z;, Zs,
density, Ap, up, and vp/vs to cluster the data and compare the clustered data to log data
and evaluate the possibility of the clusters representing different rock types or facies.
SOM provides effective visualization of multidimensional data via clustering then
representing those cluster groups in 2 dimensions (Matos, 2007). Figure 37 shows the
input data with Figure 38 showing the output. The SOM algorithm was able to separate
sand from shale with ease but was also able to separate out a porous shale from a non-
porous shale. The algorithm was also able to separate porous from non-porous sand
facies but was unable to separate productive intervals from non-productive intervals.

With the difficulty of picking top and base of Red Fork sand intervals I needed a
better way to use the seismic data with well control to map net sand and evaluate
potential targets. I picked the Red Fork horizon as the minimum Z, value between the
Pink Limestone and the Inola Limestone. Figure 39 shows the similar visual
appearance between the picked net sand in the wells and the Z, data from the pre-stack
inversion suggesting a statistical correlation. Extracting the Z, grid at the wellbores |
then cross plot Z, vs. net sand thickness. A solid linear trend is evident with a negative
correlation of -0.598 and an error of 20.8ft (Figure 40). I can be confident in the
correlation below the previously described tuning frequency of 20 ft for a couple
reasons. The main reason is that net sand under the 20 ft threshold does not imply there
is no sand in the interval. I can also be confident in the detectability of A/25 (Sheriff,
2006) yielding 3.7ft. of detectable resolution. Utilizing this linear regression, I can
convert the Z, rock property horizon to a net sand thickness horizon (Figure 41). This

linear regression also highlights incomplete well data in in the northeast corner of the
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3D survey (Figure 42). This field was drilled in the early 1950s producing out of the
Red Fork and is either missing log data, does not cover the entire Red Fork interval, or
it was never recorded. Similarly, the inversion has problems with acquisition gaps or
survey obstacles (Figure 43). The high fold effort and 5-dimensional interpolation have
limits. If there are enough acquisition gaps, doubly impacted by a survey edge, the
algorithms and acquisition design cannot interpolate the missing data to obtain a correct
rock property model even though the structure can be accurately imaged (Figure 44).
Figure 45 shows that while the visual interpretation is similar between the Z, data and
the linear regression net sand thickness, I now have a sand thickness value to use
instead of a rock property.

In theory, the 5-dimensional interpolation should provide a more accurate
estimation of Z,. To test this hypothesis, I cross plot the net sand of the Z, with and
without 5-dimensional interpolation (Figure 46). The results are similar with both
exhibiting a negative correlation (lower impedance values correlate to higher net sand).
However, the 5-dimensional interpolation has a better correlation with a smaller error. -
0.598 correlation and 20.8 ft of error for the 5-dimensional interpolated data vs. -0.313
correlation and 27 ft of error for the standard data. I can also show that the correlation
of the 5D data is reasonable compared to the well control. I can use the well data,
remove a single well, then interpolate with the remaining well data what the thickness
would be at the well that was removed. Basically, creating a blind well test to show
how well control can predict net sand thickness. Figure 47 shows that since this is a

mature field, there is an abundance of well data, and the well data predicts the net sand
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thickness with a correlation of .789 and an error of 15 ft. This is only 6 ft better than
the Z, correlation which further gives confidence to the Z; correlation.

Production data affords the opportunity to make a quantitative estimation of
prospective locations. The correlation between acoustic impedance and net sand allows
an accurate thickness prediction of isolated, undrilled sand bodies. This correlation is
key in being able to set a quantitative number to the prospective locations that is more
meaningful than “good” or “bad”, thereby providing a better assessment for reservoir
quality sand thickness and estimation of potential hydrocarbon pore volume. Utilizing
known production from prior Red Fork wells, an estimation of likely outcomes can be
obtained from the interpreted sand volume. These data can be used to evaluate a
potential re-completion of an existing horizontal well bore or as a new vertical or
horizontal targeted well in the Red Fork formation.

One potential candidate is presented in Figure 48. A horizontal well has become
uneconomic to continue production from the deeper target. This well flanks a field that
has produced over 8 BCF of gas with the original discovery well drilled in 1926. Figure
49 shows the well to well cross section through the field over to the shale east of the
channel deposition. The company has provided a mud log from drilling the original
horizontal well that indicates a good oil and gas show through the Red Fork sand
interval with the best show from the lower interval (Figure 50). No resistivity, density,
or porosity logs were acquired in the horizontal well so any evaluation will have to
come from offsetting logs, core data, and the mud logger’s interpretation of the show.

