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ABSTRACT 

The presence of gas in the rock’s or sediment’s pore space significantly affects its seismic 

amplitude response and modifies its subsurface signature. Gas hydrates in the subsurface are often 

difficult to image with reflection seismic data if the seismic data lack a strong bottom simulating 

reflector (BSR). High-amplitude BSRs are caused by a sharp decrease in acoustic impedance in 

the rocks as the hydrates transition from their solid form, to a free gas form due to changing 

pressure and temperature conditions with depth beneath the seafloor. Two key reasons for weak 

BSRs include 1) insufficient free gas below the hydrate to create the needed impedance contrast, 

and 2) stratigraphy-parallel BSRs that are subtle and can only be identified with advanced seismic 

analysis. In these cases, the imaging and detection of hydrates becomes difficult, as traditional 

detection methods rely heavily on BSRs, gas chimneys, or pockmarks on the seafloor and other 

contextual components. Additionally, differentiating between low-saturation gas (LSG) and high-

saturation gas (HSG) reservoirs remains another subsurface imaging issue, as they will have 

similar seismic amplitude and rock physics responses.  

To address and understand these challenging imaging problems, I employ an unsupervised 

machine learning multi-attribute analysis to reduce their significant uncertainty in hydrocarbon 

exploration. The hydrate study looks at two 2D seismic datasets in the Pegasus Basin, offshore 

New Zealand, where BSRs are not continuously or clearly imaged. The first LSG investigates the  

amplitude responses within the King Kong/Lisa Anne and Ursa producing fields within the 

deepwater Gulf of Mexico and within the Scarborough gas field, offshore Australia. These 

analyses use principal component analysis (PCA) methods applied to a selected set of seismic 

attributes to identify meaningful combinations of attributes which provide insight into the seismic 

data. I then use self-organizing maps (SOMs) to help visualize and interpret the multi-dimensional 
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PCA results. Several SOM hyperparameters were tested such as neuron count and the number of 

epochs (iterations) to create an optimized SOM that is computationally efficient, and effectively 

identifies the features of interest.  

Optimized SOM results, which use a combination of attributes sensitive to attenuation, 

frequency, and small amplitude anomalies, help better resolve subtle hydrate response and can 

differentiate between LSG and HGS reservoirs. However, this method only proved to be successful 

within the Gulf of Mexico data volume and yielded disappointing results with the Carnarvon Basin. 

This difference is most likely due to the Carnarvon Basin having a different amplitude response 

resulting from a different burial history and fluid saturations than that of the Gulf of Mexico. 

Therefore, this method is non-transferrable, and a different combination of attributes may be 

needed in other LSG-prone basins. 

Individually, some of these attributes have minimal success in identifying the seismically 

invisible hydrates and differentiating between low and high gas saturation reservoirs. However, 

when used together by employing multi-attribute analyses such as PCA and SOMs, these same 

attributes provide clearer insight into the subsurface responses needed to better identify the 

presence of hydrates and to distinguish between both reservoirs. 
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1. CHAPTER 1: Introduction 

 Over the last few years, machine learning techniques have gained a significant foothold 

within the geoscience community for seismic data processing, seismic attribute analysis and for 

efficiently interpreting 3D volumes. A myriad of recent studies (Roden et al., 2015; Roden and 

Chen, 2017; Roden et al., 2017; Chopra and Marfurt 2019) have shown promising applications of 

machine learning techniques that aid in the analysis and interpretation of geologic patterns. Since 

machine learning works on a sample interval basis, many of these applications are at the sub-

seismic resolution scale as opposed to being limited by the seismic wavelet (Roden et al., 2015; 

Roden et al., 2017). For my methodology, I chose to use self-organizing maps (SOMs) as they are 

a proven method since the 1980s and are relative quick to calculate (Kohonen, 1990; Roden et al., 

2015; Roden and Chen, 2017; Roden et al., 2017; Chopra and Marfurt 2019). However, SOMs are 

one method of dimensionality reduction and many others are still viable, such as generative 

topographic maps (GTM) (Roy et al., 2014). In these studies, we exploit the advances of machine 

learning and multi-attribute seismic analyses, such as principle component analysis (PCA) and 

SOMs, to test the limits and determine if subtle seismic waveform variations can be detected and 

properly attributed various gas responses in the subsurface. 

 The primary objective of seismic exploration is to identify, and map geologic features 

related to the deposition, generation, migration, and entrapment of hydrocarbons (Chopra and 

Marfurt, 2005). Taner (2001) defined seismic attributes as “all the information obtained from 

seismic data, either by direct measurements or by logical or experience-based reasoning”. A good 

seismic attribute helps highlight the desired geologic feature or reservoir property of interest or 

help to infer that feature of interest by illustrating the structural regime or depositional environment 

(Chopra and Marfurt, 2005). 
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Traditionally, potential gas prospects have been identified by using Direct Hydrocarbon 

Indicators (DHIs) (Brown, 2011). DHIs are an example of an attribute that measure large seismic 

amplitude anomalies, or bright spots, found within seismic reflection data (Chopra and Marfurt, 

2005). Dozens of recognized DHIs exist, and they vary from basin to basin, based on factors such 

as depth, lithology, fluid type, and  pressure. While these seismic DHIs often indicate the presence 

of gas, they are vulnerable to uncertainty as they cannot quantify gas saturation and, are only 

indicators that hydrocarbons could be present. Therefore, seismic interpreters use additional 

attributes to better characterize these amplitude anomalies.   

Each attribute will highlight different properties of the seismic data, such as gas anomalies 

and bottom simulating reflectors (BSRs), and an iterative interpretation process is needed to 

capture the total extent of the hydrates. Individually, some of these attributes have limited success 

in identifying these anomalous responses in the subsurface. Color blending allows us to combine 

the information content of up to three attributes. In contrast,  machine learning models can combine 

information content of multiple attributes into a single output volume to better characterize the 

geologic feature of interest. 

 In Chapter 2, I employ this multi-attribute, unsupervised machine method to further 

highlight both strong and weak BSRs within the Pegasus Basin, offshore New Zealand. I describe 

the method in detail and show how PCA is used to identify the most optimal attributes to be used 

within the SOM. I also discuss the significant SOM improvements for detecting weak BSRs when 

incorporating amplitude variation with angle (AVA) attributes with instantaneous attributes. My 

results and conclusions show that both types of BSRs are better identified when using 

instantaneous attributes such as instantaneous frequency, sweetness and thin bed indicator, which 

compliment AVA attributes such as gas indicator and fluid factor. Delving deeper into the 
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individual neuron results, AVA attributes such as the fluid factor and the far stack amplitude 

consistently ranked among the highest for the classifying the neuron datapoints. These results 

further support the Class 2n AVA response for hydrate presence in a brine case while also 

highlighting the Class 3 AVA responses for hydrates with trapped free gas beneath them (Bedle, 

2019). Finally, I noted that the PCA and SOM results show that the model is applicable to different 

seismic surveys and can help resolve weak BSRs.  

 In Chapter 3, I apply this same methodology for discriminating between high saturation 

gas (HSG) and low saturation gas (LSG) reservoirs within the King Kong/Lisa Anne and Ursa 

producing fields in the deepwater Gulf of Mexico, and the Scarborough gas field, offshore 

Australia (Hilterman, 2001; O’Brien, 2004; Ray et al., 2014). The methodology proved to be 

successful with the deepwater Gulf of Mexico, however, the same methodology yielded limited 

results within the Carnarvon Basin. Overall, the clustering results for both Gulf of Mexico surveys 

showed similar attribute contributions within the anomalous neurons. However, upon further 

analyzing the neuron results, some attributes represented 0% of the independent data within the 

Scarborough SOM located in the Carnarvon Basin. Therefore, this suggests that the combination 

of attributes is unoptimized for the Scarborough SOM. These SOM differences could be attributed 

to different amplitude responses from two different basins, meaning that the amplitude responses 

with the Gulf of Mexico are different than the amplitudes in the Scarborough gas field. These 

differences could be due to different burial histories, pressure regimes and fluid saturations, such 

as gas and brine (Han and Batzle, 2004; Avseth et al., 2013; Chopra and Castagna, 2014). Although 

not currently available, future work will incorporate seismic gathers, angle stacks, and well data 

into this method to further improve these results. 
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Throughout these various case studies, I present a novel, unsupervised, multi-attribute 

machine learning workflow to better characterize the presence of gas in the subsurface. The 

method improves our understanding regarding the distribution of hydrates in the subsurface while 

also being successful for discrimination between HSG and LSG reservoirs within the deepwater 

Gulf of Mexico. In both studies, these results are further reinforced with in-context interpretation 

where the interpreter believes that a BSR or LSG interval could be present in that region. However, 

more work is still needed to refine the SOM model for the Scarborough, Carnarvon Basin gas field.  
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ABSRTACT 

Gas hydrates that exist in the subsurface are often difficult to detect with reflection seismic 

data if the seismic data lack a strong bottom simulating reflection (BSR).  High-amplitude BSRs 

are caused by a sharp decrease in acoustic impedance in the rocks as the hydrates transition from 

their solid form, to a free gas form due to changing pressure and temperature conditions with depth 

beneath the seafloor. Two key reasons for weak BSRs include 1) insufficient free gas below the 

hydrate to create the needed impedance contrast, and 2) stratigraphy-parallel BSRs that are subtle 

and can only be identified with advanced seismic analysis. In these cases, the imaging and 

detection of the gas hydrate stability zone (GHSZ) becomes particularly difficult, as hydrate 

detection relies heavily on contextual indicators such as the BSR, gas chimneys, or pockmarks on 

the seafloor. There are several motivations for better quantifying gas hydrate volumes in the 

subsurface as they can serve as an economic resource and as a geohazard. To address and improve 

upon these imaging complications, an unsupervised machine learning multi-attribute analysis is 
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performed on 2D seismic data in the Pegasus Basin in New Zealand where the BSR is not 

continuously or clearly imaged.   

Rock physics analysis has demonstrated that the inclusion of methane gas hydrates in the 

pore space results in a slightly increasing amplitude at the base of the gas hydrate zone, regardless 

of the fluid (brine or gas) in the pore space below the hydrates.  This increasing amplitude is quite 

weak and can be masked by noise. In the scenarios where a strong seismic impedance difference 

is lacking, a BSR is not typically observed in the seismic data, even though gas hydrates do exist 

in the subsurface. To enhance the detection of the presence of gas hydrates, a multi-attribute 

analysis is performed with a series of seismic attributes that can detect the minute changes in the 

seismic waveform due to the presence of gas hydrates.  The successful attributes are those that are 

sensitive to attenuation, frequency, and small amplitude anomalies. 
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INTRODUCTION 

As an energy producer, gas hydrates present not only a drilling hazard for deeper, economic 

targets, but also as a potential methane resource by themselves (Field and Barber 1993; Makogon 

et al. 2007; Faure et al. 2010). Additionally, gas hydrates store large quantities of methane, that if 

disturbed, could alter our climate (Kennett et al. 2000; Dickens 2003; Ruppel 2011). Gas hydrates 

(sometimes referred to as clathrate hydrates) are solid solutions where a host lattice is created 

though water molecules linking together via hydrogen bonding to enclose a diverse variety of 

molecules, most commonly methane (Englezos 1993). The formation of gas hydrates is only 

possible in high-pressure and low temperature environments such as permafrost and the shallow 

subsurface beneath continental slopes. This is the case below the continental slope, in the offshore 

New Zealand data volume examined in this paper, where hydrates are present (Katz 1981; Katz 

1982; Riedel et al. 2010). While gas hydrates exist globally, there are no reliable and universal 

methods to identify their presence in the subsurface. Bottom simulating reflectors (BSRs) are the 

most common method of identifying hydrates in seismic data, as has been done in the Ulleung 

Basin within the East Sea, in the Krishna-Godavari Basin within the Bay of Bengal, and in the 

Blake Ridge, offshore South Carolina (Holbrook et al. 1996; Yoo et al. 2013; Dewangan et al. 

2014). These BSRs are present at the base of the gas hydrate stability zone (GHSZ), which tends 

to parallel the seafloor due to the pressure and temperature requirements for gas hydrate stability. 

BSRs are identified by looking for high amplitude reflections that cross stratigraphy and are caused 

by a sharp decrease in acoustic impedance in the rocks as the hydrates transition from their solid 

form, to a free gas form due to changing pressure and temperature conditions with depth beneath 

the seafloor (Singh et al. 1993; Ecker et al. 2000; Griffin et al. 2015). Because of the underlying 

free gas, the BSRs will have a large negative reflection coefficient due to a decrease in the P-wave 
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velocity (Navalpakam 2012). However, BSRs are not always observed in areas where gas hydrates 

are believed to be present (e.g. Finley and Krason 1988; Wood and Ruppel 2000; He et al. 2007). 

Two key reasons for weak BSRs include 1) insufficient free gas below the hydrate to create the 

needed impedance contrast, and 2) stratigraphy-parallel BSRs that are subtle and can only be 

identified with advanced seismic analysis (Xu and Ruppel 1999; Plaza-Faverola et al. 2012). In 

these cases, the imaging and detection of the GHSZ becomes particularly difficult, since hydrate 

detection relies heavily on a large decrease in acoustic impedance due to a significant drop in P-

wave velocity resulting from trapped gas below the BSR (Singh et al. 1993; Navalpakam et al. 

