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Figure 1.7 Workflow showing the input to Kuwahara filtering. For each attribute, first 

compute the mean, standard deviation, and median for every voxel using a centered J-

sample analysis window. Then find the window k of J non-centered windows 

containing the target voxel that has the smallest normalized standard deviation, σ/μ. 

Finally, output the median, m, of window k as the filtered value at the target voxel. .... 27 

Figure 1.8 Vertical slices along line AA’ through median-filtered (a) coherence, (b) 

magnitude of reflector convergence, (c) GLCM-entropy, (d) GLCM-dissimilarity and 

(e) coherent energy. Note that the “salt and pepper” expression of coherence and the 
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Figure 1.9 Vertical slices along line AA’ through Kuwahara-filtered (a) coherence, (b) 

magnitude of reflector convergence, (c) GLCM-entropy, (d) GLCM-dissimilarity, and 
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Abstract 

Seismic attributes provide quantitative measures of key statistical, geometric, or 

kinematic components of the 3D seismic volume. These measures can thus be 

subsequently used in 3D visualization, interactive crossplotting, or computer-assisted 

facies analysis. In this dissertation, I evaluate the attribute expression of seismic facies 

including karst collapse features, mass transport complexes, turbidites, and salt using 3D 

visualization and 3D pattern recognition.  

One of the more common and more important seismic facies is salt. Salt 

segmentation is critical for accelerating velocity modeling, which in turn is necessary for 

seismic depth migration. In general, geophysicists need to pick the high velocity salt 

interface manually. In the first chapter of the dissertation, I present a semi-supervised 

multiattribute clustering method, and apply it not only to salt segmentation, but also to 

mass transport complex, shale, and sand segmentation in the Gulf of Mexico. I develop a 

3D Kuwahara filtering algorithm, and smooth the interior attribute response and sharpen 

the attribute contrast between one face with neighboring facies. Then, I manually paint 

target facies to evaluate the ability of candidate attributes to discriminate each seismic 

facies from the other. Crosscorrelating their histogram, candidate attributes with low 

correlation coefficients provide good facies discrimination. Kuwahara filtering 

significantly increases this discrimination. Kuwahara filtered attributes corresponding to 

interpreter-defined facies are then projected against a Generative Topological Mapping 

(GTM) manifold, resulting in a suite of n probability density functions (PDFs). The 
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Bhattacharyya distance between the PDF of each unlabeled voxel to each facies PDF 

results in a probability volume of each interpreter-defined facies. 

In the second chapter, I introduce a 3D fault enhancement and skeletonization 

workflow. For large datasets, interpreter hand-picking of faults can be very time-

consuming. This process can be accelerated by generating high resolution edge detecting 

attributes.  Coherence is an algorithm that measures both stratigraphic and structural 

discontinuities. Application of a directional Laplacian of a Gaussian (LoG) filter to 

coherence volumes provides more continuous and sharper faults. To further increase fault 

resolution and preserve stratigraphic discontinuities, I skeletonize the filtered coherence 

volumes perpendicular to the discontinuities with the goal of providing subvoxel 

resolution. “Fault” points doesn’t fall on the geometric grid suggesting the distribution of 

the value onto eight neighboring grid points. I demonstrate this fault enhancement and 

skeletonization workflow through application to two datasets from New Zealand and the 

Gulf of Mexico. 

With the advent of shale resource plays, wide azimuth acquisition has become 

quite common. Migrating seismic gathers into different azimuthal bins provides a means 

to estimate horizontal stress and natural fractures. Different azimuths preferentially 

illustrate faults perpendicular to them. However, coherence applied to the lower fold 

azimuthally limited seismic volumes is contaminated by noise. In the third chapter, I 

improve the energy ratio coherence algorithm and extend it to map more subtle 

discontinuities, which can only be seen in different azimuthally limited seismic volumes. 

The main modification compared to the original energy ratio coherence algorithm is that 

I add the weighted covariance matrices of each azimuthal sectors together to form a single 
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covariance matrix, thereby improving the signal-to-noise ratio. I apply this multi-azimuth 

coherence algorithm to two datasets from the Fort Worth Basin. 

In the fourth chapter, I summarize attribute-assisted interpretation in the Barnett 

Shale and the Ellenburger Group. Karst, faults, and joints are known to form geologic 

hazards for most Barnett Shale wells in the Fort Worth Basin. In the best cases, these 

drilling-related geohazards form conductive features that draw off expensive hydraulic 

fracturing fluid from the targeted shale formation. In the worst cases, the completed wells 

are hydraulically connected to the underlying Ellenburger aquifer and produce large 

amounts of water that must be disposed. Karst collapse generates a distinct morphologic 

pattern on 3D seismic data. I show that multiple attributes delineate different components 

of the same geologic features, thereby confirming my interpretation. 
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Title: Semi-supervised multiattribute seismic facies analysis 

ABSTRACT 

One of the key components of traditional seismic interpretation is to associate or 

“label” a specific seismic amplitude package of reflectors with an appropriate seismic or 

geologic facies. The object of seismic clustering algorithms is to use the computer to 

accelerate this process, allowing one to generate interpreted facies for large 3D volumes. 

Determining which attributes best quantify a specific amplitude or morphology 

component seen by the human interpreter is critical to successful clustering. 

Unfortunately, many patterns, such as coherence images of salt domes, result in “salt and 

pepper” classification. Application of 3D Kuwahara median filters smooth the interior 

attribute response and sharpens the contrast between neighboring facies, thereby 

preconditioning the attribute volumes for subsequent clustering. In our workflow, the 

interpreter manually paints n target facies using traditional interpretation techniques, 

resulting in attribute training data for each facies. Candidate attributes are evaluated by 

crosscorrelating their histogram for each facies, with low correlation implying good 

facies discrimination. Kuwahara filtering significantly increases this discrimination. 

Multiattribute voxels for the n interpreter-painted facies are projected against a 

Generative Topological Mapping (GTM) manifold, resulting in n probability density 

functions (PDFs). The Bhattacharyya distance between the PDF of each unlabeled voxel 

to each of n facies PDFs results in a probability volume of each user-defined facies. We 

demonstrate the effectiveness of this workflow to a large 3D seismic volume acquired 

offshore Louisiana, USA. 
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INTRODUCTION 

Seismic stratigraphy plays a key role in the interpretation of many Gulf of Mexico 

(GOM) seismic surveys. While many geologic features are represented by a specific 

geometric pattern, such as channel incisement, angular unconformities against erosional 

surfaces and onlap onto smooth horizons, some geologic features are more chaotic and 

more difficult to describe. Salt domes and mass transport complexes (MTCs) are often 

seen in offshore data of the Gulf of Mexico. Salt can form seals while MTCs can be seals 

or drilling hazards. Seismic geomorphology coupled with an appropriate depositional 

model allows prediction of lithology distribution, deformation features, and overall 

reservoir heterogeneity. Salt holds an additional interest in the processing shop, where 

the accurate definition of high velocity salt is critical to prestack depth migration. 

Defining the limits of salt domes in offshore seismic data consumes hours of interpreter 

time. MTCs often exhibit similar textures to salt in 3D coherence volumes. Both features 

are difficult to autopick, while geobody tools often perform poorly. 

The published literature on salt segmentation exceeds that of any other computer-

aided facies identification workflow, and can be divided into two methods. The first 

method is based on image segmentation. Lomask et al. (2007) applied a modified version 

of a “Normalized cuts image segmentation” (NCIS) algorithm, which was first introduced 

to seismic interpretation as an atomic meshing of a seismic image (Hale and Emanuel, 

2002). NCIS was adapted from the eigenvector-based method proposed by Shi and Malik 

(2002), and it provides a globally optimized solution to the problem of seismic salt-

boundary picking. Lomask et al.’s (2007) workflow build a weighting function, which 

indicates the presence of a boundary between pairs of voxels in the image. In related 
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work, Halpert et al. (2014) modified a pairwise region comparison (PRC) algorithm, 

based on human-interpreted supervision on one or more 2D slices to guide a 3D 

segmentation process. 

The second method is based on pattern recognition and texture attribute 

classification. Gao (2003) applied a gray-level co-occurrence matrix (GLCM) to detect a 

salt dome, and found that one GLCM attribute was insufficient to automatic define the 

salt boundary. Berthelot (2013) combined several GLCM attributes, spectral components, 

dip, and coherence, and used a supervised Bayesian classification method to delineate 

salt. They focused on texture to characterize the change of seismic character between the 

salt and surrounding geology. Wallet and Pepper (2013) applied mathematical 

morphology to a single attribute to constrain texture boundaries, thereby reducing the 

variance of seismic attributes for improved salt delineation. 

3D computer-assisted seismic facies classification is based on attributes. West et 

al. (2002), Meldahl et al (1999), and Corradi et al. (2009) used interpreter-provided seed 

points or polygons to train neural network classifiers. Coleou et al. (2003), Gao (2007), 

Matos et al. (2009), and Roy et al. (2013) used 3D self-organizing maps to compute 

unsupervised facies volumes that were later calibrated with well control and principles of 

geomorphology. Roy et al. (2014) used generative topographic mapping to cluster 

multiattribute data volumes, which were then compared to well control using the 

Bhattacharyya distance. 

Unlike photographic images, seismic textures are 3D and contain many voxels. 

On vertical slices, seismic facies span the continuum from conformal sands and shales, 

to more complex turbidites, to highly deformed MTCs, to chaotic salt.  To segment such 
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facies it is necessary to quantify the differences in their seismic attribute expression. 

Barnes and Laughlin (2002) found that the choice of attributes was critical to effective 

classification. 

Skilled human interpreters have little difficulty in differentiating seismic facies 

such as salt and MTCs from each other. Teaching a computer to do the same is more 

difficult, requiring careful psychological analysis of the human process. How does a 

human interpreter differentiate these two “chaotic” textures? How to we quantify 

different degrees of chaos?   

Figure 1.1 indicates our seismic facies classification workflow. We begin our 

paper with a summary of candidate attributes that appear to differentiate the seismic facies 

of interest. Next, we precondition the attribute volumes through Kuwahara filtering, 

resulting in a smoother facies response and sharper edges. We then introduce a degree of 

supervision by computing histograms for each candidate attribute for a suite of user-

defined facies. Cross-multiplying these histograms quantifies which attributes best 

differentiate a given facies pair. The selected attributes are then used as input to a 

generative topographic mapping (GTM) classification algorithm. The probability of a 

given facies at each voxel is estimated using the Bhattacharyya distance. We conclude by 

validating the predicted facies on seismic vertical lines and time slices that were not used 

in the training, and generating a suite of geobodies. 

ATTRIBUTE EXPRESSION OF SEISMIC FACIES 

Seismic amplitude is the most common “attribute” used in seismic interpretation. 

If a geologic feature is not measurable by the spatial variation in seismic amplitude and 

phase, no derivative attributes will enable identification. Much of seismic interpretation 
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is based on pattern recognition. Seismic attributes provide quantitative measures of 

statistical, geometric, or kinematic patterns seen in the 3D seismic amplitude volume.  

Our initial choice of candidate attributes to differentiate the target seismic facies is based 

on experience. However, the final choice will be determined through quantitative attribute 

histogram analysis of manually picked seismic facies. 

Figure 1.2 shows a summary of seismic attribute anomalies associated with 

different facies seen in the GOM data volume described in this paper. Coherence is 

sensitive to lateral discontinuities such as faults, channel edges and karst (Qi et al., 2014), 

as well as chaotic zones such as salt and MTCs. We use vector dip as input for principal-

component structure-oriented filtering (SOF) in the most coherent window to suppress 

random and cross-cutting coherent noise and improve vertical resolution (Marfurt, 2006). 

We estimate the coherent part of the data using a Karhunen-Loève filter; coherent energy 

is the energy of the Karhunen-Loève filtered data, with stronger reflectors exhibiting 

higher energy than weaker reflectors. Incoherent events internal to salt exhibit the lowest 

coherent energy. Coherent energy can use to separate a strong reflectivity sand/shale 

package from a weaker reflectivity shale/shale package.  

While coherence response to MTCs and salt may be similar, gray-level co-

occurrence attributes can help differentiate different kinds of chaotic textures. Texture 

analysis holds significant promise in computer-aided interpretation and is often used in 

interpreter-driven or computer-assisted facies analysis (West et al., 2002; Gao, 2007; 

Corradi et al., 2009). We calculate the gray-level co-occurrence matrices (GLCM) along 

structural dip, which quantifies the spatial repeatability (co-occurrence) of voxel 

amplitude values (gray levels) at a distance within an analysis window. GLCM entropy 
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is a statistical measure of randomness of the seismic amplitude. GLCM dissimilarity 

highlights regions having strict stationary statistics (invariant mean and variance).  

The structural curvature is computed by taking the derivatives of the dip 

components. Reflections that exhibit similar waveforms, which having small offsets 

(<1/4 wavelength) and subtle changes in dip across faults, will generate curvature, but 

not coherence anomalies (Al-Dossary and Marfurt, 2006). Reflector convergence 

(Marfurt and Rich, 2010) also differentiates eroded zones from more conformal 

stratigraphy.  

We select five attributes that quantify a specific amplitude or morphology 

component exhibited by the target. Coherence and reflector convergence can differentiate 

chaotic zone, such as salt dome, or an MTC, from sediment, but not from each of them. 

Furthermore, local high coherence zones occur within salt and MTCs given their 

observation. Texture attributes, such as GLCM-entropy, and –dissimilarity differentiates 

chaotic zones, but are relatively insensitive to seismic facies boundaries. Coherent energy 

differentiates a strong reflectivity sand/shale package from a weaker reflectivity 

shale/shale package, but it MTCs exhibit both low and high energy elements. Our final 

task is therefore to precondition the attribute data to provide piecewise smooth images 

amenable to computer classification algorithms. 

KUWAHARA FILTERING 

Kuwahara (1976) filtering is commonly used in structure—oriented filtering. 

Kuwahara filters adapt to the variability of the data within overlapping analysis windows, 

where Luo et al. (2002) used standard deviation followed by a mean filter and Marfurt 

(2006) used 3D coherence followed by a 3D Karhunen-Loève filter to generate edge-
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preserving structure-oriented filters. Kuwahara filter as an edge-preserving filter is widely 

used in image processing. Applied to photographs, Kuwahara filters result in piecewise 

monochromatic features separated by sharp boundaries (Figure 1.3). By localizing the 

smoothing, the Kuwahara filter properly removes detail, even such as “salt and pepper” 

noise in high-contrast regions while preserving shape boundaries in low-contrast regions. 

Kyprianidis et al. (2009) find that the Kuwahara filter “maintains a roughly uniform level 

of abstraction across the image while providing an overall painting-style look”. In our 

work, we use the same concept to define edges between different types of incoherent 

zones. Equally important, the Kuwahara filter will smooth rapidly varying attribute 

anomalies within salt and MTCs to facilitate subsequent clustering.  

The Kuwahara filter (Figure 1.4) searches all windows containing a given voxel. 

In our workflow, the analysis windows are oblique cylinders with radius = 50 m and 

height of 20 ms containing L=143 voxels whose top and bottom faces are aligned with 

the local dip magnitude and dip azimuth. L overlapping windows contain any given voxel. 

For a given attribute, one computes the standard deviation, σ, the mean μ, and the median, 

m, in each of the L overlapping analysis windows. The filtered attribute will then be the 

value of m associated with the window having the minimum value of normalized standard 

deviation, σ/μ. The smoothness and noise suppression of an image is controlled by the 

size of the analysis window. If the analysis window length is large, the image will be 

smoother, but somewhat blocky. If the analysis window is small, the image will be 

smoothed less, and blockiness reduced.  Numerical experiments showed that a single 

large window L=500 filters provided superior results to cascading two small window 

L=143 filters at reduced computation cost.  
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INTERPRETER SUPERVISION AND ATTRIBUTE HISTOGRAM ANALYSIS 

Clustering 

The use of classification algorithms to detect natural clusters of attribute responses 

to geologic facies is referred to as unsupervised classification. On contrast, supervised 

classification is based on a set of training data, in our case is composed of a suite of 

attribute vectors corresponding to interpreters picked voxels within a given seismic 

facies. There are many interpreter-supervised machine-learning methods used in seismic 

facies classification including artificial neural networks (ANN), support vectors machines 

(SVM), self-organizing maps (SOM), and generative topographical mapping (GTM). 

SOM and GTM both fit the N-attribute residing in N-dimensional space with a lower 

dimensional manifold (in our application, a 2-dimensional manifold).  

Attribute Histograms 

A histogram is a graphical representation of the probability distribution of a 

quantitative variable. The relationship to geologic events is best understood by examining 

the data histogram, with Sheffield et al. (2008) finding that effective 3D visualization 

requires the mapped feature be near a histogram extremum. The correlation coefficient 

between voxel value histograms of images can be used to detect image content from a 

large database.  

We represent the distribution of attribute values associated with the voxels that 

fall within an interpreter-painted facies by its histogram. The voxel histogram represents 

the amplitude distribution of a given attribute, and represents a probability density 

function (PDF). Zero-mean seismic amplitude usually has a Gaussian distribution 

centered about zero. The inclusion of dead traces and mute zones in the histogram 
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calculation results in a spike at value zero, and should be avoided. Correlation of 

histograms is sensitive to their PDF, and insensitive to the geometric rotation and scaling 

in seismic data. Luo et al. (2001) introduced a scheme based on histogram equalization 

to scale seismic data for optimum display. We begin by generating a matrix of histograms 

for each of the F facies and each of the N candidate attributes. Then for each facies pair 

(salt vs. MTC, MTC vs. sediment, or sediment vs. salt), we generate a vector of N 

crosscorrelation coefficients. The histograms from the seismic amplitude and seismic 

attributes contain noise, such that their histograms poorly cross-correlate. Furthermore, 

the edges between the different facies may be fuzzy, and difficult to identify. Kuwahara 

filtering of the seismic attributes followed by histogram smoothing addresses these issues. 

