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is still delineated (yellow arrows) (d) Combination of the 25-50-75 Hz. Infill of the
channels predominantly tune at lower frequencies that their flanks (~50 Hz). Thin beds
inside the channels tune at approximately 75 Hz. ........c.ccoovviii i 34
Figure 10. Spectral magnitude components plotted against a RGB color scheme along a
phantom Horizon A + 248 ms. Analyzing the same combinations as in Figure 9, the infill
of the channels still tunes at lower frequencies while the flanks, internal thin beds and
acquisition footprint tune at higher freqUENCIES. ........cccveviiiiic i 35
Figure 11. Proposed workflow to highlight and study the internal architecture of the
channel complexes present in the Moki A sands Formation. | use spectral magnitude
components ranging from 25 to 80 Hz with intervals of 5 Hz because it allows to analyze
the stratigraphy and depositional system of the target area. Using Independent
Component Analysis (ICA) is possible to extract the most valuable information and
reduce noise from the spectral magnitude components. Then, the independent
components are sorted by visual inspection based on their geological insight. Because,
using ICA, | am projecting the data onto a mathematical space, plotting the three more
important independent components against a RGB color scheme, is possible to generate
an unsupervised seismic facies analysis in which similar colors are associated with similar
seismic facies. Finally, the results are compared to the obtained using Principal
Components ANAIYSIS (PCA). ..o 36
Figure 12. Variability retained. (a) Based on the percentage of variability retained
(Stanford, 2018), the algorithm automatically outputs four components during the PCA
whitening preprocessing step that represent 94.04% of the variability of the data, from

these components the independent components are computed. Also, PC1 is the strongest
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and represent 63.52% of the variability (b) PC1 is characterized by a flat spectrum
because the spectral components were spectrally balanced. PC2 monotonically changes
from lower to higher frequencies and is orthogonal to PC1. PC3 is orthogonal to PC1 and
PC2 and its spectrum changes sign between 45 to 50 Hz. PC4 captures 5.74% of the
variability and is orthogonal to PC1, PC2 and PC3. Little physical significance can be
assigned to the eigenspectrum because principal components reside in a mathematical

space where spectral components are represented as orthogonal uncorrelated components.

Figure 13. ICA energy. (a) Independent components exhibit similar energy and this is
not clearly correlated to geology, thus independent components are sorted based on visual
inspection, seeking for better resolution of large and small scale geological features (b)
IC1 captures 23.92% of the energy and tend to represent lower frequency geological
features. 1IC2 amplitude is higher at frequencies from 30 to 60 Hz. IC3 captures the largest
energy and its spectrum is associated with low to moderate frequencies. 1C4 spectrum
monotonically changes from lower to higher frequencies. Because independent
components represent spectral components as oblique projections seeking for
independence, the ICA spectra has more physical significance than the PCA
[T 0] o L=Tot 1 1] o USSP TP TP PR PP 38
Figure 14. (a) Principal Component Analysis (PCA) tends to represent all the energy in
principal component #1 (PC1), while the remaining variability is distributed among the
other principal components. In contrast, the independent components exhibit similar

energy, thus they are equally IMPOrtant. ..........ccoooveiiiiniiene 39



Figure 15. Principal component 1 (PC1) vs. independent component 1 (IC1) along
phantom Horizon A + 196 ms. (a) PC1 shows the confluence (red arrow) of two leveed
meandering tributary channels with moderate sinuosity and a tabular shape channel with
an architecture similar to a braided channel (green arrows). In addition, PC1 is
contaminated by acquisition footprint (red rectangle) (b) IC1 shows a smoother, less noise
picture with less acquisition footprint (red rectangle) than PC1. Also, in IC1 the large-
scale geological features (green arrows) and the small-scale geological features such as
oxbows (orange arrows) and a small abandoned meandering channel (blue arrow) are
better delineated than in PC1. Please, note that numbering is used to identify the different
architectural elements and is not associated with time of deposition of the channel
(000] 0 0] 0] 53 G SRRSO URTOPPSOTN 40
Figure 16. Principal component 1 (PC1) vs. independent component 1 (IC1) along
Horizon A + 248 ms. (a) The leveed meandering channel (green arrows) are difficult to
delineate using PC1, also PC1 is still contaminated by acquisition footprint (red
rectangle). (b) IC1 provides better resolution than PC1, thus the leveed meandering
channels (green arrows) are better delineated using the former. In addition, IC1 has less
footprint (red rectangle) than PC1 and the internal architecture of the tabular shape
channel improves considerably. Finally, the small scale oxbow (orange arrow) that is not
seen in PC1 can be interpreted USING ICL. ..o 41
Figure 17. Principal component 2 (PC2) vs. independent component 2 (IC2) along
Horizon A + 196 ms. (a) PC2 is characterized by strong acquisition footprint (red
rectangle), also the large scale leveed meandering and tabular channels (green arrows)

and the small scale geological features such as oxbows (orange arrows) and the small
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abandoned channel (blue arrow) are difficult to interpret using PC2. (b) IC2 provides a
remarkable increase in the resolution compared to PC2, thus the large scale (green arrows)
and small scale geological features (orange arrows and blue arrows) are easier to delineate
in IC2. In addition, the independent component 2 has less acquisition footprint (red
rectangle) than the principal component 2. Similar to Figures 15 and 16, numbering is
used to identify the different architectural elements and is not associated with time of
deposition of the channel COMPIEXES.........cviiiiiiiiii e 42
Figure 18. Principal component 2 (PC2) vs. independent component 2 (IC2) at phantom
Horizon A + 248 ms. (a) In PC2, the leveed meandering channels 1, 2 and 4 (green
arrows) are difficult to interpret, also the principal component 2 is characterized by
acquisition footprint (red rectangle) and random noise. (b) In contrast, IC2 provides a
result with less acquisition footprint (red rectangle) and random noise compared to PC2.
Moreover, the leveed meandering channels (green arrows) that were difficult to interpret
in PC2 are better delineated using IC2. The small scale oxbow (orange arrow) is also
better reSOIVE IN TC2. ... et ne s 43
Figure 19. Principal component 3 (PC3) vs. independent component 3 (IC3) at Horizon
A +196 ms. (a) From PC3 is possible to interpret the large scale geological features such
as the leveed meandering channels and the subsequent merged main channel (green
arrows) and the small scale oxbows (orange arrows). Also, the small abandoned
meandering (blue arrow) channel that was not possible to delineate in PC1 and PC2 is
now seen in PC3 (b) IC3 is characterized by less acquisition footprint (red rectangle) and
smoother results than PC3. Also, the large scale (green arrows) and small scale (orange

arrows) geological features are well delineated. However, the small abandoned
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meandering channel (blue arrow) was not completely delineated in 1C3. Similar to the
previous analysis, numbering is used to identify the different architectural elements and
is not associated with time of deposition of the channel complexes. .........c.ccccoveiennen. 44
Figure 20. Principal component 3 (PC3) vs. independent component 3 (IC3) along
phantom Horizon A + 248 ms. (a) The resolution of the leveed meandering and the tabular
channels (green arrows) increases considerably in PC3, thus is easier to interpret the
geological features. Also, is possible to observe acquisition footprint (red rectangle) in
PC3. (b) Although the resolution of the large geological features increased in PC3, they
are still better delineated using IC3. Moreover, IC3 still provides a smoother picture with
less acquisition footprint (red rectangle) than PC3. The small scale oxbow (orange arrow)
can be interpreted on both pictures, but its resolution seems to be greater in PC3. ....... 45
Figure 21. Principal component 4 (PC4) vs. independent component 4 (IC4) along
Horizon A + 196 ms. (a) In PC4, geological deep water architectural elements can still be
interpreted, but they are not as well delineated as in the other principal components. In
addition, PC4 still presents acquisition footprint (red rectangle) and random noise as in
PC1, PC2 and PC3. (b) IC4 is characterized by strong acquisition footprint and random
noise. Architectural elements are difficult to delineate. ...........ccccoovveiiiii i 46
Figure 22. Principal component 4 (PC4) vs. independent component 4 (IC4) at phantom
Horizon A + 248 ms. (a) PC4 is still contaminated by acquisition footprint (red arrow)
and random noise, but large (green arrows) and small scale (orange and blue arrows)
geological features are interpreted. (b) IC4 is still contaminated by strong acquisition
footprint and random noise. Large and small scale geological features are difficult to