2002). Additional methods to support the presence of hydrates include gas chimneys, or pockmarks 

on the seafloor that are indicative of gas migration (Plaza-Faverola et al. 2012). These ‘missing’ 

BSRs demonstrate that an improved understanding of the expected seismic response is needed in 

areas where no other hydrate identifier is present. 

As BSRs are used to infer the presence of hydrates, it becomes difficult to infer the presence 

of hydrates where robust BSRs are lacking (Riedel et al. 2010). A clear BSR is observed through 

most of the Pegasus Basin, offshore New Zealand, but is observed to be weak, discontinuous, or 

absent in some regions. Therefore, do hydrates exist where no BSRs are present within the GHSZ, 

or are there no hydrate accumulations in these regions? This research question is highlighted in 

Figure 2-1a-b where a section of weak amplitude BSRs are separated by two, distinct high 

amplitude BSRs in Line 19 of the PEG09 seismic survey. There is a high amplitude contrast where 

high amplitude BSRs are observed due to the trapped free gas below the hydrate accumulations 

(Figure 2-1b). However, where there is no trapped free gas to create a high amplitude contrast, 

there could still be hydrates present. In these areas, a small amplitude contrast would still be 

observed (Figure 2-1b), however, not as pronounced compared to the surrounding background 
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amplitude responses due to lithology interfaces such as in Figure 2-1b. This figure highlights the 

relationship between acoustic impedance contrasts resulting from varying amounts of hydrate 

accumulations.  

There are several motivations for better quantifying gas hydrate volumes in the subsurface 

as gas hydrates can serve as an economic resource as well as a geohazard. Hydrates can serve as 

an economic resource as they have the capability of behaving as a seal for conventional 

hydrocarbon reservoirs (Singh et al. 1993; Makogon et al. 2007; Walsh et al. 2009). They are also 

a geohazard, as sediments which contain gas hydrates can be destabilized through natural or man-

made events eventually triggering landslides (Field and Barber 1993; Faure et al. 2010). Finally, 

they can contribute directly to climate change through the release of methane into the ocean and 

eventually into the atmosphere due to variations in Earth’s temperature and sea level which could 

destabilize hydrates (Englezos 1993; Kennett et al. 2000; Dickens 2003; Ruppel 2011). 

 

PEGASUS BASIN 

Geologic Background 

The Pegasus Basin, located offshore New Zealand, lies between two subduction systems 

with the Hikurangi margin and the East Coast Basin to the northwest and the extinct subduction 

of the Chatham Rise to the southeast (Figure 2-2a-c) (Plaza-Faverola et al. 2012; Kroeger et al. 

2015). The formation of the basin is controlled by the convergence between the Australian and 

Pacific lates (Kroeger et al. 2015). The Hikurangi Margin, offshore eastern Wairarapa, is a 

sediment-rich active continental margin that is related to the westward subduction of the Pacific 

Plate beneath New Zealand’s continental crust, where faulting transitions from subduction to 

oblique-slip (Plaza-Faverola et al. 2012; Kroeger et al. 2015). 
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The southern part of the imbricated accretionary wedge of the overriding Australian Plate 

extends 40 km off southeastern Wairarapa, where it gives way to the southern Hikurangi Trough 

(Pegasus Basin). The Pegasus Basin has an approximate water depth of 1000 to 2600 m but can 

exceed 3000 m along the Hikurangi Channel. Deeper water generally marks the location of the 

modern plate interface where the Hikurangi Plateau is subducting under the North Island of New 

Zealand, however, this is not as apparent in the Pegasus Basin except towards the north (Plaza-

Faverola et al. 2012; Kroeger et al. 2015; Bland and Uruski 2015). From Neogene to modern time, 

approximately 6 km of clastic deposits have filled the basin sourced by the erosion of the uplifted 

North Island and thins southwards towards the Chatham Rise (Kroeger et al. 2015). A prominent 

geomorphologic feature in the Pegasus Basin is the Miocene-age Hikurangi Channel, a 2000 km 

long aggradational deep-sea channel which runs almost parallel to the accretionary prism. It is 

sourced from the south-west by the Southern Alps uplift and the sediments flow along the northern 

slope of the Chatham Rise (Lewis et al. 1998; Kroeger et al. 2015). 

 

Hydrates in the Pegasus Basin 

Gas hydrates have formed in sediments of Pliocene to modern age, occupying the 

shallowest portion of the basin at water depths greater than 600 m within the Pegasus Basin 

(Navalpakam et al. 2012; Kroeger et al. 2015). In order for these gas hydrates to form, there are 

three dominant geological controls on the thickness of the free-gas zone, as well as the free gas 

underlying gas hydrates: 1) the rate of upward fluid flow relative to the seabed, 2) the pressure and 

temperature conditions at the base of the GHSZ, and 3) tectonic uplift rate of the seabed (Haacke 

et al. 2007). Recent studies suggest that the hydrates in the Pegasus Basin are sourced from 

Quaternary microbial methane and upward migration of gas from beneath the GHSZ (Plaza-
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Faverola et al. 2012; Kroeger et al. 2015). The migration pathways for the gas were along fault 

planes and laterally from less permeable hydrate bearing zones to more permeable areas (Henrys 

et al. 2009; Plaza-Faverola 2012, Kroeger et al. 2015). 

There are three primary zones where hydrates are sustained by focused gas migration 

pathways and concentrated within the Pegasus Basin (Plaza-Faverola et al. 2012): close to the New 

Zealand shore along the Opouawe Bank, at the crest of the frontal anticline, and in the sands 

beneath the Hikurangi Channel (Figure 2-2b). A clear BSR is observed through most of the basin, 

but in some regions is observed to be weak, discontinuous, or absent (Figures 2-2b-c). Previous 

studies have linked clear BSRs to geological structures that promote fluid flow, such as anticlines 

or faults (Henrys et al. 2009; Plaza-Faverola et al. 2012; Crutchley et al. 2019). There are also 

instances where hydrates can fill open pores and fractures locally, thus creating a permeability 

barrier and causing free gas to migrate laterally towards structural highs (Nimblett and Ruppel 

2003). Therefore, a majority of the weak BSRs in this study area are located where strata are 

laterally continuous with no significant degree of dip yet high-amplitude BSRs are observed where 

anticlinal features or other migration pathways are present. 

 

Data 

Within the Pegasus Basin, this study analyzes two 2D seismic datasets: the PEG09 and 

APB13 surveys (Figure 2-2a-c). There are no wells currently drilled in the Pegasus Basin. The 

PEG09 survey consists of several long-offset, multichannel seismic 2D profiles that cover 

approximately 3200 km and were collected in 2009. This survey was contracted by the New 

Zealand Ministry of Economic Development and shot by RV Reflect Resolution (now RPS 

Energy), between November 2009 and March 2010, to stimulate exploration interest within the 
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basin as it showed promising petroleum potential (Bland and Uruski 2015). The record length was 

12 s using a 2 ms sampling interval and was processed by Gardline CGG PTE Ltd. This survey 

was later reprocessed by CGG Services in Singapore under contract to Anadarko New Zealand 

Company in 2014 (Anadarko New Zealand 2014). The more recent APB13 survey was similarly 

acquired and processed in 2014 by CGG Services in Singapore and also consists of wide-angle, 

multichannel seismic 2D profiles covering 4600 km. The recording length was 10.5 s using a 2 ms 

sampling interval. Both datasets are positive standard polarity with a shot interval of 37.5 and a 

group interval of 12.5 m (Anadarko New Zealand 2014). Both high and weak amplitude BSRs 

exist within both surveys, shown in Figures 2-3a-b as an example. These line pairs represent the 

two different 2D surveys yet show similar high amplitude and weak/discontinuous BSRs. 

Figures 2-3a and 2-3b highlight a similar N-S vertical seismic profile from both 2D seismic 

datasets in the Pegasus Basin. In both lines, there are a few distinct, high-amplitude BSRs that are 

indicative of gas hydrates. Figures 2-3c-d take a closer look between the two high-amplitude BSRs 

from Figures 2-3a and 2-3b respectively. The BSRs’ amplitude responses appear to dim 

horizontally between one another, reducing confidence in the interpretation that hydrates are 

present in this region. The dim, horizontal amplitude response between both strong BSRs imaged 

at each end of the line is interpreted to be a weak BSR which begs the question of whether a BSR 

is a sufficient condition for hydrates to exist? Are there also hydrates where the BSR is not clear 

and is discontinuous (Hillman et al. 2017; Bedle 2019)?  Furthermore, is there a method for better 

characterizing stratigraphy-parallel BSRs? Are the BSRs actually there, but very subtle? Or are 

the BSRs not there? Previous studies have linked high-amplitude BSRs to geological structures 

such as anticlines and faults which promote fluid flow (Henrys et al. 2009; Plaza-Faverola et al. 

2012; Crutchley et al. 2019). In these regions, the gas runs up strata and accumulates in a thicker 
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layer. However, in laterally continuous areas with no significant dip, the gas accumulation is quite 

thin, and it becomes difficult to create high-amplitude BSRs. The lack of trapped free gas to create 

a strong impedance contrast beneath the weak BSRs makes it difficult to determine if there is 

hydrate present there or not. Traditional geophysical gas hydrate identifications methodologies 

need to be further improved as they are limited in answering these questions. Previous studies 

conducted some rock-physics modeling analyses to further investigate the seismic response of gas 

hydrates (Dvorkin and Nur 1996; Dvorkin et al. 2003; Bedle 2019). 

 

Gas Hydrate Stability Zone (GHSZ) 

Previous rock physics modeling analyses have demonstrated that the inclusion of methane 

gas hydrates in the pore space results in a slightly increased amplitude at the base of the gas hydrate 

zone, regardless of the fluid (brine or gas) in the pore space below the hydrates (Spence et al. 2010; 

Lui and Lui 2018). However, laboratory results show that the Vp of the sediments with hydrate 

increases only after saturation reaches approximately 40% and the hydrate starts to cement the 

grains (Yun et al. 2007; Waite et al. 2009). This increased amplitude is quite weak in strength, 

particularly in shale-rich lithologies, or in sandier lithologies where the pore space contains brine.  

The seismic wavefield is particularly sensitive to the active migration of free gas, causing 

amplitude blanking due to significant attenuation (Guerin et al. 1999; Dewangan et al. 2014). This 

attenuation is well highlighted in Figure 2-3a-b where the faults become very difficult to image 

due to the significant attenuation caused by the migration of free gas, a complex faulting system 

and depth of signal penetration (Dewangan 2014). These attenuation mechanisms are due to both 

scattering and squirt flow (Guerin et al. 2002; Dvorkin and Uden 2004; Priest et al. 2006; Best et 

al. 2013). However, in the instance of hydrate-bearing sediments with no trapped free gas 
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underneath, there appears to be low attenuation when compared to the attenuation of background 

sediments (Dewangan 2014). Significant attenuation is therefore only expected where trapped free 

gas is present (Guerin 1999; Dewangan 2014) and no significant attenuation is observed for 

hydrate-bearing sediments with no trapped free gas beneath them. This attenuation effect caused 

by trapped free gas is clearly shown between the two high-amplitude BSRs from Figure 2-3c-d. 

Large saturations of hydrate within the rock will cause P- and S-wave velocities to increase 

substantially relative to the same rock with no hydrate inclusions within the pore space (Dvorkin 

et al. 2003; Spence et al. 2010). However, for small concentrations of hydrate within the rock, it 

becomes more difficult to observe this effect, especially as it relates to S-waves. This velocity 

increase depends on how the hydrates are distributed at the grain scale as S-wave velocities depend 

on the rigidity and shear modulus of the host rock (Yun et al. 2005; Yun et al. 2007; Spence et al. 

2010; Kim et al. 2013). 

Bedle (2019) formulated a series of rock-physics models to evaluate how various elastic 

properties change with different hydrate saturations and mediums. From these hydrate rock-

physics models, amplitude versus angle (AVA) responses can be derived. This is important 

because AVA attributes can now be calculated to potentially better reveal the extent of the GHSZ. 

Bedle (2019) demonstrated that a Class 3 AVA response (low intercept value and a negative 

gradient where amplitude becomes increasingly more negative at larger angles) is observed for 

hydrocarbon accumulations where high amplitude BSRs are present (Chopra and Castagna 2014). 

In the instance of brine, a very weak Class 2n AVA response (has a low intercept value and a 

negative gradient where the amplitude becomes more negative at larger angles) is expected 

whether the BSR exists in a sand or shale (Chopra and Castagna 2014; Bedle 2019). Therefore, 

the rock-physics modeling demonstrates that in regions where hydrocarbons (or biogenic gas in 
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our study area) are not at significant enough saturation to cause a seismic anomaly, such as laterally 

in between high amplitude BSRs, hydrates would be best detected in the far angle stack because 

in these regions because the expected seismic response is a Class 2n AVA. 

Several AVA attributes were then used to further identify the extent of hydrates in the 

Pegasus Basin. Bedle (2019) found that these attributes further increased ability to identify some 

previous seismically invisible BSRs. However, can this identification method be further improved 

to identify the full extent of the GHSZ? We have developed a new methodology, which uses an 

unsupervised machine learning multi-attribute analysis on 2D, full- and angle- stack seismic data 

within the Pegasus Basin with self-organizing maps (SOMs) is employed to better detect these 

seismically invisible/weak BSRs. 