The correlation coefficient, rfgn, between histogram for facies f, hf, and the histogram for 

facies g, hg, for attribute n is simply: 
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where the fh  and gh are the average of the histogram and where we have constructed our 

histogram to span 101 bins.   

APPLICATION 

The 3D seismic data cover an area of 8000 sq. km (3089 sq. mi) along the current 

offshore Louisiana shelf edge. The seismic data were acquired by PGS using towed 

streamer acquisition with two sources and three receiver cables with a maximum offset 

of 6000 m. We start with a minibasin bound by two salt diapirs to the west and east 

(Figure 1.5). The uplift of the western salt dome is contemporaneous with the upper 
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minibasin fill and occurred earlier than the eastern salt dome rise. We interpret (paint) 

three seismic facies of interest: salt dome, mass transport complexes (MTCs), and 

relatively undeformed sediment that includes both strong (an interbedded sand and shale 

package) reflectors, and weak (a thick predominantly shale package) reflectors. The 

human eye can easily recognize the edge of salt and the limit of the MTCs. Salt exhibits 

lower amplitude, lower frequencies, and appears to be internally highly chaotic. The MTC 

generally exhibits higher amplitude, broadband frequencies, and laterally chaotic and 

vertically moderately conformal.  The sedimentary packages exhibit alternatively high or 

low amplitude, broadband frequencies, coherent, and highly conformal.  

Although a human interpreter can easily recognize them, mapping salt domes and 

MTCs using voxel-based classifiers are quite difficult. Within the chaotic salt, there may 

be coherent multiples or coherent migration aliasing artifacts. Within an MTC, there will 

be a jumble of coherent and incoherent reflectors cut by slump surfaces and small listric 

and toe-thrust faults.  

Seismic attributes 

We calculate coherence, coherent energy, the magnitude of reflector convergence, 

GLCM-entropy, and GLCM-dissimilarity along structural dip (Figure 1.6). Examination 

of Figure 1.6a shows that layered sediments exhibit high coherence. Faults, stratigraphic 

boundaries, and other discontinuities exhibit low coherence. Salt domes have high 

coherence inclusions (displayed as white) within a low coherence (black) background, 

while MTCs will have coherent (white), often rotated, reflectors embedded in a relatively 

incoherent (black) matrix. Thus, in these data, both salt and MTC exhibit a “salt and 

pepper” appearance in coherence volumes. Reflector convergence (Figure 1.6b) is a 2D 
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vector and shows the magnitude and azimuth of convergence, such as occurs at pinch-

outs and angular unconformities. Those attributes help differentiate more “fumbled” 

internal salt dome and mass transport complex reflectors from conformably layered 

stratigraphy. GLCM-entropy (Figure 1.6c), and GLCM-dissimilarity (Figure 1.6d) show 

salt domes and MTCs to have high dissimilarity and high entropy while sediments have 

low entropy and dissimilarity. Coherent energy (Figure 1.6e) highlights high reflection 

coefficient reflectors (the deeper sand/shale package) from low reflectivity, shallower 

shale/shale package. Salt appears as low energy, with some high energy inclusions. The 

MTC is more heterogeneous, with high energy reflectors embedded in a low energy 

matrix.   

Kuwahara-filtered attributes 

While our preliminary analysis of seismic attributes differentiates the three target 

facies in this GOM survey, two challenges reduce the accuracy of computer-assisted 

facies classification. The first challenge is the mixed high- and low-value (“salt and 

pepper”) anomalies seen in the salt and the MTC. The second challenge is that of 

additional facies. We have already suggested that the “sediments” facies can be broken 

into a sand/shale vs. shale/shale facies. In addition, faults may also be misclassified as 

one of our three facies. Specifically, the faults in this survey give rise to low coherence, 

the high magnitude of reflector convergence, high GLCM-entropy and high GLCM-

dissimilarity anomalies. In Figure 1.6, around the right salt dome, there are three faults 

(indicated by red arrows) cutting through the salt dome and neighboring sand that exhibit 

to similar attribute response through salt and the MTC.  
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We address the first (heterogeneity) problem by applying a Kuwahara filter to 

smooth rapidly varying attribute anomalies to facilitate subsequent clustering. Figure 1.7 

shows the Kuwahara filtering workflow. One computes three sub-attributes from each 

seismic attribute: the standard deviation, σ, the mean μ, and the median, m, in each of the 

overlapping analysis windows. Figure 1.8 shows the median, m, of each candidate 

attribute, computed within a 100 m by 100 m by ±12 ms rectangular window resulting in 

a much smoother, less detailed image. The “salt and pepper” features in the salt and MTC 

are now more continuous, while the thin anomalies associated with the faults are 

eliminated.  

Unfortunately, the median filtering has smoothed the edges of seismic facies from 

rapidly varying to smoothly varying. To apply a Kuwahara filter, we find window k of 

the L non-centered overlapping windows that contain a target voxel that has the smallest 

normalized standard deviation, σ/μ. Kuwahara filtering then assigns the median of 

window k to be the output value for the target voxel. In this example, we cascaded two 

small 50 m radius by ±8 ms Kuwahara filters. Compared with the median-filtered 

attributes shown in Figure 1.8, the Kuwahara-filtered attributes shown in Figure 1.9 better 

preserve the boundaries between different seismic facies, preconditioning them for 

subsequent classification. Figure 1.10 compares time slices through several attributes 

before and after Kuwahara filtering where we note that the Kuwahara-filtered attributes 

have smoothed seismic facies (Figure 1.10). Like the median filter, the Kuwahara filter 

eliminates thin anomalies such as faults (red arrows) and channels (blue arrow).  

To more clearly see the detailed improvements by Kuwahara filtering, we 

examine the attributes before and after filtering along two different traces. In Figure 
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1.11a, trace 1 intersects a top salt boundary, while trace 2 intersects both the top and 

bottom boundaries of MTC. Before filtering (Figure 1.11b), values within the salt dome 

vary rapidly, making it difficult to detect the top salt boundary. Likewise, the 

discrimination of the edges of the MTC is also difficult. In contrast, the Kuwahara filtered 

trace in Figure 1.11c, shows piecewise smooth values, producing a sharp boundary of the 

salt dome and MTC. 

Attribute selection to separate painted facies  

Given these filtered attributes, the next task shown in Figure 1.1 is to paint the 

target facies of interest on vertical or time slices and generate histograms for each facies. 

Figure 1.12 shows histograms for the three seismic facies: sediment (blue), MTC (green), 

and salt (red). Histograms of picked facies are normalized to range between 0 and 1 for 

easy comparison and do not change the correlation coefficient of any histogram pair. Note 

that Kuwahara filtering both narrows and further separates the distribution of the attribute 

histograms. Coherence and GLCM-dissimilarity attributes now have significantly greater 

discrimination between the three target facies, allowing the facies to be separated. 

Reflector convergence and GLCM-entropy attributes have poor separation between salt 

and MTC, but good separation of these two facies from the sediments.  

Figures 1.13 compares the correlation coefficients rfg between the original seismic 

attribute painted facies with those between the Kuwahara-filtered attribute painted facies. 

For the original attributes (Figure 1.13a), the histogram correlation coefficients rfg of 

sediment vs. salt are all less than 0.5 for most attributes. In the salt vs. the MTC facies, 

only coherence has a low value of rfg, while coherence and GLCM-dissimilarity attributes 

have low values of rfg for the MTC vs. the sediment facies. After Kuwahara filtering 
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(Figure 1.13b), the correlation is significantly reduced, suggesting that our classifier will 

be better able to discriminate one facies from the other where green boxes indicate 

correlation coefficients less than a threshold of 0.5. Coupled with the improved edge 

enhancement of the Kuwahara filter, we expect improved results.  Figure 1.14 shows 

overlays of the filtered attributes on the vertical seismic slice and time slices at t=1172ms. 

Such threshold discrimination between facies is limited to one attribute at a time although 

one can sequentially reject larger and larger areas of examination through cascading 

thresholding of additional attributes.   

Crossplotting of two attributes 

Crossplotting of seismic attributes is used to highlight the relationship of input 

attributes. In seismic facies analysis, the interpreter picks polygons on the crossplot and 

display the result, providing a degree of supervision. Figure 1.15a and b show a vertical 

section and time slice of original coherence and GLCM dissimilarity crossplot co-

rendered with seismic amplitude. Figure 1.15c and d show the same images after by 

Kuwahara filtering. The crossplotted Kuwahara filtered images show better facies 

boundaries, and have less internal “salt and pepper” behavior. Unfortunately, 

crossplotting become difficult with three attributes, and intractable for more than three 

facies. Gao (2007) addressed this problem by crossplotting principal components of the 

attributes, which projects the data onto a plane. Thus, we propose using GTM analysis, 

which maps data onto a deformed manifold. 

GTM interactive clustering and Bhattacharyya distance 

We apply generative topographical mapping (GTM) (e.g. Roy et al., 2014) to 

obtain vector projections of multiple attributes onto a 2D latent space. On this example, 
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GTM represents a 5-dimensional (5-attribute) data by a lower 2-dimensional deformed 

manifold. GTM starts with an initial 2D plane, defined by the first two eigenvectors of 

the 5×5 attribute covariance matrix (i.e. principal component analysis). This plane is 

uniformly populated with clusters each of which describes a Gaussian PDF.  The plane is 

deformed onto a curved manifold by moving the center of a Gaussians to better fit the 

data. At each iteration, the variance of the Gaussian is decreased. The process continues 

until convergence providing a maximum likelihood estimation of the Gaussian centers. 

At the end, all vectors are projected onto a 2D latent space. 

From our histogram analysis, the five attribute volumes used in the GTM are 

coherence, magnitude of reflector convergence, GLCM-entropy, GLCM-dissimilarity, 

and coherent energy, representing the depositional features seen in the seismic facies 

volume. After training, the 5D attribute vectors at each voxel is projected onto the 2D 

latent space.  

Figure 1.16a and b show slices through the unsupervised GTM volume computed 

using the original attribute co-rendered with seismic amplitude. Figure 1.16c and d show 

the slices through the GTM volume computed by Kuwahara filtered attributes co-

rendered with seismic amplitude. Each voxel is projected onto the 2D latent space that is 

mapped against a 2D colorbar. The users can then define polygons about hypothesized 

clusters on display then using commercial crossplotting tools. Salt, MTC and sediment 

can be nearly differentiated, where purple color indicates salt, the red color MTCs, the 

green color the low amplitude conformal shale packages, and the blue color the high 

amplitude conformal water bottom and sand/shale packages. Figure 1.17a shows vertical 

slice BB’ and time slice at t= 1172 ms, through seismic amplitude. By drawing polygons 
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on the GTM 2D histogram, we define geobodies of salt (Figure 1.17b), MTCs (Figure 

1.17c), and sediment (Figure 1.17d). To more quantitatively introduce supervision, we 

project each painted face onto the previously trained 2D manifold, generating average 

PDFs for each facies. We then project each 5D data voxel onto the same manifold, 

generating its own PDF. The Bhattacharyya distance (e.g. Roy et al., 2014), which 

measures the similarity between two PDFs, is then calculated between the voxel PDF 

with each facies PDF. We firstly run our method on a few seismic lines. At the paint, the 

clustering is “unsupervised”. We add supervision by projecting the voxels painted in 

Figure 1.5b onto the latent space, generating PDFs for salt, MTC, and sediment facies 

(Figure 1.18a-c). To validate these PDFs, we pick single voxels for each facies on a line 

in a different part of the survey, and project them on the latent space (Figure 1.18d-f). 

Note that the PDF of the single voxel fall with the PDF of the supervision data. Cross 

multiplying the PDF of a given voxel and the PDF of the supervision given the square of 

the Bhattacharyya distance. The Bhattacharyya distance says how likely the voxel 

belongs to each facies. 

Figure 1.19 show seismic amplitude co-rendered with Bhattacharyya distance 

volumes for each of the supervised facies. The Bhattacharyya distance provides a 

probability measurement of how likely a facies to appear at a certain spatial location. A 

Bhattacharyya distance value of 0.8 against salt means the analysis point is 80% likely to 

be salt. Such probability estimation is especially useful when there is no clear separation 

within a transition zone among multiple facies. 
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CONCLUSIONS 

We have developed a workflow to automate the volumetric delineation of seismic 

facies, with a focus on chaotic facies such as salt diapirs and mass transport complexes 

common in the Gulf of Mexico. Key to such classification is the choice of attributes that 

capture patterns seen by the human interpreter that help identify the target facies. Human 

interpreters see patterns and facies boundaries at scales larger than a few voxels. We 

approximate this pattern recognition by applying 3D Kuwahara filtering to each attribute 

volume. Generative topological mapping not only allows “clustering” of the attribute 

data, but also facilitates the introduction of interpreter provided supervision, resulting in 

a probabilistic volume of each desired facies. The Bhattacharyya distance between the 

PDF of each unlabeled voxel to each of n facies PDFs results in a probability volume of 

each user-defined facies. 
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Figure 1.1 Workflow illustrates the steps used in our multiattribute seismic facies analysis 

workflow. The interpreter begins by painting target facies of interest on either seismic 

amplitude or attribute data. After Kuwahara filtering, histograms are computed for each 

facies and each candidate attribute. Attributes that do not differentiate facies are rejected, 

while those that do are kept and mapped onto a latent space using GTM. Next, the pdf for 

each facies f is mapped onto the latent space generating a suite of PDFs. Next, the attribute 

vector at each voxel, m, is projected onto the latent space, generating an additional PDF. 

Finally, the probability that a given voxel m belongs to facies f is computed using the 

Bhattacharyya distance. 
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Figure 1.2 Table of five seismic facies, their seismic expression, and their attribute 

response seen in this data volume. The recognition of features that allow discrimination 

between seismic facies is critical. If this can be done, the next most important task is to 

select attributes that quantitatively measure these features. 
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Figure 1.3 A photo of the first author with and without additive noise before and after 

Kuwahara filtering applied to each of the R, G, and B components. Note that noise type 

is “salt and pepper”. Kuwahara filtering smooth as internal details of the image, but 

preserves edges. 
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Figure 1.4 Cartoon of 2D Kuwahara filtering. The input data include 25 samples centered 

about the red square. Gray squares indicate voxels used in the nine laterally shifted 9-

sample analysis windows, each of which contains the output location indicated by the red 

square. The output is the mean as median of that gray window that has the smallest 

standard deviation. In 3D, we evaluate 125 neighboring voxels, and compute the mean, 

the median, and, standard deviation, σ/μ, in 27 overlapping 3 by 3 by 3 analysis window. 



23 

 

 
Figure 1.5 (a) Time slice at t=1144 ms, and (b) vertical slice along line AA’ through the 

seismic amplitude volume. In these images, we have painted two seismic facies of 

interest: a red salt facies and a yellow MTC facies. Two other facies of interest are a suite 

of weak reflectors, which we interpret to be shale on shale package, and areas of stronger 

reflectors that we interpret to be a mixed sand-shale package. Line BB’ has not been 

interpreted and will be shown in later figures. 
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Figure 1.6 Vertical slices along line AA’ through, (a) coherence, (b) magnitude of 

reflector convergence, (c) GLCM-entropy, (d) GLCM-dissimilarity and (e) coherence 

energy volumes. Note the “salt and pepper” expression of coherence and the magnitude 

of reflector convergence. Red arrows indicate faults, which will either be a separate facies 

or be misclassified in our attribute-based seismic facies analysis. 
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Figure 1.7 Workflow showing the input to Kuwahara filtering. For each attribute, first 

compute the mean, standard deviation, and median for every voxel using a centered J-

sample analysis window. Then find the window k of J non-centered windows containing 

the target voxel that has the smallest normalized standard deviation, σ/μ. Finally, output 

the median, m, of window k as the filtered value at the target voxel. 
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Figure 1.8 Vertical slices along line AA’ through median-filtered (a) coherence, (b) 

magnitude of reflector convergence, (c) GLCM-entropy, (d) GLCM-dissimilarity and (e) 

coherent energy. Note that the “salt and pepper” expression of coherence and the 

magnitude of reflector convergence have been suppressed. 
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Figure 1.9 Vertical slices along line AA’ through Kuwahara-filtered (a) coherence, (b) 

magnitude of reflector convergence, (c) GLCM-entropy, (d) GLCM-dissimilarity, and (e) 

coherent energy. Compared with the median-filtered attributes; the Kuwahara-filtered 

attributes have much clearer edges between any facies. 
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Figure 1.10 Time slices at t=1144ms through, (a) seismic amplitude, (b) coherence, (c) 

magnitude of reflector convergence, (d) GLCM-entropy, (e) GLCM-dissimilarity, and (f) 

coherent energy, and Kuwahara-filtered attributes (g) – (k). The Kuwahara-filtered 

attributes suppress the “salt and pepper”; these are much clearer boundaries between any 

two seismic facies. Patterns are easy for human interpreters, but difficult for classifiers to 

identify as a single face. 
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Figure 1.11(a) A vertical slice along line AA’ through seismic amplitude, (b) original 

attribute values along the trace 1 and the trace 2, and (c) Kuwahara-filtered attribute. 