interpret. 1 hypothesize that because independent component analysis looks for
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independence in the multivariate data, it provides better separation between geological
features (IC1, IC2 and IC3) and noise signal (IC4) than PCA. Also, independent
components provides better resolution of large and smaller scale geological features than
principal component analysis, thus providing a mean of making a better seismic
([ C=T g oL =1 LA o] o USSP 47
Figure 23. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3
at phantom Horizon A + 196 ms, in which similar colors can be interpreted as similar
seismic facies. (a) From PCA RGB blending is possible to analyze the large scale
geological features (green arrows), and the small scale oxbows (orange arrows), but the
small abandoned channel (blue arrow) is only partially delineated. PCA RGB blending is
contaminated by acquisition footprint (red rectangle). Axis and off-axis seismic facies are
characterized by similar greenish colors. (b) From ICA RGB blending the large scale
(green arrows) and small scale geological features such as oxbows (orange arrows) and
the small abandoned channel (blue arrow) are better delineated than PCA RGB blending.
In addition, the former presents lower acquisition footprint (red rectangle) and random
noise than the latter. ICA RGB blending also provides a better contrast between different
seismic facies, e.g., the axis of the channel is characterized with a purple seismic facies,
while the off-axis of the channel is associated with a green seismic facies. Also, the
tabular shape channel is characterized by a more variable internal architecture with
predominant purple seismic facies mixed with blue and green seismic facies. Finally, the
oxbows infill varies from purple to blue and green facies and the small abandoned channel

is associated with purple SeiISMIC FACIES. .......cocviiiiiiiiee e 48
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Figure 24. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3
at phantom Horizon A + 248 ms, similar colors are associated with similar seismic facies.
(a) From PCA RGB blending, the large scale meandering and tabular shape channels are
well delineated but the resolution decreases compared to the ICA RGB blending. Also,
the former presents more acquisition footprint than the latter. (b) The geological
architectural elements are better resolved in ICA RGB blending than in PCA RGB
blending. The leveed meandering channel 1 is characterized predominantly by purple
seismic facies intercalated with some blueish seismic facies, and the leveed meandering
channels 2 is associated with a green seismic facies. The tabular shape channel internal
architecture is highly variable with a mix of different seismic facies. The distributary
channel 1 is characterized by a predominant purple seismic facies and the distributary
channel 2 looks like a prolongation of the tabular channel. Finally, the meandering
channel 3 is characterized by only a purple seismic facies and the oxbow 3 and the
meandering channel 4 are characterized by a greenish infill. ..............cccoooininn 49
Figure 25. Following McHargue et al. (2010); Fildani, et al. (2012) and Hubbard et al.,
(2014), deposition of turbiditic facies in deep water channels can be divided into axis,
off-axis and margin. In general, the axis of the channel represents the thickest part and is
associated with deposition of thick-bedded amalgamated sandstone facies. Off-axis to
marginal deposition is characterized by interbedded sandstone and mudstone facies
(heterolytic facies), implying a lower concentration of net sand. Picture after McHargue
et al. (2010) and Hubbard et al. (2014). .......ccoiiieieeiee e 50
Figure 26. Geological interpretation of seismic facies using ICA RGB blending and

principles of geomorphology of architectural elements in deep water channel complexes.
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(a) Vertical section AA’ intersecting the straight tabular-shape channel characterized by
a more variable internal architecture with predominantly purple seismic facies mixed with
some green and blue facies. | interpret that this tabular shape channel was developed as a
deep cut related to high energy turbiditic flows during a waning cycle. Also, weakly
unconfined channels migrated inside the channel conduit. These weakly unconfined
channels are characterized by a tabular shape and similar architecture to braided channels
with predominant sand-rich facies. The oxbow 3, with a predominant green seismic facies
associated with low amplitude reflectors encloses purple seismic facies related to high
amplitude, continuous reflectors. (b) Vertical section BB’ through the meandering leveed
channel 1. The sinusoidal channel is characterized by an asymmetrical configuration,
which is associated with cut-and-fill architecture. | interpret two different waxing and
waning cycles in which sand-prone facies, characterized by high amplitude reflectors, are
deposited in the axis of the channel, while mud-prone facies, associated with low
amplitude reflectors, are related to off-axis to marginal deposition. Also, upward and
lateral migration of channel facies is seen (red arrow). Sheet sands are associated with a
mixture of bright blue with yellow, red and purple seismic facies related to high amplitude
with great lateral extension parallel reflectors. ... 51
Figure 27. Geological interpretation of seismic facies using ICA RGB blending and
principles of geomorphology of architectural elements in deep water channel complexes.
(a) Vertical section CC’ intercepting the meandering leveed channel 1, with the outer
bend of the channel facing to the opposite direction compared to BB’. Cut-and-fill
architectures, associated with lateral and upward migration of facies (red arrow), are

interpreted. Similar to vertical section BB’, I interpreted sand-prone facies are deposited
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in the axis of the channel and are characterized by purple seismic facies associated with
high amplitude continuous reflectors. Mud-prone facies deposit in off-axis to marginal
deposition are related to green purple facies characterized by low amplitude reflectors.
Finally, sheet sands are associated with bright blue seismic facies, mixed with yellow, red
and purple seismic facies. (b) Vertical section DD’ through the meandering leveed
channel 2. Cut-and-fill architectures associated with waxing-waning cycles are
interpreted. | hypothesize that during channel deposition related with a second waning-
waxing cycle, axial deposits from the previous waning-waxing cycle were eroded. Purple
seismic facies represent high amplitude continuous reflectors, which based on
geomorphology concepts, | believe are associated with sand-prone deposits along the axis
of the channel. Green seismic facies are related to low amplitude reflectors and represent
mud-prone facies associated with off-axis to marginal deposition. .............cccccoevrvenne. 52
Figure 28. Geological interpretation of seismic facies using ICA RGB blending and
principles of geomorphology of architectural elements in deep water channel complexes.
Vertical section EE’ through meandering channel 3 at Horizon A + 248 ms. There is a
lateral change in the amplitude thickness which is related to differential compaction
(Chopra and Marfurt, 2012). Differential compaction is associated with lateral changes
in lithologies. In this case, | interpret the positive relief as a channel filled with sand-
prone sediments related to purple seismic facies, that do not experience as much
compaction as the mud-prone facies of the Moki B shale Formation, associated with green
SEISMIC TACIES, OULSIAR B, ..ottt e e e e e e s e e e e s s eab e e e s eebraeeeeans 53
Figure 29. Validation of the interpretation, based on principles of geomorphology, of the

seismic facies in the Moki A sands Formation using the Gamma Ray log from the Tui

Xvii


file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672862
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672863
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672864
file:///C:/Users/david/Documents/Paper_Interpretation_ICA/Thesis/Thesis_Draft9/2018_Lubo-Robles_David_Thesis_Draft9.docx%23_Toc513672864

SW-2 well. High gamma ray values associated with bathyal claystones of the Moki B
shale Formation are associated with the green seismic facies (yellow arrow) which in my
interpretation, | hypothesized were associated with mud-prone seismic facies. Small low
gamma ray values (blue arrow) associated with calcareous sandstones are not seen in the
seismic because they are under resolution. Intercalation of high and low gramma ray
values associated with interbedded calcareous sandstone and claystones related to base
of slope turbidites of the Moki A sands Formation are associated with red and blue
seismic facies (green arrows), this correlate with my interpretation of sheet sands
characterized by a mixture of blue, red and yellow seismic facies. The low gamma ray
calcareous sandstone of thickness approximate to 30 m bracketed by high gamma ray
values associated with bathyal claystones are related with mixed purple and green seismic
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Abstract

During the past two decades, the number of volumetric seismic attributes have
increased to the point in which interpreters are overwhelmed and cannot analyze all the
information available. Principal Component Analysis (PCA) is one of the best-known
multivariate analysis technique, and decomposes the input data into lower statistics
mathematically uncorrelated components. Unfortunately, while these components
mathematically represent the information in the multiple input data volumes using a
smaller number of volumes, they often mix rather than separate geologic features of
interest. To address this issue, I implement and evaluate a relatively new unsupervised
multi-attribute technique called Independent Component Analysis (ICA), which based on
higher order statistics, separates multivariate data into independent subcomponents. |
evaluate my algorithm to study the internal architecture of turbiditic channel complexes
present in the Moki A sands Formation, Taranaki Basin, New Zealand. | input twelve
spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and plot
three of the resulting independent components against an RGB color scheme to generate
a single volume in which different colors correspond to different seismic facies. The
results obtained using ICA proved to be superior to the obtained using PCA. Specifically,
using ICA | obtain independent components that have better resolution and better
separation between geologic features and noise compared to uncorrelated components
obtained using PCA. Moreover, with ICA, |1 am able to geologically analyze the different
seismic facies and relate them to sand-prone and mud-prone seismic facies associated

with axial and off-axis deposition and cut-and-fill architectures.
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Chapter 1: Introduction

During the past two decades, the number of volumetric seismic attributes have
increased to the point in which interpreters are overwhelmed and cannot analyze all the
information available. In addition to picking horizons, traditional interpretation includes
the identification of geological features of interest such as faults, collapse features,
channel complexes, salt domes, and mass transport deposits in 3D amplitude seismic data.
Volumetric seismic attributes such as coherence, curvature, gray-level co-occurrence
matrix (GLCM) texture attributes and spectral-decomposition analysis can both
accelerate and facilitate this process, enhancing subtle features that may otherwise be
overlooked. Depending on the seismic attributes interpreters select, different information
is extracted (Infante-Paez and Marfurt, 2017; Infante-Paez, 2018). Therefore, relying
solely in a single attribute can lead to an incomplete seismic interpretation in which
important geological elements can be overlooked.