 

METHODOLOGY 

Although AVA attributes help to enhance the extent of hydrates in the seismic data, 

individual attributes are limited in revealing their entire presence. Each attribute will highlight 

different properties of the BSRs, and an iterative process of interpreting multiple volumes is 

needed to capture the total extent of the hydrates. However, by using a machine learning approach 

that incorporates all of these attributes, this iterative attribute interpretation workflow can be 

reduced, and more time can be spent on quality control of the SOM results. The machine learning 

model can instead combine multiple attributes into one comprehensive attribute to highlight the 

extent of hydrates. This study uses principle component analysis (PCA) to analyze the multi-

dimensional nature of these attribute combinations and visualizes these relationships using SOMs. 

There have been multiple geophysical studies using PCA and SOMs to better characterize the 

subsurface. Sacrey et al. (2014) looked at several conventional and unconventional case studies to 
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demonstrated how this methodology was able to optimize production through multi-attribute 

analysis by identifying anomalies within the seismic data. Another study by Roden and Chen 

(2017) showed how PCA and SOMs can better identify direct hydrocarbon indicator (DHI) 

characteristics. In another example, Chopra and Marfurt (2018) showed how unsupervised 

machine learning methods, such as PCA and SOMs, showed promising results in classifying 

seismic facies. By building off of these practical examples that use a multi-attribute machine 

learning approach to better characterize the subsurface, this study aims to use this methodology to 

improve our understanding of the constraints on the distribution of hydrates in the subsurface. 

 

Principle Component Analysis (PCA) 

PCA is a linear mathematical technique that reduces a set of variables, such as seismic 

attributes, to a set that represents the majority of variation in the multidimensional data (Jolliffe 

2002; Sacrey and Roden 2014; Roden et al. 2015). The first principal component accounts for the 

most variability in the data with each succeeding orthogonal component best accounting for the 

remaining variability. Although the first principal component highlights the largest linear attribute 

combinations that best represents the variability of the bulk of the data, it may not identify specific 

features that are of interest to the interpreter (Sacrey and Roden 2014; Roden et al. 2015). 

Therefore, succeeding principal components were evaluated because they may be associated with 

BSR characteristics not identified with the first principal component. Applying PCA to a large set 

of seismic variables, such as seismic attributes aids in identifying meaningful combinations of 

attributes that best reveal the discontinuous BSRs. Additionally, attributes that are most likely to 

aid in locating the base of the GHSZ, such as attributes sensitive to the gas in the pore space or to 

acoustic impedance changes, were pre-selected to be used within the PCA.  
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Self-Organizing Maps (SOMs) 

Following PCA analysis, the attributes deemed the most successful for revealing BSRs are 

then incorporated in a SOM. Due to the multidimensional nature of PCA results, SOMs are 

employed to help visualize these attribute relationships. A SOM is a collection of neurons that 

classify data samples into categories based on their various geological or geophysical properties. 

This is done by projecting the clusters onto a latent space for visualization (Kohonen 1990; Roy 

2013). Several SOM hyperparameters were tested such as neuron count and the number of epochs 

(iterations). A detailed generalized schematic of the workflow is shown in Figure 2-4.  

Full- and angle-stack seismic data were used within the seismic attribute analysis. Several 

AVA attributes were calculated and evaluated, including those studied by Bedle (2019). However, 

gas indicator and Shuey’s fluid factor were the two primary AVA attributes that stood out from 

PCA. Gas indicator is a logarithmic AVA attribute that has traditionally been used to highlight gas 

sands with a Class 2 AVA response. It is defined as the intercept multiplied by the natural log of 

the gradient’s absolute value (Veeken 2007). Gas indicator ranked as the only attribute in the ninth 

eigenvector, effectively representing the entire eigenvector, and is thus indicates unique variability 

in the dataset. Bedle (2019) suggests that gas indicator could be one of the better attributes for 

highlighting Class 2 AVA responses. This was verified by the PCA through its use in the SOM 

analysis to better visualize weak BSRs. Shuey’s fluid factor (Shuey 1985; Smith and Gidlow 2003) 

is another AVA attribute useful in highlighting Class 2 AVA sands and is calculated using the 

seismic intercept and gradient. Fluid factor consistently ranked at over 80% in eigenvector 

contribution for the first three eigenvectors, meaning that fluid factor is a good representation of 

the independent variability in the seismic dataset and could be helpful in revealing the hidden 
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BSRs. Multiple instantaneous attributes were also evaluated with instantaneous frequency, 

sweetness, and thin bed indicator consistently ranking at over 80% in eigenvector contribution in 

the first three eigenvectors. 

There was also a balance to be struck between clustering every detail within the seismic 

that excluded noise while also optimizing the number of neurons to render the model 

computationally efficient. Several different combinations of neuron and epoch (iteration) counts 

were created to determine the optimal value. This is shown in Figure 2-5a-f where we compare 

SOM models with different neuron and epoch counts. The first SOM model, shown in Figure 2-

5a, used an 8x8 neuron count with 100 epochs. This SOM parameterization was found to be 

computationally inefficient as it classified the same feature, such as high amplitude BSRs, in 

different clusters (shown in Figure 2-5b). Furthermore, this model classified a significant amount 

of seismic noise within empty neurons (shown in Figure 2-5c). Upon overlapping both the 

redundantly classified, high amplitude BSRs with the classified seismic noise (shown in Figure 2-

5d), it becomes apparent that the number of neurons should be reduced to optimize the model. The 

number of neurons was reduced down to 36 (shown in Figure 2-5e) and was trained for 100 epochs. 

Notice how this model was able to achieve near identical results to those observed in Figure 2-5a. 

Further analysis reduced the number of epochs down to 50 (shown in Figure 2-5f) and also 

achieved similar results to Figure 2-5a. This study found that a SOM model with 36 neurons and 

50 epochs (shown in Figure 2-5f) was able to achieve nearly identical results to a SOM model 

which used 64 neurons and 100 epochs (shown in Figure 2-5a). However, SOM models that used 

less than 36 neurons returned results that did not detect as many of the weak BSR extents. 

Therefore, the optimized SOM model was run on a 6x6 neuron count (total of 36 neurons) with 50 

epochs for both lines. These neuron dimensions and number of epochs were used because they are 
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robust enough to highlight minute changes and details within the seismic data, such as the base of 

the GHSZ, while also being computationally efficient. 

 

RESULTS 

After the number of neurons and epochs were optimized, I then evaluated the number of 

attributes to use within the optimized model. The number and combination of attributes to use in 

a SOM model were determined using a combination of PCA and different SOM runs. These SOM 

results were compared to the far angle stack amplitude section of Line 19 from the PEG09 survey 

(Figure 2-6a-b). One of the first SOM results (Figures 2-6c-d) used an 8x8 matrix as well as eight 

instantaneous attributes. These instantaneous attributes included: envelope, envelope slope, 

Hilbert transform of the amplitude data, instantaneous frequency, normalized amplitude, relative 

acoustic impedance, sweetness and thin bed indicator (Figures 2-6c-d). These attributes were 

chosen from PCA results and Table 2-1 describes the definitions and uses of these attributes. 

These eight attributes all ranked over 70% in eigenvector contribution within the first three 

eigenvectors for the initial SOM results. When these attributes were used in conjunction with each 

other, the base of the GHSZ was better imaged in the SOM results. However, similar to previous 

analyses in Figure 2-5, several of the neurons were redundant and correlated to a significant 

amount of seismic noise. Also, several neurons needed to be displayed (shown in Figure 2-6d) to 

generate the same result seen in Figure 2-6e-f. Therefore, the model was computationally 

inefficient and was improved to achieve the same level of accuracy in a shorter time with less 

computational intensity. The optimized SOM ran with 36 neurons and five attributes: 

instantaneous frequency, sweetness, thin bed indicator, fluid factor and gas indicator (Figures 2-

6e-f). Results found that the five attributes, which used a combination of both instantaneous and 
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AVA attributes, were sufficient in improving the detection of weak BSRs. A larger number of 

attributes tended to render the algorithm computationally inefficient and any fewer tended to not 

include the furthest extent of the indistinct BSRs. 

Once the best SOM parameters were determined for the PEG09 Line 19, this 

parameterization was then applied to the PEG09 survey with the raw, uninterpreted results of Line 

6 and 19 shown in Figure 2-7a. Once the raw SOMs neurons were interpreted, as shown in Figure 

2-7b, the results helped enhance the lateral extent of weak BSRs and how they are potentially 

connected to the high amplitude BSRs within the Pegasus Basin. The green arrows in Figure 2-7b 

indicate the high amplitude BSRs whereas the orange arrows highlight the better detected weak 

BSRs within the seismic data. The SOM was able to resolve the previously hidden BSR, enhancing 

our understanding of the extent of hydrates within the PEG09 survey. After the SOM model was 

optimized for the PEG09 survey, an identical parametrization was applied to the APB13 survey to 

test if this gas hydrate detection method is transferable to other seismic surveys. The same SOM 

model and number of attributes were applied to the APB13 survey and the raw, uninterpreted and 

interpreted SOM results are displayed with Lines 17 and 38 as shown in Figure 2-8a-b. Similar to 

the results from the PEG09 survey, the optimized SOM model was able to better resolve the weak 

BSRs within the APB13 survey that were previously hidden in the amplitude sections, shown by 

the orange arrows in Figure 2-8b. It was also interesting to note that both surveys had the same 

specific neurons (23, 34 and 35) that classified the weak BSRs whereas the other neurons grouped 

different geologic features such as bedding, and other lithology variations. We interpret the orange 

arrows in both SOM results as weak BSRs because the clusters displayed from neurons 23, 34 and 

35 are discontinuous and are heavily weighted towards Class 2n AVA attributes.  
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Neurons 23, 34 and 35 are most heavily weighted by a combination of fluid factor and far 

stack amplitude, fluid factor and instantaneous frequency, as well as far stack amplitude and 

instantaneous frequency. Overall, a combination of fluid factor and far stack amplitudes appears 

to be the most revealing for indistinct BSRs with a smaller influence in cluster weighting due to 

instantaneous frequency. AVA attributes such as fluid factor and gas indicator are helpful in 

identifying these weak BSRs as these attributes are particularly sensitive to the presence of gas 

within the pore space (Shuey 1985; Smith and Gidlow 2003; Veeken 2007). Instantaneous 

attributes such as instantaneous frequency, sweetness and thin bed indicator, are particularly 

helpful for analyzing bed thicknesses, identifying “sweet spots” in hydrocarbon exploration, and 

for locating the edges of low impedance thin beds (Taner et al. 1979; Hart 2008; Subrahmanyam 

and Rao 2008; Koson et al. 2014). These instantaneous attributes are especially helpful for better 

visualizing weak BSRs that have low impedance contrasts due to their slight increase in amplitude 

as a result of hydrates within the pore space (Spence et al. 2010; Lui and Lui 2018). Rather than 

using seismic attributes separately to identify BSRs with limited resolution, the SOM improves 

the imaging and understanding of gas hydrate presence by combining several seismic attributes. 

BSRs are better identified when using a multi-attribute analysis that complements AVA attributes 

sensitive to the presence of gas in the pore space with other instantaneous attributes highlighting 

bed thicknesses and low impedance contrasts.  

PCA results for both surveys showed near identical eigenvalues across the different 

eigenvectors (Figure 2-9). Here, the “% Max” represents that same attribute variance displayed as 

a percentage of the largest eigenvector whereas “Percentage” represents how much each attribute 

contributed toward that eigenvalue. Attributes are ranked in similar orders throughout all of the 

eigenvectors for both surveys (shown by the black arrows in Figure 2-9). Additionally, the 



24 

eigenvalues from both surveys are nearly identical, demonstrating that the data clusters within the 

seismic surveys are also quite similar.  

Notice how the maximum percentage contribution of the attributes rank in similar order 

with similar values for eigenvalue 2 (shown by the red arrows in Figure 2-9). For the PEG09 

survey, these two attributes (instantaneous frequency and thin bed indicator) contributed 

approximately 33% to eigenvector 2 and represented a significant amount of the variance for the 

PEG09 dataset (shown under % Max in Figure 2-9). This same relationship for eigenvector 2 in 

the PEG09 survey was also observed for the APB13 survey. Attributes such as instantaneous 

frequency and thin bed indicator also shared similar percentage and percent max values. For this 

reason, these attributes were used in the final SOM model as they contributed a significant amount 

to the first few eigenvectors and represented the majority of the variance from each dataset 

(highlighted in green in Figure 2-9). These relationships illustrate that these attributes reveal 

identical distributions with the seismic data and that this method is transferable to other areas. 

SOM clusters were identical in both the PEG09 and APB13 surveys and successfully detected 

weak BSRs that were previously hidden within the seismic data. These results detected previously 

unknown gas hydrate accumulations where BSRs are indistinct, clearly showing that there are gas 

hydrate accumulations throughout the basin and not just where the high amplitude BSRs are 

observed. These observations are further supported by contextual interpretation, where the 

interpreter expects the BSRs to be present, and matches well with the previous observations and  

interpretations by Crutchley et al. (2016), Crutchley et al. (2018), and Kroeger et al. (2019). 
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DISCUSSION 

The amplitude response strength of BSRs is related to the amount of trapped free gas 

beneath them (Henrys et al. 2009). There are still significant ongoing studies into better 

understanding the source of gas and its migration into the GHSZ (Kroeger et al. 2015; Kroeger et 

al. 2019). Xu and Ruppel (1999) illustrated how gas migrates upwards in solution along permeable 

fault pathways until it reaches the base of the GHSZ, where gas concentration surpasses solubility. 