Before Kuwahara filtering, values within the salt dome vary rapidly, making it difficult 

to detect the top salt boundary. In contrast, the Kuwahara filtered trace shows piecewise 

smooth values, producing a sharp boundary at the top of the salt dome and MTC. 
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Figure 1.12 Histograms of picked facies are normalized for easy comparison and do not 

change the correlation coefficient of any histogram pair. Note that Kuwahara filtering 

both narrows and further separates the distribution of the attribute histograms. 
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Figure 1.13 Histogram correlation coefficient rfg < 0.5 are highlighted in green between 

(a) original seismic attributes pairs, and (b) Kuwahara-filtered attributes pairs. 
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Figure 1.14 Vertical slices along line BB’ and time slices at t=1172 ms through seismic 

amplitude co-rendered with Kuwahara-filtered and using threshold attributes, (a) 

coherence, (b) magnitude of reflector convergence, (c) GLCM-entropy, (d) GLCM-

dissimilarity, and (e) coherent energy. Note that the Kuwahara-filtered attributes, with 

the low facies histogram correlation coefficient (Figure 1.13b), more clearly blocks the 

desired facies. Location of line BB’ shows in Figure 1.5. 
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Figure 1.15 Vertical slices along line AA’ and time slice at t=1144 ms through 

crossplotted coherence and GLCM-dissimilarity, before (a) and (b), and after (c) and (d) 

Kuwahara filtering. Note that the Kuwahara filtered crossplot shows sharper edges and 

less internal variation. 
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Figure 1.16 (a) Vertical slices along line AA’ and (b) time slice at t=1144 ms through gtm 

classification with original attributes use a 2D latent space mapped against; (c) vertical 

slices along line AA’ and (d) time slice at t=1144 ms through gtm classification with 

Kuwahara filtered attributes. 
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Figure 1.17 Vertical slices along line BB’ and time slices at t=1172 ms through (a) seismic 

amplitude, and co-rendered with, (b) with salt facies (in red), (c) MTC facies (in yellow), 

(d) sediment facies (in green), and (e) with all three facies obtained by manually drawing 

a polygon on the GTM histogram. 
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Figure 1.18 The voxels painted in Figure 1.5b onto the latent space, generating PDFs for 

(a) salt, (b) MTC, and (c) sediment, and the single voxels painted in Figure 1.5b, 

generating PDSs for (d) salt, (e) MTC, and (f) sediment. 
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Figure 1.19 Vertical slice along line BB’ and time slice at t=1172 ms through seismic 

amplitude, and co-rendered with Bhattacharyya Coefficient associated with (a) salt, (b) 

MTC, and (c) sediment facies. 
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Title: A workflow to skeletonize faults and stratigraphic features 

ABSTRACT 

Improving the accuracy and completeness of subtle discontinuities in noisy 

seismic data is useful for mapping faults, fractures, unconformities and stratigraphic 

edges. In this paper, we propose a workflow to improve the quality of coherence 

attributes.  First, we apply principal component structure-oriented filtering to reject 

random noise and sharpen the lateral edges of seismic amplitude data.  Next, we compute 

eigenstructure coherence, which highlights both stratigraphic and structural 

discontinuities. We apply a Laplacian of a Gaussian filter to the coherence attribute that 

sharpens the steeply dipping faults, attenuates the stratigraphic features parallel to the 

seismic reflectors, and skeletonizes unconformity features subparallel to reflectors. 

Finally, we skeletonize the filtered coherence attribute along with the fault plane. The 

filtered and skeletonized seismic coherence highlight the geological discontinuities more 

clearly and precisely.  These discontinuous features can be color-coded by their dipping 

orientation, or as a suite of independent, azimuthally limited volumes, providing the 

interpreter a means of isolating fault sets that are either problematic or especially 

productive. We validate the effectiveness of our workflow by applying it to seismic 

surveys acquired from the Gulf of Mexico, USA and the Great South Basin, New Zealand. 

The skeletonized result rejects noise and enhances discontinuities seen in both the vertical 

and lateral direction. The co-rendering of the “fault” azimuth and the “fault” dip 

magnitude exhibits both strengths of the discontinuities and their orientation. Finally, we 

compare our workflow to the results generated from the swarm intelligence and find our 

method to be better at tracking short faults and stratigraphic discontinuities.  
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INTRODUCTION 

Identification and mapping faults are one of the most important steps in seismic 

data interpretation in conventional plays, while fault identification is critical to 

identifying potential drilling hazards and characterizing natural fractures in 

unconventional resource plays. While major faults seen in seismic amplitude volume can 

be easily identified and picked by experienced interpreters, the process is still time-

consuming particularly in picking more subtle faults masked by noise. A huge effort has 

been made to accelerate the procedure of seismic interpretation. In this paper, we 

introduce a 3D workflow that minimizes coherence artifacts, links disconnected faults 

and stratigraphic edges, and skeletonizes the results.  

Coherence (Marfurt et al., 1998; Gersztenkorn and Marfurt, 1999) is routinely 

used to detect structural discontinuities in 3D seismic data. Other edge-detection 

algorithms (e.g., Dorn et al., 2012; Al-Dossary and Marfurt, 2003; Luo et al., 1996; Wang 

et al., 2016) provide similar results. Unfortunately, coherence measures all lateral 

discontinuities, including where steeply dipping coherent noise interferes with more 

gently dipping reflectors. Coherence also delineates channel edges, carbonate build-ups, 

slumps, collapse features and angular unconformities. Also, coherence can be used to 

detect chaotic textures in multiattribute seismic facies analysis (Qi et al., 2016).  

Automatic fault extraction in most commercial software packages requires that 

the seismic attribute is first smoothed prior to skeletonization. Seismic data conditioning 

for fault interpretation includes removing incoherent noise, sharpening the edges between 

the hanging wall and footwall, and flattening the spectrum of the seismic data. Fehmers 

and Höcher (2003) proposed an edge-preserving structure-oriented filtering workflow 



63 

that uses anisotropic diffusion to reject cross-cutting noise in 3D seismic data. Marfurt 

(2006) generalized an algorithm developed by Luo et al. (2002) based on overlapping 

Kuwahara windows. Davogustto and Marfurt (2011) combined these two approaches into 

one algorithm and cascaded them with kx-ky footprint suppression. Zhang et al. (2015) 

applied the structure-oriented filtering workflow to prestack time migrated data that 

improves prestack seismic inversion results. Spectral balancing also improves the 

coherence image and partially diminished the stairstep artifacts commonly seen on 

vertical slices. All these processes are applied to the seismic amplitude data and can be 

thought to be seismic data processing.  

However, one can also filter the coherence image which we call “image 

processing”. One of the more popular algorithms is based on swarm intelligence (Randen 

et al., 2001 and Pedersen et al., 2002). Some automated fault extraction algorithms need 

human supervision to select appropriate pilot samples or traces.  Other innovations 

include an edge-detection algorithm described by Zhang et al. (2014) that generates 

skeletonized fault sticks on time slices. The local-fault-extraction method can result in a 

suite of one-pixel thick-labeled fault surfaces from seismic data (Cohen et al., 2006). Wu 

and Hale (2015) describe a method that maps intersecting faults based on Hale (2013)’s 

fault construction technique. AlBinHassan and Marfurt (2003) and Boe (2012) applied 

Radon transforms to improve fault images, while Kadlec et al. (2008) used level sets to 

address the same objective. Barnes (2006) constructed a second moment tensor of 

coherence values falling with an analysis window about each voxel to determine the fault 

orientation, rejecting anomalies parallel to stratigraphy. He then dilated the images to 

connect disjoint fault segments, followed by skeletonization to reduce their thickness.   
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Other 3D attribute-based visualization techniques (Marfurt, 2016; Qi et al., 2014; Wallet 

et al., 2011; Wu and Hale, 2016) are also useful for fault and discontinuity interpretation. 

Faults illuminated by different geometric attributes can be co-rendered using RGB or 

CMY to co-render multiple coherence volumes computed from spectral components (Li 

and Lu (2014); Henderson et al., 2011). Dewett and Henza (2016) extended this approach 

beyond these coherence images using self-organizing maps to combine the results. These 

combined fault images were subsequently enhanced using swarm intelligence.  

In this paper, we introduce a 3D fault directional skeletonization workflow 

(Figure 2.1) that uses the dip magnitude and azimuth of a directional Laplacian of a 

Gaussian (LoG) enhanced discontinuities image. We begin our paper by using principal-

component structure-oriented filtering to suppress both random and steeply dipping 

coherent noise on the seismic amplitude data. Then, we compute the coherence attribute 

from the original and filtered seismic amplitude volumes and compare the results. Next, 

we apply a directional LoG filter resulting in a smooth but somewhat blurred image. 

Finally, we skeletonize the LoG filtered image perpendicular to sharpen locally planar 

features.  

METHOD 

Post-stack data conditioning: 

Seismic attributes quantify patterns seen among neighboring seismic samples and 

traces to extract subtle features valuable for interpretation. For this reason, minor 

improvements of post-stack amplitude data can significantly improve subsequent 

attribute images. In this workflow, we use a Karhunen-Loève (principal-component) filter 

aligned with a structure to suppress random and any crosscutting coherent noise. Each 
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voxel has an estimate of coherence. Of all the overlapping windows that contain our 

analysis point, we choose the window that is most coherent (Davogustto and Marfurt, 

2011). Within this window about an analysis point 𝑢𝑙 at time t, we compute the covariance 

matrix C: 

𝑪𝑖𝑗(𝑡) = ∑ [𝑢𝑖(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑖 − 𝑞𝑦𝑖)𝑢𝑗(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)

𝐾

𝑘=−𝐾

 

+𝑢𝑖
𝐻(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑖 − 𝑞𝑦𝑖)𝑢𝑗

𝐻(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)],                         (2.1) 

where 𝑢𝑖 and 𝑢𝑗  indicate the ith and jth trace, 𝑥𝑖 and 𝑦𝑖 (𝑥𝑗 and 𝑦𝑗) the distance along the 

x-axis and y-axis of the 𝑖𝑡ℎ (𝑗𝑡ℎ) trace from the analysis point, 𝑝 and 𝑞 are the apparent 

dip in the x and y direction measured in s/m, and superscript H denotes the Hilbert 

transform. The samples along structural dip for a fixed value of k form what is called a 

sample vector. The first eigenvector v1 of the matrix C best represents the lateral variation 

in each of the sample vectors. Cross correlating this eigenvector with the sample vector 

that includes the analysis point gives a cross-correlation coefficient, β:  

𝛽 = ∑ 𝑢(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)𝑣𝑗
1(𝑡)𝐽

𝑗=1 ,                                (2.2) 

and the KL-filtered (or first principal component) of the data 𝑢𝐾𝐿 at time t is then a scaled 

version of the eigenvector v1: 

𝑢𝐾𝐿 = 𝛽𝐯1.                                                                      (2.3) 

The “Kuwahara” window is in general laterally and vertically not centered about the 

analysis point 𝑢𝑙. An analysis window of five traces and seven interpolated sample 

vectors, u(t±k∆t) is shown in Figure 2.2. Note that in this cartoon, the wavelet amplitude 

of the three left most traces are about two times larger than that of the two right-most 

traces. Each sample vector approximately reflects a scaled version of the pattern (2, 2, 2, 
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1, 1), where the scaling factor can be positive for a peak, negative for a trough, or zero 

for a zero crossing. The first eigenvector for this cartoon will be a unit length vector 

representing this pattern: 

𝐯1 = (
2

√14
  

2

√14
  

2

√14
  

1

√14
  

1

√14
 ).                                               (2.4) 

Projecting the central sample vector at time t against the eigenvector v1, gives a cross 

correlation coefficient β. For structure-oriented filtering, one scales v1 by β giving the 

KL-filtered version of the seismic data. Note that since the covariance matrix used to 

compute the first eigenvector used seven sample vectors, that the statistical analysis 

involves seven times as much input data as for a simple mean filter. Furthermore, by using 

the laterally varying eigenvector, one better preserves the lateral change in amplitude in 

the original data. 

Coherence 

Coherence is an edge-detection attribute and measures lateral changes in the 

seismic waveform and amplitude. There are several popular coherence algorithms, 

including those based on semblance (Marfurt et al., 1998), eigenstructure (Gersztenkorn 

and Marfurt, 1999), the gradient structure tensor method (Bakker et al., 1999), and the 

Sobel filter (Luo et al., 1996 & Luo, 2002). In our workflow, we use an energy ratio 

coherence of J traces in a ±K sample analysis window defined as the ratio between the 

energy of the coherent (KL-filtered data, 𝑢𝐾𝐿) to the energy of the unfiltered (or total data, 

𝑢) within the analysis window centered about the analysis point: 

𝐶 =
𝐸𝑐𝑜ℎ

𝐸𝑡𝑜𝑡𝑎𝑙+𝜀
,                                                        (2.5) 

where the coherent energy 𝐸𝑐𝑜ℎ  (the energy of the KL-filtered data) is: 
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𝐸𝑐𝑜ℎ = ∑  {[𝑢𝐾𝐿(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)]
2

+ [𝑢𝐾𝐿
𝐻 (𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)]

2
} +𝐾

𝑘=−𝐾 ,             

(2.6) 

the total energy  𝐸𝑡𝑜𝑡𝑎𝑙   of unfiltered data in the analysis window is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑  {[𝑢(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)]
2

+ [𝑢𝐻(𝑡 + 𝑘∆𝑡 − 𝑝𝑥𝑗 − 𝑞𝑦𝑗)]
2

}+𝐾
𝑘=−𝐾 ,             

(2.7) 

and where a small positive value, ε, prevents division by zero, and superscript H denotes 

the Hilbert transform. Application of Hilbert transform of seismic data avoids unstable 

estimates of the covariance matrix for small vertical windows centered about a trace zero 

crossing (Marfurt, 2006). We applied the technique to volumes using a semblance and 

Sobel filter algorithm, as well as the energy ratio coherence algorithm all of which are 

computed along structural dip. There is no significant difference for the larger, through-

going faults. As expected, small discontinuities that are better delineated by energy-ratio 

coherence provide greater details. In contrast, if there is a footprint in the coherence 

images, skeletonization will sharpen it. 

Fault enhancement: 

The goal of fault enhancement is to suppress incoherent noise and enhance faults 

trends. While coherence highlight faults and channel edges, these fault images may be 

broken. A normal fault plane defines the surface between the footwall and the hanging 

wall (Figure 2.3). Following Barnes (2006) and Machado et al. (2016), in an N-voxel (𝛼𝑛) 

spherical analysis window, the second-order moment tensor A of the discontinuity data 

𝛼𝑛(𝑥1, 𝑥2, 𝑥3) is 

𝐀 = [

𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

],                                                       (2.8) 
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where the elements 𝐴𝑖𝑗:  

𝐴𝑖𝑗 = ∑ 𝑥𝑖𝑛𝑥𝑗𝑛𝛼𝑛
𝑁
𝑛=1 ,                                                               (2.9) 

where 𝑥𝑖𝑛 are the distances from the center of the analysis window. If the input coherence 

data is computed from time-migrated data, axis z should be stretched to depth. For planar 

coherence anomalies, the three eigenvalues 𝜆𝑖 of the second moment tensor A will have 

𝜆1 ≥ 𝜆2 ≫ 𝜆3. The eigenvectors 𝐯𝟏and 𝐯𝟐 of the second-order moment tensor represent 

the planar surface, while the eigenvector 𝐯𝟑 represents the normal to the planar surface. 

The eigenvector 𝐯𝟑 has three components with 𝑣31 positive to the north, 𝐯𝟑𝟐 positive to 

the east, and 𝑣33 positive down (Figure 2.3). Machado et al. (2016) applied a directional 

Laplacian of Gaussian (LoG) operator to 3D seismic data to smooth along and sharpen 

the faults perpendicular to locally planar events. The Gaussian smoother is elongated 

along the plane (defined by the eigenvectors 𝐯𝟏 and 𝐯𝟐): 

𝐺𝑚𝑛 = 𝑒𝑥𝑝[−𝑎𝑚
𝑇 𝑹𝑇Λ−1𝑹𝑎𝑛],                                             (2.10) 

where R is the rotation matrix and defined as [𝐯𝟏 𝐯𝟐 𝐯𝟑]. Λ is a diagonal matrix is defined 

as: 

Λ = (

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

),                                                         (2.11) 

where the value of 𝜎1and 𝜎2 is 3 times of the bin size, and 𝜎3 is the bin size. The rotation 

matrix R is aligned with the eigenvector 𝐯𝟑. Thus, the second derivative of the Gaussian 

in the eigenvector 𝐯𝟑 direction (𝜉3) is: 

𝑑2𝐺

𝑑𝜉3

= 𝛾 [
−2

𝜆3
+ 4𝜉3

2] 𝑒𝑥𝑝 [−
1

2
(

𝜉1
2

𝜎1
2 +

𝜉2
2

𝜎2
2 +

𝜉3
2

𝜎3
2)],                              (2.12) 
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where 𝜉1, 𝜉2, and 𝜉3 are aligned along the eigenvector 𝐯𝟏, 𝐯𝟐, and 𝐯𝟑, respectively, and 𝛾 

is a normalization factor. Since the directional LoG filter is based on a Gaussian 

distribution function, we call our filtered result a “fault probability” image. 

Fault skeletonization: 

Finding eigenvector 𝐯𝟑 is key to directionally skeletonize planar anomalies in coherence 

images (Qi et al., 2016). For each voxel, we extract 26 neighboring samples of fault 

probability that fall within a ±𝑑𝑥 ∗ ±𝑑𝑦 ∗ ±𝑑𝑧 gridded window (Figure 2.4). Figure 2.4a 

shows a hypothesized plane in green, intersecting the center of the window at point U14. 

The intersection of 𝐯𝟑 with this window gives the locations (𝑈𝑙𝑒𝑓𝑡, 𝑈𝑟𝑖𝑔ℎ𝑡) which fall in 

the 2D red and blue rectangles, and are then interpolated from the neighboring grid points. 

We assume the center analysis point U14 is at (0,0,0) and the point U1 is at (-dx,-dy,-dz). 