The mud logger describes the upper section of sandstone as opaque, light grey to

tan, fine grains that are sub rounded to sub angular, moderate sorting, fair to trace
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visible intergranular porosity of 10-30% and a bright yellow fluorescing fair cut with
small gas bubbles. The deeper sandstone is similarly described with the differences
being, moderate to well sorted grains, visible intergranular porosity 40+% and a bright
yellow fluorescing fair instant cut with small gas bubbles. Figure 51 highlights the
separation of the upper and lower sands in the stacked seismic data and the inverted
seismic. The presence of two sand bodies separated by a shale is confirmed with an
offset log.

Core data were available outside of the 3D survey. Examining the core from the
Hixson #1 provides some insight into the possibility of compartmentalization. Figures
52-55 show the core data. The erosional base of the core (Figure 52) is evident by large
rip up clasts with a short fining up sequence and another high-energy episode with very
large rip up clasts (Figure 53). Sand grain size is relatively consistent at medium with
short lower energy episode with some clay beds present at 3300” to 3302 (Figure 54).
The key separation happens at 3294” with relatively thick shale beds with some
lenticular sand beds. Above the shale break there is another high-energy episode with
very large clasts turning into intermittent episodes of smaller clasts and more fluvial
cross bedded sands (Figure 55). The core ends before the top of the Red Fork interval.

With the better show occurring in the deeper sand body, two theories are in play.
One is that the sands are compartmentalized and the older vintage wells produced from
the upper portion leaving behind hydrocarbons in the lower sand. Another explanation
is that the original wells drilled further up the structure produced most of the gas

allowing the oil to migrate up filling the lower sand body. Ultimately the well was
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recompleted and is successful in producing hydrocarbons. The well cut gas
immediately and after producing most of the water used to treat the well it cut oil.
Other interesting targets nearby are shown in Figure 56. A similar sand body
south-east of the major field has some nearby penetrations but none in the heart of the
sand body. The wells in the cross section indicate that sand is present but there is
conflicting information. A quick look Archie’s water saturation (Swa) is needed to
further evaluate the risk associated with offsetting the dry holes into the thicker portion

of the sand body.

RW@FT
Swa = PHIeZ/RESD (12)

where RW@FT is the resistivity of the formation water at formation temperature, PHIe
is the fractional effective porosity, and RESD is the resistivity of the formation (Crain
2015). Equation 12 assumes the tortuosity to be 1, cementation exponent to be 2 and
the saturation exponent to be 2 from the full Archie Method. Figure 57 shows the
special relationship and the raster logs of the wells to be evaluated. Based on the data
obtained from Hubbard (1982) I set RW@FT as 0.04 ohm for the Red Fork. These
yield water saturation values for well 1 of 0.72, well 2 0.64, and well 3 0.45. Figure 58
provides evidence of a structural trap in the sand that is not expressed on the Pink Lime
structure. With top of net sand in well 2 structurally higher than well 3 the risk of
compartmentalization where well 2 in the higher structural position has a failed seal
allowing well 3 to have hydrocarbons but with a more limited volume.

Sand body (b) from Figure 56 is also a risky location with some upside. It is an

isolated sand body that has not been drilled (Figure 59). The offset to the east does not
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have any cumulative production data but an initial production test showing 25 barrels of
oil and 250 MCEF of gas. The offset well also contains a log that shows 40 ft of net sand
with the upper 2/3s at 15 ohms calculating 0.26 water saturation. Obvious risks are not
knowing what is in the pore space of the sand or if the seal is intact. However, there is
substantial upside to an isolated sand body with the offset producer calculating 74%
hydrocarbon saturations out of 26 ft of sand.

The last location presented is an up dip location from a major field (Figure 60).
It is the least risky location with proven down dip and equivalent structural position oil
and gas production. The structure has known production of over 2 million barrels of oil
from 7 unitized wells. There are approximately 46 total wells drilled into the main sand
body with 32 producing wells giving 25 wells with un-accounted production. Pore
pressure depletion could be a risk with so many producing wells in the sand body

making this field an interesting opportunity for a water flood.

