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Chapter 1: Deep convolutional neural networks as a geological image 
classification tool 

Rafael Pires de Lima1,2, Alicia Bonar1, David Duarte Coronado1, Kurt Marfurt1, Charles 

Nicholson3 

1School of Geology and Geophysics, The University of Oklahoma, 100 East Boyd Street, RM 

710, Norman, Oklahoma, 73019, USA 

2The Geological Survey of Brazil – CPRM, 55 Rua Costa, São Paulo, São Paulo, Brazil 

3School of Industrial and Systems Engineering, The University of Oklahoma, 202 West Boyd 

Street, RM 124, Norman, Oklahoma, 73019, USA 

 

Abstract 

A convolutional neural network (CNN) is a deep learning (DL) method that has been 

widely and successfully applied to computer vision tasks including object localization, detection, 

and image classification. DL for supervised learning tasks is a method that uses the raw data to 

determine the classification features, in contrast to other machine learning (ML) techniques that 

require pre-selection of the input features (or attributes). In the geosciences, we hypothesize that 

deep learning will facilitate the analysis of uninterpreted images that have been neglected due to 

a limited number of experts, such as fossil images, slabbed cores, or petrographic thin sections. 

We use transfer learning, which employs previously trained models to shorten the development 

time for subsequent models, to address a suite of geologic interpretation tasks that may benefit 

from ML. Using two different base models, MobileNet V2 and Inception V3, we illustrate the 

successful classification of microfossils, core images, petrographic photomicrographs, and rock 

and mineral hand sample images. ML does not replace the expert geoscientist. The expert defines 

the labels (interpretations) needed to train the algorithm and also monitors the results to address 
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incorrect or ambiguous classifications. ML techniques provide a means to apply the expertise of 

skilled geoscientists to much larger volumes of data 

Authorship statement: RPL developed the conception and design of study, wrote the necessary 

scripts, performed analysis, and wrote the manuscript. DD acquired the data, participated in the 

analysis, and helped write the manuscript. CN guided the analysis, helped writing the 

manuscript, and revised the manuscript critically for important intellectual content. RS helped 

writing the manuscript, and revised the manuscript critically for important intellectual content. 

KJM helped in the conception and design of study, helped write the manuscript, and revised the 

manuscript critically for important intellectual content. 
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Introduction 

Machine learning (ML) techniques have been successfully applied, with considerable 

success, in the geosciences for almost two decades. Applications of ML by the geoscientific 

community include many examples such as seismic-facies classification (Meldahl et al., 2001; 

West et al., 2002; de Matos et al., 2011; Roy et al., 2014; Qi et al., 2016; Hu et al., 2017; Zhao et 

al., 2017), electrofacies classification (Allen and Pranter, 2016), and analysis of seismicity 

(Kortström et al., 2016; DeVries et al., 2018; Perol et al., 2018; Sinha et al., 2018), and 

classification of volcanic ash (Shoji et al., 2018), among others. Conventionally, ML applications 

rely on a set of attributes (or features) selected or designed by an expert. Features are specific 

characteristics of an object that can be used to study patterns or predict outcomes. In 

classification modeling, these features are chosen with the goal of distinguishing one object from 

another.      

Typically, feature selection is problem dependent. For example, a clastic sedimentary 

rock is most broadly classified by its grain size; therefore, a general classification for a rock 

sample (data) is sandstone if its grain sizes (features) lie from 0.06 mm to 2.0 mm following the 

Wentworth size class. In this example, a single feature is used to classify the sample, but more 

complex and/or detailed classification often requires analysis of multiple features exhibited by 

the sample. An inefficiency of traditional ML approaches is that many features may be 

constructed while only a subset of them are actually needed for the classification.     

The use of explicitly designed features to classify data was the traditional approach in 

ML applications within the geosciences as in many other research areas. This classification 

approach works well when human interpreters know and can quantify the features that 

distinguish one object from another. However, sometimes an interpreter will subconsciously 
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classify features and have difficulty describing what the distinguishing features might be, relying 

on “I’ll know what the object is when I see it”. In contrast to feature-driven ML classification 

algorithms, deep learning (DL) models extract information directly from the raw unstructured 

data rather than the data being manually transformed.   

Because of their greater complexity (and resulting flexibility and power) convolutional 

neural networks (CNN) usually requires more training data than traditional ML processes. 

However, when expert-labeled data are provided, non-experts can use the CNN models to 

generate highly accurate results (e.g. TGS Salt Identification Challenge | Kaggle, 2019).      

DL applications in the geosciences require experts to first define the labels used to 

construct the necessary data sets as well as identify and address any ambiguous results and 

anomalies. In order to bring awareness and provide basic information regarding CNN models, 

DL techniques, and the necessity of expert-level knowledge needed to utilize these 

advancements, we applied these methods to four different geologic tasks. Figure 1 shows 

samples of different types of data that can be interpreted and labeled by experienced geologists. 

We use such interpretations to train our models. In this manuscript, we show how CNN can aid 

geoscientists with microfossil identification, core descriptions, petrographic analyses, and as a 

potential tool for education and outreach by creating a simple hand specimen identification 

application. 
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Figure 1: Examples of the data used in this study. A) Three of the seven Fusulinids groups (Beedeina (1), 
Fusulinella (2), and Parafusulina (3)). B) Three of the five lithofacies (bioturbated mudstone-wackestone (1), chert 
breccia (2), and shale (3)). C) Reservoir quality classes (high (1), intermediate (2), and low (3)) D) Three of the six 
rock sample groups (basalt (1), garnet schist (2), and granite (3)). Samples were interpreted by professionals 
working with each separate dataset. 

 

Convolutional neural networks and transfer learning 

Recent CNN research has yielded significant improvements and unprecedented accuracy 

(the ratio between correct classifications and the total number of samples classified) in image 

classification and are recognized as leading methods for large-scale visual recognition problems, 

such as the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC, Russakovsky 
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et al. (2015)). Specific CNN architectures have been the leading approach for several years now 

(e.g., Szegedy et al., 2014; Chollet, 2016; He et al., 2016; Huang et al., 2016; Sandler et al., 

2018). Researchers noted that the parameters learned by the layers in many CNN models trained 

on images exhibit a common behavior – layers closer to the input data tend to learn general 

features, such as edge detecting/enhancing filters or color blobs, then there is a transition to more 

specific dataset features, such as faces, feathers, or object parts (Yosinski et al., 2014; Yin et al., 

2017). These general-specific CNN layer properties are important points to be considered for the 

implementation of transfer learning (Caruana, 1995; Bengio, 2012; Yosinski et al., 2014). In 

transfer learning, first a CNN model is trained on a base dataset for a specific task. The learned 

features (model parameters) are repurposed, or transferred, to a second target CNN to be trained 

on a different dataset and task (Yosinski et al., 2014).      