Values of interpolated points 𝑈𝑙𝑒𝑓𝑡 and 𝑈𝑟𝑖𝑔ℎ𝑡 in the analysis window (Figure 2.4) are: 

𝑈𝑙𝑒𝑓𝑡 ≈ [
𝑑𝑥−𝑥𝑙𝑒𝑓𝑡

𝑑𝑥
 

𝑥𝑙𝑒𝑓𝑡

𝑑𝑥
] [

𝑈11 𝑈20

𝑈12 𝑈21
] [

𝑑𝑧−𝑧𝑙𝑒𝑓𝑡

𝑑𝑧
𝑧𝑙𝑒𝑓𝑡

𝑑𝑧

], and                                  (2.13) 

  𝑈𝑟𝑖𝑔ℎ𝑡 ≈ [
𝑑𝑥−𝑥𝑟𝑖𝑔ℎ𝑡

𝑑𝑥

𝑥𝑟𝑖𝑔ℎ𝑡

𝑑𝑥
] [

𝑈7 𝑈16

𝑈8 𝑈17
] [

𝑑𝑧−𝑧𝑟𝑖𝑔ℎ𝑡

𝑑𝑧
𝑧𝑟𝑖𝑔ℎ𝑡

𝑑𝑧

].                                  (2.14)   

If the value at the center of the analysis window, 𝑈14 < 𝑈𝑙𝑒𝑓𝑡 or  𝑈14 < 𝑈𝑟𝑖𝑔ℎ𝑡, no fault 

maximum occurs and we set the skeletonized value to be zero. If the value at the center 

of the analysis window,  𝑈14 ≥ 𝑈𝑙𝑒𝑓𝑡 and 𝑈14 ≥ 𝑈𝑟𝑖𝑔ℎ𝑡, a fault anomaly falls within the 

window. We fit a parabola of the form: 

𝑢(𝜉) = 𝑎𝜉2 + 𝑏𝜉 + 𝑐,                                                              (2.15) 

to the value 𝑈𝑙𝑒𝑓𝑡, U14, and 𝑈𝑟𝑖𝑔ℎ𝑡 (Figure 2.4b). The maximum value Umax and distance 

𝜉𝑚𝑎𝑥 between U14 and location of Umax projection on the eigenvector 𝐯𝟑 is: 
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𝑈𝑚𝑎𝑥 = −
𝑏2

4𝑎
+ 𝑈14,                                                           (2.16) 

𝜉𝑚𝑎𝑥 = −
𝑏

2𝑎
,                                                                        (2.17) 

where  𝑎 and 𝑏 are defined as: 

𝑎 = (𝑈𝑙𝑒𝑓𝑡 + 𝑈𝑟𝑖𝑔ℎ𝑡 − 2𝑈14)/2𝑑2,                                        (2.18) 

𝑏 = (𝑈𝑙𝑒𝑓𝑡 − 𝑈𝑟𝑖𝑔ℎ𝑡)/𝑑2,                                                       (2.19) 

where 𝑑 is the half-length between 𝑈𝑙𝑒𝑓𝑡 and  𝑈𝑟𝑖𝑔ℎ𝑡. In general, Umax does not fall on the 

grid point U14, such that we need to distribute the Umax value into the eight neighboring 

grid points and the weights functions 𝑤𝑘 are based on their distance between the Umax and 

eight neighboring grid points: 

𝑈𝑘 =
𝑤𝑘

∑ 𝑤𝑗
𝑈𝑚𝑎𝑥.                                                            (2.20) 

In Figure 2.5, Umax falls with a sub-cube of the grid analysis window, indicated by the red 

dashed line. We compute skeletonized values on 8 neighboring grid points whose 

weighted average produces the fault probability at the maximum location. Finally, all 

skeletonized values on grid points will be output to the skeletonized image. Figure 2.6 

show a normal fault before and after our directional skeletonization workflow. Coherence 

fault anomalies appear broken on the time slice (Figure 2.6b). While “stairstep” artifacts 

appear on the vertical slice. “Fault” dip azimuth 𝜑 and “fault” dip magnitude θ, which 

are computed from the eigenvector 𝐯𝟑 indicate the direction of skeletonization, with 

the result shown in Figure. After this workflow, faults become sharper and more 

continuous. Stratigraphic features are also preserved, and these can be used to estimate 

fault throws that are indicated by blue arrows in Figure 2.6c. Lateral discontinuities such 
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as shale dewatering syneresis are enhanced after our workflow that is indicated by yellow 

arrow. 

APPLICATION 

Gulf of Mexico (GOM3D): 

We first apply our workflow to a 3D seismic dataset in the Gulf of Mexico 

(GOM3D). The seismic data were acquired by PGS using towed streamer acquisition 

with two sources and three receiver cables with a maximum offset of 6000 m. The dataset 

within the inline and crossline spacing of 123.1ft * 39.4ft (37.5m * 12.5m), covers over 

2723.27 ft2 (253 km2), and has been prestack time migrated. The uplift of the western salt 

dome is contemporaneous with the upper minibasin fill, and it occurred earlier than the 

eastern salt dome rise. Structural and stratigraphic features such as salt domes, mass 

transport complexes, and undeformed sediment and shale, are major seismic facies in this 

area. Figure 2.7 displays a time slice at 1s and a vertical slice AA’ through the seismic 

amplitude volume. Random and coherent noise overprint reflectors in the migrated 

dataset. After principal-component structure-oriented filtering (Figures 2.7c and 2.7d), 

the signal-to-noise ratio of lateral and vertical discontinuities has increased as seen in 

both clearer faults and block delineation within the mass transport complexes. Figures 

2.7e and 2.7f shows the rejected noise. Figure 2.8 shows the comparison of coherence 

before and after principal component structure-oriented filtering. Salt domes and mass 

transport complexes exhibit a “salt and pepper” pattern in the coherence volume. Figure 

2.8c and 2.8d show that coherence computed after filtering preserves lateral and vertical 

discontinuities, and suppresses random and coherent noises. Coherence computed from 

the structure-oriented filtered seismic amplitude volume exhibits a better signal-to-noise 
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ratio. Small cross faults and other discontinuities within the mass transport complexes are 

clearly imaged at the time (Figure 2.8c) and vertical slices (Figure 2.8d) through 

coherence. However, fault anomalies still exhibit the “stairstep” artifacts. Figures 2.9a 

and 2.9b show directionally skeletonized coherence images. Fault anomalies are now 

more continuous, exhibit higher contrast, with reduced “stairstep” artifacts. Salt edges, 

MTC edges, and many subtle faults (indicated by green arrows in Figure 2.9) are 

enhanced in both time and vertical slices. The noise that does not represent locally planar 

discontinuities is suppressed during the skeletonization step. In Figure 2.10, we use Hue-

Lightness-Saturation (HLS) color model to co-render the fault dip magnitude (against S), 

the skeletonized fault probability (against L), and the fault dip azimuth (against H). In 

Figure 2.10, the fault orientation is readily seen. Numerical computation of fault 

probability and orientation at each voxel provide an easy way to identify fault sets, either 

visibly or through statistical analysis. Note that the coherent noise within the salt has been 

organized and should be interpreted as noise. More sophisticated processing produces 

homogeneous reflection salt images in this part of the Gulf of Mexico. 

The signal-to-noise ratio of this dataset was very low, and the dataset was time-

migrated. We applied the workflow to this dataset, and found significant improvement 

after applying our skeletonized fault probability workflow. However, there are still some 

spikes and are poorly displayed. In terms of spikes, coherence values will always range 

between 0 and 1. For this reason, isolated spikes do not cause problems so long as they 

do not align with other spikes. The biggest limitation in applying attributes and 

skeletonization to this kind of data is those interference phenomena corresponding to 

overlapping, poorly migrated events will give rise to discontinuities, which of course will 
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then be sharpened. Such data limitations, including issues as basic as fault shadows, need 

to be properly addressed in the imaging algorithm, and cannot be corrected by any data 

conditioning or image processing. 

Great South Basin (GSB3D): 

Our second test data is from the Great South Basin, New Zealand. The 

intracontinental rift basin formed during the mid-Cretaceous and is divided into several 

highly faulted sub-basins that contain very thick sedimentary fill. A polygonal fault 

system is very developed in the area, and its genetic mechanisms include gravity collapse, 

density inversion, syneresis and compactional loading (Cartwright et al., 2003), while 

syneresis is also seen in the dataset. The inline and crossline spaces are both 12.5m, and 

the time sample rate is 2ms. Figure 2.11 shows the original seismic amplitude. We 

compute coherence from the seismic amplitude volume. In Figure 2.12a, polygonal faults 

are well delineated. However, the well-known “stairstep” artifacts are exhibited on the 

vertical slice (Figure 2.12c). The syneresis pattern (Figure 2.12b and 2.12c) is too chaotic 

to be interpreted. Fault trends in coherence are disconnected, especially on curved faults. 

After our workflow (Figure 2.13), polygonal faults are sharper and more continuous, and 

“stairstep” artifacts have been suppressed. Syneresis, and other stratigraphic features, are 

also enhanced after skeletonization. The “thick” black smears correspond to faults 

subparallel to the vertical slices. Figure 2.14 shows a 3D view of skeletonized fault 

probability co-rendered with fault dip azimuth and seismic amplitude data. Note that 

polygonal fault planes and syneresis are both preserved after directional skeletonization 

in the 3D volume, and fault planes associated with fault dip azimuth are readily identified. 

Lateral discontinuities such as syneresis are also seen. 
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Comparison of directional skeletonization with swarm intelligence: 

We apply our directional skeletonization method and swarm intelligence to the 

GSB3D survey, and compare these results in fault and syneresis enhancement. Figure 

2.15a shows a time slice at 1.72s through the coherence volume that is used as the input 

for comparison of the two different methods. The polygonal faults (green rectangular) 

and syneresis (orange arrow) are both present in this time slice. Figure 2.15b shows the 

directional skeletonization result, and Figure 2.15c shows the result of swarm 

intelligence, both computed from coherence. Note that, directional skeletonization shows 

more details (subtle faults) than swarm intelligence in the polygonal fault zone. Swarm 

intelligence generates linear artifacts, but directional skeletonization does not, as 

indicated by the red arrows in Figures 2.15c and 2.15d. Figure 2.15d shows the swarm 

intelligence result with the directionally skeletonized volume as input. The results 

obtained by applying swarm intelligence to the directionally skeletonized data are better 

than that those obtained from coherence, preserving more subtle discontinuities in the 

polygonal faults zone. However, despite applying many different combinations of 

parameters for swarm intelligence, the syneresis area could not be preserved (orange 

arrow). We conclude with Figure 2.16 showing same volumes as in Figure 2.15 but on 

vertical slices. The swarm intelligence result with directional skeletonization volume as 

input shows more continuous and sharper fault images than the one computed directly 

from coherence. The directional skeletonization workflow in Figure 2.16 exhibit fewer 

“stairstep” artifacts than those in Figure 2.16 (red arrows). Blue arrows indicate faults 

better mapped by swarm intelligence than by directional skeletonization, at the expense 

of organizing other features that are probably noise. Stratigraphic features are preserved 
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and enhanced using the directional skeletonization workflow. Comparing Figure 2.16c 

with 2.16d, we can see that swarm intelligence with directional skeletonization as input 

created fewer artifacts. Swarm intelligence and the skeletonization workflow both need 

edge-detection attribute as input. These two methods are sample-by-sample analysis, and 

computation cost of these two methods are similar. For the dataset GSB3D with 500 by 

280 traces and 750 time samples, the enhancement and skeletonization take around 200s. 

Applying the same dataset to swarm intelligence, the computation time is around 220s. 

CONCLUSIONS 

We have developed a 3D fault directional skeletonization workflow to skeletonize 

and segment fault images. First, we applied structure-oriented filtering to suppress 

random and coherent noise. Next, we computed coherence as our edge-detection attribute 

to detect discontinuous features. Coherence computed after data conditioning using 

structure-oriented filtering (SOF), followed by iterative application of a LoG filter and 

directional skeletonization rejects noise, enhances faults in both vertical and lateral 

direction. We skeletonize the results perpendicular to the “fault” dip azimuth and dip 

magnitude, resulting in sharper, more continuous fault and stratigraphic edges. These 

discontinuous features can be color-coded by their dip azimuth and magnitude, or as a 

suite of independent, azimuthally limited fault sets that may be found to have a greater 

risk of communicating with adjacent aquifers, or on the positive side, to be better 

correlated with open fractures. Subtle, stratigraphically limited features such as faults 

within mass transport complexes and syneresis in shales are also enhanced. Multiattribute 

display of the skeletonized faults and its dip magnitude and azimuth readily display 

interfault relationships. Comparing our directional skeletonization workflow with swarm 
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intelligence, we find the swarm intelligence has the danger of enhancing small artifacts, 

which are not present in our skeletonization results. Swarm intelligence and directional 

skeletonization both reduce “stairstep” artifacts, and connect previously discontinuous 

fault segments. Our skeletonization workflow preserves stratigraphic features, such as 

dewatering syneresis, which swarm intelligence smears. Cascading directional 

skeletonization with the swarm intelligence results in more continuous and sharper fault 

imaging than with coherence as input. 
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Figure 2.1 Workflow illustrating the steps used in our directional skeletonization 

workflow. The interpreter begins with post-stack data conditioning by applying structure-

oriented filtering on seismic amplitude data. After filtering, coherence or other edge-

detection attribute is computed. A directional LoG filter produces volume estimates of 

the probability, dip magnitude, and dip azimuth of locally planar events. These events are 

then skeletonized to produce sharper images. 
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Figure 2.2 Cartoon of an analysis window with five traces and seven samples. Note that 

the wavelet amplitude of the three left most traces is about two times larger than that of 

the two right-most traces. 
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Figure 2.3 Cartoon of a normal fault defined by the eigenvector 𝐯𝟑 perpendicular to the 

fault plane. The projection of 𝐯𝟑 on the horizontal plane defines the “fault” dip azimuth 

𝜑, and the angle between 𝐯𝟑 and the z-axis defines the “fault” dip magnitude. 
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Figure 2.4 Cartoon showing details of directional skeletonization. (a) The analysis 

window about each voxel consisting of eight subcubes and 26 neighboring voxels. The 

green plane indicates a locally planar event with center point 𝑈14. 𝑈𝑙𝑒𝑓𝑡 and 𝑈𝑟𝑖𝑔ℎ𝑡 define 

points where the eigenvector 𝐯𝟑 intersects the analysis window. The attribute value at 

𝑈𝑙𝑒𝑓𝑡 is interpolated from the corner values of the red square 𝑈11, 𝑈12, 𝑈20, and 𝑈21. The 

attribute value at 𝑈𝑟𝑖𝑔ℎ𝑡 is interpolated from the corner values of the blue square 𝑈7, 𝑈8, 

𝑈16, and 𝑈17. (b) Further interpolation along axis 𝐯𝟑 by fitting the parabola to 𝑈14. 𝑈𝑙𝑒𝑓𝑡 

and 𝑈𝑟𝑖𝑔ℎ𝑡 to estimate the maximum value Umax and its location. 
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Figure 2.5 Cartoon showing the location of Umax in 3D. In general, Umax does not fall on 

a voxel, such that Umax needs to be distributed to its eight neighboring grid points for 

subsequent display. 
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Figure 2.6 Examples of two normal faults seen on a time and vertical slice through (a) the 

original seismic amplitude volume, (b) the coherence volume, and (c) directional 

skeletonization volume. Purple arrow indicates the eigenvector  𝐯𝟑 in the vertical 
slice, whereas purple dashed arrow indicates its projection on the time slice. “Fault” 

dip azimuth 𝜑 and “fault” dip magnitude θ are illustrated in (b). Fault anomalies 
exhibit the well-known “stairstep” artifacts, such that fault planes are disconnected. 
After our directional skeletonization workflow, faults become sharper and more 
continuous. Stratigraphic features are preserved, which can be used to estimate 
fault throws that are indicated by blue arrows in (c). Lateral discontinuities are also 
enhanced after our workflow those are indicated by the yellow arrow in (c). 
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Figure 2.7 (a) Time slice at t=1s and (b) vertical slice along line AA’ through the original 

seismic amplitude volume in the GOM3D survey. (c) Time slice at t=1s and (d) vertical 

slice along line AA’ through the seismic amplitude volume after structure-oriented 

filtering. (e) Time slice at t=1s and (f) vertical slice along line AA’ through the rejected 

“noise” volume. Note that the seismic amplitude volume after structure-oriented filtering 

shows a better signal-to-noise ratio. All images are at the same scale amplitude. 
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Figure 2.8 (a) Time slice at t=1s and (b) vertical slice along line AA’ through coherence 

computed from the original seismic amplitude volume. (c) Time slice and (d) vertical 

slice through coherence computed from the structure oriented filtered seismic amplitude 

volume. Note that low coherence values parallel to weak low signal-to-noise ratio 

reflectors are suppressed. Thoroughgoing normal faults and localized discontinuities 

internal to the mass transport complexes (MTCs) are slightly enhanced. Red polygon 

indicates a salt dome. 



90 

 

 

Figure 2.9 (a) Time slice at t=1s and (b) vertical slice along line AA’ through the 

directionally skeletonized fault probability attribute. Note that faults after our workflow 

are more continuous, with higher contracts. Subtle features within the mass transport 

complexes are also enhanced. “Stairstep” artifacts in the faults have been reduced, and 

anomalies parallel to stratigraphy suppressed. 
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Figure 2.10 3D view showing several inlines of the directional skeletonization result co-

rendered with seismic amplitude against the Hue-Lightness-Saturation. Faults orientation 

is readily seen. More organized artifacts now appear within the salt and should be ignored. 
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Figure 2.11 Time slice at (a) t=1.3s, and at (b) t=1.72s, and (c) a vertical slice along BB’ 

through the original seismic amplitude volume in GSB3D survey. Polygonal faults 

developed in this area, as well as syneresis features (less accurately referred to as shale 

dewatering) appeared at t=1.72s. 
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Figure 2.12 The same slices are shown in the previous figure through the coherence 

volume. Polygonal faults are well delineated. Faults in (b) exhibit the well-known 

“stairstep” artifacts on the vertical slices. The syneresis pattern in (b) is too chaotic to be 

interpreted. 

