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ABSTRACT 

Nowadays one of the biggest challenges for geoscientists is effectively extracting the 

useful information from massive geo-datasets. Deep learning algorithms have become incredibly 

good at analyzing and identifying pieces of objects from massive data.  The application of deep 

learning in seismic exploration has become one of the hottest research topics in recently two-

years. My dissertation focuses on developing new workflows for seismic data processing and 

interpretation with the aid of deep learning algorithms.  

Picking the first arrival of seismic data is one of the most time-consuming task in seismic 

data processing. The first arrival segments the seismic traces into two parts. Each part of the 

seismic traces can be viewed as a unique object. I automatically identify the two objects of the 

seismic trace by using a state-of-art pixel-wise convolutional image segmentation method. The 

boundary of the two objects is regarded as the first arrivals of seismic data. Noise filtering is 

another important step in seismic data processing. I proposed to filter the noise in seismic data by 

integrating deep learning and variational mode decomposition.  My new method does not require 

prior information about the noise which is one of the compulsory inputs for image de-noising 

using deep learning. My method not only effectively removes the random noise in the seismic 

image but also the coherence noise such as migration artifacts which is beyond the capability of 

current filtering methods.  

The process of seismic horizon interpretation can be treated as dividing the seismic traces 

into several segments. I proposed a workflow to perform semi-automated horizon interpretation
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method by using the encoder-decoder convolutional neural network. There are two main parts of 

my workflow. The first part is segmenting the seismic traces into different parts using deep 

learning and treat the boundary of two nearby parts as the horizon. The second part is refining 

the horizons using a two-step filtering. My method does not require seismic attributes such as the 

dip and azimuth of a seismic reflector as the inputs which are compulsory for current horizon 

picking algorithms. 
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CHAPTER 1 

INTRODUCTION 

In recent years, deep learning has achieved great success on computer science and 

attracting enormous attention on different disciplines. It has been applied to the tasks of image 

processing, speech recognition and natural language processing. Since the seismic data can be 

treated as images, my dissertation focuses on adapting and improving the deep learning based 

algorithms for seismic exploration. 

Micro-seismic events picking is a key step in seismic processing and imaging. Manual 

picking is the most common but the most time-consuming interpretation technique. In recent 

decades, many approaches have been proposed to pick the first arrival of micro-seismic events 

automatically. One of the most widely used methods is the short-term average/long-term average 

(STA/LTA) (Baer et al., 1987). STA/LTA first computes the moving average energy ratio of the 

short time window to long time window. STA/LTA then chooses the peak that is larger than the 

user-defined threshold as the first arrival. Baer and Kradolder (1987) improved the algorithm of 

the STA/LTA by integrating a characteristic function (CF) and dynamic peak threshold into the 

algorithm. Saragiotis et al. (1999) used higher-order-statistics (HOS) in a redundant wavelet 

transform domain (R-WT) to pick the first arrival automatically. Zhang et al. (2003) used the 

Akaike information criteria (AIC) to detect and pick the first arrival automatically. However, 

these methods above usually encounter a problem in a really noisy environment. Other automatic 

first arrival picking methods include multi-window algorithm (Chen et al., 2005), modified 

energy ratio (MER) (Wong et al., 2009), transformed spectrogram approach (Song et al., 2010), 

kurtosis ratio (S/L-Kurt) method (Li et al., 2014), adaptive filtering (Li et al., 2017) and 
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clustering analysis (Chen, 2017). Song et al. (2010) employed the correlation-based algorithm 

that is capable of detecting the first arrival with low signal to noise ratio. Chen (2017) utilized an 

unsupervised machine learning algorithm for first arrival picking and obtained a more robust 

result than the state-of-art STA/LTA even in a really noisy environment. 

Seismic denoising not only lowers the effect of subjectivity in seismic interpretation but 

also improve the reliability of seismic inversion. In recent decades, numerous seismic denoising 

approaches have been developed and widely applied in practice. Methods for seismic denoising 

can be generally classified into four categories: The first category is based on building a 

prediction filter to remove the noise of seismic data. The commonly used algorithms within the 

first category includes f-x predictive filtering (Canales, 1984), t-x predictive filtering (Abma et 

al., 1995), the forward-backward prediction approach (Wang, 1999), the polynomial fitting-

based approach (Liu et al. 2011), and non-stationary predictive filtering (Liu et al., 2012). The 

second category projects the seismic data to a transformed domain and rejects the noise by 

applying a bandpass filter to the transformed data. Finally, obtain the denoised seismic data by 

projecting the filtered data back to the time domain. The commonly used algorithms within the 

second category include Fourier transform (Chen et al., 2014), curvelet transform (Herrman et 

al., 2008), seislet transform (Fomel et al., 2010), shearlet transform (Kong et al., 2015), Radon 

transform (Trad et al., 2002; Xue et al., 2016), wavelet transform (Donoho et al., 1994), and 

dictionary learning based sparse transform (Elad et al., 2006). The third category decomposes the 

seismic traces into a set of components. Then, examine the time or frequency features of each 

decomposed component. Finally, obtain the “clean” seismic traces by rejecting the components 

which are regarded as “noise”. The commonly used algorithms within the third category include 

empirical mode decomposition (EMD) (Huang et al., 1998; Bekara et al., 2009), variational 
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mode decomposition (VMD) (Dragomiretskiy et al., 2014; Li et al., 2017), and singular value 

decomposition (SVD) based approaches (Bekara et al., 2007). Yuan et al. (2018) proposed a 

novel inversion-based denoising method. The method has the advantages of preserving 3-D 

spatial edges and low-frequency signals. The fourth category is based on the rank-reduction 

reconstruction of seismic data. The commonly used algorithms within the fourth category 

include Cadzow filtering (Trickett, 2008), and singular spectrum analysis (Vautard et al., 1992; 

Oropeza et al., 2011). 

The seismic horizons can be treated as the stratigraphic boundaries that represent the 

depositional environments and geological features. Manual interpretation is the most familiar but 

time-consuming interpretation technique. In recent decades, seismic horizon interpretation has 

been automated to some extent by others. Zeng et al. (1998) proposed an interpolation method, 

which first manually picking several reference strata slices and then build a surface volume by 

interpolating the interpreted seismic surfaces. However, the interpolated surfaces may not follow 

the local discontinues, like the fault and unconformities. Stark (2003) computed the unwrapping 

instantaneous phase to generate a relative geological time (RGT) volume and produce multiple 

horizons simultaneously. The seismic horizons that generated by RGT volume can provide a 

quality measure along the unconformities, but it cannot follow the fault gap. Wu and Zhong 

(2012) improved this method by using the graph-cut phase unwrapping, which performs well at 

strong discontinues structure zone. Lomask et al. (2006) first calculated the local dips over the 

entire seismic volume and transferred them into the time shift and then apply the least-square 

method to track the seismic horizons automatically. Parks (2010) proposed a slope-based 

flattening method, which use the structure tensor to estimate the dip and track seismic horizons 

automatically. Fomel (2010) use the algorithm of predictive painting to build a 3D seismic 
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surface volume. Wu and Hale (2015) proposed an automatic horizons tracking method by adding 

control points in the complex structure zone. Wu and Fomel (2018) proposed a novel 

automatically seismic horizon interpretation method with local slope and multi-grid correlation 

that can effectively deal with faults without any human effort or very few control points. 

In chapter 2 of my dissertation, I propose a novel workflow to automatically pick the first 

arrival of micro-seismic by using a state-of-art pixel-wise convolutional image segmentation 

method. I first form the training data by randomly selecting part of the micro-seismic traces and 

manually pick the time index of the first arrivals. I next segment the selected traces into two parts 

according to the time index of manual picking and assign each part a label accordingly. I then 

build an encoder-decoder convolutional neural network architecture and use the training data and 

training label as the input. I next obtain the trained network hierarchy by learning the segmented 

training data and labels. Finally, I predict the first arrivals of micro-seismic events by applying 

the trained network hierarchy to the rest of the micro-seismic traces. Both the synthetic and field 

data examples demonstrate that my proposed method successfully identifies the first arrivals. 

The predicted first arrival result obtained by using my proposed method is superior to the result 

obtained by using the traditional method of short-term average and long-term average 

(STA/LTA). 

In chapter 3 of my dissertation, I propose to attenuate the seismic noise by integrating 

variational mode decomposition (VMD) and convolutional neural network. There are four main 

steps in the proposed workflow. The first step is decomposing the seismic volume into different 

intrinsic mode function and a residual component by using VMD. The second step is adding 

user-generated white noise to each decomposed component. The third step is building the neural 

network hierarchy to learn the feature of additive white noise. The last step is obtaining denoised 
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seismic data by applying the well-trained network to the original seismic data. I use both 

synthetic and field data examples to illustrate the robustness and superiority of the proposed 

method.  

In chapter 4 of my dissertation, I propose a novel semi-automated seismic horizon 

interpretation method using an encoder-decoder convolutional neural network (CNN). To 

efficiently learn the waveform pattern that bounded by two adjacent horizons, I use a variable 

size for the convolution filters which differs from the current CNN based image segmentation. I 

form the training data by extracting the seismic traces on a user-defined coarse grid. The 

interpreted horizons for the seismic traces on the coarse grid separate the seismic traces into 

several segments. I then form the training labels by assigning a unique symbol to each segment. 

The training data and labels are then used to train a network hierarchy. Next, we obtain the 

seismic horizons over the whole seismic survey by applying the trained network to the rest of 

seismic traces. In addition, I designed a two-step smooth filter to remove the spike but kept the 

sharp fault, which can improve the accuracy of the predicted horizons. Two field data examples 

demonstrate that my proposed method can accurately generate seismic horizons for each seismic 

trace if I only have interpreted horizons on a coarse grid of the seismic survey. Finally, I made 

some test to find out the limitation of our proposed method that includes the minimum interval 

distance of the horizons and the maximum noise resisted ability. In the last chapter, I draw 

general conclusions and suggest possible future work direction. 
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ABSTRACT 

   Micro-seismic imaging plays an important role in hydraulic fracture detection and the 

first arrival picking of micro-seismic events is the bedrock of micro-seismic imaging. Manual 

picking is the most reliable but also the most time-consuming method for the detection of the 

first arrival of micro-seismic events. Accurate and efficient first arrival picking in a real noisy 

environment is a challenge for most of the automatic first arrival picking methods. We propose a 

novel workflow to automatically pick the first arrival of micro-seismic by using a state-of-art 

pixel-wise convolutional image segmentation method. We first form the training data by 

randomly selecting part of the micro-seismic traces and manually pick the time index of the first 

arrivals. We next segment the selected traces into two parts according to the time index of 

manual picking and assign each part a label accordingly. We then build an encoder-decoder 

convolutional neural network architecture and use the training data and training label as the 

input. We next obtain the trained network hierarchy by learning the segmented training data and 

labels. Finally, we predict the first arrivals of micro-seismic events by applying the trained 

network hierarchy to the rest of the micro-seismic traces. Both the synthetic and field data 

examples demonstrate that our proposed method successfully identifies the first arrivals. The 
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predicted first arrival result obtained by using our proposed method is superior to the result 

obtained by using the traditional method of short-term average and long-term average 

(STA/LTA). 