New DL applications often require large volumes of data, however the combination of 

CNNs and transfer learning allows the reuse of existing DL models to novel classification 

problems with limited data, as has been demonstrated in diverse fields, such as botany (Carranza-

Rojas et al., 2017), cancer classification (Esteva et al., 2017), and aircraft detection (Chen et al., 

2018). Analyzing medical image data, Tajbakhsh et al. (2016) and Qayyum et al. (2017) found 

that transfer learning achieved comparable or better results than training a CNN model with 

randomly initialized parameters. As an example, training the entire InceptionV3 (Szegedy et al., 

2015) with 1000 images (five classes, 50 original images for each class, four copies of each 

original image) with randomly initialized parameters can be 10 times slower than the transfer 

learning process (11 minutes vs 1 minute on average for five executions) using a Nvidia Quadro 

M2000 (768 CUDA Cores). On a CPU (3.60 GHz clock speed), training the entire model can 

take up to 2 hours whereas transfer learning can be completed within a few minutes. We also 
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noticed that transfer learning is easier to train. During the speed comparison test, transfer 

learning achieved high accuracies (close to 1.0) within 5 epochs (note the dataset is very simple 

with most of the samples being copies of each other). Successful applications of computer vision 

technologies in different fields suggest that ML models could be extremely beneficial for 

geologic applications, especially those in the category of image classification problems. 

For the examples we present in this paper (Figure 1), we rely on the use of transfer 

learning (Yosinski et al., 2014) using the MobileNetV2 (Sandler et al., 2018) and InceptionV3 as 

our base CNN models. Both MobileNetV2 and InceptionV3 were trained on ILSVRC. 

Therefore, the CNN models we used were constructed based on inputs of 3-channels (RGB) of 

2D photographic images. We randomly select part of the data to be used as a test set maintaining 

the same proportion of samples per class as in the training set. The data in the test set is not used 

during the computational process for model training; rather, it is used to evaluate the quality and 

robustness of the final model. Due to limited space, we refrained showing the CNN mistakes and 

many of the steps necessary for data preparation.  

 

CNN-Assisted fossil analysis 

Biostratigraphy has become a less common focus of study in the discipline of 

paleontology (Farley and Armentrout, 2000, 2002), but the applications of biostratigraphy are 

necessary for understanding age-constraints for rocks that cannot be radiometrically dated. 

Access to a specific taxonomic expert to accurately analyze fossils at the species-level can be as 

challenging as data acquisition and preparation. Using labeled data from the University of 

Oklahoma Sam Noble Museum and iDigBio portal, we found that Fusulinids (index fossils for 

the Late Paleozoic) can be accurately classified with the use of transfer learning. Accurate 
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identification of a Fusulinid depends on characteristics that must be observed and exposed along 

the long axis of the (prolate spheroid-shaped) Fusulinid. We used a dataset of 1850 qualified 

images including seven different Fusulinid genera. After retraining the CNN model, we obtained 

an accuracy for the test set (10% of the data) of 1.0 for both retrained MobileNetV2 and 

InceptionV3 (Table 1). Figure 2 shows a schematic view of the classification process. 

 

Figure 2: An example of the classification process. In this example, a thin-section image that should fit one of the 
seven Fusulinid genera is analyzed by the model. The model outputs the probability assigned to each of the possible 
classes (all probabilities summing to 1.0). The term “classes” here is used in the ML sense rather than the biological 
one. In the example provided, our model provided a high probability for the same class as the human expert. Note 
that in the implementation we use the model will classify any image as one of the seven learned classes – even if the 
image is clearly not a fossil. This highlights the importance of a domain expert intervention. 
 

 

Table 1: Summary of test accuracy for the examples in this study. 
Dataset Number 

of training 
samples 

Number 
of test 
samples 

Number 
of output 
classes 

MobileNetV2 
Accuracy 

InceptionV3 
Accuracy 

Microfossils 
(Fusulinids) 

1480 184 7 1.00 1.00 

Core 227 28 5 1.00 0.97 
Petrographic 
thin-sections 

194 31 3 0.81 0.81 

Rock 
samples 

1218 151 6 0.98 0.97 
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CNN-Assisted core description 

Miles of drilled cores are stored in boxes in enormous warehouses, many of which have 

either been neglected for years or never digitally described. Core-based rock-type descriptions 

are important for understanding the lithology and structure of subsurface geology. Using several 

hundred feet of labeled core from a Mississippian limestone in Oklahoma (data from Suriamin 

and Pranter, 2018 and Pires de Lima et al., 2019), we selected a small sample of 285 images 

from five distinct lithofacies to be classified by the retrained CNN models. Pires de Lima et al. 

(2019) describes how a sliding window is used to generate CNN input data, cropping small 

sections from a standard core image. We used 10% of the data as the test set and achieved an 

accuracy of 1.0 using the retrained MobileNetV2 and an accuracy of 0.97 using the retrained 

InceptionV3 (Table 1).  