Co-rendering using red-green-blue (RGB) or hue-lightness-saturation (HLS)
color gamuts provide an efficient means of combining the information content of three
volumes. For more than three volumes, one must project the higher dimensional data onto
a lower dimensional space. Principal Component Analysis (PCA) (Guo et al., 2009;
Chopra and Marfurt, 2014; Zhao et al. 2015) decomposes multivariate data into linearly
uncorrelated components using second order statistic based on the covariance matrix of
the data. The first three components are either co-rendered using RGB or interpreted using
crossplotting tools. PCA is also widely used as the first iteration for clustering techniques
in order to reduce dimensionality of the input data (Zhao et al. 2015; Sinha et al., 2016).

The k-means algorithm (MacQueen,1967) is a clustering technique in which, after the



interpreter decide the number of desired clusters, the distance between the data point and
the center of the clusters is measured using the Mahalanobis distance and each data point
is associated with the closest cluster (Zhao et al., 2015). Generative Topographic Maps
(GTM) generates a probabilistic representation of the data onto a lower dimensional
manifold (Roy et al., 2014; Zhao et al., 2015). Perhaps the most widely used clustering
technique is the Self-organizing Maps (SOM) in which based on topological relations the
data is reorganized and projected onto a 2D manifold called the latent space (Kohonen
1982; Zhao et al., 2015; Zhao et al., 2016).

Spectral-decomposition analysis (Sinha et al., 2005; Chopra and Marfurt, 2016)
decomposes the seismic volume into a suite of magnitude and phase components at
different frequencies that allows the study of geologic features near the limits of seismic
resolution, enabling the interpreter to map lateral changes in thickness, lithology, and
porosity. A major drawback in spectral-decomposition analysis is that from one 3D
amplitude volume is possible to generate up to 80 or more output volumes (Guo et al.,
2009), making the selection and visualization of the most important components a
cumbersome task. Guo et al. (2009) applied Principal Component Analysis (PCA) to
characterize channels draining an unconformity in the Central Basin Platform in Texas,
Li et al., 2009 applied Independent Component Analysis (ICA) to a carbonate bank data
volume in order to map spur and groove as well as shoaling features, and Zanardo
Honorio et al., (2014) applied ICA to a fluviodeltaic system in order to map channels.

Inspired by the Zanardo Honorio et al.’s (2014) work, I implemented my own ICA

algorithm and applied it to deep water turbidite system in the Taranaki Basin, New



Zealand, and compared the results to both the features seen on the input data volumes,
but also on the more commonly used co-rendered PCA volume.

To illustrate ICA, | consider the popular cocktail-party problem, in which two
people are speaking simultaneously in a room where two microphones record the
combination of their voices (Figure 1). The recorded signals X={X1,Xz} are linear mixture
of the people’s voices P={P1,P2}, which can be written as:

X = AP, (1)
where A is an unknown matrix called the mixing matrix, whose parameters are a function
of the distances between the microphones and the speakers.

Although the goal is to estimate the people’s voices P1 and Pz, the matrix A is
unknown, such that P1 and P2 cannot be computed directly from X. ICA assumes that the
components P; are statistically independent, allowing the computation of the matrix A
and its inverse W (Hyviarinen and Oja, 2000):

P = WX (2)

In this study, | begin with an explanation of the differences between Principal
Component Analysis and Independent Component Analysis techniques. Using an ICA
algorithm developed by Hyvirinen and Oja (2000) for feature extraction and signal
separation as a guide, I implement an ICA algorithm that can work on a suite of large, 3D
volumetric seismic attributes. The choice of attributes used depends on the geologic
target. To study submarine turbidites in the Moki A sands of the Taranaki Basin, New
Zealand, | use spectral magnitude components, which are routinely used to image both
fluvial and deep water channel and canyon systems (e.g. Partyka et al., 1999; Marfurt and

Kirlin, 2001; Lubo-Robles and Marfurt, 2017). | then analyze these spectral components



individually and as input to both PCA and ICA algorithms. | conclude with a discussion
of the Independent Component Analysis over to the well-established Principal
Component Analysis. Finally, | add an appendix with mathematical details explaining

how the algorithm works.
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Figure 1. Hlustration of Independent Component Analysis (ICA) using the popular
cocktail-party problem. The goal is to recover the individual signals P1 and P2 from the

mixtures signals X1 and Xo.



Chapter 2: Theory

A principal component is a scalar value that represents the projection of a J-
dimensional sample vector, against a J-dimensional eigenvector. This technique is known
as Principal Component Analysis (PCA) and, based on Gaussian statistics, decomposes
the data into mathematically linearly uncorrelated components allowing the reduction of
the dimensionality and redundancy of the input multivariate data, but may omit geological
features associated with lower reflectivity (Guo et al., 2009). PCA is based on an
assumption that the data are Gaussian, allowing the use of second order statistics to
decompose the data into orthogonal components sorted based on their variability.

In contrast to PCA, Independent Component Analysis (ICA) is a powerful
technique that, based on higher order statistics, separates a multivariate signal into
independent subcomponents, finding a linear representation of non-Gaussian data
(Hyvarinen and Oja, 2000). The concept of “independence” provides a means to capture
more interesting information from the multivariate data (Zanardo Honorio, et al., 2014).
Moreover, independent components are not orthogonal and their order is undefined
(Figure 2), i.e., the independent components cannot be ranked (Hyvarinen and Oja, 2000;
Tibaduiza et al., 2012).

The independent component algorithm that | propose (Figure 3) is based on the
FastICA algorithm developed by Hyvarinen and Oja (2000), with modifications in order
to implement it using volumetric seismic attributes. In my workflow, first | select the
seismic attributes, a, based on the geological features of interest and compute their means
n and standard deviations o in order to apply Z-score normalization. 1 compute the

correlation matrix C from the scaled parameters and compute its eigenvectors and



eigenvalues. To be computationally efficient, |1 decimate the data in order to create a
representative training data subset a,,- from which the unmixing matrix W is computed.

After the training data are Z-normalized in order to avoid issues related to
different units of the seismic attributes, the data are whitened and filtered using Principal
Component Analysis (Stanford, 2018) whereby the eigenvalues retained just exceeding
90% are considered to be signal, and the others to be noise.

To initialize the algorithm, | must assume an initial guess for the unmixing matrix
W. Instead of using a random initial guess, | generate an initial guess based on the
eigenvectors and eigenvalues of the correlation matrix C in order to guarantee exact
repeatability of the process.

Finally, the unmixing matrix W is estimated by maximizing the non-Gaussian
behavior of the multivariate data measured by an approximation of negentropy
(Hyvarinen and Oja, 2000). When convergence is reached, the independent components
are computed by projecting the Z-normalized and whitened seismic attributes onto the
final unmixing matrix, W, obtained from the algorithm. For more information on the

mathematical details of the procedure, please refer to the appendix.
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Figure 2. Differences between Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). Attributes a4 and a, are scaled by their means and standard
deviations. The first eigenvector v; is a line that least-squares fits the data cloud and best
represent the variance of the data. PC1 is a projection of each data point onto v;. The
second eigenvector v, is a perpendicular to v; and for two dimensions these two
eigenvectors best represents the data. In contrast, the independent components IC1 and
IC2 are latent variables whose order is undefined and they are not orthogonal between
each other (Hyvarinen and Oja, 2000; Tibaduiza et al., 2012). To compute the
independent components, each data point is projected onto the whitened eigenvectors v4
and vy, and then projected onto the unmixing matrix W.
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Figure 3. Independent Component Analysis (ICA). The algorithm is a based on the

FastICA algorithm developed by Hyvirinen and Oja (2000), but with modifications in
order to implement it using volumetric seismic attributes.



Chapter 3: Geological Background

The Taranaki Basin is a sedimentary basin located along the western side of the
North Island, New Zealand (Palmer, 1985) (Figure 4). The eastern Taranaki Graben
Complex and the Western Platform are the two main structural elements of the basin
(Pilaar and Wakefield, 1984).

The Western Platform, with a width of more than 100 km, is characterized by
2,000 to 5,000 meters of Late Cretaceous-Recent sediments and represents the offshore
part of the Taranaki Basin (Palmer, 1985). The Western Platform was affected by normal
block faulting during the Late Cretaceous-Eocene, but during most of the Tertiary it
remained relatively stable (Pilaar and Wakefield, 1984). The Taranaki Graben structure
is controlled by movement in the basement and faults developed during the Late
Cretaceous — Eocene (Palmer, 1985) with its infill characterized by sedimentary and
igneous rocks (Pilaar and Wakefield, 1984).

The Taranaki Basin was initially formed by transcurrent rifting during the Late
Cretaceous. Throughout this time, transgressive marine and terrestrial sedimentary rocks
of the Pakawau Group were deposited (Thrasher, 1992). The Pakawu Group can be
subdivided into the Rakopi and the North Cape Formations. An important characteristic
of the Rakopi Formation is that it was deposited under fluvial-lacustrine conditions and
has good hydrocarbon source potential (Figure 5) (Dauzacker et al., 1996).