INTRODUCTION 

Micro-seismic events picking is a key step in seismic processing and imaging. Manual 

picking is the most common but most time-consuming interpretation technique. In recent 

decades, many approaches have been proposed to pick the first arrival of micro-seismic events 

automatically. One of the most widely used methods is the short-term average/long-term average 

(STA/LTA) (Baer et al., 1987). STA/LTA first computes the moving average energy ratio of the 

short time window to long time window. STA/LTA then chooses the peak that is larger than the 

user-defined threshold as the first arrival. Baer and Kradolder (1987) improved the algorithm of 

the STA/LTA by integrating a characteristic function (CF) and dynamic peak threshold into the 

algorithm. Saragiotis et al. (1999) used higher-order-statistics (HOS) in a redundant wavelet 

transform domain (R-WT) to pick the first arrival automatically. Zhang et al. (2003) used the 

Akaike information criteria (AIC) to detect and pick the first arrival automatically. However, 

these methods above usually encounter a problem in a real noisy environment. Other automatic 

first arrival picking methods include multi-window algorithm (Chen et al., 2005), modified 

energy ratio (MER) (Wong et al., 2009), transformed spectrogram approach (Song et al., 2010), 

kurtosis ratio (S/L-Kurt) method (Li et al., 2014), adaptive filtering (Li et al., 2017) and 

clustering analysis (Chen, 2017). Song et al. (2010) employed the correlation-based algorithm 

that is capable of detecting the first arrival with low signal to noise ratio. Chen (2017) utilized an 

unsupervised machine learning algorithm for first arrival picking and obtained a more robust 

result than the state-of-art STA/LTA even in a real noisy environment. 
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Deep learning is a subset of machine learning and has gained attention in various fields. 

Convolution neural network (CNN) proposed by LeCun et al. (1989) is one of the most popular 

and widely used deep learning algorithms. Many CNN based algorithms have been proposed for 

image segmentation and objects recognition, including LeNet (LeCun et al., 1998), AlexNet 

(Krizhevsky et al., 2012), RCNN (Girshick et al., 2014), GoogleNet (Szegedy et al., 2015) and 

VggNet (Simonyan et al., 2015). Long et al. (2015) proposed an end-to-end convolutional neural 

network that called fully connected neural network (FCN), which enhances the capability of 

image segmentation from regional level to pixel level. A general end-to-end pixel-wise image 

segmentation architecture can be broadly regarded as an encoder network followed by a decoder 

network. The encoder is a pre-trained classification network and decoder projects the 

discriminative features learned by the encoder semantically. He et al. (2015) introduced a novel 

architecture with a skip connection into the deep neural network. Skip connections are extra 

connections between nodes in different layers of a neural network that skips one or more layers 

of nonlinear processing, which makes the training of very deep network possible. 

Badrinarayanan et al. (2015) proposed the SegNet for pixel-wise image segmentation. 

Comparing with FCNs, SegNet has two advantages: (1) the upsampling layer in the decoder 

efficiently keeps high-frequency details in the segmentation; (2) the convolution layer can 

memorize the indices of image feature by using convolution layer instead of using fully 

connected layer.  

In this paper, we propose a novel micro-seismic first arrival picking method based on the 

convolutional neural network. First, we briefly introduce the application of SegNet for image 

segmentation. We then describe our proposed workflow for the first arrival picking of micro-

seismic events. Finally, we show the application of our proposed workflow in the synthetic and 
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field data examples, which demonstrate the effectiveness and superiority of our proposed method 

over the traditional method of STA/LTA. 

THEORY 

SegNet 

SegNet is a CNN based algorithm that used for the pixel-level image segmentation. 

Figure 2.1 shows a typical architecture of SegNet, which consists of an encoder network and a 

decoder network. The encoder network consists of a sequence of non-linear processing layers 

and each layer contains four operations. The first, second, third, and fourth operators are 

convolution filter (Conv), batch-normalization regularizer (BN), ReLU activation operator, and 

max-pooling operator, respectively. The decoder network also consists of a sequence of non-

linear layers that are corresponding to the layers in the encoder network. Each layer includes 

upsampling operator, convolution filter, batch-normalization regularizer, and ReLU activation 

operator. The layers in the encoder and decoder networks are connected using “skip-connection”. 

The last step of the network is an element-wise classification layer. 

 

Figure 2.1. The overall architecture of the proposed deep convolutional end-to-end neural 

network. It has two main parts: an encoder network and a decoder network. 
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Obtaining the trained network is the most important step in the process of image 

segmentation using the encoder-decoder neural network.  First, we need a set of training images 

to determine the parameters of the operators in the architecture. Each image in the training set 

has been manually segmented, and each segment in the image has a unique label. The objective 

of the training process is to determine the parameters of the operators in the encoder and decoder 

parts.  The purpose of the encoder is passing the main features of the image to decoder while the 

purpose of the decoder is reconstructing the feature of the image. We iteratively update the 

parameters of operators by minimizing the loss function. The built network is then used to 

segment those images that need to be segmented. 

First arrival picking using SegNet 

The first arrival of micro-seismic events is picked by detecting the onset time of micro-

seismic arrivals in the refracted signals from the wellbore. Figure 2.2 shows a typical micro-

seismogram recorded by a geophone and the first arrival is indicated by the red arrow.  

 

Figure 2.2. Micro-seismogram record. From this Micro-seismic trace, we can detect the first 

arrival that indicates by the red arrow. 



 

15 
  

A micro-seismic trace is treated as a 1D image and the time index of first arrival 

segments the 1D image into two parts. The lower part contains the information related to the 

micro-seismic events, while the upper part does not. In this manner, the first arrival picking of 

micro-seismic events can be regarded as detecting the boundary (a pixel) that divides the 1D 

seismic image into two sequences. SegNet is a pixel-level image segmentation method and is 

capable of obtaining an accurate boundaries for multiple objects. In addition, SegNet is superior 

to other CNN based image segmentation methods that detect the objects by using a series of the 

rectangular region. As a result, we propose a novel workflow by employing SegNet to pick the 

first arrival of micro-seismic events. 

Workflow 

The workflow begins by converting the micro-seismic trace into 1D gray-scale image. 

The function that transfers the seismic amplitude to the gray image is defined as follow: 

 
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255z ,                                                                                  (1) 

where s is the input seismic trace and z is the gray output image.  

 

Figure 2.3. The basic workflow to build the train data and train label. 
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We next segment the micro-seismic trace into two sequences according to the time index 

of manually picked first arrival. The upper and lower sequences are labeled with 0 and 1, 

respectively. Any symbols can be assigned to the upper and lower parts of the segmented seismic 

trace as long as the symbols of the two sequences are different from each other. Figure 2.3 

illustrates the process of data preparation. The first, second, and third panels in Figure 2.3 are the 

seismic trace, seismic image, and corresponding segmented label. The red dash line in Figure 2.3 

indicates the time index of the first arrival. The gray images and corresponding labeled images 

are the inputs for the SegNet to train the proposed neural network. 

 

Figure 2.4. Example of convolution operation on a one-dimensional signal. 

After preparing the input data, we build a deep convolutional encoder-decoder neural 

network using a sequence of nonlinear processing layers (encoder and the corresponding 

decoder) followed by a softmax classification layer. The encoder consists of several layers that 

are convolution filter, batch-normalization regularizer, ReLU activation operator and max-
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pooling operator. Figures 2.4, 2.5, and 2.6 together illustrate the encoder-decoder process by 

using one-dimensional input data.  

 

Figure 2.5. Illustration of batch-normalization regularizer on a one-dimensional signal. 

 

Figure 2.6. Illustration of batch-normalization regularizer on a one-dimensional signal. 

The first step in the encoder part is convolution and the objective of the convolution layer 

is extracting the feature of images to form the feature maps. Consider the input data in this paper 

is 1D gray image, so the equation of convolution layer is defined as follow: 

z wbx                                                                                                                 (2) 

where * denotes the convolution operation, b is a bias term to be learned,  𝒛 is the input data, 𝒘 

is the convolution filter, and 𝒙 is the output feature maps. Figure 2.4 shows an example of the 

convolution operation on the one-dimensional signal. 
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The output feature maps x is normalized by using the batch-normalization (BN) (Ioffe et 

al., 2015) algorithm, which consists of four steps: 

i. Define a batch 𝑩 = {𝒙1, 𝒙2, … , 𝒙𝑚} according to the user defined batch size m. We randomly 

select seismic traces from the input training seismic traces to form a batch. Figure 2.5 

illustrates the process of batch definition and the batch size is 2. Seismic traces of number 1 

and 2 together form the first batch while number 3 and 4 together form the second batch.   

ii. Compute the mean value 𝜇𝐵 and variance 𝜎𝐵
2 of the seismic traces within each batch 
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iii. Generate the normalized vector ix̂  
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where ϵ is a small positive constant value to avoid a case with zero variance value. We use the 

normalized vector ix̂  to update the gradient at the current layer. 

iv. The scaled and shifted normalized vector 𝒄𝑖 is the input for the next layer: 

βγ ii  xc ˆ ,                                                                                                               (6) 

where γ and β are the parameters to be learned. To pass the main features of the current layer to 

the next layer, a rectified linear unit (ReLU) activation operator is applied to the scaled and 

shifted vector: 

 ii max cc ,0ˆ                                                                                                           (7) 

The max-pooling operation is the final step in each layer of the encoder part. The 

upsampling is the first step in each layer of the decoder part. The upsampled result is used as the 
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input for constructing the feature maps. Because the input data are a 1D signal, the size of the 

max-pooling and upsampling operators is 2×1. Figure 2.6 illustrates the processing of max-

pooling and upsampling for a 1D signal. 

Next, we use the cross-entropy loss function to compute the loss between the ground 

truth and predicted probability distribution. The loss function is defined as: 
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where ℎ𝜃(𝑐̂𝑖) is the hypothesis function of iĉ , m is the total number of input data, and 𝒚𝑖 is the 

corresponding training label.  

We then employ the adaptive moment estimation (Adam) algorithm (Kingma et al., 2015) 

to iteratively update the parameters that need to be learned in the proposed deep convolutional 

neural network. The algorithm of Adam consists of the following steps: 

i. Initialize the convolution filter w, and bias terms b with random numbers.  

ii. Initialize the 1st moment vector 𝒑0 and 2nd moment vector 𝒒0. Set the exponential decay rates 

𝛽1 and 𝛽2 for the moment estimation within the range from 0 to 1. 

iii. Get the gradient 𝒈𝑡 of the loss function at time step t, which is given by: 

 1-tt  Jg  .                                                                                                            (10) 

iv. Update the 1st moment vector 𝒑𝑡 and 2nd moment vector 𝒒𝑡, which is defined as, 

  t-tt gpp 111 1   ,                                                                                              (11) 

  2
212 1 t-tt gqq   ,                                                                                                (12) 

v. Compute the corrected moment vectors 𝒑𝑡̂ and 𝒒𝑡̂ : 
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t
tt 11ˆ  pp ,                                                                                                            (13) 

t
tt 21ˆ  qq ,                                                                                                            (14) 

vi. Update the gradient, convolution kernel 𝒘, and bias term b. 
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The training process will keep updating the parameters until the loss function or epoch 

time meet the user-defined threshold. We finally apply the trained network to the rest of micro-

seismic traces and extract the boundary as the predicted first arrival of micro-seismic events. 