This transition from gas in solution to free gas causes a sudden increase in velocity, or seismic 

impedance, thus creating the observed high-amplitude BSRs in the Pegasus Basin. This migration 

concept is further supported by Plaza-Faverola et al. (2012) where they investigated the 

accumulation and distribution of concentrated hydrate zones as a result of focused fluid flow 

within the basin. Many of the migration pathways for gas hydrates originated from gas chimneys 

that are related to underlying faults. These fluids can migrate vertically towards topographic highs, 

such as towards the frontal anticline, or towards traps, such as the triangular trap formed by the 

dipping Chatham Rise and other hydrate bearing sediments (Plaza-Faverola et al. 2012; Crutchley 

et al. 2019; Turko et al. 2020). This pattern is well observed in Figure 2-10 where the high 

amplitude BSRs overlap with structural elements in the study area and further illustrate the 

migration pathways for gas within the Pegasus Basin. This is further supported from significant 

attenuation observed along these migration pathways where free gas is present (shown in Figure 

2-3a-d and 2-10). Additionally, gas was sampled at vent sites on the seafloor and revealed that the 

gas also had microbial origin (Kroeger et al. 2015).  

However, in regions where strata are laterally continuous with no significant dip, it is 

difficult for free gas to become trapped and create high-amplitude BSRs, as there is no structure 

present to create a significant accumulation of gas. This inability for free gas to become trapped 
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below hydrate-bearing sediment in a flat lying sediment layer within a package of flat lying 

sediments that have relatively uniform lithology will create an amplitude response that is difficult 

to discern from other reflectors indicative of background geology. If neurons 23, 34 and 35 were 

to represent lithology in Figures 2-7a-b and 2-8a-b, the clusters would be laterally continuous in 

time and well defined across the survey. This assumption is only valid where lithology does not 

vary laterally and may not hold near the Hikurangi Channel in the Pegasus Basin where there are 

several phases of Pleistocene channel/levee complexes (Kroeger et al. 2019). However, the 

theoretical seismic response will be different for hydrate-bearing and non-hydrate-bearing 

sediments as the inclusion of hydrate in the pore space for a brine case would produce a weak 

Class 2n AVA response (Bedle 2019). By using this study’s proposed multi attribute machine 

learning model, hydrate bearing sediments were able to be differentiated from non-hydrate bearing 

sediments at the base of the GHSZ. This differentiation is well highlighted in Figures 2-7 and 2-8 

where we were able to infer where other hydrate-bearing sediments may be located where there is 

no significant geologic dip. The location of these features is also in accordance with the expected 

temperature and pressure conditions for gas hydrates to exist within the Pegasus Basin (Plaza-

Faverola et al. 2012; Kroeger et al. 2015).  

While seismic attributes on their own have limited success in identifying weak BSRs, 

combining attributes together helped to better characterize and visualize these often seismically 

transparent hydrate accumulations. SOM models that only combined instantaneous attributes were 

successful in teasing out some of the weak BSRs but were further improved once incorporated 

with AVA attributes such as fluid factor and gas indicator. Figure 2-11a-g displays the individual 

attributes that were used for the final SOM. The final SOM result (Figure 2-11a) is shown 

alongside the far angle stack of Line 19 from the PEG 09 survey (Figure 2-11b). Instantaneous 
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frequency in Figure 2-11c and gas indicator in Figure 2-11f seemed to highlight the other subtle 

responses related to the weak and discontinuous BSRs. Attributes such as thin bed indicator in 

Figure 2-11d and sweetness in Figure 2-11e seem to help image some of the weaker BSRs and 

further compliment the other attribute results. The fluid factor attribute in Figure 2-11g matched 

nearly exactly with the SOM results in Figure 2-11a. These observations are in accordance with 

the previously discussed cluster analysis where the three neurons (23, 34 and 35) were most heavily 

weighted by a combination of fluid factor in combination with far stack amplitude and 

instantaneous frequency. These neurons also had minor contributions from other attributes such as 

gas indicator, thin bed and sweetness which could be further complimenting the more dominant 

attributes to further reveal the extent of hydrates in the subsurface. Also, these results indicate that 

there is a Class 2n AVA response for hydrate presence in a brine case while also highlighting the 

Class 3 AVA responses for hydrates with trapped free gas beneath them. Therefore, AVA 

attributes such as gas indicator and fluid factor are helpful in highlighting these features. However, 

instantaneous frequency still had a significant percentage contribution within each of the neurons. 

Therefore, both weak and strong amplitude BSRs are better identified when using other 

instantaneous attributes that are helpful in highlighting bed thicknesses and low impedance 

contrasts, which in turn complements AVA attributes that are sensitive to the presence of gas in 

the pore space. Figure 2-12 illustrates the enhanced interpretation capabilities for hydrates in the 

PEG09 and APB13 survey using the proposed SOM workflow.  

Additionally, all of the attributes used in the final SOM were able to detect and image the 

high amplitude BSRs within neurons 23, 34 and 35. Figure 2-13a-d shows these SOM clusters 

highlighting the high amplitude BSRs and enhancing their interpretability on Line 30 of the APB13 

survey. However, these high amplitude BSR clusters only represented a small percentage of the 
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classified data points within those neurons meaning that the displayed neurons primarily identified 

anomalous weak BSRs. Similar observations were also noted for the APB13 survey SOM result. 

Figure 2-14a-d shows how the some of these weaker BSRs are better highlighted using our 

proposed SOM model and their enhanced interpretability on Line 30 of the APB13 survey. The 

neurons also exhibited higher weighting towards fluid factor in combination with gas indicator and 

instantaneous frequency. This higher weighting towards attributes such as gas indicator and fluid 

factor could be due to how successful they are in identifying the presence of gas and other 

anomalous fluids within the pore space by revealing Class 2 and 3 AVA anomalies. There may 

have also been a higher weight towards instantaneous frequency as this attribute is helpful for 

indicating the edges of low impedance thin beds, such as is the case for weak BSRs (Taner et al. 

1979; Subrahmanyam and Rao 2008). A study conducted by Navalpakam et al. (2012) along the 

Hikurangi Margin found that weak BSRs are primarily caused by low gas saturation where gas is 

only present within pores or fractures with a patchy distribution. Therefore, attributes such as fluid 

factor and gas indicator are prime candidates for identifying this patchy gas saturation and further 

revealing weak BSRs in our study area. The results also helped to detect weak BSRs over the same 

study area, however, in a different survey. This is because PCA analysis revealed that the PEG09 

and APB13 surveys were nearly identical with attributes ranking in the same order in different 

eigenvectors.  

The PCA and SOM results show that the model is applicable to different seismic surveys 

and can help resolve weak BSRs. Another interesting observation was that SOM result for Line 17 

of the APB13 survey detected no weak BSRs in the eastern portion when it did detect these in the 

PEG09 survey. This is hypothesized to be due to two primary reasons. The first being that these 

lines are slightly offset from one another as the 2D lines belong to separate surveys. The distance 



29 

between the PEG09 and APB13 survey lines is approximately 3500 m, which could be enough for 

the weak BSR from Line 06 in the PEG09 survey to fade. Another reason is that there appears to 

be no minor anomalies within the seismic amplitude and attributes. When looking closer at the 

fluid factor attribute over the eastern portion of Line 17 from the APB13 survey, there were no 

anomalies observed from Line 06 of the PEG09 survey. Therefore, it is hypothesized that the SOM 

for APB13 did not map the missing weak BSR as there most likely was no weak BSRs in that 

region. If there were no observed Class 2n AVA anomalies, it is possible that there are no hydrates 

present in the pore space. This could be due to the fact that there is not a homogeneous generation 

of methane throughout the entire Pegasus basin (based on the models presented in Plaza-Faverola 

et al. 2012, Kroeger et al. 2015, and Kroeger et al. 2019). Additionally, it could be that the 

migration pathways feeding other or older populations of methane into the area do not exist for 

some structural or geologic reason. Hydrate accumulations near structural highs are primarily 

controlled by fluid focusing and transport of CH4 (Henrys et al. 2009; Plaza-Faverola et al. 2012; 

Crutchley et al. 2019). However, in areas where the generation and/or migration of microbial 

methane are not present, no gas hydrates can form.  

A prominent diagnostic feature of hydrate-bearing sediments is an increase in both the P- 

and S-wave velocities once hydrate saturation exceeds approximately 40% (Dai et al. 2004; Dai et 

al. 2008a, 2008b; Yun et al. 2007; Waite et al. 2009). There exists a wide range of models that are 

based on the amount of hydrate and the growth between hydrate and the sediment (Dai et al. 2004; 

Xu et al. 2004; Waite et al. 2009; Zhang et al. 2020). However, these models exhibit a wide range 

of elastic properties for hydrate-bearing sediments (Dai et al. 2004; Waite et al. 2009). Overall, 

these models nevertheless demonstrate that even a small amount of hydrate present within the 

sediments will create an increase in acoustic velocities (Dai et al. 2004; Waite et al. 2009). It is 
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important to note that these models only account for the elastic properties and do not account for 

inelastic parameters such as attenuation (Dai et al. 2008a). Therefore, it may be difficult to resolve 

very small hydrate accumulations in the subsurface by only using the seismic amplitude response. 

This could be circumvented by reprocessing the data to highlight and preserve the amplitude of 

shallow geologic features to better visualize BSRs (Dai et al. 2004; Dai et al. 2008a). Finally, it is 

also important to note that there were other neurons that only identified high amplitude BSRs. 

However, this study is focused on better identifying weaker, less obvious BSRs that may be hidden 

within the seismic volume. These neurons could be beneficial for quick mapping and analysis of 

prominent BSRs within a given area when using attributes which are sensitive to the inclusion of 

gas and help identify thin beds as well as low impedance contrasts. 

 

CONCLUSIONS 

Instantaneous attributes that detect changes in the frequency and phase of seismic data tend 

to cluster together in the PCA to reveal the interface at the base of the GHSZ. The extent and 

resolution of discontinuous BSRs from preliminary results are significantly improved when AVA 

attributes, such as gas indicator and fluid factor, were used in combination with instantaneous 

attributes sensitive to frequency, and small amplitude anomalies. Both weak and strong BSRs are 

better identified when using instantaneous attributes such as instantaneous frequency, sweetness 

and thin bed indicator, which compliment AVA attributes such as gas indicator and fluid factor. 

Individually, some of these attributes have minimal success in identifying the seismically 

transparent hydrates. However, employing a multi-attribute analysis provides clearer insight and 

confidence into the identification and distribution of gas hydrates. PCA results for both the PEG09 
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and APB13 surveys were nearly identical demonstrating that this method for detecting gas hydrates 

is transferable to other surveys. 
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FIGURES 

 

  

Figure 2-1: A) Cropped far angle stack seismic amplitude section of Line 19 from the PEG09 

survey with B) an interpreted section highlighting the expected amplitude responses for high 

amplitude BSRs, weak BSRs and for regions with no BSR. This figure also provides a reference 

where the base of the gas hydrate stability zone (GHSZ) is and why high amplitude BSRs have a 

large acoustic impedance contrast resulting from the trapped free gas below. Bathymetry map 

taken from the General Bathymetric Chart of the Oceans (GEBCO) Compilation Group 2019. 
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Figure 2-2: A) Study area within the Pegasus Basin, offshore New Zealand. The PEG09 2D survey 

is denoted in red while the more recent APB13 2D survey is shown in black. B) Shows the entire 

2D vertical full angle stack seismic profile of Line 19 from the PEG09 survey, further highlighting 

key geologic structures and types of BSRs. C) Takes a closer look at the far angle stacks for Line 

19 to show the weak/discontinuous BSRs versus the high amplitude BSRs. The far angle stacks 

helped to better visualize some of the weaker BSRs and further infer the presence of hydrates. The 

red box shown here references the amplitude section studied in Figure 2-6. Bathymetry map taken 

from the General Bathymetric Chart of the Oceans (GEBCO) Compilation Group 2019. 
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Figure 2-3: A) PEG09 Line 19 B) APB13 Line 38 within the Pegasus Basin, offshore New 

Zealand. These lines were chosen as they are from two different surveys yet are the closest to each 

other. C) Shows a zoomed in portion of PEG09 Line 19 to highlight the difference between high 

amplitude BSRs (shown by the green arrows) and the weak/discontinuous BSRs (shown by the 

orange arrows). D) shows a zoomed in portion of the APB13 Line 38 also highlighting the 

difference between high amplitude and weak/discontinuous BSRs. Both surveys show similar high 

amplitude and weak/discontinuous BSRs. The fluid expulsion and thermogenic methane migration 

pathways are also shown along with the significant seismic attenuation (black arrows) created from 

trapped free gas, migrations pathways containing free gas and complex faulting zones (Horizons 

and faults were modified from Kroeger et al., 2015 and interpreted on a time volume). Fluid 

expulsion, thermogenic methane pathways and microbial methane modified after Henrys et al. 

2009, Plaza-Faverola et al. 2012 and Kroeger et al. 2015. Bathymetry map taken from the General 

Bathymetric Chart of the Oceans (GEBCO) Compilation Group 2019. 
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Figure 2-4: Iterative SOM workflow used to evaluate the accuracy and effectiveness of each SOM 

result. Several combinations of instantaneous and AVA attributes as well as different neuron 

parameters were evaluated. 
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Figure 2-5: Comparison of various SOM models with different epochs and neurons counts run on 

Line 19 of the PEG09 survey. A) Shows the model with 64 neurons trained for 100 epochs 

highlighting both strong and weak amplitude BSRs. B) shows that same model with only the high 

amplitude BSRs whereas C) shows the same model with only classified seismic noise highlighted. 