 

 

 

 

 

 

 

 

 

 

 



97 

 

 



98 

 

Figure 2.13 The same slices shown in the previous figure through the directionally 

skeletonized coherence volume. Compared with the original coherence images in the 

previous figure, polygonal faults are sharper, and more continuous. Random noise is 

suppressed, and subtle faults and other discontinuities are enhanced. In the vertical slice, 

the fault “stairstep” artifacts have been attenuated while syneresis discontinuities are 

enhanced. “Thick” black smears (orange arrows) correspond to faults subparallel to the 

vertical slice. 
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Figure 2.14 3D view showing several inlines and crosslines of the directional 

skeletonization result co-rendered with seismic amplitude using the Hue-Lightness-

Saturation. Note that fault planes after directional skeletonization become sharper, and 

are readily identified. 

 

 

 

 

 

 



100 

 

 



101 

 

 
Figure 2.15 Time slice at t= 1.72s through (a) coherence, (b) directional skeletonization, 

(c) swarm intelligence volumes computed with coherence as input and, (d) with 

directional skeletonization volumes as input. Note that, skeletonization shows more 

subtle faults, has fewer artifacts, and preserves syneresis. Applying swarm intelligence to 

the skeletonized LoG image is better than that applied to coherence. Red arrows indicate 

artifacts generated by swarm intelligence. 
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Figure 2.16 Vertical slices through (a) coherence, (b) directional skeletonization, and 

swarm intelligence volumes with (c) coherence as input, and (d) directional 

skeletonization volume as coherence as input. The skeletonization workflow in (b) 

exhibits fewer “stairstep” artifacts (red arrows) than those in (c) and (d). Blue arrows 

indicate that swarm intelligence maps faults to a greater extent than our directional 

skeletonization, at the expense of organizing other features that may be noise. 
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ABSTRACT 

Since its introduction two decades ago, coherence has been widely used to map 

structural and stratigraphic discontinuities including faults, cracks, karst collapse 

features, channels, stratigraphic edges, and unconformities. With the interest to map 

azimuthal variations of horizontal stress as well as to improve the signal-to-noise ratio 

(SNR) of unconventional resource plays, wide/full azimuth seismic data acquisition has 

become common. Migrating seismic traces into different azimuthal bins costs no more 

than migrating them into one bin. If velocity anisotropy is not taken into account by the 

migration algorithm, subtle discontinuities and some major faults may exhibit lateral 

shifts, resulting in a smeared image after stacking. Based on these two issues, we 

introduce a new way to compute the coherence for azimuthally limited data volumes. 

Like multi-spectral coherence, we modify the covariance matrix to be the sum of the 

covariance matrices, each belonging to an azimuthally limited volume, then use the 

summed covariance matrix to compute the coherent energy. We validate the effectiveness 

of our multi-azimuth coherence by applying it to two seismic surveys acquired over the 

Fort Worth Basin, Texas. Not surprisingly, the multi-azimuth coherence exhibits less 

incoherent noise than coherence computed from azimuthally limited amplitude volumes. 

If the data have been migrated using an azimuthally variable velocity, multi-azimuth 

coherence exhibits higher lateral resolution than that computed from the stacked data. In 

contrast, if the data have not been migrated using an actual azimuthally variable velocity 

model, the misalignment of each image results in a blurring of both the multi-azimuth 

coherence and the coherence computed from the stacked data. This suggests that the 

proposed method promises a future tool for azimuthal velocity analysis.  
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INTRODUCTION 

Seismic attributes are routinely used to quantify changes in amplitude, dip, and 

reflector continuity in seismic amplitude volumes. Coherence is an edge-detection 

attribute that maps lateral changes in the waveform, which may be due to structural 

discontinuities, stratigraphic discontinuities, pinchouts, or steeply dipping coherent noise 

cutting more gently dipping reflectors. Several generations of coherence algorithm have 

been introduced and applied to geological discontinuity detection, including the cross-

correlation (Bahorich and Farmer, 1995), the semblance (Marfurt et al., 1998), the 

eigenstructure method (Gersztenkorn and Marfurt, 1999), the gradient structure tensor 

(Bakker, 2002), and the predictive error filtering (Bednar, 1998) algorithms. All those 

algorithms operate on a spatial window of neighboring traces (Chopra and Marfurt, 

2007). 

Bahorich and Farmer’s (1995) cross-correlation algorithm searches along 

candidate dips for the highest positive normalized cross-correlation coefficient between 

the pilot trace and the nearest two or four neighboring traces in the inline and crossline 

directions resulting in values between 0 (incoherent) and 1 (coherent). Marfurt et al.’s 

(1998) semblance algorithm computes the ratio of the energy of the average trace to the 

average energy of all the traces in an analysis window. Gersztenkorn and Marfurt’s (1999) 

eigenstructure-based coherence algorithm first computes a covariance matrix from a 

window of trace segments oriented along structural dip. In this algorithm, the coherence 

is computed as the ratio of the first eigenvalue to the sum of the all the eigenvalues of the 

covariance matrix. The energy ratio coherence algorithm (Chopra and Marfurt, 2007) also 

used a covariance matrix, but now computed from windowed analytic traces (the original 
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data and its Hilbert transform), and estimates the coherent component of the data using a 

Karhunen-Loeve filter. Like semblance, in this algorithm, the coherence is the ratio of 

the energy of the coherent (KL-filtered) analytic traces to that of the original analytic 

traces. Bakker (2002) computed a version of coherence called “chaos” by computing 

eigenvalues of the gradient structure tensor. The 3x3 gradient structure tensor is computed 

by cross-correlating derivatives of the seismic amplitude in the x, y, and z directions. The 

first eigenvalue represents the energy of the data variability (or gradient) perpendicular 

to reflector dip. If the data can be represented by a constant amplitude planar event, the 

chaos = -1.0. In contrast, if the data are totally random, the chaos = +1.0. Closely related 

to coherence is Luo et al.’s (1996) filter algorithm, generalized to work at longer 

wavelength’s as a generalized Hilbert transform (Luo et al., 2003). Kington (2015) 

compared different coherence algorithms and exhibited the trade-offs among different 

implementations.    

After picking faults directly on vertical slices through the seismic amplitude 

volume, the coherence family of attributes is the most popular tool to map faults on 

seismic time, horizon, and stratal slices. Coherence also delineates channel edges, 

carbonate build-ups, slumps, collapse features and angular unconformities (e.g. Sullivan 

et al., 2006; Schuelke, 2011; Qi et al., 2014). In addition, coherence can also be applied 

to detect seismic textures in multiattribute seismic facies analysis (Qi et al., 2016).  

With the focus on shale resource plays, wide azimuth surveys are commonly 

acquired to orient horizontal wells perpendicular to the maximum horizontal stress 

direction for optimum completion. The signal-to-noise ratio of wide azimuth surveys can 

be significantly improved through improved statics and leverage against ground roll and 
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interbed multiples, and also amenable anisotropy analysis. The axes of azimuthal 

anisotropy are commonly aligned with open fractures and micro cracks. In contrast, the 

ones being opened perpendicular to the axis have minimum azimuthal anisotropy. Several 

authors have applied coherence azimuthally limited volumes with limited results. Chopra 

and Marfurt (2007) found coherence computed from such lower fold data to exhibit 

higher later resolution but also to be noisy. Al-Dossary et al. (2003) attempted perhaps 

the first interazimuth coherence algorithm, but found it provided greater sensitivity to 

data quality than to geology.  

A somewhat related problem is the computation of coherence from spectrally 

limited data volumes. Li and Lu (2014), and Li et al. (2015), computed coherence from 

different spectral components and co-rendered them using an RGB color model. Sui et 

al. (2015) added a covariance matrices computed from a suite of spectral magnitude 

components, obtaining a coherence image superior to that of the original broadband data. 

Marfurt (2017) expanded on this idea, but added coherence matrices computed from 

analytic spectral components (the spectral voices and their Hilbert transforms) along 

structural dip and found improved suppression of random noise and enhancement of small 

faults and karst collapse features. 

In this paper, we build on this last piece of work, but now generalize it to sum a 

covariance matrices computed from a suite of azimuthally limited rather than frequency 

limited volumes. We begin our paper with a review of the energy ratio coherence 

algorithm. We show the improved lateral resolution but reduced signal-to-noise of 

coherence images generated from azimuthally limited seismic data. We then show how 

the multi-azimuth coherence computation provides superior results when applied to a data 
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volume that has been properly migrated using an azimuthally varying velocity model. 

Next, we apply the multi-azimuth coherence algorithm to a data volume that has not been 

properly corrected for azimuthal anisotropy. We conclude with a summary of our findings 

and a short list of recommendations. 

METHOD 

Energy Ratio Coherence 

Coherence is an edge-detection attribute, and measures lateral changes in the 

seismic waveform and amplitude. The covariance matrix is constructed from a suite of 

sample vectors, each parallel to structural dip. Figure 3.1 shows 2K+1=7 sample vectors 

of length M=5, or one sample for each trace. The covariance matrix for this data window 

is  

𝐶𝑚𝑛 = ∑ (𝑑𝑘𝑚𝑑𝑘𝑛 + 𝑑𝑘𝑚
𝐻 𝑑𝑘𝑛

𝐻 ),                                                 (3 − 1)

+𝐾

𝑘=−𝐾

 

where the superscript H denotes the Hilbert transform, and the subscripts m and n are 

indices of input traces. The Hilbert transformed (90o phase rotated) sample vectors don’t 

modify the vertical resolution, but improve areas of low signal-to-noise ratio about zero 

crossing (Gersztenkorn and Marfurt, 1999; Marfurt, 2006). The first eigenvector v(1) of 

the matrix  C best represents the lateral variation of each of the sample vectors.  In Figure 

3.1, each sample vector is an approximate reflects a scaled version of the pattern (2, 2, 2, 

1, 1), where the scaling factor can be positive for a peak, negative for a trough, or zero 

for a zero crossing. The first eigenvector for this cartoon will be a unit length vector 

representing this pattern: 

𝐯(1) = (
2

√14
  

2

√14
  

2

√14
  

1

√14
  

1

√14
 ).                                         (3 − 2) 
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Crosscorrelating this eigenvector with the kth sample vector that includes the analysis 

point gives a cross-correlation coefficient, βk:  

𝛽𝑘 = ∑ 𝑑𝑘𝑚𝑣𝑚
(1)

𝑀

𝑚=1

,                                                                     (3 − 3) 

The Karhunen-Loève filtered data within the analysis window are then  

𝑑𝑘𝑚
𝐾𝐿 = 𝛽𝑘𝑣𝑚

(1)
.                                                                           (3 − 4) 

Note that in Figure 3.1 that the wavelet amplitude of the three left most traces is about 

two times larger than that of the two right-most traces.  

Energy ratio coherence computes the ratio of coherent energy and total energy in 

an analysis window: 

𝐶𝐸𝑅 =
𝐸𝑐𝑜ℎ

𝐸𝑡𝑜𝑡 + 𝜀2
,                                                                         (3 − 5) 

where the coherent energy 𝐸𝑐𝑜ℎ  (the energy of the KL-filtered data) is: 

𝐸𝑐𝑜ℎ = ∑ ∑ [(𝑑𝑘𝑚
𝐾𝐿 )2 + (𝑑𝑘𝑚

𝐻 𝐾𝐿)2],                                     (3 − 6)

𝑀

𝑚=1

+𝐾

𝑘=−𝐾

 

while the total energy  𝐸𝑡𝑜𝑡  of unfiltered data in the analysis window is: 

𝐸𝑡𝑜𝑡 = ∑ ∑ [(𝑑𝑘𝑚)2 + (𝑑𝑘𝑚
𝐻 )2],                                          (3 − 7)

𝑀

𝑚=1

+𝐾

𝑘=−𝐾

 

and where a small positive value, ε, prevents division by zero.  

Multi-azimuth Coherence 

We generalize the concept of energy ratio coherence by summing J covariance 

matrices C(φj) computed from each of the J azimuthally-sectored data volumes: 

𝐂𝑚𝑢𝑙𝑡𝑖−𝜑 = ∑ 𝐂(𝜑𝑗)

𝐽

𝑗=1

.                                                           (3 − 8) 
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The summed covariance matrix is the same M by M size as the original single azimuth 

covariance matrix but is now composed of J time as many sample vectors. Eigen-

decomposition of the covariance matrix is a nonlinear process, such that the first 

eigenvector of the summed covariance matrix is not a linear combination of the first 

eigenvectors computed for the azimuthally limited covariance matrix, in which case the 

resulting coherence would be the average of the azimuthally limited coherence 

computations. To minimize the volume of data to be analyzed, azimuths are commonly 

binned into six 300 or eight 22.50 sectors, although finer binning is common in large 

processing shops. 

APPLICATION 

Our two examples are both from the Fort Worth Basin, Texas. The survey A was 

acquired in 2006 using 16 live receiver lines forming a wide-azimuth survey with a 

nominal 55×55 ft CDP bin size. The data were preprocessed and binned into six azimuths, 

preserving amplitude fidelity at each step before prestack time migration (Roende et al., 

2008). Figure 3.2 shows time slices at t=0.74 s through the six different azimuthally 

limited seismic amplitude volumes. Figure 3.3 shows time slices through the six 

corresponding coherence volumes. Because the signal-to-noise ratio of each azimuthal 

sector seismic amplitude is low, the signal-to-noise ratio of the resulting coherence 

images is also low. Those differences between the azimuthally limited coherence images 

include the shape and size of karst features (indicated by green arrows), the continuity of 

subtle faults (indicated by yellow arrows), and level of incoherent noise. As recognized 

by Perez and Marfurt (2008) faults are best delineated by the azimuths perpendicular to 

them (e.g. Figure 3.3a at 00 vs. Figure 3.3c at 600)  
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Stacking the six seismic amplitude volumes and then compute coherence (the 

conventional analysis workflow) gives the result shown in Figure 3.4a which exhibits 

greater signal-to-noise but slightly lower lateral resolution than the azimuthally limited 

coherence time slices shown in Figure 3.3. Figure 3.4b shows the result of stacking the 

six images shown in Figure 3.3. The signal-to-noise ratio on Figure 3.4b is lower than 

that of Figure 3.4a, however edges of the karst features become appear more pronounced 

than on the traditional coherence computation. Figure 3.4c shows the multi-azimuth 

coherence result computed using the covariance matrix described by equation 8. Note that 

the multi-azimuth coherence displays the higher lateral resolution rather than either 

traditional coherence or the stacked azimuthal coherence, especially in areas with high 

anisotropic effects (indicated in Figure 3.4d). Karst features (indicated by green arrows) 

exhibit highly incoherent anomalies and subtle faults (indicated by yellow arrows) appear 

as strong as major faults. Multi-azimuth coherence not only preserves most of the 

discontinuities seen in each of the azimuthally limited coherence volumes in Figure 3.3, 

but also suppresses incoherent noise.  

The survey B is also from the Fort Worth Basin, Texas. The data was prestack 

time migrated into eight azimuthal sectors, with the 22.5o azimuthal interval. Figure 3.5 

shows time slices at t=1.36 s through four of the coherence volumes 0o-22.5o, 45o-67.5o, 

90o-112.5o, and 135o-157.5o. These data were migrated using an isotropic velocity model, 

such that anisotropy gives rise to lateral shifts (indicated by yellow arrows) in the 

coherence anomalies. Perez and Marfurt (2008) applied a spatial cross-correlation 

technique to the coherence slices to measure lateral shifts of discontinuities and then 

correct them using a data warping algorithm. Figure 3.6a illustrates traditional coherence 
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attribute computed from the stacked seismic amplitude volume. Note the signal-to-noise 

ratio in Figure 3.6a is higher than that in Figure 3.5, because random noise is suppressed 

after stacking azimuthally limited seismic amplitude volumes. However, Figure 3.5 

exhibits the higher lateral resolution than Figure 3.6a. Lateral shifts (indicated by yellow 

arrows) of discontinuities observed from different azimuthally limited coherence 

volumes, have been smeared after the stacking step. In general, applied isotropic velocity 

to the areas with anisotropic effects (aligned nature fractures), or hydraulically induced 

fractures, will give rise to azimuthal variations of discontinuities. Guo et al. (2016) 

compared this data (before hydraulic fracturing) with adjacent data (after hydraulic 

fracturing), and found that this data exhibits strong anisotropic effects along faults by 

correlating most-positive curvature and amplitude variation with azimuth (AVAz) 

anisotropy. Figure 3.6b shows the co-rendered RGB plot of azimuthally limited 

coherence volumes 0o-22.5o (red), 45o-67.5o (green), 90o-112.5o (blue). If the three input 

azimuthal coherence volumes were perfectly aligned, the coherent part of the co-rendered 

RGB image would be white and aligned faults would be black. However, in the co-

rendered RGB image, combining three colors of those azimuthal coherence volumes, the 

two major faults in Figure 3.6b are displayed more continuous by different color rather 

than in Figure 3.6a, which indicates that faults are more continuous after stacking all 

azimuthally limited coherence volumes like in Figure 3.4b. Areas that appear to be 

magenta indicate that the azimuthal coherence volume 0o-22.5o is less coherent to other 

two volumes, whereas areas that appear to be blue indicate that the azimuth coherence 

volume 90o-112.5o is less coherent. Figure 3.6c shows the multi-azimuth coherence 

attribute. Compared with figure 3.6a and b, Figure 3.6c illustrates significant 
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improvements in the delineation of areas with lateral shifts (indicated by yellow arrows). 

Two major faults exhibit highly incoherent anomalies. Figure 3.6b and Figure 3.6c 

indicate similar discontinuous anomalies, but Figure 3.6c exhibits higher signal-to-noise 

ratio. Also, lateral resolution, especially in less coherent areas, has been increased.  

CONCLUSIONS 

We have introduced a new way to compute coherence of azimuthal sectors that 

preserves subtle discontinuities seen on the individual azimuthal volumes. The new multi-

azimuth coherence can avoid smearing lateral variations and suppress incoherent noise. 