SYNTHETIC AND FIELD DATA TEST 

Prepare input data for SegNet 

Figure 2.7 shows a two-layer velocity model with the yellow dots representing the micro-

seismic events source and the upside-down green triangles representing the geophones. Figure 

2.8 shows the synthetic micro-seismic data set generated by centralized reverse time migration 

(RTM) source location method. Our synthetic example has 300 traces and the time sampling 

interval is 1ms. The blue dots in Figure 2.8 are the manual picking of the micro-seismic gather 

and these manual interpretation function as the ground truth for validating our workflow. We 

randomly select 30 seismic traces (Red color in Figure 2.9a) as the training dataset (Figure 2.9b). 

We next convert the selected micro-seismic traces into gray images (Figure 2.9c) and label the 

training traces (Figure 2.9d) according to the time index of manual picking. 
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Figure 2.7. Two-layer velocity model for synthetic example. 

 

Figure 2.8. Manually picked first arrival of the synthetic micro-seismic gather. We use this 

manually picked first arrival as the ground truth model. 
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Figure 2.9. Training data and training label for synthetic example. (a) Randomly selected 

seismic traces over the whole seismic survey. (b) Organized selected seismic traces. (c) Convert 

the selected seismic traces to grey images. (d) Label the training data to build the training label. 

 

Figure 2.10. Illustrating the loss and accuracy of training processing on noise-free synthetic 

example. 
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Figure 2.11. The predicted result of noise-free synthetic data. (a) The predicted label through our 

proposed method. (b) The ground truth first arrival (blue dots), first arrival picking by using 

STA/LTA (green dots) and predicted first arrival (red circles) overlaid the synthetic data. (c) The 

difference between the ground truth and predicted first arrival. (d) The difference between the 

ground truth and the picked first arrival using STA/LTA. (e) The distribution of the difference 

between the ground truth and predicted first arrival. (f) The distribution of the difference 

between the ground truth and the picked first arrival using STA/LTA. 
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Build a deep encoder-decoder neural network  

We next build a deep convolutional encoder-decoder neural network. Six layers existed 

in the encoder network with the convolution kernel size of 32×1, 24×1, 16×1, 8×1, 5×1, and 3×1, 

respectively. In the decoder network, there are six layers corresponding to the structure of the 

encoder network with the convolution kernel size of 3×1, 5×1, 8×1, 16×1, 24×1, and 32×1, 

respectively. The validation data set is different at each iteration and provide the unbiased 

evaluation. Figure 2.10 shows the training loss and accuracy varying with parameters updating 

loops (epochs). Our training process converges after 20 epochs and the validation accuracy in the 

training process is above 99%. The training and validation accuracy is defined as: 

n

m
accuracy                                                                                                               (18) 

where 𝑚 denotes the amount of matched pixels between the predicted and ground truth labels, 

and 𝑛 denotes the total amount of pixels. 

 

Figure 2.12. Comparison between the predicted and ground truth first arrival for three 

representative micro-seismic events of noise-free synthetic data test.  
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Predict the first arrival of micro-seismic events for noise-free synthetic 

To demonstrate the performance of our proposed method, we first test a noise-free 

synthetic example and compare with the traditional method of STA/LTA. Figure 2.11a shows the 

predicted labels and the boundary between these two labels are treated as the time index of first 

arrival picking. The red circles and green dots in Figure 2.11b are the first arrival picking results 

by using our proposed method and STA/LTA, respectively. Both of these two methods obtained 

a very good match with the ground truth indicated by blue dots in Figure 2.11b. To further 

evaluate the performance of our proposed method and STA/LTA, we compare the difference 

between the manual picking with our method (Figure 2.11c) and STA/LTA (Figure, 2.11d). We 

then compute the absolute average difference between predicted and manually picked first arrival 

of micro-seismic events: 
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where 𝑑 denotes the absolute average difference, 𝐺𝑖 denotes the ground truth first arrival of the 

micro-seismic event for the 𝑖𝑡ℎ trace, 𝑃𝑖  denotes the first arrival of micro-seismic events for the 

𝑖𝑡ℎ trace by using our proposed method or STA/LTA, N is the total trace number of the testing 

data. The absolute average difference by using our proposed method and STA/LTA are 0.25ms 

and 1.95ms, respectively. The absolute average difference indicates that the average picking 

error obtained by our proposed method is much smaller than the sampling interval of the micro-

seismic events. Figure 2.11e and 11f shows the distribution of the difference by using our 

proposed method and STA/LTA, respectively. Around 85% of the micro-seismic events have an 

accurate prediction for the time index of the first arrival. The variance of the distribution is 0.52, 

which has shown a good stability of our predicted result. Figure 2.12 shows the comparisons 
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between the predicted and ground truth first arrival for three representative micro-seismic events. 

Note the good match between the ground truth and predicted the first arrival. 

 

Figure 2.13. Noisy synthetic micro-seismic example. 

Predict the first arrival of micro-seismic events for noisy synthetics 

To illustrate the effectiveness and superiority of our proposed method over the traditional 

method of STA/LTA, we test a noisy synthetic example (Figure 2.13) where the signal to noise 

ratio (SNR) equals to 1. We repeat the procedure of the noise-free synthetic example and the 

predicted label is shown in Figure 2.14a. The first arrival picking results by using our proposed 

method and STA/LTA are indicated by red circles and green dots shown in Figure 2.14b. Note 

the good match between the result by using our proposed method and the ground truth (blue 

dots), while the method of STA/LTA has failed to pick the correct first arrival. Figures 2.14c and 

2.14d show the difference with the ground truth by using our proposed method and STA/LTA, 

respectively. The absolute average differences are 0.41ms and 229.57ms that corresponding to 

our 
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Figure 2.14. The predicted result in a noisy synthetic example. (a) The predicted label through 

our proposed method. (b) The ground truth (blue dots), first arrival picking using STA/LTA 

(green dots) and predicted first arrival (red circles) overlaid the synthetic data. (c) The difference 

between the ground truth and predicted first arrival. (d) The difference between the ground truth 

and the picked first arrival using STA/LTA. (e) The distribution of the difference between the 

ground truth and predicted first arrival. (f) The distribution of the difference between the ground 

truth and the picked first arrival using STA/LTA.  
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method and STA/LTA. Figures 2.14e and 2.14f show the distribution of the difference by using 

our proposed method and STA/LTA, respectively. The variance of the distribution by using these 

two methods are 0.87 and 780.59, which our proposed method has shown good stability for the 

accurate first arrival picking. Figure 2.15 shows the comparisons between the predicted, 

STA/LTA and ground truth first arrival for three representative micro-seismic events. Note the 

good match with the ground truth by using our proposed method and the significant difference 

by using STA/LTA.  

 

Figure 2.15. Comparison between the predicted and ground truth first arrival for three 

representative micro-seismic events of noisy synthetic data test.  

Predict the first arrival of micro-seismic events for various SNR synthetics 

To illustrate the robustness of our proposed method, we test a more challenging synthetic 

example to demonstrate the performance. Figure 2.16 shows a synthetic example that generates 

from a different layer-cake model. The SNR is various from trace to trace and the average SNR 
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is equal to 1. Figures 2.17c and 2.17d show the difference with the ground truth by using our 

proposed method and STA/LTA, respectively. The absolute average differences are 0.403ms and 

230.75ms that corresponding to our method and STA/LTA. Figures 2.17e and 2.17f show the 

distribution of the difference by using our proposed method and STA/LTA, respectively. The 

variance of the distribution by using these two methods are 0.86 and 778.61, which our proposed 

method has shown good stability for the accurate first arrival picking. Figure 2.18 shows the 

comparisons between the predicted, STA/LTA and ground truth first arrival for three 

representative micro-seismic events. Note the good match with the ground truth by using our 

proposed method and the significant difference by using STA/LTA. 

 

Figure 2.16. Noisy synthetic micro-seismic gather from a different model and the SNR is 

various from trace to trace. 
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Figure 2.17. The predicted result of a different noisy synthetic example. (a) The predicted label 

through our proposed method. (b) The ground truth (blue dots), first arrival picking using 

STA/LTA (green dots) and predicted first arrival (red circles) overlaid the synthetic data. (c) The 

difference between the ground truth and predicted first arrival. (d) The difference between the 

ground truth and the picked first arrival using STA/LTA. (e) The distribution of the difference 

between the ground truth and predicted first arrival. (f) The distribution of the difference 

between the ground truth and the picked first arrival using STA/LTA. 
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Figure 2.18. Comparison between the predicted and ground truth first arrival for three 

representative micro-seismic events of a different noisy synthetic data test. 

 

Figure 2.19. The comparisons between the results by using our proposed method (red dots) and 

STA/LTA (green dots) on three different noisy synthetic example. The average SNR is 0.5 in (a), 

0.3 in (b) and 0.15 in (c). 

To determine the minimum SNR that our proposed method can handle, we test three 

extremely noisy synthetic examples. Figures 2.19a, 2.19b and 2.19c show these three synthetic 

examples with the average SNR of 0.5, 0.3 and 0.15, respectively. The first arrival picking by 

using our proposed method and STA/LTA are indicated by red dots and green dots, respectively. 
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Note that the picking result by using our proposed method shown in Figure 2.19c is still 

acceptable. Thus, the minimum SNR for our proposed method is lower than 0.15, which 

illustrate the robustness of our method to noise. 

 

Figure 2.20. Manually interpreted first arrivals (blue dots) of a field data example. 

Predict the first arrival of micro-seismic events for field data 

To demonstrate the effectiveness and robustness of our proposed method on the field 

data, we use the real micro-seismic gathers are shown in Figure 2.20. We have 14 gathers (672 

traces) in total and the manually interpreted first arrivals are indicated by blue dots in Figure 

2.20. To simulate the procedure of manual picking, we choose the first two gathers (96 traces) as 

the training traces that are shown in Figure 2.21a. Figures 2.21b and 2.21c show the 

corresponding training data and training label, respectively. We then repeat the procedure of the 

synthetic example and apply the trained neural network into the rest 12 gathers (576 traces) to 

predict the first arrivals. Figure 2.22a shows the predicted label by using our proposed method. 
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Figure 2.22b shows the first arrival picking by using our proposed method (green dots) and 

STA/LTA (red dots). Our method has a good match with the ground truth (blue dots), while 

STA/LTA failed to pick the correct first arrivals. Figure 2.22c shows the difference with the 

ground truth by using our proposed method (blue dots) and STA/LTA (red dots), respectively. 

The absolute average differences are 1.35ms and 136.37ms that corresponding to our proposed 

method and STA/LTA. Figure 2.23 shows the comparisons between the predicted, STA/LTA 

and ground truth first arrival for three representative micro-seismic events. Our proposed method 

matches well with the ground truth and STA/LTA does not match. 

 

Figure 2.21. Training data and training label for field data. (a) The first two gathers are selected 

as the training traces. (b) The converted gray image from the training traces. (c) The training 

labels according to the manual interpretation at the training traces. 

For the time cost comparison, the proposed method takes 53.3s while the manual 

interpretation takes about 300s. The computation is done on a workstation equipped with a 4 core 

Intel Xeon 4.20 GHz CPU of 64GB memory and an NVIDIA Quadro P5000 GPU of 16 GB 

memory. Thus, our proposed method can save massive time for the first arrival picking of micro-

seismic events.  
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Figure 2.22. The results of the field data example. (a) The predicted label by using the proposed 

method (b) The results by using our proposed method (green dots) and STA/LTA (red dots) and 

the manually picked first arrival is indicated by blue dots. (c) The difference between the ground 

truth and predicted result (blue dots), the difference between the ground truth and the result by 

using STA/LTA (red dots). 
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Figure 2.23. The difference between the ground truth and predicted outcome (blue dots), the 

difference between the ground truth and the result using STA/LTA (red dots) on the field data. 