D) Shows the SOM model with 64 neurons trained for 100 epochs with classified high amplitude 

BSRs and seismic noise. Notice how many neurons redundantly classify the high amplitude BSRs 

and classify seismic noise. The neuron count was then reduced to 36 neurons in E). We then 

reduced the number of epochs down to 50 in F) to obtain the same result as in E). This shows that 

by reducing the number of iterations and number of clusters, we are able to obtain the same results 

from model A) in model F) to achieve a more computationally efficient model. The green arrows 

represent high amplitude BSRs whereas the orange arrows represent the weak amplitude BSRs 

better revealed using our model. 
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Figure 2-6: Comparison of an unoptimized SOM result compared to an optimized SOM result. A) 

Shows PEG09 Line 19 amplitude section (refer to Figure 2-2 for location relative to PEG09 2D 

survey) where weak, discontinuous BSRs are present between two areas of high amplitude BSRs. 

B) is a closer look at the weak BSR section highlighted in A). C) Shows the result from an 

optimized SOM with all of the neurons activated and displayed and D) only shows the neurons 

which highlight the BSRs from C). Although the SOM helps highlight some of the weak BSRs, 

several similar neurons classified them and the calculation time could be significantly reduced. E) 

Represents the SOM result with optimized parameters and all neurons displayed whereas F) only 

shows the neurons which highlight the BSRs. With the SOM parameters optimized, similar results 

are achieved with a smaller number of neurons and computation time is significantly improved.  
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Figure 2-7: A) Raw SOM results for Lines 06 and 19 within the PEG09 2D seismic survey and 

B) optimized SOM results for Lines 06 and 19 within the PEG09 2D seismic survey revealing the 

better imaged BSR. 
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Figure 2-8: A) Raw SOM results for Lines 17 and 38 within the APB13 2D seismic survey and 

B) optimized SOM results for Lines 17 and 38 within the APB13 2D seismic survey revealing the 

better imaged BSR. 
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Figure 2-9: Comparison of the PCA results between the PEG09 and APB13 2D seismic surveys 

showing the evident similarity between them. Attributes are ranked in very similar orders within 

all eigenvectors with similar eigenvalues (shown by the black and red arrows). These results, along 

with the similar SOM results, show that this methodology is transferrable. 
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Figure 2-10: Structural and stratigraphic interpretation of Line 19 from the PEG09 survey 

highlighting the various migration routes for gas within the Pegasus Basin. Horizons and faults 

were modified from Kroeger et al. 2015 and interpreted on a time volume. Fluid expulsion, 

thermogenic methane pathways and microbial methane modified after Henrys et al. 2009, Plaza-

Faverola et al. 2012 and Kroeger et al. 2015. Bathymetry map taken from the General Bathymetric 

Chart of the Oceans (GEBCO) Compilation Group 2019. 
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Figure 2-11: A) Optimized SOM results (from Figure 2-6F) for Line 19 of the PEG09 2D survey 

shown relative to the B) far angle stack amplitude section for Line 19 and all of the seismic 

attributes used within the SOM: C) instantaneous frequency, D) thin bed, E) sweetness, F) gas 

indicator, G) shuey fluid factor seismic attributes. It appears that the fluid factor attribute 

contributed the most towards the SOM result. This is later confirmed by weighted contribution 

analysis for neurons 23, 34 and 35. Additionally, attributes such as sweetness and AVA attributes 

were able to detect high amplitude BSR response quite well. 
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Figure 2-12: Enhanced BSR interpretation capabilities for hydrates in the both the PEG09 and 

APB13 survey (grey lines) using the proposed SOM. Individual amplitude and seismic attribute 

interpretations are shown in red whereas the improved interpretation using our proposed SOM 

model is shown in purple. Bathymetry map taken from the General Bathymetric Chart of the 

Oceans (GEBCO) Compilation Group 2019. 
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Figure 2-13: A) Far angle stack Line 62 from the APB13 survey with B) the interpreted BSRs (in 

red) whereas C) shows the SOM results from another software and D) the enhanced interpretability 

(in purple) as a result of the proposed SOM model. The green arrows are pointing to high amplitude 

BSRs. Bathymetry map taken from the General Bathymetric Chart of the Oceans (GEBCO) 

Compilation Group 2019. 
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Figure 2-14: A) Far angle stack Line 30 from the APB13 survey with B) the interpreted BSRs (in 

red) whereas C) shows the SOM results from another software and D) the enhanced interpretability 

(in purple) as a result of the proposed SOM model. The green arrows are pointing to high amplitude 

BSRs, the orange arrows are pointing to the weak amplitude BSRs and the red arrows are pointing 

to the improved imaging of the weak amplitude BSRs using the SOM model. Bathymetry map 

taken from the General Bathymetric Chart of the Oceans (GEBCO) Compilation Group 2019. 
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TABLES 

 

  

Instantaneous 

Attribute Name
Definition Uses Sources

Hilbert
90-degree transform/rotation of the seismic trace 

complex trace.

Envelope
Calculated from the complex trace to highlight the 

signal’s instantaneous energy.

Envelope Slope
Calculated from the complex trace to highlight the 

signal’s change in reflectivity.

Instantaneous 

Frequency
Calculated by taking the time derivative of phase.

This attribute is beneficial for analyzing 

bed thicknesses and for indicating the 

edges of low impedance thin beds, such 

as in the case of weak BSRs (Taner et al. 

1979; Subrahmanyam and Rao 2008).

Taner et al. 1979; 

Subrahmanyam and Rao 

2008

Sweetness
Computed by dividing the envelope by the square 

root of instantaneous frequency.

First discovered by Radovich and 

Oliveros (1998), sweetness is a relative 

value helpful for determining relative net-

to-gross ratios and to identify “sweet 

spots” in hydrocarbon exploration (Hart 

2008; Koson et al. 2014).

Radovich and Oliveros 

1998; Hart 2008; Koson 

et al. 2014

Thin Bed (also 

known as thin bed 

indicator)

Calculated by subtracting the derivative of 

instantaneous frequency from instantaneous 

frequency. This is achieved by extracting the 

location of where instantaneous frequencies change 

directions or become negative within the seismic 

data (Taner 2001). Taner (2001) attributes these 

sign reversals resulting from wavelets arriving close 

to one another.

Large variations of instantaneous 

frequency will help identify the location of 

these thin beds and highlight them within 

the seismic response (Taner 2001; 

Subrahmanyam et al. 2008).  

Taner 2001; 

Subrahmanyam and Rao 

2008

AVA Attribute 

Name
Definition Uses Sources

Gas Indicator
Calculated by multiplying the intercept by the 

natural log of the gradient’s absolute value.

This attribute has been traditionally used 

to highlight gas sands with a Class 2 AVA 

response.

Veeken 2007

Shuey's Fluid 

Factor

Calculated from using the intercept and the 

gradient.

Another AVA atrtibute that is useful for 

highlighting Class 2 AVA sands.

Shuey 1985; Smith and 

Gidlow 2003

These attributes are useful to highlight 

discontinuities such as faults or lithology 

changes (Taner et al. 1979; Chopra and 

Marfurt 2005). These attributes are also 

helpful for analyzing AVA anomalies as 

both attributes are proportional to 

reflectivity (Taner et al. 1979; 

Subrahmanyam and Rao 2008).

Taner et al. 1979; Chopra 

and Marfurt 2005; 

Subrahmanyam and Rao 

2008

Table 2-1: Definitions, uses and sources for all of the attributes presented within the hydrates 

study. 
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APPENDIX A 

 

Initial BSR SOM Results and Final BSR SOM Results 

This appendix illustrates the various SOMs that were computed for characterizing both 

high- and weak-amplitude BSRs within the Pegasus Basin, offshore New Zealand before achieving 

the final SOM (Appendix A, Figures 1a-d). The various attributes and SOM parameters used to 

compute these are shown under Appendix A, Table 1. While the high- and weak-amplitude BSRs 

are well highlighted in the first SOM, it took many neurons to illustrate them. However, as we 

optimized the attributes to be included within the SOM, note how the number of neurons decreases 

to identify the BSRs present within the section. It took ten neurons with the first SOM, seven 

neurons with the second SOM, and finally three neurons with the optimized SOM (Appendix A, 

Figures 1b-d). The final SOM was also able to capture the same features from SOM 1 and 2 with 

significantly fewer neurons. Thus, the final SOM is more computationally efficient. 

Furthermore, there was a prominent laterally continuous feature within SOM 2 which was 

suppressed in the final SOM results (black arrow in Appendix A, Figure 1b). This feature was not 

expressed in any of the previous SOMs. The difference between these SOMs was that 

instantaneous frequency was used in the final SOM whereas it was not included in SOM 2 

(Appendix A, Table 1). Therefore, it appears that frequency was instrumental for only highlighting 

both the high- and weak-amplitude BSRs, and not other features which may be present above the 

GHSZ. 

Finally, the weak BSRs were best highlighted in the final SOM. While there were 

indications present within SOM 1, they were not as laterally continuous as the weak BSRs in the 

other SOMs. These weak BSRs were better visualized in the second SOM, however, several 

neurons were necessary to accomplish this. The final SOM was able to capture the same weak 
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BSRs present within both SOMs while also requiring significantly fewer neurons. Therefore, the 

final SOM was not only more computationally efficient, but was also able to better reveal the weak 

BSRs present within the section. 
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Appendix A, Figure 1: Cropped far angle stack seismic amplitude section of Line 19 from the 

PEG09 survey with B) SOM 1, C) SOM 2 and D) the final optimized SOM. High amplitude 

BSRs are shown by the green arrow whereas the weak BSRs are shown by the orange arrow. 

Table 1 within Appendix A features the various attributes and SOM parameters used to generate 

these results.  
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SOM Model Attributes Used Iterations Number of Neurons 

B) SOM 1 

Relative Acoustic Impedance 

Sweetness 

Thin Bed Indicator 

Far Angle Stack Amplitude 

Gas Indicator 

50 36 

C) SOM 2 

Relative Acoustic Impedance 

Sweetness 

Thin Bed Indicator 

Far Angle Stack Amplitude 

Fluid Factor 

Gas Indicator 

50 36 

D) Final SOM 

Instantaneous Frequency 

Sweetness 

Thin Bed Indicator 

Far Angle Stack Amplitude 

Fluid Factor 

Gas Indicator 

50 36 

 

Appendix A, Table 1: The various attributes and SOM parameters used for computing the 

results shown within Appendix A. 
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ABSTRACT 

An effective method of identifying and discriminating undersaturated gas accumulations 

remains unsolved, resulting in uncertainty in hydrocarbon exploration. To address this problem, 

we use an unsupervised machine learning multi-attribute analysis on 3D post-stack seismic data 

over several blocks within the deepwater Gulf of Mexico, and within the Carnarvon Basin, 

offshore Australia. Results reveal that low-saturation gas (LSG) reservoirs can be discriminated 

from high-saturation gas (HSG) reservoirs by using a combination of instantaneous attributes that 

are sensitive to small amplitude, frequency, and phase anomalies with self-organizing maps 

(SOMs). This methodology shows promise for de-risking prospects, even if it is not quantitative, 

particularly in frontier and exploration basins where wells may not exist or be very limited. 

However, this method only proved to be successful within the Gulf of Mexico and yielded 

limited results with the Carnarvon Basin. This difference is most likely due to the Carnarvon Basin 

having a different amplitude response resulting from a different burial history and fluid saturations 
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when compared to the Gulf of Mexico. Therefore, this method is non-transferrable, and a different 

combination of attributes may be needed in other LSG prone basins. 
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INTRODUCTION 

The discrimination of low-saturation gas (LSG) reservoirs (less than 25%) from 

commercial quantities of gas remains one of the most challenging problems in petroleum 

exploration (Zhang and Hilterman, 2005). The ambiguity of LSG is primarily due to the elastic 

properties of gas, in particular the bulk modulus. The shear modulus is nearly insensitive to the 

type of fluid filling the rock pores. The bulk modulus is a measure of the rock’s incompressibility 

when a force such as a seismic wave is applied. Due to the elastic properties of gas on the bulk 

modulus on the rock, a small, uneconomical, amount of hydrocarbon gas included in the pore space 

of the reservoir rock will reflect seismic energy back to the surface in a similar manner as a larger, 

and economical, accumulation of gas in the pore space (Figure 3-1). These rock physics 

relationships with the inclusion of gas, will cause an LSG reservoir to have a similar seismic 

amplitude response to that of a commercial, high-saturation gas (HSG) reservoir (Hilterman, 2001; 

O’Brien, 2004). The seismic reflection in both LSG and HSG accumulations created a bright 

amplitude anomaly within certain lithology and pressure regimes within the Gulf of Mexico and 

within the Scarborough gas field, offshore Australia (Hilterman, 2001; O’Brien, 2004; Ray et al., 

2014). These amplitude responses were analyzed within the King Kong/Lisa Anne and Ursa 

producing fields within the Gulf of Mexico and within the Scarborough gas field, offshore 

Australia (Figure 3-2a-b). 