 

CNN-Assisted reservoir quality classification using petrographic thin sections 

Petrography focuses on the microscopic description and classification of rocks and is one 

of the most important techniques in sedimentary and diagenetic studies. Potential information 

gained from thin section analysis compared to hand specimen descriptions include mineral 

distribution and percentage, pore space analysis, and cement composition. Petrographic analyses 

can be laborious even for experienced geologists. Using a total of 161 photomicrographs of 

parallel Nicol polarization of thin sections from the Sycamore Formation shale resource play in 

Oklahoma, we classified these images as representatives of high, intermediate, and low reservoir 

quality depending on the percent of calcite cement and pore space. We used 20% of the images 

in the test set and obtained a test set accuracy of 0.81 for both the retrained MobileNetV2 and the 

retrained InceptionV3 (Table 1). 
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CNN-Assisted rock sample analysis 

By creating a simple website, the general population could have immediate access to a 

rock identification tool using transfer learning technology. For this work in progress, we used 

smartphones to acquire 1521 pictures of six different rock types, using five different hand 

samples for each one of the rock types. We took pictures with different backgrounds, as visually 

depicted in Figure 1, however all pictures were taken in the same classroom. After retraining the 

CNN models, we obtained an accuracy for the test set (10% of original data) of 0.98 using the 

retrained MobileNetV2 and 0.97 using the retrained InceptionV3 (Table 1). We note that our 

model does not perform well with no-background images (i.e., pictures in which the rock sample 

is edited and seems to be within a white or black canvas) as such images were not used in 

training. 

 

Conclusions and future work 

Although gaining popularity and becoming established as robust technologies in other 

scientific fields, transfer learning and CNN models are still novel with respect to application 

within the geoscience community. In this paper, we used CNN and transfer learning to address 

four potential applications that could improve data management, organization, and interpretation 

in different segments of our community. We predict that the versatile transfer learning and deep 

learning technologies will play a role in public education and community outreach, allowing the 

public to identify rock samples much as they currently can use smart phone apps to identify 

visitors to their bird feeder. Such public engagement will increase geological awareness and 

provide learning opportunities for elementary schools, outdoor organizations, and families. 



13 

For all of our examples, we were able to achieve high levels of accuracy (greater than 

0.81) by repurposing two different CNN models originally assembled for generic computer 

vision tasks. We note that the examples and applications demonstrated here are curated, and 

therefore we expected highly accurate results. We presented demonstrations with limited classes 

and relatively well-controlled input images, so near perfect accuracies cannot necessarily be 

expected in an open, free-range deployment scenario. Regardless, the ability to create distinctive 

models for specific sets of images allows for a versatile application. 

The techniques we have shown could greatly improve the speed of monotonous tasks 

such as describing miles of core data with very similar characteristics or looking at hundreds of 

thin sections from the same geologic formation. While the tasks are performed by the computer, 

the geoscience expert is still the most important element in every analysis in order to create the 

necessary datasets and provide quality control of the generated results. In the end, the expert 

validates the correctness of the results and looks for anomalies that are poorly represented by the 

target classes. We believe ML can help maintain consistency in interpretations and even provide 

a resource for less common observations and data variations, such as previously overlooked 

fossil subspecies and unique mineralogical assemblages in small communities and private 

collections, thereby building and reconciling a more complete international database. By 

combing expert knowledge and time efficient technology, ML methods can accelerate many data 

analysis processes for geologic research. 
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Abstract 

Petrographic analysis is based on the microscopic description and classification of rocks 

and is a crucial technique for sedimentary and diagenetic studies. When compared to hand 

specimens, thin sections of rocks provide better and more accurate means for analysis of mineral 

distribution and percentage, pore space analysis, and cement composition. Because of the rich 

information they contain, thin section data are commonly used not only by the mining and 

petroleum industry, but by the academic community as well. Most petrographic analysis relies on 

visual inspection of rock thin sections under a microscope, a task that is laborious even for 

experienced geologists. Large projects with a tight time frame requiring the analysis of a large 

amount of thin sections may require multiple petrographers, thereby risking the introduction of 

inconsistency in the analysis. To address this challenge, we explore the use of deep convolutional 

neural networks (CNN) as a tool that can allow the petrographer to analyze and classify more 

samples in a consistent manner. Unlike previous studies using deep learning models trained on 

large volumes of thin section data, we make use of transfer learning based on robust and reliable 
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CNN models trained with a large amount of non-geological images. With a much smaller 

number of labeled thin sections used in training followed by “fine-tuning” we are able to 

construct convolutional neural networks that achieve low error levels (<5% when images of 

same quality are used for training and testing) in thin section classification. While becoming 

widely accepted as a useful tool in the biological and manufacturing disciplines, CNN is 

currently underutilized in the geoscience community; we foresee an increase of use of such 

techniques to help accelerate and quantify a wide variety of geological tasks.  
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Glossary 

We provide a simple glossary with common denominations in machine learning 

applications and used throughout the manuscript. For a more comprehensive list we refer the 

reader to Google’s machine learning glossary (“Machine Learning Glossary | Google 

Developers,” accessed August 2019).  

• Accuracy: the fraction of total objects correctly classified. Values range from 0.0 to 1.0 

(equivalently, 0% to 100%). A perfect score of 1.0 means all classifications were correct 

whereas a score of 0.0 means all classifications were incorrect.  

• Convolution: a mathematical operation that combines two functions producing an 

output. In machine learning applications, a convolutional layer uses two discrete 

functions, the input data and a convolutional kernel, to train the convolutional kernel 

weights. 

• Convolution Neural Networks (CNN): a neuron network architecture in which at least 

one layer is a convolutional layer.  

• Deep Learning (DL): an artificial neural network architecture that contains many hidden 

layers. 

• Fine Tuning: the process of adjusting machine learning model parameters of a pre-

trained model to improve performance for a specific problem type  

• Label: the names applied to an instance, sample, or example (for image classification, an 

image) associating it with a given class. 

• Layer: a group of neurons in a machine learning model that process a set of input 

features. 



20 

• Machine Learning (ML):  a collection of approaches in which systems improve their 

performance through automatic analysis of data.   

• Neural Networks (NN): a machine learning model that combines linear and nonlinear 

transformations, loosely inspired in the behavior of brain neurons. It is typically 

organized in layers where each layer contains a number of nodes (or neurons). 

• Neuron: A node in a neural network, typically taking in multiple input values and 

generating one output value. The neuron calculates the output value by applying an 

activation function (nonlinear transformation) to a weighted sum of input values. 

• Training: the process of finding the most appropriate weights of a machine learning 

model. 

• Transfer Learning: a technique that uses information learned in a primary machine 

learning task to perform a secondary machine learning task. 

• Top-X error: a measure of model accuracy. A classification is considered correct as long 

as the correct label is in one of the top X guessed labels. Top-1 error is the ratio of the 

incorrect classifications over the total number of classifications (1.0 minus accuracy).  