 

Figure 2.24. Comparison between the predicted and ground truth first arrival for three 

representative micro-seismic events of real data test. 
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DISCUSSION 

The synthetic and real applications demonstrate that our proposed method has a good 

performance on first arrival picking of micro-seismic events. To successfully apply our proposed 

method into the task of micro-seismic first arrival picking, several key factors should be taken 

into account. The first key factor is the number of layers for building the deep convolutional 

neural network architecture. The layer number depends on the size of input data and the data size 

would be reduced by half at each layer. We obtained the best performance when the ratio 

between the size of the last layer and label number is four. We suggest that the size of the last 

layer should be between two to six times larger than the label number.  The second key factor is 

the number of training data. In our case, we test 1 gather (7.14%), 2 gathers (14.3%), 3 gathers 

(21.4%), 4 gathers (28.6%) and 5 gathers (35.7%). We obtain the same level of the predicted 

result when the number of training gathers is larger than 2. However, our proposed method fails 

to predict the correct first arrival if the number of training gathers is smaller than 2. Thus, we 

suggest that the amount of training data should be large than 15% of the whole dataset. In 

addition, we can select part of the dataset and test to use a different amount of training data prior 

to applying the proposed method into the whole dataset, then decide how much of the training 

data is good enough to obtain the correct result. The third key factor is the way of manual 

interpretation. Because the real data are various from trace to trace. We conclude that either the 

first peak or first trough can be the first arrival that ensures the neural network is learning all the 

different features of the first arrival. The fourth key factor is choosing the proper shape of the 

input data. In our field data example, we test converting the training data from 1D input data to 

2D images. However, using 2D images as the input data failed to pick the correct first arrival. It 

is possible that the number of training data has been reduced and it is easy to cause the problem 
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of overfitting. Alternatively, the feature of horizontal continues in micro-seismic is not as good 

as in normal seismic data and it is very hard for CNN to learn the bad continue feature. Thus, we 

suggest choosing 1D input data for the task of micro-seismic first arrival picking. 

CONCLUSIONS 

We propose a novel micro-seismic first arrival picking method that is based on the pixel-

wise convolutional image segmentation method. The first step is building the training data by 

randomly selecting part of the micro-seismic traces for manual interpretation. The second step is 

building the training labels by labeling the selected micro-seismic traces into two parts according 

to the time index of the manual picking. The third step is building an encoder-decoder 

convolutional neural network hierarchy by learning the segmented training data and labels. The 

final step is obtaining the predicted first arrivals of micro-seismic events by applying the trained 

network hierarchy into the testing data. We modified the size of convolution kernels from 

constant to downward trend and obtained higher accuracy in the predicted result. Both synthetic 

and real data applications illustrate that our proposed method is superior to the traditional method 

of STA/LTA and can save huge labor work than manual interpretation. 

  



 

38 
  

REFERENCES 

Badrinarayanan, V., A. Kendall, and R. Cipolla, 2015, SegNet: A deep convolutional encoder-

decoder architecture for image segmentation, arXiv preprint. 

Baer, M., and U. Kradolfer, 1987, An automatic phase picker for local and teleseismic events, 

Bulletin of Seismology Society of American, vol. 77, pp. 1598-1612. 

Chen. Y., 2017, Automatic microseismic event picking via unsupervised machine learning, 

Geophysical Journal International, vol. 212, pp. 88-102. 

Chen, Z., and R. Stewart, 2005, Multi-window algorithm for detecting seismic first arrivals, 

CREWES. 

Girshick, R., J. Donahue, T. Darrell, and J. Malik, 2014, Rich feature hierarchies for accurate 

object detection and semantic segmentation, IEEE Conference on Computer Vision Pattern 

Recognition, pp. 580-587. 

He, K., X. Zhang, S. Ren, and J. Sun, 2015, Deep residual learning for image recognition, IEEE 

Conference on Computer Vision Pattern Recognition, pp. 770-778. 

Ioffe, S, and C. Szegedy, 2015, Batch Normalization: Accelerating deep network training by 

reducing internal covariate shift, arXiv preprint. 

Kingma, D. P., and J. L. Ba, 2015, Adam: A method for stochastic optimization, International 

Conference on Learning Representations. 

Krizhevsky, A., I. Sutskever, and G. Hinton, 2012, Imagenet classification with deep convolutional 

neural network, Advances in Neural Information Processing Systems, vol. 27, pp. 1090-

1098. 

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, 1998, Gradient-based learning applied to 

document recognition, Proceeding of IEEE, vol. 86, no. 11, pp. 2278-2324. 

Li. F, J. Rich, and K. Marfurt, 2014, Automatic event detection on noisy microseismogram, SEG 

expanded abstract, pp. 2363-2367. 

Li. F, and W. Song, 2017, Automatic arrival identification system for real-time microseismic event 

location, SEG expanded abstract, pp. 2934-2939. 

Long, J., E. Shelhamer, and T. Darrell, 2015, Fully convolutional networks for semantic 

segmentation, IEEE Conference on Computer Vision Pattern Recognition, pp. 3431-3440. 

Saragiotis, C. D., L. J. Hadjilenontiadis, and S. M. Panas, 1999, A high-order statistics-based phase 

identification of three-component seismograms in a redundant wavelet transform domain, 

Proceeding of IEEE Signal Processing Workshop on High-Order Statistics, pp. 396-399. 



 

39 
  

Song, F., H. S. Kuleli, M. N. Toksoz, E. Ay, and H. Zhang, 2010, An improved method for 

hydrofracture-induced microseismic event detection and phase picking, Geophysics, vol. 

75, no. 6, pp. A47-A52. 

Simonyan, K., and A. Zisserman, 2015, Very deep convolutional networks for large-scale image 

recognition, International Conference on Learning Representations. 

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. 

Rabinovich, 2015, Going deeper with convolutions, arXiv preprint. 

Wong, J., L. Han, J. Bancroft, and R. Stewart, 2009, Automatic time-picking of first arrivals on 

noisy microseismic data, CSEG Conference Abstract, vol. 1, pp. 1-4. 

Zhang, H., C. Thurber, and C. Rowe, 2003, Automatic p-wave arrival detection and picking with 

multiscale wavelet analysis for single-component recordings, Bulletin of Seismology 

Society of American, vol. 93, no. 5, pp. 1904-1912.  



 

40 
  

 

 

 

CHAPTER 3 

WHITE NOISE ATTENUATION OF SEISMIC DATA BY INTEGRATING VARIATIONAL 

MODE DECOMPOSITION AND CONVOLUTIONAL NEURAL NETWORK 

Hao Wu1, Bo Zhang1, Tengfei Lin2, Fangyu Li3, Naihao Liu4 
1University of Alabama, Department of Geological Science 

2 Department of Middle East E&P, Research Institute of Petroleum Exploration & Development, 

CNPC, 
3University of Georgia, College of Engineering. 

4Xi’an Jiaotong University, School of Electronic and Information Engineering. 

This paper was submitted to SEG journal Geophysics in 2019 

ABSTRACT 

  Seismic noise attenuation is an important step in seismic data processing. Most of the 

noise attenuation algorithms are based on the analysis of time-frequency features of the seismic 

data and noise. We propose to attenuate the white noise of seismic data using convolutional 

neural network (CNN). Traditional CNN based noise attenuation algorithms need prior 

information (the “clean” seismic data or the noise contained in the seismic) in the training 

process. However, it is tough to obtain such prior information in practice. We assume that 

enough user-generated white noise realizations can simulate the white noise contained in the 

seismic data. We then propose to attenuate the seismic white noise using the modified denoising 

convolutional neural network (MDnCNN). The MDnCNN does not need “clean” seismic data 

nor the noise contained in the seismic data in the training procedure. To accurately and 

efficiently learn the features of seismic data and band-limited noise at different frequency 

bandwidths, we propose to decompose the seismic data into several components before the 

training procedure of the MDnCNN. There are four main steps in the proposed workflow. The 

first step is decomposing the seismic volume into different intrinsic mode function and a residual 

component by using variational mode decomposition. The second step is adding user-generated 
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white noise to each decomposed component. The third step is building the neural network 

hierarchy to learn the feature of additive white noise. The last step is obtaining denoised seismic 

data by applying the well-trained network to the original seismic data. We use both synthetic and 

field data examples to illustrate the robustness and superiority of the proposed method. 
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INTRODUCTION 

Seismic noise attenuation is a crucial step to enhance the quality of seismic data. Seismic 

denoising not only lowers the effect of subjectivity in seismic interpretation but also improve the 

reliability of seismic inversion. In recent decades, numerous seismic denoising approaches have 

been developed and widely applied in practice. Methods for seismic denoising can be generally 

classified into four categories: The first category is based on building a prediction filter to 

remove the noise of seismic data. The commonly used algorithms within the first category 

includes f-x predictive filtering (Canales, 1984), t-x predictive filtering (Abma et al., 1995), the 

forward-backward prediction approach (Wang, 1999), the polynomial fitting-based approach 

(Liu et al. 2011), and non-stationary predictive filtering (Liu et al., 2012). The second category 

projects the seismic data to a transformed domain and rejects the noise by applying a bandpass 

filter to the transformed data. Finally, obtain the denoised seismic data by projecting the filtered 

data back to the time domain. The commonly used algorithms within the second category include 

Fourier transform (Chen et al., 2014), curvelet transform (Herrman et al., 2008), seislet transform 

(Fomel et al., 2010), shearlet transform (Kong et al., 2015), Radon transform (Trad et al., 2002; 

Xue et al., 2016), wavelet transform (Donoho et al., 1994), and dictionary learning based sparse 

transform (Elad et al., 2006). The third category decomposes the seismic traces into a set of 

components. Then, examine the time or frequency features of each decomposed component. 

Finally, obtain the “clean” seismic traces by rejecting the components which are regarded as 

“noise”. The commonly used algorithms within the third category include empirical mode 

decomposition (EMD) (Huang et al., 1998; Bekara et al., 2009), variational mode decomposition 

(VMD) (Dragomiretskiy et al., 2014; Li et al., 2017), and singular value decomposition (SVD) 

based approaches (Bekara et al., 2007). Yuan et al. (2018) proposed a novel inversion-based 
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denoising method. The method has the advantages of preserving 3-D spatial edges and low-

frequency signals. The fourth category is based on the rank-reduction reconstruction of seismic 

data. The commonly used algorithms within the fourth category include Cadzow filtering 

(Trickett, 2008), and singular spectrum analysis (Vautard et al., 1992; Oropeza et al., 2011).  