The Paleocene to Lower Oligocene is characterized by the deposition of the
Kapuni Group, a sequence of sandstones, coal and mudstones lithologies, that overlie the

Pakawau Group after a period of transgression. Contrary to the Pakawau Group, the

10



Kapuni Group sedimentation is distributed across all the Taranaki Basin and is not
confined only to the Cretaceous Grabens (De Bock, 1994).

After the deposition of marine siltstones and mudstones related to the Turi
Formation in the Eocene to Early Oligocene, the Tikorangi Limestone, a bioclastic
limestone sequence, was deposited widely in the Taranaki Basin during the Oligocene,
and according to De Bock (1994) represents a regional seismic marker.

The Miocene deposits are characterized by detrital sedimentation associated with
relative sea-level fluctuations and tectonism associated with deposition of sediments in
the South Taranaki Graben during the Early Miocene and reverse faulting in the South
Taranaki Graben during the Late Miocene (De Bock, 1994). Deposition started with deep
water mudstones and siltstones represented by the Lower Manganui Formation. In the
Early to Middle Miocene, deposition of submarine fans occurred associated with a major
regression (De Bock, 1994). These submarine fans were deposited on the basin floor or
at the base of continental slope (Dauzacker et al., 1996) and are represented by the Mt
Messenger and Moki Formations (Figure 5). These sandstone turbidites are diachronous
towards the North (Dauzacker et al., 1996).

During the Middle to Late Miocene, the Moki Formation was buried by
progradational deposits of the (Upper) Manganui Formation (Dauzacker et al., 1996). The
end of the Miocene was characterized by a sea level falling stage, depositing a sequence
of prograding strata known as the Giant Foresets Formation. Pliocene to present day
sediments are associated with marine deposition (De Bock, 1994).

The Moki Formation is a fine-grained turbidite sequence (Engbers, 2002) and is

comprised of sandstones interbedded with siltstone, bathyal claystone and thin limestones

11



(Bussell, 1994). The Moki Formation can be subdivided into the Moki A sands, Moki B
shale and the Moki B sands (Bussell, 1994). The Moki B sands form the lower unit in the
Moki Formation and consist of turbidite sheet sands with large laterally extension which
were deposited on a basin floor (Engbers, 2002). The Moki B shale represents a period
of low sedimentation associated to deposition of bathyal claystones (Engbers, 2002) and
it tends to thicken to the East and Northeast (Bussell, 1994). The Moki A sands unit was
deposited as a base of slope turbidite (Engbers, 2002) and is characterized by major
submarine meandering channel complexes (Bussell, 1994) trending NW-SE (Yagci,
2016). According to Bussell (1994), the Moki B sands has few channels while the Moki
A sands is traced by sinusoidal channel complexes, consistent with a progradation of the
slope model. The channel complexes present in the Moki A sands unit are the geological

feature of interest in this study.
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Figure 4. The Taranaki Basin can be divided in the Taranaki Graben Complex and the
Western Platform (Pilaar and Wakefiled, 1984). The Tui3D seismic survey (orange star)
IS situated offshore Taranaki Basin, New Zealand. After King et al. (1993), King and
Thrasher (1996), Thrasher et al. (2002) and Hansen and Kamp (2006).
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Figure 5. Stratigraphic column of the Taranaki Basin, New Zealand. The Moki Formation
(red rectangle) can be divided from lower to upper unit into the Moki B sands, Moki B
shale and Moki A sands (Engbers, 2002). The Moki A sands unit is the zone of interest
in this research and is characterized by base of slope turbidities and channel complexes
(Engbers, 2002) trending NW-SE (Yagci, 2016). Picture after De Bock (1994).
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Chapter 4: Dataset

The Tui3D seismic survey is located offshore Taranaki Basin on the southwest
coast of the North Island, New Zealand (Figure 4) and was acquired by Veritas DGC
Australia Pty. Ltd from March 25, 2003 to May 10, 2003 (Veritas DGC, 2003). The
Tui3D seismic volume provided by New Zealand Overseas Petroleum Limited (NZOP)
has a surface area of 350.1 km? with streamer separation of 150 m and source separation
of 75 m. The migrated seismic volume consists of 1975 inlines and 2191 crosslines with
a bin size of 12.5 by 12.5 m.

The Tui3D seismic volume data quality is good, but contaminated by acquisition
footprint (Figure 6). A phase shift of 180° was applied to the volume resulting in a zero-
phase American polarity.

In addition to the seismic volume, | use the Tui SW-2 well to validate my
unsupervised seismic facies analysis.

Seismic attributes and analysis interval

Seismic attributes are powerful tools that quantitively measure properties
including continuity, morphology and frequency, facilitating the identification of
turbidites and channel complexes in this seismic data volume. Different attributes
highlight different features of interest. Combining them using multi-attribute analysis
techniques provide a means to better understand the underlying geological processes and
to better characterize the reservoir.

Marfurt (2018) summarizes some of the more commonly used multi-attribute data

integration tools, including 3D co-rendering, principal component analysis, and self-
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organizing maps among other. In this paper, | evaluate the relatively new independent
component analysis multi-attribute decomposition technique.

In order to apply the independent component algorithm to make a facies analysis
and study the geomorphology of the turbiditic channel complexes in the Moki A sands
Formation, several seismic attributes must be used as input and the choice of these
attributes is critical to obtain satisfactory results. Spectral components are sensitive to
both impedance and thickness variations and are thus good candidates for turbidite
analysis. | hypothesize that applying ICA to spectral magnitude components will reduce
the dimensionality of the data, reject noise and extract the most valuable information
components, thus accomplishing my goal of highlight the turbiditic channels and study
their internal architecture and facies distribution.

Spectral-decomposition analysis is a powerful technique for studying bed-
thickness, lateral changes in porosity, and the presence of hydrocarbons (Sinha et al.
2005; Chopra and Marfurt, 2014) and the sequence stratigraphy and the deposition of a
particular system (Marfurt and Kirlin, 2001). The method of choice in this study was the
Continuous Wavelet Transform (CWT) decomposing the seismic volume into phase and
magnitude components at different time-frequency samples, often improving the
temporal and vertical resolution and allowing us to interpret geological features at
different scales. These frequency components are similar to applying a bandpass filter to
the volume and represent its information at a particular frequency (Chopra and Marfurt,
2015; Chopra and Marfurt, 2016).

Besides an appropriate choice of seismic attributes, another critical factor for

multi-attribute facies analysis techniques, is the design of the analysis interval. The ideal
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analysis interval encloses only the target formation thereby avoiding mixing adjacent
facies that have little to do with the target turbidite facies and basin floor matrix. Fewer
facies results in easier facies determination.

In this study, the Moki A sands unit consists on strong continuous reflectors
bypassed by discontinuous reflectors with variable reflectivity (Figure 7). For this reason,
picking a consistent horizon through the Moki A sands Formation is a challenging task.
Instead, | picked a horizon along the base of the Tikorangi Limestone, which is
characterized by a strong continuous reflector and similar depositional trend than the
Moki Formation, to create phantom horizons bracketing the top and bottom of the Moki
A sands Formation resulting in an analysis interval of 300 ms. Although the ideal analysis
interval should enclose only one target formation, to completely enclose the channel
complexes present in the Moki A sands Formation, my analysis interval brackets the
Moki A sands Formation, the Moki B shale and part of the Moki B sands and Upper

Manganui Formations.

17



Seismic Amplitude
1.5€7

1 5000m 1 ’

b)
’ : P o Coherence
)l 1

A

t=2136 ms

Figure 6. The Tui3D seismic volume is contaminated by acquisition footprint. (a)
Acqusition footprint (red arrows) seen in the seismic amplitude at time slice 2136 ms (b)
Acqusition footprint (red arrow) is enhanced using the coherence attribute in the Tui3D

seismic data.
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Chapter 5: Results

Seismic geomorphology and facies analysis using spectral magnitude components
as input in the independent component analysis

In order to interpret the geomorphology and facies of the channel complexes
present in the Moki A sands unit, each spectral magnitude component, independent
component and principal component volumes are flattened against the upper analysis
interval horizon (Horizon A) which is similar to extract them along phantom horizons
inside the analysis interval (Figure 8).

Spectral magnitude components can be plotted against a RGB color scheme for
their interpretation (Li et al., 2018). If I plot different combinations of these spectral
components along a phantom Horizon A + 196 ms, | note that the combination of 25-35-
45 Hz (Figure 9a) is similar that the combination of 40-50-60 Hz (Figure 9b), even though
a small meandering channel (blue arrow) tends to be better resolved in the former. In
addition, the combination of 60-70-80 Hz (Figure 9c) is contaminated by strong
acquisition footprint (red rectangle) and it delineates thin beds inside the channels (yellow
arrows). If I plot the 25-50-75 Hz (Figure 9d) I note that the infill of the channels tends
to tune at the low frequencies while their flanks are more coherent at approximately 50
Hz, also some thin beds tune at high frequencies of approximately 75 Hz. Analyzing the
same combinations at Horizon A + 248 ms (Figure 10), | still observe that the infill of the
channels tends to tune at low frequencies, the flanks, internal thin beds and acquisition
footprint tune at higher frequencies.