• Weights: the coefficients of a machine learning model. In a simple linear equation, the 

slope and intercept are the weights of the model. In CNNs, the weights are the 

convolutional kernel values. The training objective is to find the ideal weights of the 

machine learning model.  

 

Introduction 

Petrography focuses on the microscopic description and classification of rocks and 

remains one of the most used techniques in geoscience studies. The essential tool in petrographic 
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analysis is the microscope that uses plane and polarized transmitted light to capture the optical 

properties of minerals. The geologist or petrographer uses such a microscope to examine a rock 

thin section, which is a flat rock sample usually 30 μm thick, mounted on a glass slide. The goal 

is to observe and describe the characteristics of the rock such as grain geometry, structure, 

mineralogy and texture.  

One of the most important uses of petrographic studies is to define microfacies based on 

the aforementioned thin section characteristics. However, hundreds of thin sections need to be 

described when classifying microfacies and such description is a very time-consuming process. 

Although the point-count method provides accurate and arguably undisputable classification for 

a thin section, point counts are often discarded as a classification option as it is considered a 

draining task. In our experience, a qualified geologist can take up to 20 minutes to count 300 

points (the average number of points necessary for classification) in a single thin section when 

the petrographer is familiar with the mineralogical composition of the rock. Due to the long time 

required for the analysis of a single sample, the mechanical thin section point-count is often 

replaced by an interpretative approach. A single thin section interpretation then can take less than 

a minute, in cases in which the petrographer is familiar with the microfacies, or up to tens of 

minutes, in cases in which the thin section presents elements that are unfamiliar to the 

petrographer. The interpretation process can be subjective, thereby running the risk of 

inconsistent labeling. Cheng et al. (2018) observed that new thin sections are continuously 

produced, growing the number of samples that needs to be analyzed and archived by the 

geoscience community. With the development of new geological concepts, the application of 

new interpretation frameworks, the acquisition of new acreage, or the integration of multiple 

collections analyzed by different work teams, vast amounts of data constantly need to be re-
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interpreted. Our goal is to generate machine learning (ML) models with the ability to produce 

reliable results in significantly shorter times and to provide more quantitative decision-making 

required in the oil and gas industry to organize data to allow the evaluation of new geological 

concepts.  

The microfacies description obtained through images thin sections are analogous to 

image classification problems. Datta et al. (2008) reported that image classification is one of the 

tasks in which machines have excelled, often obtaining faster and more accurate results than 

humans. Because ML models have been successful in a wide variety of image classification 

problems, we hypothesize that deep convolutional neural network (CNN) holds similar promise 

in the microfacies classification of thin section photographs.  

We begin our paper with a brief review of recent advances in using CNN as image 

classification in other fields, as well as some of the limited CNN applications using rock thin 

section data. Next, we describe the thin section preparation and data. We then describe the 

processing and analysis performed on the data and summarize our results. We conclude our 

manuscript with a summary of the advantages and limitations of the technology.  

 

A short review of image processing using machine learning  

Customary ML methods are limited in their ability to process raw data (such as the pixel 

values of an image). Due to such limitations, for many years the construction of a pattern-

recognition model demanded carefully detailed feature engineering (e.g. the analysis of the 

wings of an insect or the leaves of a tree) performed by domain experts (LeCun et al., 2015; Yin 

et al., 2017). Yang et al. (2018) observed that one of the reasons deep learning (DL) models 

attracted the attention of the research community is DL’s capacity to discover an effective 
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feature transformation for a specific task. Current progress in DL models, specifically CNN 

architectures, have improved the state-of-the-art in visual object recognition and detection, 

speech recognition and many other fields of study (LeCun et al., 2015). The model described by 

Krizhevsky et al. (2012), frequently referenced to as AlexNet, is considered a breakthrough and 

influenced the rapid adoption of DL in the computer vision field (LeCun et al., 2015). A variant 

of AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC, 

Russakovsky et al., 2015) in 2012 achieving a top-5 test error rate (how often a true label is not 

one of the top 5 labels assigned by the model, a common metric for the ILSVRC) of 15%.  The 

second-best entry for ILSVRC in 2012 had a top-5 error rate of 26%. AlexNet, with only five 

convolutional layers, has 60 million parameters to be trained. At first glance, such a large 

number of parameters might seem like a drawback for the implementation of DL models. 

However, with the advances of graphics processing units (GPUs), the previously prohibitive long 

training time has been significantly reduced (Mou et al., 2017; Yang et al., 2018).  

In 2012 AlexNet used a five-layer deep CNN model; today many models competing in 

the ILSVRC use twenty to hundreds of layers. Huang et al. (2016) has even proposed models 

with thousands of layers. Due to the vast number of operations performed in deep CNN models, 

it is often difficult to discuss the interpretability, or the degree to which a decision taken by a 

model can be rationalized. For this reason, many workers consider CNN to be a black box, with 

CNN interpretability itself a research topic (e. g. Simonyan et al., 2013; Olah et al., 2017, 2018; 

Yin et al., 2017).  

Recent CNN developments include several model architectures that achieved top-5 error 

rates under 10% in the ILSVRC dataset (e.g. Szegedy et al., 2014; Chollet, 2016; He et al., 

2016a; Huang, Liu, et al., 2016; Sandler et al., 2018). Yosinski et al. (2014) and Yin et al. (2017) 
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also  reported that the parameters learned by the layers in many CNN models trained on images 

exhibit a very common behavior. The layers closer to the input data tend to learn general 

features, such as edge detection/enhancement filters or color blobs. Then there is a transition to 

more specific dataset features, such as faces, feathers, or object parts. These general-specific 

CNN layers feature properties led to the development of transfer learning (e.g. Caruana, 1995; 

Bengio, 2012; Yosinski et al., 2014).  

In transfer learning, first a CNN model is trained on a dataset for a primary task using 

large amounts of data. After training, the weights of the model are then repurposed or transferred 

to a second CNN that can be trained using a smaller dataset, generally domain-specific, for a 

secondary task (Yosinski et al., 2014).  

The domain-specific characteristics of a CNN being used for a new task are often 

addressed through fine-tuning. We provide a brief explanation of the fine-tuning process in the 

Methods section. Carranza-Rojas et al. (2017) observed that the processes of transfer learning 

and fine-tuning are important tools that can be used to address the shortage of sufficient domain-

specific training data. 