Deep learning is a subset of machine learning that is based on learning data 

representation. Convolutional neural network (CNN) (LeCun et al., 1998) is one of the most 

popular and widely used deep learning algorithms. The CNN based algorithms already achieve 

great success in the field of computer vision. CNN is extremely efficient in learning the features 

of the images and labeling the objectives in the images. Numerous CNN based algorithms also 

have been proposed to address the problem of image denoising. Jain et al. (2009) successfully 

applied CNN to images denoising. Burger et al. (2012) denoise the images using the multiple 

layer perceptron (MLP). Other popular CNN based image denoising methods include stacked 

sparse denoising autoencoder (Xie et al., 2012) and trainable nonlinear reduction diffusion 

(TNRD) model (Chen et al., 2015). Zhang et al. (2017) proposed denoise convolutional neural 

network (DnCNN) to learn the feature of noise contained in the images. The main disadvantage 

of current CNN-based denoising methods is that these methods need “clean” data and the 

corresponding noisy data in the training process. Unfortunately, it is unfeasible to obtain “clean” 

seismic data for training in practice. 

We organized this paper as follow: we first describe our modification for DnCNN. We 

then introduce the workflow of noise attenuation. We finally use both synthetic and field data 

examples to illustrate the robustness and superior performance of VMD- MDnCNN over f-x 

deconvolution. 



 

44 
  

THEORY 

There are many successful applications of images denoising by using CNN based 

algorithms (Xie et al., 2012; Zhang et al., 2017). The main advantage of CNN based denoising 

methods is that CNN with multiple hidden layers (deep architecture) can recognize various 

features of the input data and classify the recognized features into corresponding categories. 

Objective function  

One 3D seismic volume can be reshaped to many 2D seismic sections through the inline 

and crossline directions. Each seismic section can be treated as a 2D image. The image which 

needs to be denoised can be defined as 𝒚 = 𝒙 + 𝒏, where y is the noisy image, x is the 

corresponding clean image, and n is the additive noise. The goal of image denoising is building a 

model to recover the clean image x from the corresponding noisy image y. According to the 

objective function, the image denoising methods using CNN can be classified into two 

categories. 

The first category is modeling the “clean” image (Jain et al., 2009; Xie et al., 2012) by 

minimizing the following objective function 𝑱(𝜃):  
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where {(𝒚𝑖, 𝒙𝑖)}𝑖=1
𝑀  represents M noisy-clean image pairs, 𝑅𝜃 denotes the entire convolutional 

neural network with all the trainable parameters (convolution filter and bias) 𝜽, 𝑅𝜃(𝒚𝑖) is the 

predicted clean image by using the trained convolutional neural network 𝑅𝜃. 

The second category is modeling the “noise” by applying the residual learning 

formulation (Zhang et al., 2017): 
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where 𝑅𝜃(𝒚𝑖)  is the predicted noise by using the trained convolutional neural network 𝑅𝜃. 

In geophysics field, x and y can be regarded as the noise-free seismic images and noise 

contaminated seismic images, respectively. Both equations 1 and 2 require clean and the 

corresponding noisy data in the training process. Unfortunately, it is unfeasible to obtain purely 

clean seismic data in practice. However, we assume that the white noise contained in the seismic 

data can be simulated by enough user-generated white noise realizations 𝒏′ (Wu and Huang, 

2009). The seismic image with additive white noise can be expressed as 

 nnxy                                                                                          (3) 

The new objective function of MDnCNN is given by: 
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According to the statistical properties of white noise, the distribution of the original white noise 

n and the additive white noise  𝒏′ are given by (Wu and Huang, 2004):  

 2
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22 ,~ in  ,                                                     (6) 

where 𝜒 denotes the normal distribution, 𝜇1 is the expectation and 𝜎1 is the standard deviation of 

the noise contained in the seismic data, 𝜇2 is the expected value and 𝜎2 is the standard deviation 

of the additive white noise. Equation 6 illustrates that we can simulate the noise contained in the 

seismic data if we have enough trials. To accurately simulate the noise contained in the seismic 

data, the noise level of additive white noise should be close to the noise level of the original 

white noise. We employ the peak signal noise ratio (PSNR) method to compute the signal to 

noise ratio (SNR) for the input seismic data: 
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where 𝒚̂ denotes the mean value of the original seismic data and MSE is the mean squared error 

(Li et al., 2017).                            

After adding enough additive white noise realizations, the expectation 𝜇2 and standard 

deviation 𝜎2of certain realization of simulated noise should approximately equal to the 

expectation 𝜇1and standard deviation 𝜎1 of noise contained in the seismic data (Wu and Huang, 

2004): 
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Then, we obtain: 
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where N is the number of additive white noise realizations, 𝒏𝑖𝑘
′  represent the ith additive white 

noise image of the kth additive white noise realizations. Equation 10 indicates that the proposed 

method does not require clean seismic data in the training process. 

Architecture 

The architecture of the proposed neural network is a sequence of nonlinear processing 

layers followed by a sigmoid classifier layer based on the architecture of MDnCNN (Figure 3.1). 

The input of the network is the original seismic data y and the seismic data with additive white 

noise 𝒚′ = 𝒚 +  𝒏′. The network contains 17 layers in total. The first layer contains 64 

convolution filters of size 3×3 and 64 rectified linear units (ReLU) activation operator. The 

objective of the convolution filter is to generate feature maps of the input seismic data. The 

objective of the ReLU is to activate the main features contained in the feature map. Different 
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from the first layer, a batch-normalization (BN) (Ioffe and Szegedy, 2015) is added between the 

convolution filter and ReLU for the following 2~16 layers. Batch-normalization is a re-

parametrization aimed to stabilize the parameters updating and improve the learning process. 

The last layer only contains 64 convolution filters of size 3×3 to reconstruct the output. Then the 

built neural network transforms the seismic noise attenuation procedure into an optimization 

problem by solving a sequence of nonlinear functions. A gradient-based optimization algorithm 

of adaptive moment estimation (Adam) (Kingma et al., 2015) is employed to minimize the 

proposed objective function through iterative updating the parameters of the network.  

 

Figure 3.1. The overall architecture of MDnCNN. It contains 17 layers and each layer includes 

convolution filter (Conv), Batch Normalization (BN) and Rectified linear units (ReLU).  

VMD-MDnCNN 

Figure 3.2 shows a real seismic section of F3-block in the North Sea, Netherlands. 

Figures 3.3a and 3.3b show the denoised result and the rejected noise by using the MDnCNN. 

Note the noise indicated by the yellow arrows in Figure 3.3a and rejected visible reflections 

indicated by the red arrows in Figure 3.3b. The main reason for this phenomenon is that that 

seismic data are band-limited and the noise to signal ratio (SNR) is varying with bandwidths. If 

we only use the MDnCNN to learn the feature of original white noise at full bandwidth, the 
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MDnCNN cannot attenuate all the original white noise and will remove some visible reflections. 

To better learn the noise feature, we propose first to decompose the seismic data into different 

components and then apply the MDnCNN to each decomposed component. In this work, we use 

the variational mode decomposition (VMD) to decompose the seismic traces. We named the 

proposed seismic noise attenuation procedure as VMD- MDnCNN. 

 

Figure 3.2. One section example of F3-block seismic survey.  

 

Figure 3.3. Illustration of the test on F3-block using MDnCNN. (a) the denoised result. (b) the 

rejected noise. 



 

49 
  

VMD is an adaptive and non-recursive signal decomposition method (Dragomiretskiy and 

Zosso, 2013). VMD decompose a signal into a series of intrinsic mode function (IMF) where 

IMFs have the sparsity properties in the frequency domain. The frequency spectrum of every 

IMF is computed around the center frequency 𝜔𝑖 and the sparsity of every IMF is constrained by 

its bandwidth in the frequency domain. In other words, VMD decomposes the signal into 

different IMFs and the frequency spectrum of each component tuned around the center 

frequency 𝜔𝑖. We obtain each IMF by recursively solving the following optimization problem: 
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where 𝑢𝑖and 𝜔𝑖are modes and their center frequencies, respectively, 𝛿(𝑡)is a Dirac impulse, 

𝑠(𝑡)is the signal to be decomposed, the constraint condition is that the summation over all modes 

should be the input signal, the term (𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑖(𝑡)is the Hilbert transform of 𝑢𝑖, and the 

parameters L is the user defined decomposed number.  

Then, the denoising objective function, 𝑱(𝜽)(𝑗), for the jth decomposed seismic 

component is given as: 
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where  𝒚(𝑗) and 𝒚′(𝑗)
 represent the jth decomposed component and the components with additive 

white noise, respectively.  
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Figure 3.4. The workflow of VMD-MDnCNN for seismic noise attenuation.  

Figure 3.4 shows the proposed denoising workflow using VMD-MDnCNN. We first 

decompose the seismic data (the 3D seismic data have been reshaped to 2D seismic sections in 

both the inline and crossline directions) into several decomposed components and compute the 

SNR for each component. We produce a “noisier” IMF by adding additive white noise to each 

decomposed IMF and the residual component. The energy of the additive white noise 

approximately equals to the energy of the white noise estimated within each decomposed 

component. We next learn the feature of white noise by minimizing the difference between 

additive noise and learned white noise from the “noisier” decomposed components (Equation 

12). We produce the denoised components by subtracting the learned noises from the 

corresponding decomposed components. We finally obtain the denoised seismic data by 
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integrating the ensemble of denoised components. Figures 3.5a and 3.5b show the denoised 

results and rejected noise by using VMD-MDnCNN. Note that our method successfully rejects 

the noise indicated by the yellow arrows in Figure 3.3a and preserves the seismic reflections 

indicated by the red arrows in Figure 3.3b. 

 

Figure 3.5. Illustration of the test on F3-block using VMD-MDnCNN. (a) the denoised result. 

(b) the rejected noise.  

SYNTHETIC EXAMPLE 

To demonstrate the performance of VMD-MDnCNN, we first test our method using 

synthetic seismic data (Figure 3.6a) generated using the Marmousi model. We use zero-phase 

Ricker wavelet to generate our synthetic seismic data. The dominant frequency of the Ricker 

wavelet is 30 Hz. The synthetic seismic data contains 128 traces. Each trace has 128 time 

samples and the time sample interval is 4ms. Figure 3.6b shows the noisy synthetic seismic data. 

The additive noise is Gaussian noise and the SNR is 2. To ensure that the additive noise has the 
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same frequency bandwidth with the seismic data, we applied a band-pass Butterworth filter (5-

10-95-100Hz) to the Gaussian noise before we add the noise to the noise-free synthetic seismic 

data. Figures 3.7a, 3.7b and 3.7c show the denoised seismic data using f-x deconvolution, 

MDnCNN and VMD-MDnCNN, respectively. Figures 3.8a, 3.8b and 3.8c show the rejected 

noise using f-x deconvolution, MDnCNN and VMD-MDnCNN, respectively. Note that the 

VMD-MDnCNN not only rejects the white noise (the yellow arrows in Figures 3.7a, 3.7b and 

3.7c) but also preserves the visible reflections rejected by f-x deconvolution and MDnCNN (the 

red arrows in Figure 3.8a, 3.8b and 3.8c).  

 

Figure 3.6. We add gaussian noise with the SNR is equal to 2 into the noise-free synthetic data 

to generate the noisy synthetic data. (a) The noise-free synthetic data. (b) The noisy synthetic 

data.   

In this work, we found that that there is no obvious difference between the denoised 

results both for the synthetic and real seismic data if the IMFs number is equal or greater than 2. 