The algorithm consists of computing a covariance matrix for each azimuthal sectors and 

summing the results. Eigen-decomposition of the summed covariance matrix of all 

azimuthally limited volumes is a nonlinear process, such that the first eigenvector of the 

summed covariance matrix is not a linear combination of the first eigenvectors computed 

for the azimuthally limited covariance matrix. The summed covariance matrix provides 

a superior image to those provided by stacking the data and computing coherence, or by 

stacking the coherence computed from each azimuthally limited seismic volume. 

Comparing to traditional coherence or the stacked azimuthal coherence, the multi-

azimuth coherence displays the higher lateral resolution, and exhibit karst collapse 

features and subtle faults that appear as clear as the major faults. Although RGB blending 

can only co-render these attribute volumes at a time, it provides a powerful tool that 

measures imaging problems associated with anisotropy. Survey A from the southwest 

part of the Fort Worth Basin exhibits only moderate azimuthal anisotropy. Fault images 

at different azimuths align in the RGB images and appear as black, while the elliptical 

collapse features express a color that favors the azimuth perpendicular to the orientation 
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of the edge. Survey B from the northeast part of the Fort Worth Basin straddles the 

mineral wells fault and exhibits considerate anisotropy. Therefore, the fault images are 

misaligned and appear as a suit of red, green, and blue anomalies. Summing the 

corresponding misaligned covariance matrices results in a blurred coherence image. 

While the improvement over coherence computed from the stacked data is minimal, we 

hypothesize that addressing these misalignment issues may provide a future anisotropic 

velocity analysis tool and quality control measure. 
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Figure 3.1 Cartoon of an analysis window with five traces and seven samples. Note that 

the wavelet amplitude of the three left most traces is about two times larger than that of 

the two right-most traces. 
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Figure 3.2 Time slices at t=0.74s through azimuthally limited migrated seismic amplitude 

volumes: (a) 165o to 15o, (b) 15o to 45o, (c) 45o to 75o, (d) 75o to 105o, (e) 105o to 135o, 

and (f) 135o to 165o. Note azimuthal variations and that although the signal-to-noise ratio 

of each azimuthal sector is low, one can identify faults and karst features. 
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Figure 3.3 Time slices at t=0.74s through coherence volumes computed from the 

azimuthally limited data shown in Figure 3.1: (a) 165o to 15o, (b) 15o to 45o, (c) 45o to 

75o, (d) 75o to 105o, (e) 105o to 135o, and (f) 135o to 165o. Although one can identify 

faults (yellow arrows) and karst collapse features (green arrows), the images are quite 

noisy. 
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Figure 3.4 Time slices at t=0.74s through coherence volume computed from (a) the 

poststack seismic amplitude data, (b) the sum of the coherence shown in Figure 3.2, (c) 

the multi-azimuth coherence, and (d) the top Marble Fall limestone through the co-

rendered anisotropic intensity εanis and azimuth ψazim. Note there is the improved lateral 

resolution of the multi-azimuth coherence. Edges of karst features (indicated by green 

arrows) are better delineated, and subtle discontinuities (indicated by yellow arrows) are 

as strong as major faults. The result obtained by stacking the azimuthal coherence 

volumes is as same places noisy and in other slices. The co-rendered anisotropic intensity 

εanis and azimuth ψazim image indicates the areas with high anisotropic effects, where also 

correspond to lateral variation areas. 
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Figure 3.5 Time slices at t=1.36s through coherence volume computed from the azimuthal 

sector (a) 0o-22.5o, (b) 45o-67.5o, (c) 90o-112.5o, and (d) 135o-157.5o in the second dataset. 

Note that, there are significant differences between each azimuthal coherence. Lateral 

shifts of discontinuities are indicated by yellow arrows. 
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Figure 3.6 Time slices at t=1.36s through (a) the poststack coherence volume, (b) the 

RGB image computed by azimuthal sectors 0o-22.5o, 45o-67.5o, 90o-112.5o, and (c) the 

new multi-azimuth coherence. Note that, there are significant improvements in 

delineation of lateral shifted faults (indicated by yellow arrows) in the multi-azimuth 

coherence. Lateral resolution especially in less coherent areas has been better delineated. 
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ABSTRACT 

Much of seismic interpretation is based on pattern recognition, such that 

experienced interpreters are able to extract subtle geologic features that a new interpreter 

may easily overlook. Seismic pattern recognition is based on the identification of changes 

in 1) amplitude, 2) phase, 3) frequency, 4) dip, 5) continuity, and 6) reflector 

configuration. Seismic attributes, which providing quantitative measures that can be 

subsequently used in risk analysis and data mining, partially automate the pattern 

recognition problem by extracting key statistical, geometric, or kinematic components of 

the 3D seismic volume. Early attribute analysis began with recognition of bright spots 

and quickly moved into the mapping of folds, faults, and channels. While a novice 

interpreter may quickly recognize faults and channels on attribute time slices, karst 

terrains provide more complex patterns. The goal of this tutorial is to instruct the attribute 

expression of a karst terrain in the western part of the Fort Worth Basin, Texas, United 

States of America. Karst provides a specific expression on almost every attribute. 

Specifically, karst in the Fort Worth Basin Ellenburger Group exhibits strong dip, 

negative curvature, low coherence, and a shift to lower frequencies. Geomorphologically, 

the inferred karst geometries seen in our study areas (Harris 3D, Texas) indicate strong 

structural control, whereby large-scale karst collapses is associated with faults and where 

karst lineaments are aligned perpendicularly to faults associated with reflector rotation 

anomalies. 
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INTRODUCTION 

The word ‘karst’ is a German word which denotes the area of modern Slovenia 

known as Kras and to the ancient Roman as Carso. The well drained limestone terrain 

and extensive system of natural caverns makes Kras an important wine producing area. 

The word karst is now used to describe a carbonate terrain that has undergone significant 

diagenetic alteration which give rise to enhanced joints, caves, and collapse features. 

Paleo-karst play many roles in oil and gas reservoirs. Ordovician paleo-karst is a main oil 

and gas reservoir in the Tarim Basin, China where reservoir depth can reach 6 to 7 km 

(Chen et al., 2010). Across the Central Basin Platform of west Texas, karst-processes are 

responsible for the vuggy reservoir rock, and also the anhydrite-plugged updip seal (Duo, 

2011). In shale resource plays, such as the Barnett Shale unconformably lying upon the 

Ellenburger in many areas of the Fort Worth Basin, karst can form ‘geohazards’. Wells 

that intersected collapse features and diagenetically altered faults and joints, will produce 

so much water from the underlying aquifer, which should be abandoned. In the Barnett 

and Eagle Ford shale, such hazards are often fault controlled, and many interpreters call 

this ‘a string of pearls’ (Schuelke, 2011). In the Mississippi lime play of northern 

Oklahoma and southern Kansas where the average pay cutoff is a 5% water cut, the deeper 

Ordovician-age karst Arbuckle (Ellenburger equivalent) formation provides the capacity 

to dispose of the 95% water (Elebiju et al., 2009). 

The Fort Worth Basin Texas Barnett Shale was the first successfully exploited shale 

resource play in North America. Like most resource plays, the low permeability Barnett 

Shale serves as source rock, reservoir rock, trap, and seal. Production is most often 

achieved through the use of horizontal wells and hydraulic fracturing. In the “core” 
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producing area of the Fort Worth Basin, the Barnett Shale lies below the Marble Falls 

Limestone and above the Viola Limestone (Figure 4.1). In general, quartz- and dolomite-

rich rocks are brittle, while calcite-rich rocks are ductile (Wang and Gale, 2009).  In our 

study area, the Barnett Shale lies unconformably on top of the relatively brittle, dolomitic 

Ellenburger Group (Holtz and Kerans, 1992). Here, elsewhere, the extensively karst-

modified Ellenburger presents numerous drilling-related risks.  

Faults and fractures, associated with Ellenburger collapse, often propagate through 

the overlying Barnett Shale. Sullivan et al. (2006) and Roth and Thompson (2009) 

describe fault-controlled collapse features in a survey without a Viola hydraulic fracture 

barrier in western Wise Co., TX (Figure 4.1). Khatamadi et al. (2013) described basement 

control of karst using the same survey described in this paper.  Hardage et al. (1996) and 

McDonnell et al. (2007) describe how these deeper collapse features locally enhanced 

accommodation and provided depocenters for Pennsylvanian-age Bend Conglomerates. 

Seismic attributes are routinely used to map geologic features of interest. Coherence 

(e.g. Bahorich and Farmer, 1995) is routinely used to identify faults and channel edges. 

Curvature (e.g. al-Dossary and Marfurt, 2006) is used to map folds and flexures. Spectral 

components (e.g. Partyka et al., 1999) are used to constrain lateral variations in channel 

thickness. Qi and Castagna (2013) illuminate faults and karst detection using amplitude 

and phase spectrum and PCA fault-detection attribute which calculates the first principal 

component of most positive curvature, coherence, variance and phase spectrum. Often, 

interpreters want to know “which attribute is best for illuminating a particular geologic 

feature”. In this tutorial, we illustrate the value of using multiple seismic attributes to 

illuminate paleo-karst terrain features common within the Fort Worth Basin. We will 
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argue that the integrative use of mathematically independent attributes can illuminate 

kinematically related deformation thereby reducing the risk of interpreter error. 

We begin our tutorial with a brief summary of the geology of the study area. Next 

we describe post-stack data conditioning that suppresses migration artifacts and improves 

spectral bandwidth. Then we introduce a suite of seismic attributes, first displaying them 

as time slices through attribute volumes, then as horizon slices along the upper 

Ellenburger. As we discuss each attribute, we attempt to link the attribute expression to a 

specific component of the geology (e.g. the structural dip of collapse features). We will 

also address potential interpretation pitfalls when mathematically coupling attributes. We 

conclude by providing insights into the geology of the Fort Worth Basin and showing the 

value of multiattribute visualization. 

GEOLOGICAL BACKGROUND 

The Fort Worth Basin is one of several basins that formed during the late 

Paleozoic Ouachita Orogeny, generated by convergence of Laurasia and Gondwana 

(Bruner and Smosna, 2011). The Mississippian-age organic-rich Barnett Shale gas 

reservoir is a major resource play in the Fort Worth Basin. It extends over 28,000 mi2 

with most production coming from a limited area where the shale is relatively thick and 

isolated between effective hydraulic fracture barriers. Conformably overlying the Barnett 

Shale is the Marble Falls Formation. The lower Marble Falls consists of a lower member 

of interbedded dark limestone and gray-black shale. Underlying the Barnett Shale are the 

Ordovician Viola-Simpson Formations, which dominantly consist of dense limestone, 

and dolomitic Lower Ordovician Ellenburger Group.  
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 The upper surface of the Ellenburger records the 2nd-order Sauk-Tippecanoe 

erosional unconformity which is characterized by extensive karst and solution-collapse 

(Loucks, 2003). Lucia (1971) first recognized the genetic relationship between karst 

dissolution and breccias seen in the Ellenburger Group. Kerans (1989, 1990) established 

the karst and cave models (Figure 4.2) and their development in the Ellenburger Group. 

This paleocave model forms the basis of the paleo-karst model which includes a 

paleocave floor, fill, and roof. Faulting and local subsidence may also be associated with 

karst and solution-collapse features on the top of the Ellenburger Group (Gale et al., 

2007). Pore networks in the Ellenburger Group are complex because of the amount of 

brecciation and fracturing associated with karst. In the Fort Worth Basin, the Ellenburger 

Group is almost always a water-bearing formation. Faults and karst in the Ellenburger 

Group provide vertical conduits into the overlying Barnett Shale. Hydraulic fracturing 

may open these zones of weakness resulting in a well that produces large quantities of 

water. For this reason, mapping karst, joints, and fault “geohazards” in the Ellenburger 

Group is an important precursor to successful Barnett Shale completion.  

 Karst-related fractures are common in the upper Ellenburger (Kerans, 1989). 

Tectonic faults can serve as conduits for meteoric fluids that water circulation which favor 

subsequent dissolution (Loucks, 2008). Preferential dissolution along intersecting joints 

and faults, give rise to elliptical collapse features (Sullivan et al., 2006). Although karst 

is usually associated with meteoric waters, “bottoms-up” karst (i.e. hydrothermal 

alteration) can also occur (Sullivan et al., 2003). Operators have found copper 

mineralization in at least one Wise Co. well. Mineralization of Mississippi lime fractures 

are common in Osage Co., OK, and commercial exploitable Mississippi Valley Type 
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lead-zinc deposits occur further east in the tri-state area of Oklahoma, Kansas, and 

Missouri (Leach, et al., 1993). Sullivan et al., 2006; Elibiju et al., 2009; Khatamadi et al., 

2013 provide evidence of basement-controlled faulting, hydrothermal mineralization, and 

collapse chimneys in the Fort Worth Basin. We expect similar mineralization and 

bottoms-up karst within our study area. 

DATA CONDITIONING 

A 3D seismic acquisition program was undertaken in 2006 by Marathon Oil Co. 

using 16 live receiver lines forming a wide-azimuth survey with a nominal 55 by 55 ft 

CDP bin size to image the Barnett Shale at approximately 3000 ft TVDSS or 0.7 s TWT 

(Roende et al., 2008). Although data quality is excellent, minor improvements through 

post stack data conditioning can significantly facilitate and improve subsequent 

interpretation. Our post-stack data conditioning workflow is shown in Figure 4.3a. This 

workflow contains two major steps: the first step is application of principal-component 

structure oriented filtering (SOF), and the second step is spectral balancing. Figure 4.3b 

indicates general steps of principal-component structure oriented filtering (SOF). We can 

create a single waveform which best fits with each original seismic trace (step 1-2, Figure 

4.3b). The waveform is best coherent wavelet that fix each trace by the approximate scale 

which calculates from the best fit waveform and each trace. The lateral variation of the 

amplitude along structural dip is called the eigenvector 𝑣(1). One can take derivatives of 

this eigenmap. Such derivatives will be the input for subsequent calculations of 

“amplitude curvature”. Figure 4.4 shows the spectrum for the entire survey before (a) and 

after (b) and a representative seismic line before (c) and after (d) the data conditioning 

workflow. A common spectral balancing approach is to estimate the coherent (signal) 
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part of the seismic trace as that which cross-correlates with neighboring traces. We 

estimate the coherent part of the seismic trace using two passes of a 9-trace structure-

oriented filter. To minimize the risk of impact of removing geology, we then apply a 

single time-variant spectral balancing operator to the entire volume. Note that low 

amplitude but “annoying” cross-cutting migration noise is suppressed, fault and karst 

edges are preserved. This data conditioning routine, which focuses on spectrum 

broadened so that improve the resolution within the thin Barnett Shale. 

KARST ON ATTRIBUTE TIME SLICES 

Seismic amplitude 

Seismic amplitude is the most common “attribute” used in seismic interpretation. 

If a geologic feature is not measurable by seismic amplitude and phase, no derivative 

attributes will enable identification. In Figure 4.4 (c) and (d) we see two strong reflections 

representing the top of Marble Fall and the top of Ellenburger. The organic-rich Barnett 

Shale is located between these two units (Figure 4.1). Three karst collapse features are 

recognizable on this section. The largest karst doline is visible along the margins of a 

fault, and two smaller compaction-induced sagging are situated some distance away from 

any faults. Below the top of the collapses, within the Ellenburger, and below collapse 

features, rapid changes in reflector dip, a decrease in continuity, and a decrease in 

frequency are seen. Figure 4.5 shows a time slice at t=0.750 s from the seismic amplitude 

volume. Red arrows indicate faults that are better delineated by attribute processing. 

However, note that the larger karst dolines features indicated by the yellow arrows are 

clearly seen within the traditional amplitude volume. This appearance is our first example 

of “mixed” attribute response. That is, the elliptical features are not a function of lateral 
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changes, but rather lateral change in reflection time, or dip, resulting in the onion-ring. 

The green arrow marks a smaller karst features that is to be seen in seismic amplitude 

slices. 

Structural dip 

A major characteristic of karst collapse is their bowl-shape appearance with 

strongly dipping sides. Figures 4.6a-d show time slices at t=0.750 s for apparent dip 

components at 0°, 45°, 90° and 135° from north. Figure 4.7 shows mathematical model in 

defining reflector dip. Figure 4.8a shows their corresponding dip magnitude while Figure 

4.8b illustrates the dip azimuth modulated by dip magnitude using a 2D color bar. The 

larger karst collapses (yellow arrows) and the major faults (red arrows) exhibit high dip 

anomalies. Very subtle flexures and joints are best illuminated by the apparent dip 

component perpendicular to them. As observed on Figure 4.6a-d, large bowl-shape karst 

collapses features are coincident with large faults with laterally extensive damage zones. 

The red dashed lines in Figure 4.8a and b, suggest that these large karst collapse features 

are structurally laterally linked by faults or joints, giving rise to what many interpreters 

refer to as a ‘string of pearls’ (Schuelke, 2011). We interpret the features indicated by the 

blue arrows to be eroded valleys or cave collapses depended on Kerans paleocave models 

(Kerans, 1988, 1989, 1990). Other low magnitude anomalies (green arrows) are likely 

smaller scale karst features that are relatively distal to the major fault zones. Orange 

arrows indicate a relatively rugose surface that is free of large collapse. This rugose area 

is south way extension while karst collapse features are north way extension (it will be 

shown on Figure 4.17) and the interface between the top Ellenburger and the lower 

Barnett Shale is shallow at south way. 
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 Correlating the dip magnitude, azimuth attribute time slice (figure 4.8) to apparent 

dip components (figure 4.6), reveals collapse features that are expressed as steeply 

dipping edges which in this image appear as black ellipses. While the components of 

vector dip are useful for interpretation, they also serve as input for other attributes. 