Even though large datasets help the performance of DL models, the combination of these 

technologies (CNNs, transfer learning, and fine-tuning) facilitated the application of DL 

techniques to other scientific fields. Carranza-Rojas et al. (2017) used transfer learning for 

herbarium specimens classification, Esteva et al. (2017) for dermatologist-level classification of 

skin cancer, Gomez Villa et al. (2017) for camera-trap images, Hong et al. (2018) for soccer 

video scene and event classification, Chen et al. (2018) for airplane detection using remote 

sensing images, and Pires de Lima et al. (2019) for oil field drill core images. In a study 

analyzing medical image data, Qayyum et al. (2017) found that transfer learning achieved results 
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comparable to or better than results from training a CNN model with randomly initialized 

parameters. Given this record of success to diverse applications, we propose that ML models will 

also be beneficial for petrographic analysis. 

 

Petrographic Analysis and Thin Sections 

Petrographic studies, based on microscopy and image analysis, are essential components 

of geological analysis, ranging from academic studies of mid-ocean ridges to petroleum-industry 

exploration and development of shale resource plays. Launeau and Robin (1996), Přikryl (2001), 

and Nasseri and Mohanty (2008) reported that the progress of computer-aided image analysis 

techniques has facilitated the characterization of the microscopic properties of the rock through 

analysis of digital thin section images. The need to partially automate this process has resulted in 

the proposal of several DL and ML methods.  

 Cheng and Guo (2017) used CNN models with five, four, and three layers to perform 

image classification based on granularity analysis from thin-section images. The authors 

successfully differentiated between three feldspar sandstone classes based solely on grain size: 

coarse-grained, medium-grained, and fine-grained rocks, achieving an accuracy of 98.5%. With 

high-resolution micro-computed tomography images or rock samples, Karimpouli and 

Tahmasebi (2019) used CNN to perform the segmentation of minerals in images mainly 

composed of quartz.  Cheng et al. (2018) used CNN for the image retrieval of rock thin sections. 

The CNN is used to extract features from the thin-section images which are then stored in a 

feature database. The images can then be retrieved based on estimates of the similarity between 

different images, those thin section images stored in the database and the new thin section image 
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to be classified. De Lima et al. (2019) presented some preliminary results of geoscientific images 

classifications, including thin section images.  

Huang et al. (2016) noted that when crafting CNN models, researchers are uncertain 

whether to choose from shorter or deeper networks.  Shorter networks have a more efficient 

forward and backward information flow; however, they might not be expressive enough to 

represent the image features properly. Deeper networks can generate more complex models, 

helping in feature extraction, but are more difficult to train in practice. We avoid the challenges 

of model architecture development making use of well-established and robust CNN models 

previously trained on the ILSVRC. 

Data 

In our study, we analyze 98 thin sections under plane polarized light (PPL) to identify 

microfacies. Based on the structure, composition, and porosity five microfacies were identified: 

argillaceous siltstone, bioturbated siltstones, calcareous siltstone, porous calcareous siltstones, 

and massive calcite-cemented siltstones. All these microfacies can be identified using plane 

polarized light and a 10X magnification zoom. We take three photographs for every thin section. 

The stage where the thin section is placed was rotated randomly for every photograph to simulate 

different orientations for the same lithofacies. Table 1 summarizes the number of thin sections 

and respective photographs taken for each one of the five microfacies.  

To determine whether the models generated from the data in Table 1 have more general 

applicability in classifying thin sections coming from different sources, we use thin section 

images from the public domain (referred to as public data) coming from diverse geological 

formations stored at the Oklahoma Petroleum Information Center (OPIC) (Table 3). 

 



27 

Table 2: Original data used in this study. The thin sections are from the Mississippian Strata in the Ardmore basin, 
Oklahoma. 

Microfacies Number of thin 

sections 

Number of photographs 

Argillaceous siltstone 16 48 

Bioturbated siltstone 29 87 

Massive calcareous siltstone 15 45 

Massive calcite-cemented 

siltstone 

25 75 

Porous calcareous siltstone 13 39 

 

Table 3: Public data used as final test for this study.  
Microfacies Number of thin sections 

Argillaceous siltstone 0 

Bioturbated siltstone 25 

Massive calcareous siltstone 19 

Massive calcite-cemented siltstone 18 

Porous calcareous siltstone 19 

Lithofacies not present in training data 

(referenced as “Unknown”)  

20 

 

Methods 

As we make use of robust CNN architectures developed by computer vision specialists 

and previously put to test on a data-rich problem, we mainly focus on the adaptation of such 

CNN models to our domain-specific task: the petrographic thin section analysis problem. 
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Although such an approach (transfer learning and fine-tuning) does not exempt the researcher of 

common DL use-complexities, it greatly facilitates and accelerates the process of adopting these 

successful techniques in different fields.  

The methodology we follow in this study can be summarized with the flowchart shown in 

Figure 3. Because grain size plays a crucial role in the petrographic analysis, we use images with 

a consistent 10x magnification zoom. To compensate for the relatively low resolution of most 

CNN models used to construct the ILSVRC dataset (usually ranging between 200 by 200 to 400 

by 400 pixels), we crop the original thin section photographs (1292 by 968 pixels) into a suite of 

smaller 644 by 644 pixels, overlapping square images (subimages, Figure 4) thereby augmenting 

the number of training images. Data augmentation increases the diversity of training samples 

thereby reducing overfitting (Cireşan et al., 2011; Takahashi et al., 2018). We eliminate the 

bottom right cropped images because many of them contain an alphanumeric scale bar (Figure 

4). The choice for the size of the smaller images is justified as they will have enough resolution 

to be used for transfer learning, there is some overlap between the subimages helping to show 

that grain position is not important, and that the size is sufficiently large to avoid isolating 

spurious bigger grains that could negatively impact the training.  