Amplitude and rock physics analyses conducted by  Zhu (2000), O’Brien (2004), Zhou and 

Hilterman (2010) and  Laiw (2011) to better characterize LSG in the subsurface  met limited 

success under specific conditions that cannot be applied in a typical exploration scenario. In recent 

years, machine learning techniques have gained a significant foothold within the geoscience 

community. Recent studies (Roden et al., 2015; Roden and Chen, 2017; Sacrey and Roden, 2018; 
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Chopra and Marfurt, 2019) have shown promising applications of machine learning techniques to 

reflection seismic data to aid in the interpretation of geologic patterns. Some of these applications 

are at the sub-seismic resolution scale since machine learning works on a sample interval basis, as 

opposed to being limited by the seismic wavelet (Roden et al., 2015; Roden et al., 2017).  

This study aims to exploit the advances of machine learning and multi-attribute seismic 

analyses to test the limits and determine if small seismic waveform variations can be detected and 

properly attributed to low- and partially-saturated gas reservoirs. 

 

GEOLOGIC SETTINGS 

King Kong and Lisa Anne Prospects, Offshore Gulf of Mexico 

The King Kong and Lisa Anne (KK/LA) prospects lie approximately 160 mi (257 km) 

south of New Orleans, within the Green Canyon Phase II seismic survey (over Green Canyon 

Blocks 473 and 474), offshore Gulf of Mexico (Figure 3-2a and 3-3). These prospects occur in 

Plio-Pleistocene age sediments, share the same geologic model and are mapped on the same 

reflector in seismic. These deepwater sand reservoirs were deposited in a salt withdrawal basin 

from a northerly source controlled by underlying salt bodies (O’Brien, 2004). While the King 

Kong Prospect exhibits structural four-way closure, the Lisa Anne Prospect is positioned on the 

hanging wall of a large normal fault. Sand quality within both reservoirs is excellent, with 

porosities of roughly 30% (O’Brien, 2004). Although both prospects appear to have similar seismic 

amplitude anomalies, the Lisa Anne proved to be an uncommercial prospect having only about 5-

25% gas saturation (O’Brien, 2004). 
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Ursa Gas Field, Offshore Gulf of Mexico 

The Ursa field is a prolific producing deepwater field located approximately 130 mi (210 

km) southeast of New Orleans within the Shell Mississippi Canyon seismic survey, in Mississippi 

Canyon, offshore Gulf of Mexico (Figure 3-2a). The deepwater depositional environment of the 

Mars-Ursa intraslope basin is controlled by cycles of salt tectonics as well as turbidites. 

Amalgamated channelized sands and sheet sands act as reservoirs for the system and are overlain 

by condensed sections (Batzle, 2006). Within the Ursa Well #1, several hydrocarbon pay intervals 

occur at depths of 12,000 ft and from 17,000 to 20,000 ft within Pliocene to Miocene age sands. 

Multiple, stacked reservoirs pinchout against the flank of the salt dome within the withdrawal basin 

flanks. Sand quality is also excellent within the field, with an approximate porosity of 25% (Batzle, 

2006). However, well log and AVO analysis revealed that one of the upper reservoir intervals was 

an LSG interval as the velocity was lower than the oil-saturated intervals (Figure 3-4) (Hilterman, 

2001). 

 

Scarborough Gas Field, Offshore Australia 

The Scarborough gas field is situated on the Exmouth Plateau, in the Carnarvon Basin, 

offshore Australia (Figure 3-2b) (Han et al., 2018). The plateau is part of a passive margin between 

continental and oceanic crust formed as a result of the break-up of Australia and India. Sub-

horizontal detachment faults dipping towards the Australian continent undercut the plateau at 

depths of approximately 6.2 mi (10 km) where the continental crust transitions into oceanic crust 

(Driscoll and Karner, 1998). The plateau, with dimensions of approximately 248 mi by 372 mi 

(400 km by 600 km), is bounded by transform faults toward the northeast and southwest (Ray et 
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al., 2014). A complex series of extension, fracture, uplift, truncation and subsidence have affected 

the plateau since the Mesozoic era (Ray et al., 2014).  

The Scarborough reservoir is a three-tiered fan sequence which consists of Early 

Cretaceous deepwater turbidite sands deposited in a basin-floor fan setting. With a water depth of 

about 1970 ft (900 m) and situated between 6240 to 6570 ft (1900 to 2000 m) below sea level, the 

reservoir is roughly 65 to 100 ft (20 to 30 m) thick (Ray et al., 2014; Han et al., 2018; Foschi and 

Cartwright, 2020). These turbidite sands were sourced from the fluvio-deltaic Barrow Group, 

located approximately 31 mi (50 km) south of the field (Han et al., 2018). The Lower Fan unit 

contains the majority of the gas-in-place with porosities between 20-30%, and is overlain by lower 

net-to-gross and lower quality Middle and Upper fans (Glenton et al., 2013; Han et al. 2018). The 

areal extent of the reservoir (gas saturation higher than 50%) was defined using five exploration 

wells and available 3D seismic coverage (Figure 3-5a-c) (Ray et al., 2014). 

The geologic backgrounds for the KK/LA and Ursa fields are fairly similar to one another 

demonstrating comparable porosities, traps and depths. However, the Scarborough field is 

significantly shallower with a different basin history and may illustrate a different amplitude 

response from the Gulf of Mexico fields. 

 

AVAILABLE DATA 

Access to full-stack 3D datasets for each reservoir measures the amplitude responses of 

different gas saturations within the Gulf of Mexico, offshore United States and in the Carnarvon 

Basin, offshore Australia. While gathers and angle-stacks would be beneficial for our analysis, 

they were unavailable and were therefore not included within this study. Well logs for the King 
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Kong and Lisa Anne as well as the Ursa Field were also unavailable as they are proprietary. 

However, a total of five wells were used in Scarborough gas field, offshore Australia.  

Within the Gulf of Mexico, two surveys will be used. The Green Canyon Phase II, post-

stack seismic survey covers the KK/LA prospects in the Gulf of Mexico (Figure 3-2a). The second 

seismic dataset, known as the Shell Mississippi Canyon survey, covers the Ursa gas field (Figure 

3-2a). Within the Scarborough gas field, offshore Australia, the Scarborough 3D seismic survey is 

located about 92 mi (240 km) north of Barrow Island and covers the Scarborough gas field (Figure 

3-2b). Five wells were available within the Scarborough 3D survey which all contain gamma ray, 

resistivity, density and neutron porosity. More details about these three seismic surveys can be 

found under Table 3-2. 

 

METHODOLOGY 

Potential gas prospects have been traditionally identified through the use of seismic 

reflection data with certain types of seismic amplitude anomalies referred to as Direct Hydrocarbon 

Indicators (DHIs) (Brown, 2011). Dozens of recognized DHIs exist, and they vary dependent on 

particulars of each basin – such as depth, lithology, pressure and fluid product. Castagna (1993) 

and Chopra and Castagna (2014) find that gas in Tertiary Gulf of Mexico rocks often exhibits a 

DHI AVO class 3 behavior that displays a larger amplitude response in the far angles compared to 

the near angles In full-stack seismic data, the gas is highlighted as a bright spot (Brown, 2011). 

Additionally, a velocity-sag anomaly is occasionally observed in seismic time volumes beneath 

large accumulations, where the seismic reflections appear to be pushed down with increasing time 

due to the presence of lower velocity gas (Brown, 2011). Furthermore, these DHIs can be identified 

through flat spots (also referred to as a fluid contact reflection), which appears as a horizontal 
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reflector that cuts across stratigraphy (Brown, 2011). Although these seismic DHIs point to the 

presence of gas, they cannot quantify gas saturation to a degree where the economic validity of the 

reservoir can be reliably determined. DHIs are only indicators that hydrocarbons could be present, 

and thus, are vulnerable to uncertainty. This low-saturation gas phenomenon is pervasive, 

occurring in hydrocarbon basins globally from the Gulf of Mexico, to the North Sea, and the Niger 

Delta (Hilterman, 2001; O’Brien, 2004; Batzle, 2006; Khalid and Ghazi, 2013; Wojcik et al., 

2016). 

Despite decades of research from primarily the rock physics discipline, minimal 

improvement in identifying gas saturation variations from seismic data has been achieved (Zhu, 

2000; Han and Batzle, 2002; O’Brien, 2004; Zhou and Hilterman, 2010; Laiw, 2011; Wu et al., 

2014). A robust method of identifying and discriminating potential LSG occurrences remains 

unsolved, resulting in an additional factor in hydrocarbon exploration risk.  Furthermore, even with 

well logs available, gas saturations may be unclear. Therefore, I will evaluate whether  

unsupervised machine learning multi-attribute analysis on 3D, post-stack seismic data with self-

organizing maps (SOMs) (Figure 3-6) can discriminate between HGS and LGS reservoirs. This 

methodology shows promise for de-risking prospects, even if it is not quantitative, particularly in 

frontier and exploration basins where wells are limited or may not exist. 

I begin by applying principal component analysis (PCA) methods to a set of seismic 

attributes from the 3D post-stack seismic survey within the Green Canyon, Gulf of Mexico. PCA 

is a linear mathematical technique which reduces a set of variables, such as seismic attributes, to 

a smaller linear combination subset that represents the majority of the independent information’s 

variation (Jolliffe 2002; Sacrey and Roden, 2014). Therefore, PCA will aid in identifying 

meaningful combinations of attributes that better delineate between low-saturation and high-
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saturation gas reservoirs. This method has been applied to a myriad of geophysical applications 

(Roden et al., 2015; Roden and Chen, 2017; Roden et al., 2017; Chopra and Marfurt 2019). The 

first principal component accounts for the most variability in the data. After removing the part of 

the data represented by the first principal component, the second principal component best 

represents the  most variability in the remaining data. For N attributes, the process continues, 

resulting in N orthogonal principal components. Although the first principal component highlights 

the largest linear attribute combinations that best represents the variability of the bulk of the data, 

it may not identify specific features of interest to the interpreter. Therefore, succeeding principal 

components were evaluated because they may be associated with low-saturation gas characteristics 

that were not identified with the first principal component. Additionally, many attributes that are 

useful for characterizing high-amplitude anomalies, such as attributes sensitive acoustic 

impedance changes, were pre-selected to be used within the PCA. Nonetheless, PCA will reduce 

these seismic attributes down to a smaller subset that is representative of most of the data’s 

independent variability. 

Following PCA analysis, the attributes deemed the most successful for differentiating 

between different levels of gas saturation is then incorporated in a SOM. Due to the 

multidimensional nature of PCA results, SOMs are employed to help visualize these complex 

relationships (Kohonen, 1990). Once the SOM model is optimized for KK/LA prospects within 

the Green Canyon Phase II survey, the same model will then be applied to the Ursa (Shell 

Mississippi Canyon 3D seismic survey) and Scarborough (Scarborough 3D seismic survey) fields 

to evaluate its effectiveness for differentiating between high and low saturation gas reservoirs. 

A SOM is a collection of neurons which classify data samples into categories based on 

their various geological or geophysical properties. Several SOM hyperparameters, such as the 
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number of neurons and epochs, were evaluated to determine optimal parameterization. These 

neuron dimensions and number of epochs were used because they are robust enough to highlight 

minute changes and details within the seismic data, such as varying gas saturations, while also 

being computationally efficient. The SOM was run on a 5x5 neuron count (total of 25 neurons) 

with 100 epochs (iterations) over the entire 3D seismic volume. Neuron dimensions higher than 

5x5 tended to classify noise within individual neurons displaying insignificant information. 

Inlines (IL) containing noticeable gas saturations, such as IL 2391, showed highly 

anomalous eigenvalues from the PCA results compared to other lines in the survey (Figure 3-7). 

Further analyzing these anomalous lines revealed that instantaneous attributes which identify 

changes in amplitude, frequency and phase tended to cluster together to reveal highly anomalous 

areas within the seismic. For example, the sweetness and envelope seismic attribute ranked as the 

highest attribute within the second eigenvector for IL 2391 (Figure 3-7). In Figure 3-7, 

“Percentage” represents the degree to which the attribute contributed towards that specific 

eigenvector whereas “Percent Total” lists the variance for each of the attributes from all of the 

eigenvectors. Sweetness and envelope appeared to contribute the most towards the second 

eigenvector while also representing 62.00% and 58.04% of the variance for all of the eigenvectors. 

This signifies that those two attributes captured a significant amount of the variability within the 

dataset. Following a similar workflow used for the second eigenvector, the highest-ranking 

attributes from the first few eigenvectors were chosen to be incorporated into the SOM analysis 

over the entire dataset. These attributes are the full-stack amplitude, envelope, Hilbert, cosine of 

instantaneous phase, relative acoustic impedance and sweetness. 
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RESULTS 

Once the SOM hyperparameters were optimized, I evaluate the number of attributes to use 

within the SOM model. This selection was determined through iterative PCA and SOM analysis. 

The optimized SOM model used the following instantaneous attributes: full-stack amplitude, 

envelope, Hilbert transform of the amplitude, cosine of instantaneous phase, relative acoustic 

impedance and sweetness. These attributes for the KK/LA SOM are shown in Figure 3-8a-f and 

Table 3-1 describes the definitions and uses of these attributes. 

 

KK/LA SOM Results 

The goal of the multi-attribute analysis is to qualitatively attempt to distinguish between 

high and low saturation gas reservoirs. The undersaturated Lisa Anne prospect exhibits a similar 

amplitude and seismic attribute response to the one observed for the higher-saturated King Kong 

prospect (Figure 3-8a-f). However, when using an unsupervised, multi-attribute analysis, the King 

Kong prospect can be differentiated from the undersaturated Lisa Anne prospect (Figure 3-9a-c). 