Reflector curvature, rotation, and convergence are directly computed from vector dip, 

while coherence, amplitude gradients, textures, and structure-oriented filtering are 

computed along vector dip.  

 When reflectors are horizontal, displays of azimuth calculations are 

understandably fruitless. However, to overcome this limitation we propose modulating 

dip azimuth by dip magnitude using a 2D color bar as shown in Figure 4.8b. Here, the 

broad magenta (NE) and green (SW) bands indicate rotation about the major normal faults 

cutting the survey.  The dissolutional caves are “brighter” with a radial pattern mimicking 

the 2D color bar indicating the reflections are dipping into the collapse features.  

 Additionally, although these faults (no. 1-4) exhibit a similar orientation, they are 

of different scales in dip magnitude (figure 4.8a), and they are of different anomalies in 

apparent dip (figure 4.6a-d) and dip azimuth (figure 4.8b). That is because the fault (no. 

4) has opposite hanging wall and footwall position (this difference can be proved by time-

structure map in figure 4.20). We interpret these faults to have been caused by the same 

normal geologic stress, but perhaps cutting different lithologies, giving rise to different 

patterns on the left and right areas of the time slice. 

 We zoom in on two zones of interest seen on the dip magnitude time slice in 

Figure 4.9a and display them in Figures 4.9b and 4.9e. We then draw two profiles that 

cut the collapse and fault features of interest and display line BB’ in Figure 4.9c and line 
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CC’ in Figure 4.9d. Line BB’ (Figure 4.9c) crosses a major fault (red arrow), two large 

scale karst collapse features (yellow arrow) and a channel-like collapse feature (blue 

arrow). Line CC’ (Figure 4.9d) crosses three large scale karst collapse features and a 

major fault. The karst and channel-like collapse features exhibit synclinal cross sections 

at both the Top Marble Fall and the Top Ellenburger. Light green arrows indicate a bright 

spot anomaly under the largest karst collapse feature, which we interpret to be due to infill 

with lower impedance, perhaps fractured or brecciated material. Green arrows in Figure 

9e indicate small scale karst collapse features which exhibit less bright basal reflections 

in Figure 4.9g. Not all karst collapse features exhibit bright bottom reflections, suggesting 

heterogeneity in their fill. 

Coherence 

Karst not only gives rise to changes in reflector dip and azimuth, but also to 

changes in the seismic waveform continuity. We use vector dip as input for principal-

component (structure-oriented) filtering in the most coherent window, which represent 

lateral amplitude variation, to constrain random and coherent noise and improve vertical 

resolution (Marfurt, 2006). Figure 4.10 shows a time slice through a coherence volume 

computed by taking the ratio of the energy of a principal-component (structural-oriented) 

filtered data based on the workflow shown on figure 4.3b to the energy of the original 

data. Comparing this image to the previous image of reflector dip we note that the faults 

(red arrows) and large collapse features (yellow arrows) do appear somewhat weaker. 

Since coherence is computed along structural dip, this implies that there is small offset 

(< ¼ λ) and only small changes in waveform across the edges of the collapse. Low 

coherence and high dip magnitude at yellow arrows indicates that this incised valley has 
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little offset along its flanks. Where examining vertical slices time through the amplitude 

data (Figure 4.4c and 4.4d), note the dissolution within the Ellenburger is significantly 

less at t=0.7 s at the Barnett Shale level, with the shale layers simply draped over the 

collapse feature.   Similarly, the blue arrows indicates karst valleys, which are not as well-

defined as those observed in the dip magnitude volume. We conclude that these large 

collapse features are coherent in lateral amplitude or waveform however their laterally 

variable dip is best imaged using coherence. Orange arrows indicate incoherent, rugose 

eroded surfaces that are free of large collapse features which suggests lithology changes 

from southwest to northeast.  These incoherent surfaces do not appear to be fault 

controlled. Green arrows indicate small karst features. 

Spectral decomposition 

Lateral changes in layer thickness and impedance produce lateral variation in 

spectral components. Karst related diagenetic products generate lateral changes in 

porosity, and from limestone to dolomite (Lucia, 1995). In our study area, dissolutional 

collapse features within the underlying Ellenburger Group generate small faults (< ¼ λ) 

and fractures in the overlying Barnett Shale, reducing velocity and acoustic impedance 

and in turn can resulting lateral changes in tuning thickness.  Chaotic collapse features 

and rugose surfaces give rise to nonspecular scattering, with constructive interference at 

low frequencies and destructive interference and at high frequencies, thereby shifting the 

spectra lower. Figures 4.11a shows a time slice at t=0.750 s through the peak spectral 

magnitude volumes computed using a matching pursuit algorithm described by Liu et al. 

(2007). Peak frequency magnitude attribute is highest energy level shown as magenta part 

on figure 4.4a and 4.4b. Note the improved resolution of the peak spectral magnitude in 
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illuminating the dissolutional cave edges and internal discontinuities. Blue arrows 

indicate suspect paleo-valleys or collapsed paleocaverns that are revealed low spectral 

magnitude.  Orange arrows indicate large karst features which were identifiable using 

previously described routines (Figure 4.10). 

Peak frequency and peak phase are meaningful if the corresponding magnitude is 

above the noise level. If so, we suggest using magnitude to modulate these images (Figure 

4.11b). Note the shift to low values of peak frequency (magenta to red) above collapse 

features, which represents the destructive interference at the higher frequencies. The high 

frequencies (cyan to blue) record thinner layers in the Barnett Shale (low magnitude). In 

figure 4.11b, the orange arrows point to low frequency features which correspond to 

rugose surfaces as shown in coherence attributes (figure 4.10) and peak magnitude 

attributes (figure 4.11a). Given the rugose nature of this surface, time slices through the 

peak phase spectrum provide only limited interpretational value. 

Structural curvature, reflector rotation and reflector convergence 

Structural curvature is computed by taking the derivatives of the dip components as 

shown in Figure 4.6. As such, we expect curvature to highlight joints and fractures 

characterized by more subtle, longer wavelength joints and flexures. Reflections that 

exhibit similar waveforms, that is, those having small offset (< ¼ λ), and subtle changes 

in dip across faults will generate curvature, but not coherence anomalies (Al-Dossary and 

Marfurt, 2006).  The amplitude of the curvature anomaly is inversely proportional to the 

radius of curvature at each voxel, with negative values indicating synclinal, and positive 

values anticlinal deformation (Figure 4.12). 
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Figures 4.13a and b contrast the most-positive and most-negative structural 

curvature along the same time slice. In this survey, the major faults are expressed by a 

positive curvature anomaly across the footwall which is laterally offset from a 

corresponding negative curvature anomaly across the hanging wall. This “curved” 

appearance is commonly observed in 3D seismic volumes of carbonate terrains associated 

with conjugate faults, which are below seismic resolution and are morphologically similar 

to those described by Ferrill and Morris (2008). The dip magnitude and coherence 

anomalies fall between the two curvature anomalies. In this image (figure 4.13), the bowl 

shaped collapse features express a negative value and appear as blue ellipses (yellow and 

green arrows).  The rugose surface (orange arrows) is a product of a shorter wavelength 

and indicates less deformation.  Yellow polygons enclose an area where large collapse 

features are coincident with high-angle normal faults. The dissolutional caves zone is 

coincident with through-going faults that tip-out in the such-and-such Formation. The 

fault damage zone consist of fractures and small scale faults shown as small red lines on 

most positive curvature and blue channels crossed between faults and karst. In order to 

visualize the relation between karst and faults, we co-render most positive and most 

negative curvature with dip magnitude (Figures 4.13c and d).  The dip magnitude attribute 

accurately maps the location of faults and karst boundary while the shape of karst features 

and more-subtle faults are confidently mapped using curvature attributes. Examining 

figures 4.13c and d, note that the large karst features appear fault-controlled and are cut 

by smaller faults or joints.  These smaller-scale features may record compaction-induced 

fracturing across paleocavern roofs similar to that described by Kerans (1989 and 1990). 

Additionally, reflector rotation and convergence computed from the curvature dip 
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components (Marfurt and Rich, 2010). Reflector rotation (figure 4.14a) shows a strong 

NW-SE succession of lineaments, which are strongly aligned and nearly perpendicular to 

NE-SW trending faults. Co-rendering reflector rotation with dip azimuth as shown in 

Figure 4.14a reveals a strong correlation between rotation and inferred karst anomalies. 

We cannot say without further analysis and outcrop analogues whether this “rotation” is 

a cause or an effect of the karst features. Interpretations based solely on reflector-vector 

convergence attributes provides ambiguous results. However, when co-rendered with dip 

magnitude (Figure 4.14b) we recognize that strongly convergent areas correspond to 

areas characterized by a greater density of faults and karst features. The varying strike of 

the faults and the elliptical nature of the karst give rise to a complex, but easy to interpret 

image. 

Amplitude gradients 

If we use a lateral 3 by 3 trace by n sample analysis window, a principal-

component (Structure-Oriented) filter produces a lateral pattern (or 3 by 3 eigenmap) that 

best represents the lateral variation seen in each of the n vertical amplitude slices. Such 

filters were used in the structure-oriented filtering described in Figure 4.3 and Figure 4.4. 

Figure 4.15 is the coherent energy attribute which it the energy map of the filtered data. 

Computing the energy with an analysis window (±10ms), we show in Figure 4.16 the 

display gradient of coherent energy at 0°, 45°, 90° and 135°. The amplitude gradient is 

simply the derivative of this eigenmap, weighted by its energy. Coherent energy gradient 

maps can be quite effective for identifying faults and fractures, and can provide constrains 

for mapping channels which can be emphasized using lateral changes in tuning (Marfurt, 

2006). Like apparent dip, amplitude gradients can be calculated at any azimuth (Figure 
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4.6a-d). Overlaying amplitude gradient maps with the coherent energy gives results in a 

suite of images that simulates shaded illumination, but of energy, not of time-structure. 

For example, note the shorter wavelength variation of the amplitude gradient images in 

Figure 4.16 compared to the structural dip images in Figure 4.8a. Yellow arrows on figure 

4.8a indicate high dip anomalies which are well-defined on gradient maps of coherent 

energy (Figure 4.16). Lateral variations related to lithologic changes are generally greater 

identified than those in dip. Large faults and karst are seen in both amplitude gradient and 

structural dip images.  Amplitude gradients are computed along dip, which eliminates dip 

variability. Such correlation provides independently derived and mutually supportive 

evidence that the imaged features are likely karst and faults. For Figure 4.16, the green 

arrows mark small-scale karst and the blue arrows indicates channel-like dissolutional 

features, these dissolution illuminate as caves and eroded zones on gradient of coherent 

energy (Figure 4.16), but show as points and discontinuities on coherence (Figure 4.10). 

Amplitude curvature 

Whereas structural curvature is a derivative of structural dip, amplitude curvature is 

computed by calculating the derivative of varying amplitude gradients. Figures 4.17a and 

b show the most-positive and most-negative amplitude curvature derived from high-

resolution amplitude gradients. With the exception of the dip compensation in the 

structural curvature computation, the size and the values of both curvature operators are 

exactly the same.  On Figure 4.17a and b, the yellow dashed lines zones indicated 

complex fault-controlled karst features with fracture system. Fewer fractures and karst 

are developed in the areas far away from fault zones. Figure 4.17c and d are the same 
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way co-rendered with dip magnitude to highlight karst and better show the relationship 

between faults, joints, and karst. 

 Compared with structural curvature, amplitude curvature delineates several 

previously overlooked, small circular features in the southern part of the survey where 

the time slice cuts below the top Ellenburger Dolomite (Figure 4.18a). Zooming in 

(Figure 4.18b) we draw several vertical lines through the seismic amplitude map and 

display them in Figures 18c-f map. The small radius amplitude curvature anomalies 

appear as bright spot anomalies on the seismic section. Several of them exhibit the “string 

of pearls” pattern (green arrows on Figure 4.18c-e) suggesting they are fault controlled. 

Those vertical karst anomalies within the Ellenburger have a nearly identical appearance 

to infilled karst collapse features widely seen in the Tarim Basin, China (Feng .et. al., 

2012, Liu et. al., 2012, and Chen et. al., 2011). In the Tarim Basin, the collapse features 

are filled with Aeolian sands, and form excellent oil and gas reservoirs.  These subtle 

karst collapse features within the Ellenburger have a very different morphology from 

those that cut the Ellenburger and continue into the overlying Barnett Shale and Marble 

Falls Formations seen in Figures 4.9 and 4.18d. These subtle karst caves appear to be 

restricted within the Ellenburger and do not significantly alter the base of the Barnett 

Shale. 

Figure 4.18f shows a subtle collapse-caused fault in seismic section view. The left 

blue arrow indicates a curved, but continuous feature, while the right blue arrow indicates 

finite displacement along a small fault. Figures 4.19a-d show the subtle faults on different 

attributes. Notice that dip magnitude, most-positive and most-negative amplitude 

curvature can detect two kinds of anomalies (blue arrows) at the edges of this subtle 
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collapse-caused faults; however coherence can only detect the discontinuity associated 

with the faulted edge. 

KARST ON ATTRIBUTE HORIZON SLICES 

Conventional interpretation is based on mapping faults and horizons. While faulted 

horizon are difficult and time consuming to interpret, karst surfaces are particularly 

tedious for the interpreter, because of their discontinuous character, high rugosity, etc. As 

with any unconformity, auto-trackers fail when the overlying strata juxtapose lateral 

changes in impedance. Interpreting karst topography is exceedingly difficult as the 

unconformity frequency cross-cuts strata with different and admixed lithologies 

characterized by highly variable impedance.  Where conventional 3D interpretation fails, 

incorporation of horizon slices from attribute volumes provide an increasingly valuable 

alternative method for interpreting complex stratigraphic features, such as karst. 

Figure 4.20 shows the time-structure map at the top Ellenburger Group co-rendered 

with a representative vertical slice through the seismic amplitude volume. The structure 

map shows increased rugosity of the surface towards the south. Figures 4.21a and b show 

a horizon slice through the most-positive and most-negative curvature volumes. Dashed 

yellow lines indicate fault-controlled karst within the Ellenburger Group. Figures 4.21c 

and d show the same horizon slices through the curvature column co-rendered with a 

horizon slice through the coherence volume shown previously in Figure 4.10.  Black 

anomalies indicate discontinuities (faults, joints, and karst), the latter of which correlate 

to red most-positive curvature and blue most negative structural curvature anomalies. 

Figure 4.22 shows similar horizon slices, but now through the amplitude curvature 

volume. As seen previously on the time slices, the amplitude curvature varies more 
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rapidly laterally, likely indicating changes in impedance interpreted as variations in 

diagenetic alteration. Figures 4.22a and b show most-positive and most-negative 

amplitude curvature. Although these images are similar to Figures 4.21a and b, they 

indicate different concepts. The blue in the structural curvature indicates anomalously 

low structure, while the blue in the amplitude curvature indicates anomalously low 

amplitude. Thus, we observe lower reflectivity inside the structurally low collapse 

features, which likely results from anomalous attenuation and/or scattering. 

CONCLUSIONS 

Karst, faults, and joints are known form geologic hazards for most Barnett Shale 

wells in the Fort Worth Basin. In the best cases, these drilling-related “geohazards” from 

conductive features that draw off expensive hydraulic fracturing fluid from the targeted 

shale formation. In the worst cases, the completed wells are hydraulically connected to 

the underlying Ellenburger aquifer and produces large amounts of water with little 

hydrocarbon. 3D seismic data are routinely acquired to map such geohazards prior to 

spudding. Such information should be presented during interdisciplinary, pre-spud 

meeting to alert the drilling and completion engineer of potential difficulties before 

finalization of the drilling and completion program.  

Karst collapse generate a distinct morphologic pattern on 3D seismic data. When 

plotted using a gray scale, karst dolines appear on coherence and dip magnitude time 

slices as characteristically circular to elliptical features, which provide a karst 

“fingerprint”. In this and many other surveys in the Fort Worth Basin, the karst are 

strongly correlated with fractures and joints, which in turn are clearly rendered on 

coherence and most negative curvature images. The chaotic nature of reflectors internal 
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to the karst features, such as paleocavern fill, often result in low frequency anomalies. 

The loss of higher frequencies has two possible causes: the existence of fluid filled 

fractures and cracks within the karst collapse features giving rise to intrinsic attenuation, 

and scattering from the chaotic infill giving rise to geometric attenuation. In this survey 

area, and throughout much of the Fort Worth Basin, wells that penetrate karst features or 

coincident fault and fracture system will produce water from the Ellenburger Group and 

thus, are not intentionally drilled.   

Reflectors dip into the collapse features giving an inward radial display when dip 

azimuth is plotted against a cyclical-color bar. Vector convergence shows the 

complementary image, with reflectors converging outward towards the collapse edges. 

Reflectors at shallower levels in the Barnett Shale and Marble Falls intervals also show 

down warping into the karst but with parallel (nonconvergent) bedding and near constant 

thickness, implying that the actual collapse took place long after these formations were 

deposited. At the shallow Pennsylvanian Age Caddo horizon the reflectors show strong 

negative curvature and dip magnitude anomalies, but no coherence anomalies, suggesting 

either delayed collapse or continued diagenetic alteration of the Ellenburger from below. 

Solution-enlarged joints and faults may remain partially open, or be filled with 

impermeable clays or preferentially cemented (Hardage et al., 1996). In either case, they 

will give rise to lateral changes in amplitude measured by amplitude gradients and 

amplitude curvature. Karst-related architectural elements dolines, paleocaverns, karst 

towers, solution-enlarged joints, and rugose topography can be inferred from attributes 

by integrating modern and ancient analog, thereby providing mutually supportive lines of 

evidence for a compelling interpretation.  
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Time slices through seismic attributes provide a rapid yet quantitative delineation 

of karst terrains, delaying and perhaps circumventing the need to carefully pick the top 

of the difficult-to-pick Ellenburger unconformity. Indeed, many areas covered by 3D 

seismic data in the Fort Worth Basin have few wells, where the engineers turn to less 

intensely karst areas to complete. 