Besides the redundant data existing in the spectral component analysis, selection

of which combination better represents the turbiditic channels in the Moki A sands
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Formation can be cumbersome because there are many output components to choose
from, thus manually scrolling and analysis of each component is necessary. For these
reasons, in workflow #1 (Figure 11), | input the spectral magnitude components ranging
from 25 to 80 Hz with intervals of 5 Hz in the ICA algorithm. The internal architecture
of the channel complexes is poorly captured at 10, 15 and 20 Hz. Based on the retained
variability criteria (Stanford, 2018), the algorithm automatically outputs four
components, from which the independent components are computed, because they
represent 94.04% of the variability of the data (Figure 12a).

Workflow #1 can be considered as a 12D attribute space reduced to a 4D
mathematical space, in which the data point is projected, first, against the whitened
eigenvectors and second, onto the unmixing matrix W. Therefore, if | project the
independent components against a RGB color scheme, voxels that are projected to similar
colors can be considered as similar seismic facies. The results obtained from the
independent component analysis are compared to the outputs given by principal
components analysis.

Principal components are sorted based on the energy represented by their
eigenvalues. Thus the first principal component (PC1) is the strongest in these data and
represents 63.52% of the variability (Figure 12a). The corresponding eigenspectrum is
approximately flat (Figure 12b) because the spectral components were spectrally
balanced during the CWT spectral decomposition. The second principal component
(PC2) is orthogonal to PC1 and represents 16.66% of the data (Figure 12a). The spectrum
monotonically decreases to the larger frequencies (Figure 12b) however, because of the

ambiguity in the sign of eigenvectors, it could also monotonically increase. The third
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principal component (PC3) represents 8.11% of the variance (Figure 12a), is orthogonal
to PC1 and PC2 and its amplitude changes sign between 45 to 50 Hz (Figure 12b). Finally
the fourth principal component (PC4) is orthogonal to PC1, PC2 and PC3 and captures
only 5.74% of the variability of the input data (Figure 12a). Guo et al. (2009) observed
that because the principal components reside in a mathematical space, where the spectral
components are represented as orthogonal uncorrelated components, little physical
significance can be assigned to these spectra.

In contrast, the order of the independent components is undefined because they
have unit variance. Also, their order can be changed in the linear combination (Equation
1) without affecting the mixtures. As an attempt to sort the independent components, |
compute their energy (Figure 13a) (mathematical details can be found in the appendix).
All four components exhibit similar energy, as expected by the whitening preprocessing
step. Independent component #3 (IC3) is the largest energy, capturing a 26.17% (Figure
13a) and represents very low and moderate frequencies of the spectral components
(Figure 13b). In contrast, independent component #1 (IC1) is the lowest and captures
23.92% of the energy (Figure 13a). Also, IC1 tends to represent lower frequency features
(Figure 13b). Independent component #2 (IC2) has an energy of 25.5% (Figure 13a) and
its amplitude is higher between 35 to 60 Hz (Figure 13b). Finally, independent component
4 (IC4) has an energy of 24.41% (Figure 13a) and it monotonically changes from lower
to higher frequencies (Figure 13b). Because the independent components reside in a space
where the spectral components are represented as oblique projections in order to find
independent signals, | believe that the ICA spectra has a more physical significance that

the PCA eigenspectrum. In addition, because all independent components exhibit similar
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energy and this is not clearly correlated to geology, | sort the independent components
visually, based on the resolution of large and small scale geological features and noise
reduction in each independent component.

Comparing the variability of the principal components to the energy of the
independent components (Figure 14), | observe that PCA tends to be dominated by
principal component #1 (PC1), while the independent components exhibit almost the
same energy, and thus they are equally important.

In Figure 15, |1 compare the principal component 1 (PC1) (Figure 15a) to the
independent component 1 (IC1) (Figure 15b) along Horizon A + 196 ms. Numbering is
used to identify the different architectural elements and is not associated with time of
deposition of the channel complexes. On both pictures, | observe the confluence of two
leveed meandering tributary channels with moderate sinuosity and a tabular shape
channel with an architecture similar to a braided channel , the merging of these three late
lowstand turbidite channel infill systems form a major turbidite channel towards the
Northwest of the study area.

In addition, | note that IC1 presents better footprint suppression (red rectangle)
and a smoother; less noisy picture than PC1. Moreover, the large scale channels (green
arrows) and small scale features such as oxbow 1, oxbow 2, oxbow 3 (orange arrows)
and a small abandoned meandering channel (blue arrow) are better delineated using IC1
(Figure 15Db).

Analyzing the IC1 and PC1 at Horizon A + 248 ms (Figure 16), | notice that the
result obtained from the ICA (Figure 16b) still provides better resolution, less random

noise and better footprint suppression (red rectangle) than PC1 (Figure 16a). Furthermore,
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while the leveed meandering channels (green arrows) are difficult to delineate in PC1,
these are better resolved using IC1. In addition, the tabular shape channel bifurcates into
two distributary channels towards the Northwest and it is being better delineated and
internally resolved using IC1. The small scale oxbow 3 (orange arrow) is also better
resolved by IC1.

When comparing the PC2 and 1C2 volumes at Horizon A + 196 ms (Figure 17), |
still observe a smoother, less noisy with better footprint suppression image using ICA
(Figure 17b). Moreover, the 1C2 better exhibits than PC2 (Figure 17a) the large scale
geological features such as the leveed meandering channels and the tabular shape channel
(green arrows) and the small scale geological features such as oxbows (orange arrows)
and the small abandoned channel (blue arrow).

At Horizon A + 248 ms, IC2 provides a remarkable better result than PC2 (Figure
18). The leveed meandering tributary channels (green arrows) that are difficult to
delineate using PC2, are well resolved using IC2 (Figure 18b). In addition, the latter has
less footprint (red rectangle) and less random noise than the former and similar to 1C1,
the small scale oxbow 3 (orange arrow) has better resolution in IC2 than in PC2 (Figure
18a).

Now, analyzing Figure 19, | observe at Horizon A + 196 ms that the 1C3 has still
better footprint suppression than PC3 (red rectangle), even though it has more footprint
and random noise than IC1 and IC2. The leveed meandering channels, the tabular shape
and the subsequent merged main channels (green arrows), together with the small scale

oxbows (orange arrows) are interpretable on both pictures (Figure 19a and Figure 19b).
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On the other hand, the small abandoned channel that was not completely delineated in
PC1 and PC2, is now visible in PC3, while in IC3 is barely resolved.

At Horizon A + 248 ms (Figure 20), the leveed meandering tributary channel 1
and 2 are still better delineated in IC3 (Figure 20b), but its resolution increased
considerably in PC3 (Figure 20a) compared to PC1 and PC2. In addition, the meandering
channels 3 and 4 are resolved on both pictures. Moreover, the oxbow 3 (orange arrow) is
delineated on both pictures, but it looks better highlighted using PC3.

PC4 at Horizon A + 196 ms (Figure 21a) and at Horizon A + 248 ms (Figure 22a),
still presents footprint (red rectangle) and random noise as PC1, PC2 and PC3. Also, the
geological deep water architectural elements analyzed before are not as well delineated
as in the other principal components. In contrast, IC4 at Horizon A + 196 ms (Figure 21b)
and at Horizon A + 248 ms (Figure 22b), is contaminated by strong acquisition footprint
and random noise, also architectural elements are not highlighted as well as in ICAL, IC2
and IC3. I believe this is because independent component analysis seeks for independence
between different components inside the data, which provides better separation between
geological features (IC1, IC2 and IC3) and noise signal (IC4), while principal component
analysis looks and sort the components based on higher variability, thus it tends to mix
geological features of interest with noise signal (PC1, PC2, PC3 and PC4). Because of
this, ICA provides results with better resolution and preservation of large scale (late
lowstand leveed meandering channels, tabular shape channel with an architecture similar
to a braided channel and main channel complex) and small scale (oxbows and small

abandoned channel) geological features of interest than principal component analysis.
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In order to accomplish the goal of making an unsupervised seismic facies analysis,
| plot the independent components IC1, 1C2 and IC3 against a RGB color scheme. As
stated before, similar seismic facies are voxels projected to similar colors. In addition, |
compare the ICA RGB blending with the PCA RGB blending using PC1, PC2 and PC3.