The image cropping processes also increases the reliability in our final test data 

evaluation. Somewhat similar as for how a petrographer classifies a thin section (or photograph 

of a thin section) based on an average of the visual aspect of the grains in the complete sample 

being analyzed, our model provides the classification based on the arguments of the maxima of 

the smaller subimages. We call such an approach “voting” as the photograph of the thin section 

will be classified based on the microfacies with the most numbers of “votes”. In that manner, if a 

thin section image has most of its smaller subimages labeled as argillaceous siltstone and fewer 
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of those smaller image crops labeled as bioturbated siltstone, the final lithofacies assigned by our 

model will be of argillaceous siltstone. In the cases in which there is not a single absolute 

maximum (e.g. five total votes, two votes for massive calcite-cemented siltstone, two votes for 

porous calcareous siltstone, one vote for massive calcareous siltstone), we declare the model 

assigned a “tie” for the thin section image.  

During initial training, we observed that most of the incorrect CNN prediction labeling 

was due to a poor color balance in the photographs within the same microfacies, with some 

images having a color shift to red or yellow. Such color shift occurs due to the difference in color 

temperature when light passes through the thin section and it goes through the objective lens. 

Bianco et al. (2017) studied the effects of color balancing and found that suitable color balancing 

yields a significant improvement in the accuracy for many CNN architectures. We follow Limare 

et al.'s (2011) methodology and compensate for the color shift assuming that the highest values 

of red, green, and blue observed in a photograph correspond to white, and the lowest values to 

black. Figure 5 shows the effect of the color balancing on a representative thin section.  

After balancing colors of each image, we subdivide our thin section data into training, 

validation, and test data sets. The training set goes through another simple step of data 

augmentation in which we simply rotate the subimages in 90, 180, and 270 degrees; then we flip 

the initial smaller cropped image around the horizontal axis and rotate it in 90, 180, and 270 

degrees again. Therefore, we are able to generate seven variations from a single subimage. 

Unlike other computer vision tasks in which the orientation or the relative position of an element 

is important for the overall performance, position and rotation of grains in a thin section are 

irrelevant. Table 4 shows the training, validation, and testing data set count after the pre-



30 

processing steps. These datasets are based on the subimages and are available to download along 

with the original parallel polarized thin section photographs.  

Table 4: Original data separated in training, validation, and test sets.   
Lithofacies Training 

set 

Validation 

set 

Test set 

Argillaceous siltstone 880 55 90 

Bioturbated siltstone 1200 110 190 

Massive calcareous siltstone 680 70 80 

Massive calcite-cemented 

siltstone 

1160 120 125 

Porous calcareous siltstone 640 30 85 

 

With the data prepared, we fine-tune four different CNN models: VGG19 (Simonyan and 

Zisserman, 2014), MobileNetV2 (Sandler et al., 2018), InceptionV3 (Szegedy et al., 2015), and 

ResNet50 (He et al., 2016). The fine-tuning technique we use is very similar to the one 

implemented by Yin et al. (2017):  

1. Remove the top layers of the CNN model with ILSVRC parameters, and use the CNN 

model as fixed feature extractor (traditional transfer learning, Yin et al., 2017). With 

the features extracted by the convolutional layers, we train a small classification 

network with five outputs (according to our number of classes/microfacies) by using 

Stochastic Gradient Descent (SGD) optimization. 

2. Combine the newly trained small classification network on the top of the CNN model. 

We again use SGD with a small learning rate (le-4, reducing by a factor of 10 on 

plateaus), to update the parameters for the complete CNN model. 
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We use cross-entropy 𝐻𝐻(𝒑𝒑,𝒒𝒒) during training: 

𝐻𝐻(𝒑𝒑,𝒒𝒒) = −� 𝒑𝒑𝑐𝑐log(𝒒𝒒𝑐𝑐) 𝐶𝐶
𝑐𝑐=1       (1) 

where 𝐶𝐶 is the number of classes, log is the natural logarithm, 𝒑𝒑 represents the true labels, and 𝒒𝒒 

the output of the last classification layer in the network. 𝐻𝐻(𝒑𝒑,𝒒𝒒) represents the cost of a single 

sample and we minimize the loss, sum of costs of all samples, over all training samples. When 

we minimize the cross-entropy, we incentivize the CNN to increase the probability the analyzed 

image to be assigned to the class c when the image true label belongs to the class c.  

We evaluate the performance of the fine-tuned models based on the test data separated 

from our original data set. We then select the best model and perform a final evaluation based on 

the classification our model provides to the public data. To perform the final evaluation, we use 

the six subimages crops (Figure 4) and three extra randomly centered crops with the same 

dimensions as the subimages as shown in Figure 4. These three extra subimages help in the 

voting process to reduce the chances of ties.  

 

Results 

Table 5 shows the test set accuracy of the four fine-tuned CNN models. We present both 

the accuracy for the subimages and the accuracy for the resulting thin section photograph voting. 

All models reach an accuracy higher than 90%. The fine-tuned InceptionV3 and ResNet50 tied 

with the best accuracy (0.96) in the test set data. We select the model ResNet50 and provide a 

detailed analysis of its results.  

Figure 6 shows the resulting classification assigned by the fine-tuned ResNet50 to 

different subimages of each one of the five classes present in the training data. For each one of 

the five classes, we select thin section photographs of subimages in which the fine-tuned 
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ResNet50 assigned the same classification as the petrographer. The examples we select did not 

have all of the possible voting subimages agreeing on the assigned class (i.e. most, but not all, of 

the subimages voted for the same classification as the final/petrographer provided class). 

Therefore Figure 6 shows examples in which the class provided by the fine-tuned ResNet50 for 

the photographs subimages agrees with the classification provided by the petrographer as well as 

examples in which the classification is different. 

We compare the performance of the fine-tuned ResNet50 against the petrographer-

provided classification for both the smaller cropped images as well as the thin section 

photographs making use of confusion matrices. Figure 7 shows the confusion matrix for the 

subimages test set and Figure 8 shows the confusion matrix for the thin section photographs test 

set.  

For our final analysis, we used the fine-tuned ResNet50 to classify public data from the 

OPIC.  Figure 9 shows the confusion matrix for the public data thin section photographs. This 

evaluation of our model using public data is an important comparison for this project as it serves 

as initial evaluation of a possible multi-basin thin section CNN classifier. As we continue to add 

more training data and further tailor our CNN models, we anticipate further acceleration and 

accuracy of thin section analysis.  
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Table 5: Test set accuracy of smaller crop images and thin section photographs provided by fine-tuned models. The 
thin section receives the label according to the winning vote of its labeled smaller image crops.  