Figure 3-9a highlights two very bright amplitude anomalies known as the KK/LA prospects 

whereas Figure 3-9b shows the raw SOM result for the same line with all of the neurons 

highlighted. Figure 3-9c displays the SOM results displayed with the anomalous neurons of 

interest (Neurons 11 and 16). These neurons show the data points exhibiting a probability threshold 

of less than 10%, meaning that they only had a 0-10% chance of being classified within those 

clusters. By using this probability cutoff, the SOM highlights the highly anomalous data points 

that had less than a 10% chance of being grouped with the 25 candidate neurons, thereby displaying 

anomalous attribute responses. Other neurons grouped noise or different geologic features such as 

bedding, and other lithology variations. In Figure 3-9c, the top and base of the King Kong prospect 
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is well defined with the Lisa Anne prospect effectively suppressed and undefined. A 3D analysis 

revealed that the SOM results continuously follow the amplitude anomalies observed in the seismic 

data. This continues throughout the two reservoir intervals, with the King Kong reservoir extent 

clearly defined and the Lisa Anne extents remaining indiscernible (Figure 3-9c). 

 

Ursa SOM Results 

The KK/LA SOM model was then applied to the Shell Mississippi Canyon 3D seismic 

survey over the Ursa gas field, offshore Gulf of Mexico. I used the same seismic attributes that 

were used in the KK/LA SOM. The attributes for the Ursa SOM are shown in Figure 3-10a-f. Well 

log and AVO analysis from Hilterman (2001) revealed that one of the upper reservoir intervals 

was an LSG interval (Figure 3-4 and 3-10a). In Figure 3-10a-f, the LSG interval is marked by 

circle 1 whereas the productive hydrocarbon intervals are marked by circles 2-5. Looking at all of 

the attribute responses in Figure 3-10a-f, the LSG interval demonstrates a similar response to the 

higher hydrocarbon saturated reservoirs in the lower intervals. However, once all of the attributes 

were combined using the SOM, the LSG interval becomes significantly smaller and less 

continuous compared to the higher saturated hydrocarbon intervals (Figure 3-11a-c). The LSG 

interval appears significantly more continuous in the amplitude section of Figure 3-11a and the 

raw SOM section with all of the neurons highlighted whereas it is less apparent and discontinuous 

in Figure 3-11c. Figure 3-11c is the same SOM from Figure 3-11b with only the neurons of interest 

displayed with a probability threshold of 10% applied. The prolific hydrocarbon intervals below 

the LSG interval appear to be more continuous in the SOM result observed in Figure 3-11c. 

However, the LSG interval is still somewhat apparent in the Ursa SOM whereas the LSG interval 

is almost indiscernible in the KK/LA SOM (Figure 3-9b). A recent study by Batzle (2006) 
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conducted a detailed, 3D reservoir model using fluid substitution to better characterize the Ursa 

LSG interval. The report found that the Ursa LSG zone may have a higher saturation than was 

originally thought and could be a commercial hydrocarbon zone (Batzle, 2006). Therefore, this 

could be a reason why the Ursa LSG zone is still visible in the SOM results, albeit significantly 

less continuous than the other hydrocarbon intervals. Future work will involve obtaining well data, 

such as sonic logs, to better characterize the hydrocarbon intervals. 

 

Scarborough SOM Results 

Once the SOM was successfully applied to the KK/LA prospects and to the Ursa gas field, 

the model was then applied to the Scarborough gas field, offshore Australia. The same seismic 

attributes from the KK/LA and Ursa SOM are shown for the Scarborough gas interval in Figure 

3-12a-f. The seismic attributes taken over the Scarborough gas interval exhibit similar responses 

to one another, where the individual attributes provide no indication of varying gas saturation 

levels (Figure 3-12a-f). However, once the individual attributes are incorporated together into a 

SOM, the saturation of the Scarborough gas field can be better characterized (Figure 3-13a-c). A 

study by Ray et al. (2014) characterized the areal extent of the Scarborough reservoir by applying 

a Bayesian inversion on controlled source electromagnetic (CSEM) data and from five exploration 

wells and available 3D seismic coverage (Figure 3-5b). From their synthetic studies, they were 

able to map the outline of the Scarborough reservoir where gas saturation was higher than 50%. 

The Scarborough SOM result with a probability threshold of 10% applied appears to match quite 

well with the saturation outline proposed by Ray et al. (2014) (Figure 3-13c). However, a closer 

comparison between the amplitude section and SOM result reveals that they are quite similar to 

one another and map similar extents (Figure 3-13a-c). Therefore, it appears that the SOM model 
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is limited to better characterizing relative saturations between reservoirs in the same seismic 

survey. Future work will involve better characterizing the Scarborough gas interval to determine 

if there are higher saturation locations within the reservoir that would be optimal for further 

production. 

 

DISCUSSION 

Taking a closer look at individual neuron weights from the SOMs, some attributes appeared 

to represent the entire variability of the dataset while other attributes appeared to contribute only 

to an individual neuron to represent the amplitude anomalies. Overall, the clustering results from 

the KK/LA SOM revealed that the instantaneous envelope had a total independence of 35.2%, 

followed by sweetness with 33.9% and relative acoustic impedance with 12.9%. Total 

independence represents the weight that the attributes played during clustering over the entire 

dataset. Therefore, these three attributes clustered 82.0% of the data with the remaining attributes, 

such as the cosine of instantaneous phase, the Hilbert transform and the full-stack amplitude, 

further delineated these clusters to differentiate between low and high saturation gas reservoirs. 

Notice that while these three attributes represented 82.0% of the dataset, they were not always the 

most prominent within Neurons 11 and 16. Attributes such as the Hilbert, contributed nearly 30% 

towards Neuron 16 whereas it only represented 11.4% of KK/LA’s independent variability (Figure 

3-14a). Therefore, the Hilbert attribute played a significant role in classifying the anomalous 

amplitude responses in the KK/LA SOM. A similar relationship is also observed within the Ursa 

SOM where the instantaneous envelope, sweetness and relative acoustic impedance, represented 

60% of the data’s variance compared to the cosine of instantaneous phase, the Hilbert and the full-

stack amplitude, which represented the remaining 40% (Figure 3-14b). Yet, these three attributes 



73 

did not always have the highest neuron independence. Notice how the Hilbert transform 

contribution to Neuron 20 of the Ursa SOM contributed over 25% towards that cluster whereas it 

only represented 14.3% of Ursa’s independent variability (Figure 3-14b). This same observation 

also occurs for Neurons 11 and 16 in the KK/LA survey (Figure 3-14a). 

However, when looking at the Scarborough SOM clustering results, an opposite 

relationship is observed from the KK/LA and Ursa SOMs (Figure 3-14c). Seismic attributes such 

as the cosine of instantaneous phase, the full-stack amplitude and relative acoustic impedance now 

represent approximately 85.7% of the independent data’s variability when this relationship was 

the inverse in the KK/LA and Ursa SOMs (Figure 3-14c). Yet these attributes consistently 

contributed the most towards classifying anomalous amplitudes in Neurons 21, 24 and 25 while 

the other attributes complimented the classification (Figure 3-14c). In fact, now we observe that 

attributes such as sweetness and the instantaneous envelope represented 0% of the independent 

data’s variability and played a minor role in the individual neuron classifications. These null values 

indicate that the KK/LA and Ursa SOM is not properly optimized for the Scarborough gas field 

(Figure 3-14a-c). These SOM differences could be attributed to different amplitude responses from 

two different basins, meaning that the amplitude responses with the Gulf of Mexico are different 

than the amplitudes in the Scarborough gas field. These differences could be due to different burial 

histories and pressure regimes (Avseth et al., 2013; Chopra and Castagna, 2014). They could also 

be due to differences in fluid saturations, such as gas and brine (Han and Batzle, 2004; Avseth et 

al. 2013). Based on these results, the SOM models are only optimized for the within the Gulf of 

Mexico, as was noted within the KK/LA and Ursa fields (Figure 3-9c and 3-11c), whereas a new 

combination of attributes is required for the Carnarvon Basin, as was observed within Scarborough 

SOM (Figure 3-13c). Additionally, it is important to note that these SOMs all used a probability 
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threshold of 10% to better represent the anomalous data points within the neurons. Therefore, these 

neurons are highlighting the data points which only had a 0-10% chance of being classified within 

those clusters. This probability threshold of the model further enhances the visualization 

capabilities for the interpreter as it allows them to better capture the highly anomalous responses 

within the data which is not necessarily easily visualized through seismic amplitude and attributes 

profiles. 

Studies from Taner (1979), Taner (2001) and Chopra and Marfurt (2005) noted that 

instantaneous envelope is useful for highlighting lithology, porosity and hydrocarbons since the 

attribute is sensitive to subtle changes in acoustic impedance. Additionally, the instantaneous 

envelope attribute is derived using the Hilbert transform to illustrate the signal’s instantaneous 

energy, which means that it is also using the complex portion of the seismic trace (Taner et al., 

1979; Chopra and Marfurt, 2005). Therefore, this attribute could be effective for capturing the 

subtle amplitude differences between low and high-saturation gas reservoirs within both the real 

and imaginary seismic trace. When the instantaneous envelope is used in combination with other 

attributes that are good for identifying DHIs, such as sweetness and relative acoustic impedance, 

the SOM can qualitatively differentiate between high and low gas saturations in the KK/LA and 

Ursa fields (Figures 3-9a-c and 3-11a-c). Additionally, attributes such as Hilbert and the cosine of 

instantaneous phase that are useful for analyzing AVO anomalies and highlighting bed continuity 

respectively could be further complimenting the other attributes to better classify the anomalous 

amplitude responses within the SOM (Taner et al., 1979; Chopra and Marfurt, 2005). However, 

this method proved to be limited in the Scarborough gas field as the results yielded limited 

qualitative information about reservoir saturation (Figure 3-14a-c). Yet, the Scarborough SOM did 
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manage to highlight the amplitude anomaly created by the gas fairly well. More work is needed to 

optimize the SOM model for the Scarborough gas field.  

Finally, another important note to consider for LSG is detailed consideration of 

containment. Most LSG is in a sprung trap – a gas accumulation that leaked from seal failure and  

residual gas remains (5% to 25% gas saturation) (O’Brien, 2004; Hilterman, 2001; Wojcik et al., 

2016; Foschi and Cartwright, 2020). O’Brien (2004) noted that hydrocarbon leakage up the 

regional normal fault may have been possible for the Lisa Anne prospect. His observed shallow 

bright spots due to gas pockets and water bottom coring (O’Brien, 2004). While this does decrease 

the risk hydrocarbon migration, it does suggest an increased risk in containment (O’Brien, 2004). 

Furthermore, while Hilterman (2001) did not discuss seal integrity in detail, Wojcik et al. (2016) 

note the importance of incorporating seal risking analysis within other turbidite reservoirs within 

the Gulf of Mexico. Finally, Foschi and Cartwright (2020) observed seal failure within the 

Scarborough gas field and characterized a 100 km2 (38 mi2) wide leakage zone with more than 500 

pockmarks. This suggests that there could be some LSG prone regions within the field. However, 

many of the wells within the field have considerably large gas saturations (Han et al., 2018). When 

looking at the SOM results, this is not readily apparent, especially in the case of the unoptimized 

Scarborough SOM result (Figures 3-9c, 3-11c, and 3-13c). However, seal failure analysis has 

shown promising results for further characterizing LSG reservoirs and future work would 

incorporate a detailed seal analysis of the discussed reservoirs (Laiw, 2011; Wojcik et al., 2016; 

Foschi and Cartwright, 2020). 
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CONCLUSIONS 

Preliminary results suggest that instantaneous attributes which detect changes in the 

amplitude, frequency and phase tend to cluster together in the PCA to reveal highly anomalous 

areas within the 3D seismic data volume. SOM results highlighted the top and base of the King 

Kong prospect while the Lisa Anne LSG prospect remained undetected, showing that there is a 

noticeable difference between both prospects (Figure 3-9c). Upon applying the KK/LA SOM to 

the Ursa gas field, the  

SOM showed that the Ursa LSG interval becomes significantly suppressed and less 

continuous compared to the higher saturated hydrocarbon intervals present within the lower 

intervals (Figure 3-11c). Although the Ursa LSG interval is still apparent in the SOM whereas it 

was almost indiscernible in the KK/SOM, a study by Batzle (2006) found that the LSG zone may 

have a higher saturation than was originally thought and could be a commercial hydrocarbon zone. 

Although these results may not give a definitive saturation result, it does highlight a stark 

difference between both prospects.  