The computation cost 
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Figure 3.7. Illustration of the denoised result on synthetic example. (a) f-x deconvolution. (b) 

MDnCNN. (c) VMD-MDnCNN.  
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Figure 3.8. Rejected noise through different denoising methods on synthetic example. (a) f-x 

deconvolution. (b) MDnCNN. (c) VMD-MDnCNN.  
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increases with the increasing of IMFs number. We set the IMFs number as 2 in our synthetic 

testing. The moderate bandwidth constraint and the tolerance of convergence criterion are 100 

and 0.01 for VMD decomposition, respectively. The pre-set center frequencies for these two 

IMFs are 25 and 45Hz, respectively. The input for our VMD-MDnCNN is the first decomposed 

IMF plus additive noise, the second decomposed IMF plus additive noise, and the residual 

component plus additive noise. Figure 3.9 shows the training and validation loss varying with 

optimization epochs. Considering that the data size used in deep learning is enormous, we 

usually divide the learning data set into several small subsets (batch). The optimization 

procedure is implemented batch by batch and one epoch means one optimization pass of the full 

batches. We obtain the training and validation loss by applying the objective function shown in 

Equation 12 to the training and validation data set, respectively. To overcome the overfitting 

problem in the training procedure, the training and validation seismic traces are randomly 

selected during each optimization epoch. The percentage of the training and validation seismic 

traces in this paper is 70% and 30% both for the synthetic and real seismic data, respectively. A 

specific seismic trace may belong to training seismic traces set in current optimization epoch but 

may belong to validation seismic traces set in the next optimization epoch. Figure 3.9 illustrates 

that we obtain a stable neural network hierarchy after 50 epochs in the training procedure. 

Figure 3.10 shows the average amplitude spectrum of the original seismic (black), the 

denoised result using f-x deconvolution (red), the denoised result using MDnCNN (blue) and the 

denoised result using VMD-MDnCNN (green), respectively. Note that the amplitude spectrum of 

the denoised result using VMD-MDnCNN has a perfect match with that of original seismic data. 

Unfortunately, the denoised result using f-x deconvolution and MDnCNN lost certain middle and 

high-frequency content when compared that of original seismic data. 
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Figure 3.9. Train loss and valid loss varying with different epoch for synthetic example.  

 

Figure 3.10. The frequency spectrum of the original data (black curve), MDnCNN result (blue 

curve), VMD-MDnCNN result (green curve) and f-x deconvolution result (red curve) for the 

synthetic test.  
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FIELD DATA EXAMPLE 

We further apply VMD-MDnCNN to a public seismic survey (Penobscot) to illustrate the 

effectiveness of our proposed method. The Penobscot seismic survey was acquired over the 

Scotian shelf, oversea Canada. The seismic survey contains 601 inlines and 482 crosslines. The 

time increment of the seismic survey is 4ms. We observe both residual noise and possible 

migration artifacts indicated by the yellow arrows in Figure 3.11. 

 

Figure 3.11. One representative inline section example of Penobscot.  

We first generate a large number of band-limited additive white noise realizations. The 

bandwidth of the additive white noise obtained according to the frequency spectrum of the 

seismic data. We then use VMD to decompose the original seismic data into two IMFs and a 

residual volume. Based on the testing of real data application, we found that we can successfully 

simulate the noise contained in the seismic data if the number of white noises realizations is 

above 2000.  In this work, we choose 2000 as the number of white noise realizations. The 

simulated noise is then added to the decomposed two IMFs and a residual component. Figure 

3.12 illustrates that we obtain a stable neural network after 60 epochs in the training procedure.  
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Figure 3.12. Train loss and valid loss varying with different epoch for the seismic survey of 

Penobscot.  

Figures 3.13a, 3.13b and 3.13c show the denoised results using f-x deconvolution, 

MDnCNN and VMD-MDnCNN, respectively. Figures 3.14a, 3.14b and 3.14c show the 

difference between the original seismic data and denoised results using f-x deconvolution, 

MDnCNN and VMD-MDnCNN, respectively. Note that the VMD-MDnCNN not only reject the 

white noise and migration artifact indicated by yellow arrows in Figure 3.13, but also preserves 

the visible reflections rejected by the f-x deconvolution and MDnCNN indicated by red arrows in 

Figure 3.14. Figures 3.15, 3.16a, 3.16b and 3.16c show the 3D cube of original seismic data, 

denoised seismic data using f-x deconvolution, MDnCNN and VMD-MDnCNN, respectively 

Figures 3.17a, 3.17b and 3.17c show the 3D rejected noise using f-x deconvolution, MDnCNN 

and VMD-MDnCNN, respectively. Note that the VMD-MDnCNN have successfully rejected 

most of the white noise and migration artifacts indicated by yellow arrows in Figure 3.15. 

However, the denoised results using f-x deconvolution and the MDnCNN still contain white 

noise and migration artifacts indicated by yellow arrows in Figure 3.16. Figures 3.17a, 3.17b and 

13.7c indicates that our  
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Figure 3.13. The denoised results on the seismic survey of Penobscot. (a) f-x deconvolution. (b) 

MDnCNN. (c) VMD-MDnCNN.  
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Figure 3.14. Rejected noises through different denoising methods on the seismic survey of 

Penobscot. (a) f-x deconvolution. (b) MDnCNN. (c) VMD-MDnCNN.  
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proposed method not only attenuate the white noise but also preserve most of the useful seismic 

amplitude indicated by red arrows. Here the SNR in MDnCNN is 26.1, the SNR in VMD-

MDnCNN is 28.3 and the SNR in original data is 12.7. Thus, the contribution of MDnCNN for 

denoising is about 79.5%. 

 

Figure 3.15. The original 3D seismic data of Penobscot.  

Again, we further compare the spectrum of the original and denoised seismic data to 

show the effectiveness of our method.  Figure 3.18 shows the amplitude spectrum of the original 

seismic (black), the denoised result using f-x deconvolution (red), MDnCNN (blue) and the 

VMD-MDnCNN (green), respectively. Note that the average amplitude spectrum of denoised 

data using VMD-MDnCNN has a very good match with that of original seismic data. 

Unfortunately, the denoised result using f-x deconvolution and MDnCNN lost certain middle and 

high-frequency content when compared that of original seismic data. 
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Figure 3.16. Illustration of the 3D volume denoised result on the seismic survey of Penobscot. 

(a) f-x deconvolution. (b) MDnCNN. (c) VMD-MDnCNN. 
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Figure 3.17. Rejected noises on 3D volume through different denoising methods on the seismic 

survey of Penobscot. (a) f-x deconvolution. (b) MDnCNN. (c) VMD-MDnCNN.  
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Figure 3.18. The frequency spectrum of the original data (black curve), MDnCNN result (blue 

curve), VMD-MDnCNN result (green curve) and f-x deconvolution result (red curve) for the 

seismic survey of Penobscot.  

CONCLUSIONS 

We propose a novel seismic noise attenuation method (VMD-MDnCNN) by integrating 

our MDnCNN with VMD. Current CNN based denoising methods either require the label of 

clean seismic data or the label of noise contained in the seismic data. Our method does not 

require clean seismic label nor purely noise label. The applications demonstrate that the white 

noise contained in the seismic can be simulated by enough user-generated white noise 

realizations. In addition, the applications demonstrate that the MDnCNN can obtain a more 

accurate estimation of the noise feature from the decomposed bandlimited seismic data. Both 

synthetic and real seismic data applications illustrate that our method is superior to the traditional 

denoising method of f-x deconvolution. The applications also demonstrate that our method not 

only effectively reject the white noise but also the migration artifacts contained in the seismic 

data.  
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ABSTRACT 

    Seismic horizon is one of the critical inputs for the structure and stratigraphy modeling 

of reservoirs. It is extremely hard to automatically obtain an accurate horizon interpretation for 

the seismic data where the lateral continuity of reflections are interrupted by the faults and 

unconformities. The process of seismic horizon interpretation segment the seismic traces into 

different parts and we consider the horizon interpretation as an image segmentation problem by 

treating each seismic trace as a 1D image. We propose a novel semi-automated seismic horizon 

interpretation method using an encoder-decoder convolutional neural network (CNN). To 

efficiently learn the waveform pattern that bounded by two adjacent horizons, we use a variable 

size for the convolution filters which differs from the current CNN based image segmentation. 

We form the training data by extracting the seismic traces on a user-defined coarse grid. The 

interpreted horizons for the seismic traces on the coarse grid separate the seismic traces into 

several segments. Finally, we obtain the seismic horizons over the whole seismic survey by 

applying the trained network to the rest of seismic traces. Two field data examples demonstrate 

that our proposed method can accurately generate seismic horizons for each seismic trace if we 

only have interpreted horizons on a coarse grid of the seismic survey.   
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INTRODUCTION 

Seismic horizon interpretation is an essential step for reservoir characterization. The 

seismic horizons can be treated as the stratigraphic boundaries that represent the depositional 

environments and geological features. Manual interpretation is the most familiar but time-

consuming interpretation technique. In recent decades, seismic horizon interpretation has been 

automated to some extent by others. Zeng et al. (1998) proposed an interpolation method, which 

first manually picking several reference strata slices and then build a surface volume by 

interpolating the interpreted seismic surfaces. However, the interpolated surfaces may not follow 

the local discontinues, like the fault and unconformities. Stark (2003) computed the unwrapping 

instantaneous phase to generate a relative geological time (RGT) volume and produce multiple 

horizons simultaneously. The seismic horizons that generated by RGT volume can provide a 

quality measure along the unconformities, but it cannot follow the fault gap. Wu and Zhong 

(2012) improved this method by using the graph-cut phase unwrapping, which performs well at 

strong discontinues structure zone. Lomask et al. (2006) first calculated the local dips over the 

entire seismic volume and transferred them into the time shift and then apply the least-square 

method to track the seismic horizons automatically. Parks (2010) proposed a slope-based 

flattening method, which use the structure tensor to estimate the dip and track seismic horizons 

automatically. Fomel (2010) use the algorithm of predictive painting to build a 3D seismic 

surface volume. Wu and Hale (2015) proposed an automatic horizons tracking method by adding 

control points in the complex structure zone. Wu and Fomel (2018) suggested a novel 

automatically seismic horizon interpretation method with local slope and multi-grid correlation 

that can effectively deal with faults without any human effort or very few control points. 
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In recent years, deep learning has captured significant attention in geoscience, and some 

deep learning based methods have been successfully applied to the geological structure detection 

(Huang et al., 2017; Wu et al., 2018; Zhao et al., 2018; Di et al., 2018;). Deep learning is a subset 

of machine learning, and CNN (LeCun et al., 1998) is one of the most popular and widely used 

deep learning algorithms, which achieves great success in the field of computer vision and 

pattern recognition. The basic theory of CNN is learning the features of the images and classify 

the images by different labels. Many algorithms based on CNN have been proposed to address 

the problem of images classification (Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan 

and Zisserman, 2015), and the accuracy has beyond the human level. However, those methods 

can only recognize one dominant object in one single image. Girshick et al. (2014) proposed the 

algorithm of regions with CNN features (R-CNN), which can localize and detect multiple objects 

in one single image. This method uses a series of different scale rectangle regions to segment 

multiple objects, but it cannot provide accurate boundaries of the objects. A breakthrough came 

from the fully connected neural network (FCN) (Long et al., 2015) that enhance the capability of 

image segmentation from the regional level to the pixel level. He et al. (2015) developed the 

ResNet with skip-connection, which make the training of very deep convolutional neural 

network possible. Other pixel-level image semantic segmentation methods include SegNet 

(Badrinarayanan et al., 2015), U-Net (Ronneberger et al., 2015), E-Net (Paszke et al., 2016), and 

Mask R-CNN (He et al., 2017). 