53



‘'sagpa
[oUUEBYD WO} S)[NE] JBNUAIJIP 0) OUBLIEA [JIM PAIIPUII-0D dINJBAIND JATIBTIU JSOJA "¢ AN

‘ UISIRIN

[ouuey)

sapnyjdwy

P

syneJ

oJUBLIeA

¢

alnjeain)

54



Z, (ft/s-g/cm?3)

35000
34500
34000
33500
33000
32500
32000
31500
31000
30500
30000
29500
29000
28500
280004
275004
270004
265004
260004
255004
250004
245004
240004
23500

23000

22500

22000

0 19.500
FEET

Figure 35. Horizon slice along lowest impedance value in the Red
Fork formation through the pre-stack P-wave impedance volume
with Pink Lime structure. Low impedance coupled with structural
highs indicate potential targets (10 ft contours, bold contours at 50
ft and labeled at 100 ft).
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Z, (ft/s-g/cm?3)

e

0 17 849
——

<4 s FEET

Figure 36. Horizon slice along lowest impedance value in the Red
Fork formation through the pre-stack P-wave impedance volume
with Red Fork producing wells. Structural and stratigraphic traps

from Figure 35 are confirmed by producing wells.
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Figure 43. Net sand from (a) interpolated well data and (b) linear regression using the well
data and seismic impedance data. The anomalous area in the northwest of the image comes

from a large amount of source and receiver gaps due to survey obstacles (Figure 44).
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ABSSEVIATIONS LITHOLOGY SYMBOLS GAS 7 CYRMATOMARS!
CO...CiRc OuT TOTALGAS  ~--..__
~DIRECTIONALSURVEY | B umgstone =V TTrmees -
NR...NO RETURNS METHANE —_—
...CONNECTION GAS s
TG...TRIP GAS
LAT...LOGGED AFTER TRIP ETHANE —
..WEIGHT ON BIT
PP...PUMP PRESSURE PROPANE .
SPM...STROKES/MIN ISO-BUTANE
SG.. Gas
DTG...DOWN TIME GAS N-BUTANE
TOH...TRIP OUT OF HOLE OCE] concLoMERATE I
TIH...TRIP IN HOLE
HIP...HoLE IN PiPE DRILLING RATE LINES
DST...DRILL STEM TEST ROP:RATE OF PENETRATION:
TVD...TRUE VERTICAL DEPTH MINUTES PER FoOT (MPF)
MD...MEASURED DEPTH B Granme WasH FEET PER HOUR (FPH)
NB...Ngw BT
OB...OLD Bir
BHA...BOTTOM HOLE ASSEMBLY
MuD DATA AccEssorics GAMMA RAY NEUTRON
WT.WEGHT  V..Viscosmy COUNTS PER SECOND
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Figure 50. Red Fork interval from the horlzontal recompletlon
candidate. Notice the significant gas show, oil cut, and visible porosity.
The better show also appears deeper in the sand body.
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CHAPTER VI: CONCLUSIONS

Modern 3D seismic data clearly illuminates conventional sandstone reservoirs.
Using a modern processing workflow, I show that with careful processing pre-stack
impedance inversion highlights previously untapped reserves in the Red Fork formation
that can be commercially viable. I further show the value of 5-dimensional trace
interpolation in refining the impedance estimation and image quality. This allows for a
better statistical correlation to be used interpreting the data for hydrocarbon exploration.

Self-organizing maps can be a useful tool to make sense of multiple attribute
volumes. In my example, it distinguishes porous and tight shales and sands but
struggles to differentiate any hydrocarbons in the pore space.

I show that the relationship of Z, to porosity can be extended to clean net sands.
Given enough well control, I was able to statistically correlate Z, and net sand to
provide a more detailed net sandstone thickness map to aid in hydrocarbon exploration.
This lead to multiple locations of bypassed pay that would be potential future drilling

locations.
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Appendix A: SD INTERPOLATION

5-dimensional interpolation is a means to regularize and interpolate missing data
within a seismic dataset. Survey obstacles are generally the main challenge in regular
sample intervals for onshore 3D data. In contrast, marine data are usually well sampled
in the inline direction but poorly sampled in the crossline direction due to the design of
the streamers (Trad, 2009). The underlying challenge, as Trad (2009) notes as a general
principle, is that “missing data are assumed to have a similar nature to data recorded in
their neighborhood.” I show that the inversion results for 5D interpolation statistically
correlate better than the data without 5D interpolation (Figure 46) but the faulted
portions of the data can be smeared (Figure 61). The interpreter needs to keep in mind

the pitfalls that can accompany the underlying processing techniques.
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