Fine-tuned model Accuracy – subimages Accuracy – thin section 

photograph voting 

VGG19 0.93 0.95 

MobileNetV2 0.91 0.93 

InceptionV3 0.91 0.96 

ResNet50 0.91 0.96 

 

Discussion 

Based on our bibliographic research, this is the first study conducted using rock thin 

sections, a crucial source for sedimentary and diagenetic analysis, as input for a CNN model that 

can be used to classify different microfacies. In the methodology we implement, a user can take 

multiple photographs of a single thin section, and obtain its classification as predicted by the 

model. Based on our tests, the accuracy of the procedure we described is comparable to 

accuracies of a petrographer, as long as the lithofacies being analyzed were present in the 

training data. Our study is different than Cheng and Guo (2017) because we differentiate 

between five different lithofacies, whereas Cheng and Guo (2017)  differentiate between three 

granulometric classifications. Neither Cheng and Guo (2017) or Karimpouli and Tahmasebi 

(2019) provide the metrics of their model when tested with significantly different data, as we 

present in our public data evaluation.   

 Unlike a human interpreter who relies upon a defined set of morphological measurements 

to perform microfacies classifications, the CNN operates from no knowledge of specific attribute 

analysis and performs the classification based on image characteristics. In this manner, CNN 
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labeled datasets have the potential to reduce petrographer bias, yielding a reduced inconsistency 

on thin sections classification. This also implies that a CNN model, with this current 

implementation, will always assign a microfacies for any image analyzed. When analyzing a new 

image, the CNN model (as implemented in this study) will always generate a set of probabilities 

that such image belongs to the CNN’s learned microfacies. For that reason, Figure 9 shows that 

the CNN provides classifications for all the thin sections classified as unknown by the 

petrographer. The number of unknowns can be reduced when more examples of microfacies are 

provided to the CNN models.  

 Figure 6 indicates that the CNN misclassifications are in fact similar to the description a 

petrographer would assign to a particular section of a thin section photograph. Therefore, our 

voting scheme then is helpful as it reduces possible misconceptions. Due to thin section 

heterogeneities, the CNN classification maybe is correct for the particular subimage in analysis. 

One of the explanations for the misclassification is the criteria that the petrographer used 

during the interpretation of the thin sections. There are two main groups of rock types: (1) 

structureless or massive, and (2) structured. To divide the microfacies within these two main 

groups, the petrographers uses a qualitative-visual criterion. For example, the massive siltstones 

can be calcareous, porous, and calcite-cemented. However, the criteria used to divide between 

them was the visual content of calcite cement and porosity and no statistical method was used to 

quantify the proportion of cement or porosity. We suggest including other data to quantify the 

amount of cement, mineralogy and porosity. With a more quantitative interpretation, we can 

reduce the interpretation bias. 

Another explanation for the label bias is the use of thin sections with different 

characteristics. The model was built with thin sections stained with red alizarin for calcite 



35 

identification, and blue alizarin for porosity identification. However, public data thin sections do 

not always have these features. Therefore, thin sections with high calcite content could be re-

labeled as microfacies without calcite. In fact, most of the confusion between massive calcite-

cemented siltstones and the calcareous siltstones could be explained by the lack of alizarin stains.  

Finally, the photograph by itself plays an important role in the model and so can 

contribute to the label bias. The original labels resulted from the observation of the actual thin 

sections under the microscope and not based on the photographs. Dozens of different 

photographs without any overlap can be taken from the same thin section with 10X objective 

magnification. The photographs we captured for this study were taken randomly in different 

locations of the thin section. However, what differentiates between argillaceous and bioturbated 

siltstones are the bioturbation patterns. Some photographs of bioturbated siltstones do not show 

evident bioturbation, but there is evidence of bioturbation in the thin section that can be observed 

under the microscope. Thus, to avoid misclassification the photographs should depict the criteria 

used by the petrographer for the original classification. This difficulty in capturing complete 

characteristics of the entirety of the thin sections with random photographs indicates that most of 

the misclassification is the result of the preparation and labeling of the data used to train the 

model rather than the CNN model by itself. This misclassification pattern also shows a potential 

improvement that the use of CNN models can provide. If the thin section is captured in its 

entirety, the CNN can quickly provide classifications for all its sections. A petrographer can then 

quality control the CNN results as well as easily note outliers that could either be mistakes or 

important features that can be further analyzed.   

As the digitization of legacy data accelerates, and thin section preparation and data 

storage methodologies are standardized the approach presented here can improve with more 
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detailed and directed image processing. Image segmentation techniques can be used to 

differentiate between different minerals, which can be a powerful tool for microfacies 

classification. The technique we demonstrate in this manuscript is very general and can easily be 

modified to suit the identification of thin sections coming from different formations.  

 

Conclusions 

In this paper, we propose the use of transfer learning and fine-tuning of robust CNN 

models for petrographic thin section classification, achieving accuracies above 90% for all the 

models tested. Furthermore, with our test with public data, we investigate how CNN models can 

be used to classify petrographic samples acquired with significantly different parameters. In the 

future, further experiments shall be conducted to increase the number of lithofacies that can be 

identified by the CNN.  

We focus on the use of parallel polarized petrographic thin section images as they are 

sufficient to differentiate between the classes/microfacies present in our dataset. Cross-polarized 

images shall be included for the cases in which such imaging technique is crucial for proper 

lithofacies classification, for example to differentiate between a rock enriched in quartz grains 

and a rock enriched in feldspars grains. In addition, this paper mostly concentrates on the use of 

CNN models at a specific 10x magnification level. As different lithological and diagenetic 

properties can only be analyzed in different scales, many other studies can be conducted with a 

similar technique. Our manuscript targets petrographic thin section classification, but other 

geoscience tasks can be accelerated with the use of ML. Seismic denoising and interpretation, 

wireline well logging, and remote sensing classification are some of many fields that are 

implementing analysis driven by ML models. We believe that the implementation of the 
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methodology we discuss here has the potential to further improve petrographic thin section 

classification speed and help geoscientists make use of such invaluable data.  
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Figures and figure captions 

 

Figure 3: Methodology flowchart. Data preparation is an important part of the procedures for the work we present in 
this paper. We first take multiple pictures of each one of the 98 thin sections available. These photographs are then 
cropped in multiple ways, helping us increase the dataset for training and to remove unwanted image features (the 
scale bar). We then color balance the cropped images and split the data in training, validation, and test set. The 
training set data is augmented using simple image rotations. We then have appropriate data to be used for fine-
tuning the CNN models.   
 