In this paper, we treat each seismic trace as a 1D image and proposed a novel semi-

automated seismic horizon interpretation method using encoder-decoder CNN. The framework 

of our network is similar to SegNet (Badrinarayanan et al., 2015). However, the size of the 

convolution kernel varies with layers where the common CNN based segment algorithms employ 
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a fixed size of convolution kernel for all the layers. This paper is organized as follow: we first 

discuss the traditional seismic horizon interpretation techniques. We next introduce the details of 

our proposed method for seismic horizon interpretation. We finally present the testing results on 

two different field data and compare the results with the traditional seeded auto-tracking method.  

CURRENT SEISMIC HORIZON INTERPRETATION TECHNIQUES 

Current automatic and semi-automatic horizon interpretation algorithms are based on 

comparing the similarity between nearby seismic traces or the dip of seismic reflectors. Seed-

based auto-tracking is the most popular semi-automated seismic horizon interpretation method 

that has been widely used in the industry and commercial software (Dorn, 1998). The first 

category is based on comparing the similarity 𝑠(𝑖, 𝑗) of waveforms between the seed trace 𝑥(𝑡)  

and a neighbor trace𝑦(𝑡):  
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where 𝑥(𝑡𝑖 − 𝜏)  denotes the amplitude of seismic at time index i with lag τ, 𝑦(𝑡𝑗 − 𝜏) denotes 

the amplitude of synthetic at time index j with lag τ, 2𝑤 is the temporal length of the correlation 

window, i and j are time sample indices. The selected neighbor trace become “seed” trace if the 

similarity between the original seed trace and neighbor trace is greater than a pre-defined 

threshold. We repeat the process of similarity comparing and changing neighbor trace to “seed” 

trace until the seismic traces become “seed” traces.  
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Figure 4.1 shows two tests using seeded auto-tracking over the zone of faults (upper) and 

unconformities (lower). The red curves in Figure 4.1 indicate the ground truth of our target 

horizons. The white dots denote the seeds, and the green curves represent the corresponding 

interpreted horizons using seeded auto-tracking. Note that seeded auto-tracking achieved a good 

result at the smooth and flat areas. However, this method failed to detect the edge of 

unconformities and follow the path of fault indicated by blue arrows.  

 

Figure 4.1. Illustrating the limitation of seeded auto-tracking for seismic horizon interpretation 

in complicated zones. The white dots denote the preset seeds. The red curves and green curves 

represent manually interpreted horizons and predicted horizons using seeded auto-tracking, 

respectively.  
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Wu and Hale (2015) treated the seed-based horizon interpretation as constrained 

optimized problem: 

Minimize    
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The objective is to minimize the difference between the dips computed from tracked horizon 

patches and the dips computed from seismic events. 

In this paper, we illustrate the superiority of our algorithm by comparing our results with 

the results produced from a commercial software where the algorithm is based on Equation 1. 

Comparing the results with the results produced using Wu and Hale’s (2015) method is out of the 

scope of this paper considering that we do not have access to their code. 
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SEISMIC HORIZON INTERPRETATION USING ENCODER-DECODER CNN 

Training set preparation 

To generate the training data and training label for our network, we first manually 

interpret the seismic horizons on a coarse grid. The seismic traces on the coarse grid are treated 

as training data and the rest of seismic traces are treated as testing data. Next, the interpreted 

seismic traces have been segmented into different parts according to the time index of seismic 

horizons. We then produce the training label by assigning different symbols to different 

segmented parts that bounded by two adjacent seismic horizons. For example, if we have four 

manually interpreted seismic horizons in total and these four horizons segment the seismic traces 

into five different segments, so we label these five different segments from top to bottom with 0, 

1, 2, 3 and 4, respectively. Researchers can use any unique symbols to label the segmented parts. 

Figure 4.2 shows an example of training data and the corresponding training label.  

 

Figure 4.2. One example of a training trace and the corresponding label, the red dash lines 

represent different seismic surfaces.  
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Figure 4.3. The framework of encoder-decoder CNN that used for seismic horizon 

interpretation.  

CNN framework 

Figure 4.3 shows the framework of the proposed network. This symmetrical framework 

contains two main parts: the encoder network and decoder network. A set of 1D seismic traces 𝑥𝑖 

are fed into the encoder as the input training data. The encoder network is composed of a series 

of repeated layers, and each layer contains convolution filter, batch-normalization regularizer 

(Ioffe and Szegedy, 2015), ReLU activation operator and a max-pooling operator. The objective 

of the convolution filter is to generate feature maps of the input seismic data. We choose to use 

downward trend size of convolution kernel in the encoder part, which are 32×1, 24×1, 16×1, 8×1 

and 3×1, respectively. The reason for these downward kernel size is learning the feature of input 

traces in different spatial scale. The objective of the ReLU is to activate the main features 
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contained in the feature map. The maxpooling operator is used for downsampling and the size is 

2×1 for all the convolution layers. The role of decoder network is reconstructing the image 

according to the feature maps and feed into the element-wise classification layer. The decoder 

also contains several layers that corresponding to the encoder network, and each layer is 

composed of upsampling operator, convolution filter, batch-normalization regularizer and ReLU 

activation operator. The upsampling operator is used for reconstruct the feature maps and the 

size is 2×1 for all the convolution layers. In the decoder, we choose to use the upward trend size 

of convolution kernel that the size are 3×1, 8×1, 16×1, 24×1 and 32×1, respectively. The last 

step of the network is an element-wise softmax classification layer with the size of 1×1 and the 

role of this layer is defining the weight of each pixel with the corresponding training label 𝑦𝑖 .  

Loss function and parameters 

Next, the cross-entropy loss function is used in our network to calculate the loss between 

the ground truth and prediction, which is widely used in the image segmentation. The loss 

function  𝐽(𝜃) is given as follows: 
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where ℎ𝜃(𝑥𝑖) is the prediction probabilities with all the trainable parameters 𝜃 of the input data 

𝑥𝑖  for the last classification layer, and 𝑦𝑖 is the corresponding training label. Then, the built 

network transforms the procedure of seismic traces segmentation into an optimization problem 

by solving a sequence of nonlinear functions. A gradient-based optimization algorithm of 



 

77 
  

adaptive moment estimation (Adam) (Kingma and Ba, 2015) is employed to minimize the 

proposed objective function through iterative updating the parameters of the network. 

In the training process, the size of input training data and training label is N×1, where N 

is the number of time samples of each seismic trace. To overcome the overfitting problem in the 

training procedure, the training and validation seismic traces are randomly selected during each 

optimization epoch. The percentage of the training and validation seismic traces in this paper is 

70% and 30%, respectively. A certain seismic trace may belong to the training set in current 

optimization epoch but may belong to the validation set in the next optimization epoch. 

 

Figure 4.4. The workflow of our proposed method for semi-automated seismic horizon 

interpretation.  
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Once the training process is finished, the well-trained network hierarchy is applied to the 

test data. The trained network performs trace segmentation and label assignment trace by trace. 

Figure 4.4 illustrates the workflow of our proposed method for seismic horizon interpretation, 

which shows the examples of the training data, corresponding training label, testing data, and the 

corresponding predicted label using our proposed method. We finally extracted the boundaries of 

the predicted label as our final interpreted horizons.  

APPLICATION 

Data description 

To demonstrate the effectiveness and superiority of our proposed method over the 

traditional method on seismic horizon interpretation. We test on two different field data 

examples and compare with the traditional method of seeded auto-tracking.  

 

Figure 4.5. The manually interpreted seismic horizons on a 50×50 coarse grid for the first field 

data.  
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The first field data, F3-block, was a public data that acquired over the North Sea, 

Netherlands. The applied data has 601 inlines, 901 crosslines and 288 time samples in this 

seismic survey, the sample rate is 4ms. We first manually interpret six seismic horizons on a 

50×50 coarse grid (Figure 4.5). We then use those manually interpreted seismic traces to build 

the training data and corresponding training labels for the following training process. We also 

manually interpret the seismic horizons on the rest of the seismic traces to produce the ground 

truth result (Figure 4.6), which is used to validate our predicted outcome. 

 

Figure 4.6. The manually interpreted seismic horizons over the whole seismic survey for the first 

field data. We treat that as the ground truth horizons to validate our predicted results.  

The second field data, Penobscot, was a public data that acquired over Nova Scotia, 

Oversea Canada. The applied data has 500 inlines, 500 crosslines and 512 time samples in this 
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seismic survey, the sample rate is 4ms. Since the geology structure of this seismic survey is more 

smooth and flat than the first field data. We choose to use more sparse distributed seismic traces 

that we manually interpret four seismic horizons on a 100×100 coarse grid (Figure 4.7). We then 

use those manually interpreted seismic traces to build the training data and corresponding 

training labels for the following training process. We also manually interpret the seismic 

horizons on the rest of the seismic traces to produce the ground truth result (Figure 4.8), which is 

used to validate our predicted result. 

 

Figure 4.7. The manually interpreted seismic horizons on a 100×100 coarse grid for the second 

field data.  

Training process  

In the training process, we set the maximum epochs equal to 20 for both of these two 

datasets. Figure 4.9 shows the loss and accuracy of the training process for the first field data. 

Note that both the training and validation accuracies gradually increase to 95% while the training 
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and validation loss converges to 0.1 after ten epochs for the first field data. Figure 4.10 shows the 

loss and accuracy of the training process for the second field data. Note that both the training and 

validation accuracies gradually increase to 95% while the training and validation loss converged 

after ten epochs for the second field data. 

Both of these two datasets are training on an NVIDIA Quadro P6000 GPU of 24 GB 

memory. The computation cost is about 45 minutes for the first field data and about 20 minutes 

for the second field data. The time cost for the manual interpretation on the coarse grid is about 

60 minutes for the first field data and about 30 minutes for the second field data. The time cost 

for manually interpreting the whole seismic survey is about three days for the first field data and 

about two days for the second field data. 

 

Figure 4.8. The manually interpreted seismic horizons over the whole seismic survey for the 

second field data. We treat that as the ground truth to validate our predicted results.  
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Figure 4.9. The loss and accuracy are varying with epochs of the first field data.  

 

Figure 4.10. The loss and accuracy are varying with epochs of the second field data.  
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Figure 4.11. The error distribution and the average of absolute error for each horizon of the first 

field data.  