From Figure 23, | note that the RGB blending using independent components at
Horizon A + 196 ms (Figure 23b) provides better resolution of geological features than
the RGB blending of principal components (Figure 23a). Like in the individual
components, the leveed meandering, the tabular shape and main channels (green arrows)
and the small scale geological features such as the older abandoned channel and the
oxbows are better delineated using ICA. | also notice, that the ICA RGB blending
provides better contrast between distinct seismic facies. While the axis and off-axis of the
leveed meandering channel (Posamentier and Kolla, 2003; McHargue et al., 2010; Fildani
et al. 2012; Hubbard et al., 2014) are characterized by similar greenish colors in PCA
RGB blending, they are characterized in the ICA RGB blending by a purple color for the
axial deposition of the leveed meandering channels and a green color associated with the
off-axis to marginal deposition. Moreover, | note that similar to a braided channel, the
tabular shape tributary channel has a more variable internal architecture with
predominantly purple seismic facies mixed with green and some blue seismic facies. In
addition, the oxbows present different infill patterns. The oxbow 1 is filled with a blueish
color facies, the oxbow 2 has a purple infill and the oxbow 3 is characterized by greenish
seismic facies. Finally, the small abandoned channel is associated with a purple seismic

facies infill.
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At Horizon A + 248 ms (Figure 24), the leveed meandering channels 1 and 2 are
much better delineated using ICA RGB blending (Figure 24b) than PCA RGB blending
(Figure 24a) . The leveed meandering channel 1 is characterized predominantly by purple
seismic facies intercalated with some blueish seismic facies, while the leveed meandering
channels 2 consist in a green seismic facies. As at Horizon A + 196 ms, the tabular shape
channel internal architecture is highly variable with a mix of different seismic facies and
this variability is better captured using ICA. The distributary channel 1 is characterized
by a predominant purple seismic facies, while now the distributary channel 2 looks like a
prolongation of the tabular channel because they have the same variable internal
architecture. The meandering channel 3 is characterized by only a purple seismic facies
and the oxbow 3 and the meandering channel 4 are characterized by a greenish infill.

In terms of random noise and footprint, the ICA blending (Figures 23b and 24b)
provides a smoother picture with remarkable less footprint than PCA blending (Figures
23a and 24a). Even though the acquisition footprint in ICA RGB blending increases at
Horizon A + 196 ms, | hypothesize that it is associated with the independent component
3 (IC3).

ICA shows better results than PCA in terms of delineating geological deep water
architectural elements of interest, reduces noise, and improve the contrast between
different seismic facies. However, neither of these techniques can be used to predict
thickness or porosity because the independent and principal components project the data
onto a mathematical space. To study reflector thickness, I must use the original or

reconstructed spectral components (Guo et al., 2009 ; Zanardo Honorio et al., 2014).
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Geological interpretation of seismic facies using ICA RGB blending

Following McHargue et al. (2010), channels associated with turbiditic deposits
are a product of multiple waxing and waning flows. During a waxing cycle, high energy
turbiditic flows produce erosion forming a channel conduit. In a waning cycle, turbiditic
flows become less energetic, thus allowing filling of the channel conduit.

Deposition of turbiditic facies in deep water channels can be divided into axis,
off-axis and margin (Figure 25). In most cases, the axis represents the thickest part of the
channel and is characterized by deposition of thick-bedded amalgamated sandstone
facies. In contrast, off-axis to marginal deposition is associated with interbedded
sandstone and mudstone facies, also known as heterolytic facies, implying a lower
concentration of net sand compared to axis facies (McHargue et al., 2010; Fildani, et al.,
2012; Hubbard et al., 2014).

Although the internal architecture of the channels present in the Moki A sands
Formation is highly variable and complex, based on principles of geomorphology and
following the model of deposition of turbiditic facies (McHargue et al., 2010; Fildani, et
al., 2012; Hubbard et al., 2014) and cut-and-fill architecture (Posamentier and Kolla,
2003) in channel complexes, | generate several vertical sections of seismic amplitude
through the channels complexes, in order to correlate the different seismic facies obtained
from the ICA RGB blending analysis with axis, off-axis and margin deposition and lateral
and upward migration of facies.

In Figure 264a, | generated a vertical section AA’ through the straight tabular shape
channel that contains a more variable internal architecture of seismic facies with

predominantly purple seismic facies mixed with some green and blue facies. |
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hypothesize that this channel complex was developed as a deep cut associated with high
energy turbiditic flows in which, during a waning cycle, weakly unconfined channels
migrated inside the channel conduit. According to McHargue, et al. (2010), these weakly
unconfined channels are characterized by a tabular shape and similar architecture to
braided channels with predominant sand-rich facies. Also, in vertical section AA’, |
observe the oxbow 3, with a predominant green seismic facies related to low amplitude
reflectors, are enclosing the purple seismic facies associated with high amplitude,
continuous reflectors.

Making a vertical section BB’ (Figure 26b) through the meandering leveed
channel 1, | observe that there is an asymmetrical configuration which, according to
McHargue et al. (2010), I can find in sinusoidal channels. The fact that this channel
complex is asymmetrical can be associated with cut-and-fill or waxing and waning cycles
(Posamentier and Kolla, 2003). Cut-and-fill architectures can lead to upward and lateral
migration of channel facies (Posamentier and Kolla, 2003). | hypothesize that in BB’
(Figure 26Db) there was a first waxing and waning cycle in which sand-prone facies are
deposit in the axis of the channel, while in the off-axis to margin of the channel, mud-
prone facies are deposit (Posamentier and Kola, 2003; McHargue et al., 2010). Then, a
second waxing-waning cycle occurred, creating a cut-and-fill architecture in which facies
migrated upward and laterally (red arrow). On both waxing and waning cycles, sand-
prone facies are deposited in the axis of the channel, while mud-prone facies are related
to off-axis to marginal deposition. Also, in vertical section BB’, | note that axial facies
associated with purple seismic facies are characterized by high amplitude, continuous

reflectors with limited lateral extent, while green seismic facies, associated with off-axis
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to marginal deposition are characterized by low amplitude reflectors. From Figure 26b, I
note that the sheet sands of the Moki A sands Formation are represented by a mixture of
bright blue with yellow, red and purple seismic facies associated with high amplitude
with great lateral extension parallel reflectors.

In Figure 27a, | make another vertical section CC’ through meandering leveed
channel 1, but now the outer bend of the channel is facing to the opposite direction. In
vertical section CC’, I note that there is lateral and upward migration of facies (red arrow),
thus cut-and-fill architecture related with waxing and waning cycles is present. Like in
vertical section BB’ (Figure 26b), | hypothesize that sand-prone facies are deposited in
the axis of the channel and mud-prone facies deposit in off-axis to marginal deposition.
Moreover, purple seismic facies are still associated with axial deposition and
characterized by high amplitude continuous reflectors, while green purple facies with low
amplitude reflectors represent off-axis to marginal deposits. Sheet sands are associated
with bright blue seismic facies, mixed with yellow, red and purple seismic facies.

Making a vertical section DD’ (Figure 27b) through meandering leveed channel
2, | still observe cut-and-fill architecture associated with waxing-waning cycles. Also, |
hypothesize that during channel deposition related with a second waning-waxing cycle,
axial deposits from the previous waning-waxing cycle were eroded. Like in previous
observations, purple seismic facies represent high amplitude continuous reflectors and |
believe they are associated with sand-prone deposits along the axis of the channel.
Furthermore, green seismic facies are still characterized by low amplitude reflectors and

they represent mud-prone facies related with off-axis to marginal deposition.
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In Figure 28, | make a vertical section EE’ through meandering channel 3 at
Horizon A + 248 ms. Analyzing the channel at a vertical view, | note there is a lateral
change in the amplitude thickness which 1 interpret is associated with differential
compaction (Chopra and Marfurt, 2012). Differential compaction is related to lateral
changes in lithologies. | interpret the positive relief in EE’ as a channel filled with sand-
prone sediments that do not experience as much compaction as the mud-prone facies
outside it. In this case, the purple seismic facies are associated with sand-prone facies and
high amplitude reflectors and the green facies are related to mud-prone sediments and
lower amplitude reflectors associated with the Moki B shale Formation.

Based on the observations made using vertical section through the channel
complexes present in the Moki A sands Formation, | hypothesize that purple seismic
facies, characterized by continuous high amplitude reflectors, are associated with sand-
prone facies related to axial deposition. In contrast, | believe that green seismic facies,
characterized by low amplitude reflectors, are associated with mud-prone facies related
to off-axis to marginal deposition in the meandering channel complexes. Finally, mixed
blue, yellow and red facies represent sheet sands deposits, | hypothesize these seismic
facies are associated with higher concentration of sand-prone deposits.