39 

 

Figure 4: An original photograph of a Massive calcareous siltstone thin section (center, bigger) taken with 10x 
objective magnification and the subimages used for training and testing (top and bottom rows, smaller). The 
subimage a indicates with a black outline the boundaries and the center of the cropped image with a golden circle 
with the respective letter, the other subimages are only represented by their center letters. The subimage f is 
discarded in the training and validation set as some original photographs will be marked with a scale bar.  
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Figure 5: Effects of color balancing. Row (a) examples of cropped photographs of massive calcareous siltstone 
before and row (b) after color balancing. Row (c) bioturbated siltstone before and (d) after color balancing. Note the 
examples in the last column. Sometimes photographs tend to be yellow, red or blue. The color balancing process 
helps to merge these images with the rest of the dataset.  
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Figure 6: Examples of classification provided by fine-tuned ResNet50 for the smaller cropped images in the test set. 
Images in the same row were extracted from the same microfacies as labeled by the interpreter. The left column 
shows examples of smaller cropped images in which the classification provided by the CNN model is the same as 
the classification provided by the petrographer. In contrast, the right column shows examples of smaller cropped 
images in which the classification provided by the CNN is not the same as the classification provided by the 
petrographer. Row (a) shows smaller crops extracted from a photograph classified as argillaceous siltstone by the 
petrographer, row (b) was classified as bioturbated siltstone, (c) as massive calcareous siltstone, (d) massive calcite-
cemented siltstone, and (e) porous calcareous siltstone.  
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Figure 7: Confusion matrix comparing the classification provided by the petrographer expert and the classification 
obtained with the fine-tuned ResNet50 for the test set smaller image crops. The class names are abbreviated: 
Argillaceous siltstone (AS), Bioturbated siltstone (BS), Massive calcareous siltstone (MCS), Massive calcite-
cemented siltstone (MCCS), and Porous calcareous siltstones (PCS). 
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Figure 8: Confusion matrix comparing the classification provided by the petrographer expert and the classification 
obtained with the fine-tuned ResNet50 for the test set thin section photographs. The class names are abbreviated: 
Argillaceous siltstone (AS), Bioturbated siltstone (BS), Massive calcareous siltstone (MCS), Massive calcite-
cemented siltstone (MCCS), and Porous calcareous siltstones (PCS). 
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Figure 9: Confusion matrix comparing the classification provided by the petrographer expert and the classification 
obtained with the fine-tuned ResNet50 for the final public data test set of thin section photographs. The class names 
are abbreviated: Bioturbated siltstone (BS), Massive calcareous siltstone (MCS), Massive calcite-cemented siltstone 
(MCCS), Porous calcareous siltstones (PCS), Tied, and Unknown (Uk). 
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Final Remarks 

In this thesis, I show general applications of transfer learning for geoscience images and 

provide details on the application so convolutional neural networks for microfacies 

identification. In Chapter 1 I show a generic application of transfer learning for many different 

geoscience images. In Chapter 2, the main contribution of this thesis, I provide more details of 

microfacies identification using convolutional neural networks.  

As Chapter 2 reports, the methodology I use is greatly dependent on image acquisition 

standardization. Color plays a significant role in mineral classification, and samples with and 

without alizarin-red or blue-epoxy stains present significantly different colors for the same 

minerals under plane parallel light. Such shortcoming, however, can easily be addressed by data 

owners, either saving images of both clean and stained thin-section, or maintaining a standard 

data preparation. Nonetheless, as discussed in Chapter 2, my implementation has the potential to 

be automatically coupled with imaging tools for fast microfacies identification. Oil and gas 

companies already use the necessary tools to completely store the image of thin-sections in their 

entirety, a process that can provide data with much more details than the one I use in this thesis. 

Thus, the identification of particular properties important for the classification of the thin-

section, e.g. bioturbation, could be addressed with a greater amount of detail and accuracy.  

Not explored in this thesis due to resources constraints, the use of images of thin-sections 

under cross parallel light might facilitate thin-section classification as they bring more features 

helpful for mineral identification. Another topic that should be explored is the segmentation of 

the minerals in the imaged thin-section instead of the classification of the thin-section as a whole. 

For a segmentation task, a dataset of thin-section images with masks labels, i.e. an image with 

each one of the minerals, pores, and cement identified, is crucial, but such dataset will demand 
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significant resources to be generated. Such dataset could also help identification of porosity. 

Wang et al. (2018), Alqahtani et al. (2019), and Duarte-Coronado et al., (2019) presented 

examples of the use of convolutional neural networks for the estimation of porosity using micro 

X-ray computed tomography images, high-resolution scanning electron microscope images, and 

thin-section images. Unlike classification problems, in which we aim to predict a categorical 

data, research on the use of machine learning for prediction of continuous properperties, like 

porosity or modal composition, are still underexplored. An expert-created thin-section dataset 

could help members of the community as a benchmark for different tasks. Many geoscientific 

data seem to remain inexplored by machine learning, yet the advances and popularization of 

deep learning models can lead to the creation of helpful tools. For example, vitrinite reflectance 

interpretation is heavily dependent on interpreter experience, yet such experience could likely be 

modeled by convolutional neural networks. With the current increase on the applications of 

machine learning in different fields of geoscience ranging from seismology studies (e.g. Perol et 

al., 2018; Ren et al., 2019; Sinha et al., 2018), geological mapping (e.g. Cracknell and Reading, 

2014; Pires de Lima and Marfurt, 2018), seismic facies classification (e.g. Lubo-Robles and 

Marfurt, 2019; Qi et al., 2016; Zhao, 2018; Zhao et al., 2016), and CO2 sequestration (e.g. Pires 

de Lima et al., 2019; Pires de Lima and Lin, 2019; Sun et al., 2019; Zhong et al., 2019), it is 

likely we will experience an increase of applications of machine learning methods using thin-

section data in the near future.  
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