Refining predicted horizons by spatial correlation constraint 

We evaluate the prediction error using the average absolute difference between the 

ground truth and predicted result. The average absolute difference is defined as follow: 

N

PG

d

N

i

ii




 1                                                                                                        (7) 

where 𝑑 denotes the absolute average difference, 𝐺𝑖 denotes the ground truth  of the horizon for 

the 𝑖𝑡ℎ trace, 𝑃𝑖  denotes the predicted horizon for the 𝑖𝑡ℎ trace by using our proposed method, N 
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is the total trace number of the testing data. Figure 4.11 shows the error distribution and average 

of absolute error for each horizon. The x-axis is the error in sample and y-axis is the number of 

sample. Note that the average value of the six horizons are all smaller than 3 samples which 

demonstrate a very good prediction. Figure 4.11 shows that the error of 95% of prediction result 

is smaller than 1 sample. However we still have a small amount of seismic traces whose error is 

greater than 5 samples (20 ms). Figure 4.12 shows one representative inline seismic slice located 

at the boundary of our seismic survey. Note that the improper two-way travel time “jump” of 

predicted horizons indicated by the red rectangles in Figure 4.12. The yellow rectangle in Figure 

4.12 indicates the reasonable two-way travel time “jump” caused the existing of fault. In this 

paper, we propose two-step filtering to differentiate the reasonable and improper two-way travel 

time jumps. We preserve the two-way travel jumps caused by faults and then smooth the two-

way travel time for those improper jumps. The two-step filtering used in this paper is present in 

Algorithm 1:         

Algorithm 1: The two-step filter to detect the spikes and faults 

Input: predicted horizon ℎ(𝑡) D with size (1, T) 

Output: location of spike 𝑠 

1: Initialize: 𝑠 ← [ ], 𝑀 ← 10, 

2: for i = 1 to T 

3:      for j = i to i+10 

4:            if  ‖ℎ(𝑗) − ℎ(𝑖)‖ < 𝑀 

5:                 continue 

6:             elseif  ‖ℎ(𝑗) − ℎ(𝑖)‖ ≥ 𝑀 

7:                      for k = j to j+10 
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8:                           if  ‖ℎ(𝑘) − ℎ(𝑖)‖ ≥ 𝑀 

9:                                continue 

10:                         elseif  ‖ℎ(𝑘) − ℎ(𝑖)‖ < 𝑀 

11:                              𝑠 ← [𝑖: 𝑘; 𝑠] 

12: end 

       

We then use the following equation to interpolate the two way travel time of the improper 

jumps. We designed a Gaussian window: 

  5.0,

2

2

1






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
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We then smooth the spikes: 

     






 shsf , 

where s denotes the indexes of the spikes. Figure 4.13 shows the final output horizons overlaid 

on the inline section slice shown in Figure 4.12. Note that we simultaneously mitigate the 

unreasonable jumps of two-way travel time for the same horizon and keep the reasonable jumps 

of two-way travel time across the faults. 

Experiment result and comparison 

We apply these two well-trained networks to the testing data of these two field data to 

predict the seismic horizons over the whole seismic surveys. The computation cost of testing for 

both two field data is under 1 minute. We also compare the results using our proposed method 

with the results using seeded auto-tracking. The time cost of seeded auto-tracking is about 16 

minutes for the first field data and about 11 minutes for the second field data. 
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Figure 4.12. One representative inline seismic slice located at the boundary of our seismic 

survey.  

 

Figure 4.13. The final output horizons overlaid on the inline section slice shown in Figure 4.12.  
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Figure 4.14. The interpreted seismic horizons using our proposed method of the first field data.  

 

Figure 4.15. The interpreted seismic horizons using seeded auto-tracking of the first field data.  



 

88 
  

 

Figure 4.16. The absolute error maps between the ground truth and the results using our 

proposed method for the first field data.  

 

Figure 4.17. The absolute error maps between the ground truth and the results using seeded 

auto-tracking for the first field data.  
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Figure 4.18. The seismic amplitude maps on the horizon surfaces of ground truth of the first 

field data.  

 

Figure 4.19. The seismic amplitude maps on the predicted horizon surfaces using our proposed 

method for the first field data.  
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Figure 4.20. The seismic amplitude maps on the predicted horizon surfaces using seeded auto-

tracking for the first field data.  

 

Figure 4.21. The comparison on an inline section of the first field data.  
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Figure 4.22. The comparison on a crossline section of the first field data.  

For the first seismic survey, the predicted seismic horizons using our proposed method 

are shown in Figure 4.14. Figure 4.15 shows the interpolated seismic horizons using seeded auto-

tracking. To evaluate the predicted results of seismic horizons, we calculate the absolute error of 

the time index between the ground truths with the predicted results. Figure 4.16 shows the 

absolute error maps between the ground truths with the predicted results using our proposed 

method that corresponds to the six horizons in the first field data. Figure 4.17 shows the absolute 

error maps between the ground truths with the predicted results using the seeded auto-tracking 

that corresponding to the six horizons in the first field data. Note that the predicted horizons 

using our proposed method have a very good match with the ground truths, while the predicted 

results using seeded auto-tracking have some obvious error with the ground truths that were 

indicated by purple arrows. We also plot the seismic amplitude on different horizon surfaces to 

evaluate whether the horizon laterally follows the consistent phase or not. Figures 4.18, 4.19 and 
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4.20 show the amplitude maps of seismic horizons using ground truth, our proposed method and 

seeded auto-tracking, respectively (the contour in the amplitude maps is caused by the onlap or 

downlap). Note that the amplitude maps of seismic horizons using our proposed method have a 

very good match with the amplitude maps of ground truths. However, the amplitude maps of 

seismic horizons using seeded auto-tracking have some inconsistent phase and mess area that 

indicated by purple arrows.  

To further evaluate the performance of our proposed method, we show the examples of 

seismic sections from the direction of inline (Figure 4.21) and crossline (Figure 4.22), 

respectively. The interpretation results using our proposed method, seeded auto-tracking and 

manual picking are represented by yellow, green and red curves, respectively. The training data 

and training labels (seeds) are represented by white dots. Note that the method of seeded auto-

tracking failed to detect the edge of the unconformities that indicated by the blue arrow. Also 

note that the seismic horizons obtained by using our proposed method have a very good match 

with the ground truth, while the seeded auto-tracking failed to follow the seismic horizons on the 

areas of faults and unconformities that indicated by blue arrows. 

For the second seismic survey, the predicted seismic horizons using our proposed method 

are shown in Figure 4.23. Figure 4.24 shows the interpolated seismic horizons using seeded auto-

tracking. Figure 4.25 shows the absolute error maps between the ground truths with the predicted 

results using our proposed method. Figure 4.26 shows the absolute error maps between the 

ground truths with the predicted results using the seeded auto-tracking. Note that the predicted 

horizons using our proposed method have a very good match with the ground truths, while the 

predicted results using seeded auto-tracking have some obvious error with the ground truths that 

were indicated by purple arrows. Figures 4.27, 4.28 and 4.29 show the amplitude maps of 
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seismic horizons using ground truth, our proposed method and seeded auto-tracking, 

respectively. Note that the amplitude maps of seismic horizons using our proposed method have 

a very good match with the amplitude maps of ground truths. However, the amplitude maps of 

seismic horizons using seeded auto-tracking have some inconsistent phase and mess area that 

indicated by purple arrows. 

 

Figure 4.23. The interpreted seismic horizons using our proposed method of the second field data.  

 

Figure 4.24. The interpreted seismic horizons using seeded auto-tracking of the second field data.  
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Figure 4.25. The absolute error maps between the ground truth and the results using our 

proposed method for the second field data.  

 

Figure 4.26. The absolute error maps between the ground truth and the results using seeded 

auto-tracking for the second field data.  
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Figure 4.27. The seismic amplitude maps on the horizon surfaces of ground truth of the second 

field data.  

 

Figure 4.28. The seismic amplitude maps on the predicted horizon surfaces using our proposed 

method for the second field data.  
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Figure 4.29. The seismic amplitude maps on the predicted horizon surfaces using our seeded 

auto-tracking for the second field data.  

Figures 4.30 and 4.31 show the examples of seismic sections from the direction of inline 

and crossline, respectively. The interpretation results using our proposed method, seeded auto-

tracking and manual picking are represented by yellow, green and red curves, respectively. The 

training data and training labels (seeds) are represented by white dots. Note that the seismic 

horizons obtained by using our proposed method have a very good match with the ground truth, 

while the seeded auto-tracking failed to follow the seismic horizons on the area of faults that 

indicated by blue arrows. In addition, the second real data test demonstrate that my deep learning 

model can be trained and further applied to 1D images with an arbitrary size. One key factor is 

the number of layers for building the deep convolutional neural network architecture. We 

obtained the best performance when the ratio between the size of the last layer and label number 

is four. We suggest that the size of the last layer should be between two to three times larger than 

the label number. 
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Figure 4.30. The comparison on an inline section of the second field data.  

 

Figure 4.31. The comparison on a crossline section of the second field data.  
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CONCLUSIONS 

We treat each seismic trace as a 1D image where the seismic horizon interpretation can 

be viewed as the task of image segmentation. We use the encoder-decoder convolutional neural 

network to successfully interpret the seismic horizons. The variable size of convolution kernel is 

more preferable than the commonly used fixed size in dividing the seismic traces into different 

segments where the boundaries of the segments are regarded as the horizons. We also designed a 

two-step filters to remove the spikes and keep the faults with rapid change. Two field data 

examples illustrate that our proposed method can produce accurate seismic horizons over the 

whole seismic survey even if we have faults and unconformities within the seismic surveys. The 

applications also demonstrate that our proposed method has comparable computation efficiency 

over the manual horizon interpretation.   
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CHAPTER 5 

CONCLUSIONS 

My dissertation illustrates that it is very promising to employ deep learning in assisting 

seismic data processing and interpretation. Properly transfer the geoscience problem to objects 

identification problem is the key to successfully apply deep learning in geoscience world. 

Meanwhile, the applications demonstrates that post processing using geoscience knowledge is 

necessary to further improve the accuracy. The main conclusions of this dissertation are 

summarized as follows. 

In Chapter 2, I transfer the first arrival picking problem into an image segmentation 

problem and apply the pixel-wise convolutional method to address this problem. Most current 

convolutional neural networks are using constant size of convolution filters. The application 

demonstrate that the accuracy of predicted first arrival using constant size of convolution filters 

are very low. I propose to use variable size of convolution filters to build the neural network 

architecture. The comparison illustrates that using variable size of convolution filters has 

successfully improve the accuracy of predicted first arrival. Recently, many automatic first 

arrival picking methods have been proposed. However, those method are very hard to obtain the 

accurate result in the really noisy environment. Both synthetic and real data applications 

illustrate that our proposed method is superior to the traditional method of STA/LTA and can 

save massive labor work than manual interpretation. 

In Chapter 3, I propose a novel seismic noise attenuation method (VMD-MDnCNN) by 

integrating our MDnCNN with VMD. Current CNN based denoising methods either require the 
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label of clean seismic data or the label of noise contained in the seismic data. My method does 

not require clean seismic label nor purely noise label. The applications demonstrate that the 

white noise contained in the seismic can be simulated by enough user-generated white noise 

realizations. In addition, the applications demonstrate that the MDnCNN can obtain a more 

accurate estimation of the noise feature from the decomposed bandlimited seismic data. Both 

synthetic and real seismic data applications illustrate that our method is superior to the traditional 

denosing method of f-x deconvolution. The applications also demonstrate that our method not 

only effectively reject the white noise but also the migration artifacts contained in the seismic 

data. 

In Chapter 4, I solved several challenges of using deep learning techniques for seismic 

horizon interpretation. First, treat the seismic trace as a 1D image eliminates the effect of size of 

seismic survey on the hierarchy building. Second, cropping the seismic traces into a constant size 

reduce the effect of recording length on the hierarchy building. Third, using a downward-upward 

trend size of convolution filters help to improve the prediction accuracy. Fourth, the built 

hierarchy is universal and applicable to other horizon interpretation. Finally, post process with 

the aid of geoscience knowledge is necessary to further improve the accuracy of horizon 

interpretation. 

 