However, it appears that the method is limited to only differentiating between relative 

hydrocarbon saturations within the same seismic survey. Upon further analyzing the neuron 

clusters, attributes such as the instantaneous envelope and sweetness represent 0% of the 

independent data within the Scarborough SOM (Figure 3-14a-c). This suggests that the 

combination of attributes is unoptimized for the Scarborough SOM. This is most likely due to the 

Scarborough gas field having a different amplitude response resulting from a different burial 

history and fluid saturations when compared to the Gulf of Mexico (Avseth et al., 2013; Chopra 

and Castagna, 2014).  
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In the instance of a neighboring prospects (as was the case with the KK/LA prospects) or 

for stacked reservoir systems (such as the Ursa gas field), these results can further be incorporated 

in hydrocarbon exploration risking to better understand DHIs in the subsurface and prevent 

uneconomic wells from being drilled. Individually, some of these attributes have no success in 

differentiating between high and low saturation gas prospects. However, employing a multi-

attribute analysis provides clearer insight and confidence into delineating between high and low 

saturation gas reservoirs. Although not currently available, supplementary research will 

incorporate seismic gathers, angle stacks, and well data into this method to further improve results. 
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FIGURES 

 

Figure 3-1: Change in rock properties with increasing gas saturation. The bulk modulus quickly 

decreases with a relatively small amount of gas saturation. This bulk modulus similarity between 

low and high gas saturation is the crux of the LSG gas differentiation problem. 
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Figure 3-2: Location of the 3D seismic surveys used in this study. Two of these datasets are 

located A) offshore Gulf of Mexico while the other dataset is located B) offshore Australia within 

the Northern Carnarvon Basin. Gulf of Mexico protraction grid and seafloor outlines taken from 

the BOEM. 
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Figure 3-3: Inline 2913 taken through the KK/LA 3D seismic survey across the King Kong and 

Lisa Anne wells over Green Canyon Block 473 and 474, offshore Gulf of Mexico (modified from 

O’Brien, 2004). 
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Figure 3-4: Inline 2804 taken through the Ursa Field 3D seismic survey. The hydrocarbon 

intervals and a synthetic from Hilterman, 2001 are highlighted on the seismic section. Notice how 

the amplitude for the LSG interval exhibits a similar response to the other hydrocarbon producing 

intervals (modified after Hilterman, 2001). 
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Figure 3-5: A) Horizontal time slice taken at 2.169 s through the Scarborough 3D seismic survey 

displaying the high amplitude anomaly of the Scarborough gas field. B) CSEM study by Ray et al. 

(2014) where they defined the 50% gas saturation outline within the Scarborough gas field. C) 

Interpreted arbitrary seismic section highlighting the Scarborough gas anomaly, key horizons and 

wells used for this study. 
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Figure 3-6: Iterative SOM workflow used to evaluate the accuracy and effectiveness of each SOM 

result. Several combinations of instantaneous attributes and SOM parameters were evaluated. 
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Figure 3-7: PCA results for Inline 2391 of the KKLA 3D seismic survey. The highest-ranking 

attributes from the first few eigenvectors were chosen to be incorporated into the SOM analysis 

over the entire dataset. These attributes were envelope, hilbert, the cosine of instantaneous phase, 

relative acoustic impedance, and sweetness. These attributes were also combined with the full-

stack amplitude. 
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Figure 3-8: All of the attributes from PCA that were used as an input into the KK/LA SOM where 

A) is the full-stack amplitude B) is the envelope, C) is the Hilbert, D) is the cosine of instantaneous 

phase, E) is the relative acoustic impedance, and F) is the sweetness. The saturated King Kong 

Reservoir is shown by the black and orange arrows whereas the undersaturated Lisa Anne prospect 

is shown by the red arrow. 
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Figure 3-9: A) Post-stack seismic amplitude vertical profile of Inline 2391 illustrating the King 

Kong and Lisa Anne prospects with B) showing the raw SOM result with all of the neurons 

displayed. C) Shows the same SOM result with only the neurons of interest displayed with a 

probability threshold of 10% applied. Here, the SOM marks the top and base of the King Kong 

prospect (black arrow) while not highlighting the Lisa Anne prospect (red arrow). This 

demonstrates that the SOM was able to differentiate between a high and low saturation gas 

reservoir. 
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Figure 3-10: All of the attributes from the KK/LA PCA that were used as an input into the Ursa 

SOM where A) is the full-stack amplitude B) is the envelope, C) is the Hilbert, D) is the cosine of 

instantaneous phase, E) is the relative acoustic impedance, and F) is the sweetness. The LSG-prone 

interval is shown by circle 1 whereas the hydrocarbon intervals is shown by circles 2-5. LSG and 

hydrocarbon intervals modified after Hilterman, 2001. 
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Figure 3-11: A) Post-stack seismic amplitude vertical profile of Inline 2804 illustrating the LSG 

interval and hydrocarbon intervals within the Ursa gas field whereas B) shows the raw SOM results 

of that same line. C) Shows the same SOM result with only the neurons of interest displayed with 

a probability threshold of 10% applied. In this window, the hydrocarbon intervals are better 

highlighted whereas the LSG interval is significantly suppressed. This demonstrates that the SOM 

was able to differentiate between a high and low saturation gas reservoir. LSG and hydrocarbon 

intervals modified after Hilterman, 2001. 
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Figure 3-12: All of the attributes taken at time slice 2.169 s from the KK/LA PCA that were used 

as an input into the Scarborough SOM where A) is the full-stack amplitude B) is the envelope, C) 

is the Hilbert, D) is the cosine of instantaneous phase, E) is the relative acoustic impedance, and 

F) is the sweetness. 
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Figure 3-13: A) Post-stack seismic amplitude time slice at 2.169 s illustrating the amplitude 

anomaly within the Scarborough gas field whereas B) shows the raw SOM results of that same 

time slice. Shows the same SOM result with only the neurons of interest displayed with a 

probability threshold of 10% applied. In this view, the entire extent of the gas reservoir is 

highlighted. This boundary coincides well with Ray et al. (2014)’s 50% saturation line. However, 

this method proved to be unsuccessful within this survey as it did not give us any qualitative 

information regarding gas saturation throughout the reservoir. 
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Figure 3-14: Neuron clustering results from A) the KK/LA SOM, B) the Ursa SOM and C) the 

Scarborough SOM. 
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TABLES 

 

Table 3-1: Definitions, uses and sources for all of the attributes presented within the LSG study. 
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Table 3-2: Details for all of the seismic surveys used within the LSG study. 
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APPENDIX A 

 

Initial KK/LA SOM Results and Final KK/LA SOM Results 

This appendix shows the difference between the initial SOM for the KK/LA survey. The 

initial SOM was trained for 50 iterations, used 36 neurons with the full-stack amplitude and with 

the following combination of instantaneous attributes: acceleration of phase, attenuation, 

bandwidth, envelope, envelope slope, and instantaneous Q (Appendix A, Figures 1d-e). These 

attributes were selected from the initial PCA results. Notice how the initial SOM was also 

computed over a larger portion of the survey from 1.5 s to 5.5 s. The final SOM was trained for 50 

iterations, used 25 neurons with the full-stack amplitude and used the following combination of 

instantaneous attributes: envelope, Hilbert, cosine of instantaneous phase, relative acoustic 

impedance and sweetness (Appendix A, Figures 1b-c). The final SOM was also computed over a 

smaller interval from 3.4 s to 5.0 s. The smaller interval of the final SOM allows the algorithm to 

focus on the anomalous features rather than some of the other more common features found 

throughout the survey, such as continuous geology or faults. Note that while the King Kong 

prospect is relatively well highlighted, the Lisa Anne prospect is not as well suppressed in the 

initial SOM compared to the final optimized SOM (Appendix A, Figures 1b-e). The improvement 

in the SOM results can be directly attributed to a better combination of attributes, a smaller number 

of neurons and a smaller computation interval.  
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Appendix A, Figure 1: A) Post-stack seismic amplitude vertical profile of Inline 2391 

illustrating the King Kong and Lisa Anne prospects with B) showing the raw SOM result with all 

of the neurons displayed. C) Shows the same SOM result with only the neurons of interest 

displayed with a probability threshold of 10% applied. D) Shows the initial raw SOM results 

whereas E) highlights the interpreted initial SOM results with a probability threshold of 10% 

applied. Note the improvement in the results from the initial SOMs in D and E compared to the 

optimized SOM in B and C. 



99 

4. CHAPTER 4: Conclusions 

Throughout this thesis, I applied and evaluated PCA and SOMs for better characterizing 

gas in the subsurface. Individually, some of these attributes have minimal success in identifying 

the seismically transparent hydrates or differentiating between HSG and LSG. However, 

employing a multi-attribute analysis provides clearer insight and confidence into the identification 

and distribution of gas hydrates as well as discriminating between HSG and LSG. While the 

method proved to be transferrable for imaging strong and weak BSRs, it was not as readily 

transferrable when discriminating between HSG and LSG. This suggests that each SOM model 

should be optimized for each imaging goal.  

In Chapter 2, I further characterized the presence of hydrates in the subsurface by 

improving the detection of weak BSRs. This was accomplished by using PCA to select the most 

optimal attributes to be incorporated into the SOM. Once this was done, I then evaluated the 

optimal hyperparameters for the SOM, such as neuron count, number of attributes and epochs. 

This was done to ensure computational efficiency while maximizing the imaging capabilities of 

both strong and weak BSRs. Additionally, we evaluated the transferability of this method by 

applying the SOM on a different seismic survey within the Pegasus Basin. I was able to confirm 

the same strong and weak BSRs in both surveys, further proving the transferability of this method. 

From these studies, I found that both types of BSRs are better identified when using instantaneous 

attributes such as instantaneous frequency, sweetness and thin bed, which compliment AVA 

attributes such as gas indicator and fluid factor. 

In Chapter 3, I evaluated the viability of using this proposed method for distinguishing 

between HSG and LSG within two 3D seismic surveys within the deepwater Gulf of Mexico and 

within another 3D seismic survey within the Carnarvon Basin, offshore Australia. This 
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methodology was successful within the deepwater Gulf of Mexico, however, yielded limited 

results within the Carnarvon Basin. This could only be accomplished by looking at various 

probability thresholds within the clustering results. By using this probability cutoff, the SOM is 

displaying the highly anomalous data points that had a 10% chance of being grouped within that 

neuron. Therefore, these anomalous data points are displaying the anomalous amplitude responses. 

My neuron analysis also revealed that some attributes represented 0% of the Scarborough gas 

field’s independent variability. This suggests that the SOM models are only optimized for the 

within the Gulf of Mexico, as was noted within the KK/LA and Ursa fields, whereas a new 

combination of attributes is required for the Carnarvon Basin. 

Supplementary research will focus on applying obtaining well information and any other 

data types to better understand the SOM cluster results. This will provide a better understanding 

of the geology, further highlighting possible relationships with the geophysical properties of the 

prospects. Additional work will also optimize the Scarborough SOM to identify potential favorable 

drilling locations based on anomalous SOM clustering. Also, further research will incorporate 

containment analysis to better understand the sealing behavior of these LSG reservoirs. Finally, 

future work will also extend these methods into other basins around the globe, such as other LSG 

prone regions to test the viability of this method as a universal technique. 

Future research could also focus on evaluating the hydrate SOM workflow within 

permafrost regions. Many hydrate accumulations are located in permafrost regions, with some of 

the most prominent situated in Northern Alaska and at the Mallik Site in Northwestern Canada 

(Riedel et al., 2010). My research focused solely on hydrates located in marine settings which has 

a significantly different depth and pressure regime for the gas hydrate stability zone when 

compared to permafrost regions (Riedel et al., 2010). Therefore, would the same SOM workflow 
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apply for characterizing weak BSRs in permafrost regions? Or would the SOM need to be 

optimized for this different geothermal regime? This would make for an interesting study to 

evaluate the possible limitations for the hydrate SOM. Furthermore, while these methods have 

only been tested in specific regions for characterizing anomalous amplitude responses, they could 

show promise for other seismic classification applications. There have been several studies that 

have shown the promise of using SOMs for classifying seismic facies in various basins globally 

(Roy et al., 2013; Zhao et al., 2016; Lubo-Robles et al., 2017; Ha et al., 2019). Finally, how would 

other supervised and unsupervised machine learning algorithms compare to the SOM results. 

There are many other algorithms that may be more robust than SOMs, such as probabilistic neural 

networks and generative topographic maps, that could further improve my presented results (Roy 

et al., 2014; Zhao et al., 2015b; Lubo et al., 2019). 

Finally, other unsupervised, machine learning algorithms may be more effective for better 

characterizing the anomalous amplitudes presented within both studies. Chopra and Marfurt 

(2018) noted that SOMs have several limitations. There is no theoretical basis for selecting the 

optimal training radius, neighborhood function, and learning rate as these hyperparameters are data 

dependent (Chopra and Marfurt, 2018). Therefore, these hyperparameters will be different for each 

dataset. Furthermore, there is no cost function. This function could be iteratively minimized to 

determine the point at which the iterations converge during the classification process, thus 

indicating the optimal number of iterations for the SOM to run (Chopra and Marfurt, 2018). 

However, generative topographic mapping (GTM) overcomes these limitations. GTM, is another 

nonlinear, dimensionality reduction technique that also provides a probabilistic representation of 

the data vectors in latent space (Chopra and Marfurt, 2018). While SOMs seek the cluster that is 

closest to a given data point, GTM will also provide some mathematical support for that data point 
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belonging to that cluster (Zhao et al., 2015b). Therefore, GTM outputs probability estimates of 

how similar or different and cluster is to attribute behavior (Zhao et al., 2015b). Finally, another 

unsupervised, machine learning algorithm that could be used are gaussian mixture models 

(GMMs). Similar to GTM, GMMs overcome several of the SOM limitations since GMMs are 

parametric models of probability distributions that provide better flexibility and precision in 

modelling when compared to traditional, unsupervised clustering algorithms (Lubo et al., 2014; 

Zhao et al., 2015b). 
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