Interpreters often wish to know which attribute is “best” to delineate a given 

geologic feature of interest. We propose using mathematically independent attributes, 

coupled through the underlying geology, to provide a means of confirming or rejecting a 

given interpretation hypothesis. 
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Figure 4.1 (a) Stratigraphic cross section and (b) stratigraphic column of the Fort Worth 

Basin. In the “core” study area of Wise and Denton Counties to the East, the Barnett Shale 

is subdivided into Upper and Lower units by the intervening Forestburg Lime. The 

calcite-rich geomechanical ductile Marble Falls and Viola Limestones from hydraulic 

fracture barriers. The Viola fracture barrier pinches out to the west, such that the Barnett 

Shale lies unconformably on top of the more brittle, dolomitic Ellenburger Group. The 

survey in the following figures is on strike with the area of Young County in this image 

(After Pollastro et al., 2009). 
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Figure 4.2 Genetic paleocave model for the Lower Ordovician of West Texas showing 

cave floor, cave roof, and collapsed breccia (modified after Kerans, 1988, 1989). 
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Figure 4.3 Workflow (a) to precondition the seismic data prior to attribute computation 

and (b) illustrating the steps for structure oriented filtering (SOF) based on principal 

component analysis (modified after Marfurt, 2006). The filtered seismic amplitude is then 

spectrally balanced using the average time-frequency distribution computed using a 

matching-pursuit spectral decomposition algorithm described by Liu et al. (2007). 
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Figure 4.4 Average time-frequency spectrum for the entire survey (a) before and (b) after 

spectral balancing using a bluing factor of eβf where β=0.3. Note the increase in 

frequency content between t=0.6 and t=0.8 s. Line AA’ (c) before and (d) after time-

variant spectral balancing. Note the increase in frequency content within the target 

Barnett Shale interval between t=0.6 and t=0.8 s as well as the interval above top 

basement (green arrows). Red arrow indicates one normal fault, and yellow arrows 

indicate large scale karst dolines, collapse features. 
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Figure 4.5 Time slice at t=0.750 s through the seismic amplitude volume at the 

approximate top Ellenburger horizon. Faults are indicated by red arrows. Large karst 

appears as circular features (yellow arrows). Smaller karst (green arrow) are less obvious 

but can also be seen. The location of line AA’ shown in the previous image is indicated 

by the red dashed line. 
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Figure 4.6 Time slices at t=0.75 s through apparent dip volumes at (a) 0°, (b) 45°, (c) 90°, 

and (d) 135° from North. Yellow arrows indicate channels or cave collapse. Red arrows 

indicate major faults, while pink arrows indicate minor flexures and blue arrows indicate 

joints. 
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Figure 4.7 Mathematical model in defining reflector dip (modified after Marfurt, 2006). 

By convention, n = unit vector normal to the reflector; a = unit vector dip along the 

reflector;  = dip magnitude;  = dip azimuth;  = strike; 𝑥 = the apparent dip in the xz 

plane; and 𝑦 = the apparent dip in the yz plane. 
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Figure 4.8 Time slice at t=0.750 s through (a) volumetric dip and (b) the dip azimuth 

modulated by dip magnitude using a 2D color bar. Red arrows indicate faults that control 

many of the larger collapse features. Dashed red lines show a “string of pearls” features 

which when correlated with most negative curvature indicates their control by 

diagenetically altered joints or faults with little vertical offset. We interpret the feature 

indicated by the blue arrows to be a valley or cave collapse, or channel-like collapse 

features. Green arrow indicates small scale karst that are far from major fault zones. 

Orange arrows indicate a relatively rugose surface that are free of large collapse features. 
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Figure 4.9 Time slice at t=0.750s through (a) volumetric dip, and (b) and (e) zoomed in 

zones. (c), (d), (f), and (g) are seismic section view of lines BB’, CC’, DD’, and EE’ show 

large scale karst collapse features (yellow arrows), major faults (red arrows), channel-

like collapse features (blue arrows), and small scale karst collapse features. Notice that 

not all karst collapse features exhibit bright bottom reflections, suggesting heterogeneity 

in their fill. 
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Figure 4.10 Time slice at t=0.750 s through eigenstructure-based coherence. Note that the 

faults (red arrows), channel-like collapse features (blue arrows) and large collapse 

features (yellow arrows) do not appear as strong as in the dip magnitude image. Orange 

arrows indicate incoherent, rugose surfaces that are free of large collapse features. 
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Figure 4.11 Time slice at t=0.750 s through (a) the peak spectral magnitude volumes 

computed using a matching pursuit algorithm described by Liu et al. (2007) and (b) peak 

magnitude and frequency modulated images co-rendered with dip magnitude image. 

Yellow arrows indicate large scale karst features. Red arrows indicate faults, blue arrows 

channel-like collapse and green arrow small karst shown on the previous image. Orange 

arrows indicate a relatively rugose surface that are free of large collapse features. 
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Figure 4.12 Curvature model shows curvature value change based on plane angle 

(modified after Marfurt, 2010). 
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Figure 4.13 Time slice at t=0.750 s through (a) most-positive and (b) most-negative 

structural curvature, and (c) most-positive and (b) most-negative structural curvature co-

rendered with dip magnitude. In this survey, the major faults are expressed by a positive 

curvature anomaly on the footwall which laterally offset from a corresponding a negative 

curvature anomaly on the hanging wall. The dip magnitude and coherence anomalies fall 

between the two curvature anomalies. In this image, the bowl shaped collapse features 

express a negative value and appear as blue ellipses (yellow and green arrows).  The 

rugose surface (orange arrows) is represented by a shorter wavelength, lower deformation 

pattern.  Yellow polygons indicate the area where large collapse features are controlled 

by faults. Blue arrows indicate channel-like collapse features as red anomalies. 
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Figure 4.14 Time slice at t=0.750 s through (a) rotation co-rendered with dip azimuth and 

(b) vector convergence co-rendered with dip magnitude. Note the red arrows indicate 

major faults, and yellow polygon (14a) and white polygon indicates fault-controlled karst 

features. 
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Figure 4.15 Time slice at t=0.750 s through coherent energy attributes. Note the red 

arrows indicate major faults, and yellow polygon indicates fault-controlled karst features. 
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Figure 4.16 Time slices at t=0.750 s through at (a) 0°, (b) 45°, (c) 90°, and (d) 135° from 

North amplitude gradients computed along structural dip. Large karst do not appear to 

give a strong amplitude anomaly, although small karst (green arrow) do. There does not 

appear to be significant acquisition footprint in either of the gradient images. Faults (red 

arrows) and channel-like collapse features (blue arrows) appear differently on each 

degree amplitude gradients. 
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Figure 4.17 Time slices at t=0.750 s through (a) most-positive and (b) most-negative 

amplitude curvature, and (c) most-positive and (d) most-negative amplitude curvature 

volumes co-rendered with dip magnitude volumes. Dashed yellow polygons indicate 

areas of fault-controlled karst. While structural curvature is computed by taking the 
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derivative of the inline and crossline dip components, amplitude curvature is computed 

by taking the derivative of the inline and crossline amplitude gradients shown in the 

previous image. Yellow dashed line indicates zone dominated by fault controlled karst. 

Although NW-SE and NE-SW lineaments could be acquisition footprint, we interpret 

lineaments at other azimuths to indicate diagenetically altered joints giving rise to 

laterally variable reflectivity. Green arrows indicate small karst. Some of those can only 

be highlighted by amplitude gradient and amplitude curvature. 
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Figure 4.18 Time slice at t=0.750s through (a) most-negative amplitude curvature, and 

(b) zoomed in zone. (c), (d), (e), and (f) are seismic section view of lines FF’, GG’, HH’, 

and II’. Circular collapse features are contained entirely within the Ellenburger Dolomite 

formation and do not propagate shallower. Several of exhibit the “string of pearls” 

pattern, suggesting that they are controlled by faults or joints. 
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Figure 4.19 Time slice of zoomed in area at t=0.750s through (a) dip magnitude, (b) 

coherence, (c) most-positive amplitude curvature, and (d) most-negative amplitude 

curvature. Notice that blue arrows indicate subtle collapse-caused fault. 
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Figure 4.20 Time structure map of the top Ellenburger Group horizon. Karst collapse and 

three major faults are clearly seen. Note the increased rugosity of the surface towards the 

south, and increased karst collapse towards the north. Orange arrows indicate rugose 

surface. Red arrows indicate major faults. 
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Figure 4.21 Vertical slice through seismic amplitude and horizon slices along the top 

Ellenburger Group horizon though the (a) most-positive and (b) most-negative structural 

curvature and (c) most-positive and (d) most-negative structural curvature co-rendered 

with coherence. Red arrows indicate major faults, yellow dashed lines indicate where 

karst is developed and larger than other area where there is no major faults. Yellow arrows 

indicate surface folds and joints. 
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Figure 4.22 Vertical slice through seismic amplitude and horizon slices along the top 

Ellenburger Group horizon though the (a) most-positive and (b) most-negative amplitude 

curvature. Red arrows indicate major faults. Blue arrows indicate fault-controlled karst. 

Yellow arrows indicate surface folds and joints. The fractures are developed in zones 

where faults and karst are also developed. Green arrows indicate the zones have no faults 

effects, so that fractures are not developed. 
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APPENDIX A 

In this appendix, we summarize several of the seismic attributes used in the paper. 

Several of these definitions are extracted from the glossary in Chopra and Marfurt (2007) 

which in turn were adapted from definition in Sheriff (2002). Much greater detail can be 

found under geology.ou.edu/aaspi/documentation. 

Apparent inline dip 

 For time-migrated data, the apparent dip is the change in reflector time from with 

respect to distance in a given direction and is measured in units of s/m. Using the SEGY 

convention, where the y-axis is North and the x-axis East, the apparent north component 

of dip, py, and east component of dip, px, are given by  
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In our examples, we computed the inline and crossline components of dip using a multi-

window Kuwahara semblance search technique described by Marfurt (2006). The 

apparent dip in the ξ direction (in this paper 0°, 45°, 90°, and 135°  from North) is simply 
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Dip magnitude and dip azimuth 

 The dip magnitude measured in s/m, |p|, is simply the magnitude of the vector dip 

p given by  

  2/122

yx pp p .         (A-4) 
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Conversion to angular dip, θ, requires the use of a velocity, vP, which we set to 15000 

ft/s, representative of the Barnett Shale and Ellenburger Dolomite, and is given by 

  
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Dip azimuth from North is simply 

 xy pp ,ATAN2 ,         (A-6) 

where ATAN2 produces a result that ranges between -1800 and +1800. 

Coherence 

 Coherence is a measure of waveform similarity. In our examples, we estimate the 

coherence of J traces within a ±K sample analysis window as the ratio between the 

coherent energy within an analysis window to the total energy within the analysis window 
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Semblance-based coherence estimates the coherent part of the data by the average trace 

within the analysis window. In the examples we show here, we estimate the coherent part 

of data using a Karhunen-Loeve filter. We always compute coherence along structural 

dip. 

Structure-oriented filter 

 As the name implies, structure-oriented filtering is computed along structural dip 

as estimated by equations A-1 and A-2. Our implementation builds on other previously 

computed components. First, we examine the centered and examine its coherence. If the 

coherence is below a given threshold (e.g. c<0.6) we do not filter the data in an attempt 
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to preserve a potential “edge”. If the coherence is above the threshold, we compare this 

value to the coherence of all non-centered analysis windows that includes the voxel of 

interest and choose the one with the highest coherence value. Within this window, we 

apply a Karhunen-Loeve filter and output the filtered sample value.  

Spectral components 

 In this paper, we computed spectral components using a matching pursuit 

algorithm described by Liu and Marfurt (2007). We begin by computing a library of 

complex Ricker wavelets. Then we compute the instantaneous envelope and frequency 

of a given trace. Then using a user-defined threshold (in our examples r=0.8), we extract 

the time and instantaneous frequency of all envelopes that exceed r times the largest 

envelope. Wavelets of unknown complex amplitude, α, (or alternatively, unknown 

magnitude and phase) for the given instantaneous (average) frequency are then extracted 

from the dictionary. The values of α are computed using least-squares, scaled complex 

spectra from the dictionary are accumulated and the residual trace is generated. This 

process iterates until the residual energy is small percentage of the energy of the original 

trace. The result is a time-frequency spectral decomposition with a spectrum at each time 

sample. 

 The peak magnitude is the maximum magnitude at a given voxel and the peak 

frequency the corresponding frequency of the spectrum.  

Spectral balancing and spectral bluing 

 Given the spectra at every voxel, we compute the average time-frequency spectra 

for the entire survey. After some vertical smoothing (±0.2 s in our example), we balance 

the spectra using 
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where aj(t,f) is the magnitude spectrum of the jth trace computed using spectral 

decomposition, Pavg(t,f) is the smoothed, average power spectrum for the entire survey, 

Ppeak(t) is the peak power of the smoothed average power spectrum at time t, ε=0.01 is a 

prewhitening factor, and β=0.3 is a bluing factor described by Neep (2007).  After 

balancing and bluing the magnitude spectra, the balanced and blued output trace is 

reconstructed by adding its complex (modified magnitude and unchanged phase) 

components. 

Structural curvature 

 There is considerable confusion in terms of curvature definitions. Mathematically, 

the curvature is based on eigenvector analysis. In this definition, the maximum curvature 

is that curvature that best represents the deformation at a given voxel. If that best 

representation is a syncline, the maximum curvature happens to be negative and the 

corresponding minimum curvature that represents the least deformation at a voxel will 

have a larger signed value. Since most geophysicists don’t live in eigenvector space, this 

nomenclature is not used by about 50% of the commercial curvature software 

implementations, who propose that the maximum curvature should have a greater than or 

equal signed value than the minimum curvature.  We avoid this confusion by explicitly 

defining the most-positive and most-negative principal (i.e. eigenvector) curvatures, 

where k1 ≥ k2. We compute volumetric curvature as the first derivatives of the volumetric 

north and east apparent components of dip. The long-wavelength versions we compute 

are simply band-passed filtered versions of the curvature results, though using the 
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associative law of linear operators, it is computationally more convenient to band pass 

filter the derivative operators rather than the output curvature result. Details of this 

implementation can be found in Chopra and Marfurt (2007).   

Amplitude gradients 

 Mathematically, amplitude gradients are like time-structure gradients. Within an 

analysis window we compute the Karhunen-Loeve filtered version of the data which has 

an associated eigenvalue, λ, and eigenvector (actually, in 2D, an eigenmap), v(x,y) which 

has a magnitude of 1.0. The east and north components of the energy-weighted (i.e. the 

eigenvalue weighted) amplitude gradient g are then  
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Amplitude gradients always need to be computed along structural dip. One can also 

compute impedance gradients. 

Amplitude curvature 

 While structural curvature is computed by taking the first derivatives of structural 

dip, amplitude curvature is computed by taking the first derivatives of the amplitude 

gradient. In our implementation, we apply the same long wavelength filter operators as 

we do in structural curvature. The major difference is that the vertical dimension is 

different in amplitude curvature, such that we compute the mathematically simpler most-

positive and most-negative amplitude curvatures (without the word principal). This 

simple calculation delineates zones that have extreme values of energy and in our 
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examples shows joints and collapse features. Amplitude curvature can also be computed 

from impedances or any other gradient attribute. 

Structure rotation and convergence 

 Geophysicists familiar with fluid mechanics and electromagnetics are 

comfortable with taking the divergence and curl of vectors. The divergence of the 

structural dip vector is twice the mean curvature. The curl of vector dip is in turn a vector. 

Computationally, it is convenient to convert from the dip vector, p, to the normal vector, 

n. Marfurt and Rich (2010) then define the structural  rotation (the z-component of the 

curl vector) as: 

  𝑟 = 𝑛𝑥 (
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and the structural convergence (the x- and y- components of the curl vector) 
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where the “^” denotes the unit normal. As with curvature, we have chosen to apply a 

long-wavelength filter to these derivative operators. Furthermore, the components of curl 

are best projected along axes perpendicular the average local dip rather than to the 

vertical. Rotation enhances measures the rotation of reflector dip rotation fault planes, but 

is also sensitive to lateral changes in accommodation space and lateral changes in angular 

unconformities. Convergence is a 2D vector and shows the magnitude and azimuth of 

convergence, such as occurs with pinch outs and angular unconformities. 
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Conclusions 
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In the dissertation, I have developed and applied a suite of algorithms that help 

both accelerate and quantify conventional interpretation workflows. Seismic attributes 

are powerful tools in delineating seismic texture and facies, structural anomalies, and 

geomorphologic patterns. For data with a low signal-to-noise ratio, attributes often 

provide increased confidence in the interpretation. By multiattribute analyzing, 

mathematically independent attributes into clustering techniques, one can accelerate the 

definition of seismic facies.  

In chapter 1, I developed software and workflows with image processing 

techniques to exploit the attribute expression of different seismic facies to provide a semi-

automatically volumetric interpretation.   

In chapter 2, I developed software and a 3D workflow to enhance fault and 

stratigraphic discontinuities. Multiattribute display of the skeletonized faults accurately 

shows interfault relationships. 

In chapter 3, I developed a new multi-azimuth coherence algorithm and applied it 

to two datasets from the Fort Worth Basin. Compared to traditional coherence of the 

stacked azimuthal coherence, the multi-azimuth coherence displays higher lateral 

resolution, and delineates karst collapse features and subtle faults as well as the major 

faults. 

In chapter 4, I evaluated the expression of a suite of mathematically independent 

attributes to karst collapse and erosion surfaces. Interpreters often wish to know which 

attribute is “best” to delineate a given geologic feature of interest. I find that using 
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mathematically independent attributes, coupled through the underlying geology, allows 

one to confirm or reject a given interpretation hypothesis. 

 

 

 