Validation of seismic facies using well data

In order to validate my interpretation of the seismic facies using principles of
geomorphology and the ICA RGB blending to highlight the different architectural
elements, | relate the seismic facies with lithologies analyzing the Gamma Ray log from
the Tui SW-2 well. From Figure 29, I note that high gamma ray values associated with

bathyal claystones of the Moki B shale Formation correlate with the green seismic facies
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(yellow arrow) which I hypothesized were associated with mud-prone seismic facies.
Also the small low gamma ray values (blue arrow) which are associated with calcareous
sandstones, are not seen in the seismic because their thickness is approximately 5 m, thus
they are under resolution. In addition, intercalation of high gramma ray with low gamma
ray values associated with interbedded calcareous sandstone and claystones related to
base of slope turbidites present in the Moki A sands Formation are characterized by red
and blue seismic facies (green arrows), which is consistent with my interpretation of sheet
sands characterized by a mixture of blue, red and yellow seismic facies. Finally, the low
gamma ray calcareous sandstone of approximate thickness of 30 m bracketed by high
gamma ray claystone are associated with mixed purple and green seismic facies (orange
arrow) in the Tui SW-2 well. Although the Tui SW2 well is not drilled through one of the
channel complexes, | believe that the validation of the seismic facies using this well can

be extrapolated to the other zones of the seismic volume.
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30 Hz ‘ 40 Hz || 50 Hz \‘ 60 Hz \I 70 Hz \ 80 Hz

RGB Blending RGB Blending

Facies Analysis Facies Analysis

Figure 11. Proposed workflow to highlight and study the internal architecture of the
channel complexes present in the Moki A sands Formation. | use spectral magnitude
components ranging from 25 to 80 Hz with intervals of 5 Hz because it allows to analyze
the stratigraphy and depositional system of the target area. Using Independent
Component Analysis (ICA) is possible to extract the most valuable information and
reduce noise from the spectral magnitude components. Then, the independent
components are sorted by visual inspection based on their geological insight. Because,
using ICA, | am projecting the data onto a mathematical space, plotting the three more
important independent components against a RGB color scheme, is possible to generate
an unsupervised seismic facies analysis in which similar colors are associated with similar
seismic facies. Finally, the results are compared to the obtained using Principal
Components Analysis (PCA).
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Figure 12. Variability retained. (a) Based on the percentage of variability retained
(Stanford, 2018), the algorithm automatically outputs four components during the PCA
whitening preprocessing step that represent 94.04% of the variability of the data, from
these components the independent components are computed. Also, PC1 is the strongest
and represent 63.52% of the variability (b) PC1 is characterized by a flat spectrum
because the spectral components were spectrally balanced. PC2 monotonically changes
from lower to higher frequencies and is orthogonal to PC1. PC3 is orthogonal to PC1 and
PC2 and its spectrum changes sign between 45 to 50 Hz. PC4 captures 5.74% of the
variability and is orthogonal to PC1, PC2 and PC3. Little physical significance can be
assigned to the eigenspectrum because principal components reside in a mathematical
space where spectral components are represented as orthogonal uncorrelated components.
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Independent components energy
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Figure 13. ICA energy. (a) Independent components exhibit similar energy and this is
not clearly correlated to geology, thus independent components are sorted based on visual
inspection, seeking for better resolution of large and small scale geological features (b)
IC1 captures 23.92% of the energy and tend to represent lower frequency geological
features. 1IC2 amplitude is higher at frequencies from 30 to 60 Hz. IC3 captures the largest
energy and its spectrum is associated with low to moderate frequencies. 1C4 spectrum
monotonically changes from lower to higher frequencies. Because independent
components represent spectral components as oblique projections seeking for
independence, the ICA spectra has more physical significance than the PCA
eigenspectrum.
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PCA variability vs. ICA energy
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Figure 14. (a) Principal Component Analysis (PCA) tends to represent all the energy in
principal component #1 (PC1), while the remaining variability is distributed among the
other principal components. In contrast, the independent components exhibit similar
energy, thus they are equally important.

39



a) PC1

Horizon A + 196 ms

o (3 o . Abandoned Channel .
e S
/ &@_@ S
< 0 <

o e ASNTR

g 5000m 1

1:67819 ’

Horizon A + 196 ms

g
13 t”.

/| Tabular

g 5000m 1

1:67819 ’

Figure 15. Principal component 1 (PC1) vs. independent component 1 (IC1) along
phantom Horizon A + 196 ms. (a) PC1 shows the confluence (red arrow) of two leveed
meandering tributary channels with moderate sinuosity and a tabular shape channel with
an architecture similar to a braided channel (green arrows). In addition, PC1 is
contaminated by acquisition footprint (red rectangle) (b) IC1 shows a smoother, less noise
picture with less acquisition footprint (red rectangle) than PC1. Also, in IC1 the large-
scale geological features (green arrows) and the small-scale geological features such as
oxbows (orange arrows) and a small abandoned meandering channel (blue arrow) are
better delineated than in PC1. Please, note that numbering is used to identify the different
architectural elements and is not associated with time of deposition of the channel
complexes.
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Figure 16. Principal component 1 (PC1) vs. independent component 1 (IC1) along
Horizon A + 248 ms. (a) The leveed meandering channel (green arrows) are difficult to
delineate using PC1, also PC1 is still contaminated by acquisition footprint (red
rectangle). (b) IC1 provides better resolution than PC1, thus the leveed meandering
channels (green arrows) are better delineated using the former. In addition, IC1 has less
footprint (red rectangle) than PC1 and the internal architecture of the tabular shape
channel improves considerably. Finally, the small scale oxbow (orange arrow) that is not
seen in PC1 can be interpreted using IC1.
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Figure 17. Principal component 2 (PC2) vs. independent component 2 (IC2) along
Horizon A + 196 ms. (a) PC2 is characterized by strong acquisition footprint (red
rectangle), also the large scale leveed meandering and tabular channels (green arrows)
and the small scale geological features such as oxbows (orange arrows) and the small
abandoned channel (blue arrow) are difficult to interpret using PC2. (b) IC2 provides a
remarkable increase in the resolution compared to PC2, thus the large scale (green arrows)
and small scale geological features (orange arrows and blue arrows) are easier to delineate
in 1C2. In addition, the independent component 2 has less acquisition footprint (red
rectangle) than the principal component 2. Similar to Figures 15 and 16, numbering is

used to identify the different architectural elements and is not associated with time of
deposition of the channel complexes.
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Figure 18. Principal component 2 (PC2) vs. independent component 2 (1C2) at phantom
Horizon A + 248 ms. (a) In PC2, the leveed meandering channels 1, 2 and 4 (green
arrows) are difficult to interpret, also the principal component 2 is characterized by
acquisition footprint (red rectangle) and random noise. (b) In contrast, IC2 provides a
result with less acquisition footprint (red rectangle) and random noise compared to PC2.
Moreover, the leveed meandering channels (green arrows) that were difficult to interpret

in PC2 are better delineated using IC2. The small scale oxbow (orange arrow) is also
better resolved in IC2.
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Figure 19. Principal component 3 (PC3) vs. independent component 3 (IC3) at Horizon
A+ 196 ms. (a) From PC3 is possible to interpret the large scale geological features such
as the leveed meandering channels and the subsequent merged main channel (green
arrows) and the small scale oxbows (orange arrows). Also, the small abandoned
meandering (blue arrow) channel that was not possible to delineate in PC1 and PC2 is
now seen in PC3 (b) IC3 is characterized by less acquisition footprint (red rectangle) and
smoother results than PC3. Also, the large scale (green arrows) and small scale (orange
arrows) geological features are well delineated. However, the small abandoned
meandering channel (blue arrow) was not completely delineated in IC3. Similar to the
previous analysis, numbering is used to identify the different architectural elements and
IS not associated with time of deposition of the channel complexes.
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Figure 20. Principal component 3 (PC3) vs. independent component 3 (IC3) along
phantom Horizon A + 248 ms. (a) The resolution of the leveed meandering and the tabular
channels (green arrows) increases considerably in PC3, thus is easier to interpret the
geological features. Also, is possible to observe acquisition footprint (red rectangle) in
PC3. (b) Although the resolution of the large geological features increased in PC3, they
are still better delineated using IC3. Moreover, IC3 still provides a smoother picture with
less acquisition footprint (red rectangle) than PC3. The small scale oxbow (orange arrow)
can be interpreted on both pictures, but its resolution seems to be greater in PC3.
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Figure 21. Principal component 4 (PC4) vs. independent component 4 (IC4) along
Horizon A + 196 ms. (a) In PC4, geological deep water architectural elements can still be
interpreted, but they are not as well delineated as in the other principal components. In
addition, PC4 still presents acquisition footprint (red rectangle) and random noise as in
PC1, PC2 and PC3. (b) IC4 is characterized by strong acquisition footprint and random
noise. Architectural elements are difficult to delineate.
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Figure 22. Principal component 4 (PC4) vs. independent component 4 (1C4) at phantom
Horizon A + 248 ms. (a) PC4 is still contaminated by acquisition footprint (red arrow)
and random noise, but large (green arrows) and small scale (orange and blue arrows)
geological features are interpreted. (b) 1C4 is still contaminated by strong acquisition
footprint and random noise. Large and small scale geological features are difficult to
interpret. 1 hypothesize that because independent component analysis looks for
independence in the multivariate data, it provides better separation between geological
features (IC1, IC2 and IC3) and noise signal (IC4) than PCA. Also, independent
components provides better resolution of large and smaller scale geological features than
principal component analysis, thus providing a mean of making a better seismic

interpretation.
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Figure 23. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3
at phantom Horizon A + 196 ms, in which similar colors can be interpreted as similar
seismic facies. (a) From PCA RGB blending is possible to analyze the large scale
geological features (green arrows), and the small scale oxbows (orange arrows), but the
small abandoned channel (blue arrow) is only partially delineated. PCA RGB blending is
contaminated by acquisition footprint (red rectangle). Axis and off-axis seismic facies are
characterized by similar greenish colors. (b) From ICA RGB blending the large scale
(green arrows) and small scale geological features such as oxbows (orange arrows) and
the small abandoned channel (blue arrow) are better delineated than PCA RGB blending.
In addition, the former presents lower acquisition footprint (red rectangle) and random
noise than the latter. ICA RGB blending also provides a better contrast between different
seismic facies, e.g., the axis of the channel is characterized with a purple seismic facies,
while the off-axis of the channel is associated with a green seismic facies. Also, the
tabular shape channel is characterized by a more variable internal architecture with
predominant purple seismic facies mixed with blue and green seismic facies. Finally, the
oxbows infill varies from purple to blue and green facies and the small abandoned channel
is associated with purple seismic facies.
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Figure 24. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3
at phantom Horizon A + 248 ms, similar colors are associated with similar seismic facies.
(a) From PCA RGB blending, the large scale meandering and tabular shape channels are
well delineated but the resolution decreases compared to the ICA RGB blending. Also,
the former presents more acquisition footprint than the latter. (b) The geological
architectural elements are better resolved in ICA RGB blending than in PCA RGB
blending. The leveed meandering channel 1 is characterized predominantly by purple
seismic facies intercalated with some blueish seismic facies, and the leveed meandering
channels 2 is associated with a green seismic facies. The tabular shape channel internal
architecture is highly variable with a mix of different seismic facies. The distributary
channel 1 is characterized by a predominant purple seismic facies and the distributary
channel 2 looks like a prolongation of the tabular channel. Finally, the meandering
channel 3 is characterized by only a purple seismic facies and the oxbow 3 and the
meandering channel 4 are characterized by a greenish infill.
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Figure 25. Following McHargue et al. (2010); Fildani, et al. (2012) and Hubbard et al.,
(2014), deposition of turbiditic facies in deep water channels can be divided into axis,
off-axis and margin. In general, the axis of the channel represents the thickest part and is
associated with deposition of thick-bedded amalgamated sandstone facies. Off-axis to
marginal deposition is characterized by interbedded sandstone and mudstone facies
(heterolytic facies), implying a lower concentration of net sand. Picture after McHargue
et al. (2010) and Hubbard et al. (2014).
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Chapter 6: Conclusions

Applications to a 3D seismic data volume acquired in the Taranaki Basin show
that Independent Components Analysis (ICA) proved to be a powerful technique to
reduce dimensionality, extract valuable information from multiple seismic attributes and
separate geological features from noise. ICA uses higher order statistics that found
projections that were more geological and less mathematical than Principal Component
Analysis (PCA), where PCs based on Gaussian statistics seems to mix multiple geologic
features as well as noise. For this reason, ICA provided better resolution and better
footprint reduction than PCA in interpreting the Taranaki Basin deep water turbidite
systems. Small scale geological features characterized by lower reflectivity than large
scale geological features are overlooked by the Principal Component Analysis, while in
Independent Component Analysis geological features at all scales are well preserved.
Specifically, small scale meandering and tabular shape tributary channels as well as
abandoned meandering channels and oxbows are better delineated using ICA. Finally,
ICA RGB blending provided better contrast between distinct seismic facies than PCA
RGB blending. In ICA RGB blending, axial deposition associated with sand-prone facies
is characterized by a distinct (in this case purple color) seismic facies related to high
amplitude reflectors. In contrast, off-axis to marginal deposition of the channels is
represented by a different (green color) seismic facies associated with mud-prone facies
and characterized by low amplitude reflectors. Finally, sheet sand deposits are
characterized by high amplitude continuous reflectors with greater lateral extent and are
associated with a mixture of (purple, red and yellow) facies dominated by one (bright

blue) seismic facies.
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Appendix
Preprocessing for ICA estimation

Estimation of the independent components P={P1,P2} requires finding an
unmixing matrix, W, such that its projection maximizes the independence or non-
Gaussianity between the components (Hyvarinen and Oja, 2000). Also, in ICA it is
assumed that the data has non-Gaussian distribution. This assumption is valid in seismic
data because according to Walden, (1985); Zanardo Honorio, (2014), seismic data can be
considered as super-Gaussian distributions that are characterized by a positive kurtosis.

| apply some preprocessing steps to better condition the problem. Hyvarinen and
Oja (2000), suggest subtracting the mean vector a of the data a, from the value at each
voxel prior to estimating the independent components. However, unlike human voices
and other ICA applications, each seismic attribute may have a different unit of
measurement and range of values. For example, the seismic envelope may range between
0 and +10000, while curvature may have value that range between -1 and +1 km™. For
this reason, | apply a Z-score normalization to the data, i.e., subtracting its mean but also

dividing by its standard deviation:

a"*"™=(a; - 3 )lo(ay). (A1)
The next preprocessing step is to whiten the data. Whitening guarantees that the
data are uncorrelated (mathematically, its covariance matrix is the identity matrix). The

correlation matrix, C, is constructed by comparing each sample vector to itself and all its

neighbors and can be computed from K attribute volumes as:

1
Cr1 = M =1 ag:'ll’(c)rm) (tm X, Ym)aslllorm)(tm' X Yim) (A2)

where M is number of voxels in the volume to be analyzed.
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According to Hyvarinen and Oja (2000), uncorrelated data simplify the estimation
of independent components because the mixing matrix A becomes an orthogonal matrix,
thereby reducing the number of free parameters to be computed.

Principal Component Analysis (PCA) is a common technique used for
dimensionality and noise reduction. The k principal component, P®, at the mt voxel
(tm,,Xm,ym) is a scalar that represents the projection of a J-dimensional sample vector, a,

against the k™ unit length, J-dimensional eigenvector, v&:

(norm)

Pj(k) (tm; xm,ym) = Zf:l aj (tmr xm,ym)vj(k)- (A3)
PCA can be used to whiten the data. Specifically, after computing the principal

components, P;, | rescaled them by 1/ \/TJ thereby making each of the projections have

unit variance:

a(w) _ P;k)(tm,xm,J’m)

J (;+e) 72 (A4)

w

where, a ), represents the data after Z-score normalization and whitening, A; are the

eigenvalues of the covariance matrix, and ¢ is a fraction of the largest eigenvalue 4, , to
avoid division by zero.

Using PCA whitening, | not only reduce the dimensionality of the data but I also
reduce noise during the independent component estimation (Hyvarinen and Oja, 2000).
To decide how many components | should preserve, | analyze the percentage of variance
retained (Stanford, 2018).

If 1 have N principal components whose eigenvalues are A4, 4,, A3, ..., Ay Where

An = An4q. For N attributes, Stanford (2018) suggests keeping the largest K components
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whose sum just exceeds a user-defined percentage £, of the variability E of the data,

where the remaining variability is considered to be noise:

YK 1A
St (A5)
n=1n

where | use a value g = 0.9 to define the data from noise.
The ICA algorithm

Based on the Central Limit Theorem, Hyvarinen and Oja (2000), state that the
distribution of two independent variables is less Gaussian than the distribution of the sum
of the two variables. Therefore, by maximizing the non-Gaussianity of the preprocessed
data, I can find the unmixing matrix, W, that maximizes the independence of the sources
P1and P2.

Because a Gaussian variable has the largest entropy of all, Hyvarinen and Oja
(2000), quantitatively measure non-Gaussianity based on an approximation of
negentropy, which is a modified version of entropy that is always nonnegative and equal
to zero for a Gaussian distribution.

Assuming a random variable y=WTa™) with zero mean and unit variance,
Hyvarinen (1999) approximate the negentropy J as:

J@) ={E[GO] - E[GW]}, (A6)
where G is a non-quadratic function called the contrast function, v is a centered and
whitened Gaussian variable and E is the expected value operator. In practice, the
expectation operator must be replaced by the sample means (Hyvarinen and Oja, 2000).

To compute the independent components, Hyvarinen and Oja (2000), developed

an algorithm called “FastICA”, where, the goal is to maximize the contrast function, G.
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Any non-quadratic function can be used in the computations (Hyvarinen and Oja, 2000).

| follow Zanardo Honorio et al. (2014), and use the contrast function:

6y =—e %) (A7)
which through empirical analysis appears to provide good resolution and delineation of
the geological features.

The independent components are computed simultaneously. To avoid
convergence to the same maxima, the outputs are decorrelated after each iteration
(Hyvarinen and Oja, 2000).

Following Hyvarinen and Oja (2000), in each iteration of the algorithm, | update

each row of the unmixing matrix, W, is updated by
G a%G
W)= [ 8 (Wat)| - E[ZEWa)|w,  (a)

and normalized by:
wit
A / , A9
j W] (A9)

where W is the updated unmixing matrix Finally, the updated unmixing matrix, W™ , is
decorrelated using Eigenvalue Decomposition (EVD) by
Wicorr = (WWT) /2w, (A10)
Convergence is reached when the dot-product between the old and new values of
W is close to 1, indicating that they are parallel and unchanged. (Hyvarinen and Oja,
2000).
Finally, as a means to order the independent components, | compute their energy
L. The energy of each independent component can be computed as the sum of the energy

over all the voxels that fall in the target region:
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M
2
L; = z yi(tmr xm,)’m)

m=1
where, yi(tm, xm,ym) is the i*" independent component at voxel m, and M is the number

of voxels in the target area.
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