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ABSTRACT

Rock mechanics play an integral role in drilling wellbores in the oil and gas
industry. Cost of drilling can be increased by issues such as hole enlargement or collapse,
lost circulation of drilling fluids, and unintentionally induced fractures. An integrated
geomechanical model can be used, prior to drilling the wellbore, to help identify and avoid
these costly occurrences. A detailed analysis of datasets from well log data were used to
create a 1-D geomechanical model for the Fasken C Ranch, Fee BI #307 well. Calculated
geomechanical curves were generated as inputs and a wellbore stability model was created
determining breakout and loss thresholds for the well. The model was able to accurately
predict intervals of potential wellbore breakout, as well as estimate a potential fluid weight
window used for optimal drilling parameters through identified problematic section of
stratigraphy. Predicting these thresholds builds confidence in the planned drilling
parameters. It allows for cost effective decisions, minimizing the risk of problematic
intervals in the drilling process. It also suggest a safe casing depth for an intermediate
casing shoe based on the breakout thresholds. Developing pro-active approaches to
wellbore instability can save capital in the field development and lead to further study

utilizing the calculated geomechanical variables.



TABLE OF CONTENTS

DEDICATION ..ottt e e e e e e e e e e e e s s e bbb raaeeeeesannnnees 1
ACKNOWLEDGEMENT ...t e e a e e e e s 2
AB ST R A CT oottt e e e e e e e e e e e e e raaaeaean s 3
TABLE OF CONTENTS ...ttt e e e e e s 4
LIST OF FIGURES ...ttt e e e e et e e e e e e e e e nnnnees 7
LIST OF TABLES. ... .o e e e e s 12
CHAPTER I INTRODUCTION ..ottt e e enanen e 13
2.1 EIBSTIC PrOPEITIES .. .eeeuieiieiieiiei ettt 17
2.1.1 Static Properties vS DynamicC Properties ..........ccccevvveriienieeiiie e 17
2.1.2 Young’s Modulus (E)......c.cooueiiiiiiiiiiiiie e 18
2.1.3 POISSON’S RALIO (V) vvevvieiieeiie ittt 19
2.1.4 Shear ModUIUS (G).....cooveiiiiiiie et 20
2.1.5 BUIK MOAUIUS (K) .ooeveeeciiie et 21
2.1.6 Derivatives of EIastiC Properties........ccccccvveeivveeiiieeiie e see e 21
2.2 IN Situ StresS COMPONENES .....cvvveeiieeeiiee e e see e see e e e e e 23
2.2.1 OVErburden StrESS (Ov) «oovvreerrrreiirreiiieeeiieeesieeesieeesseeesseeesseeesnseeessnes 25
2.2.2 Minimum Horizontal StreSS (0h) ...veeeveeeiieeeiieeeiieeesiee s s see e 25
2.2.3 Maximum Horizontal StreSS (OH).....coveeeivreiiireeirieeiieeesieeesieeesiee e 28
2.2.4 Biot’s Elastic CONSLANT (1) +.eevvvvreiirreiiieeiiieesiieeesiieeesieeesieeesneeessne e 29
2.2.5 SIreSS OFBNTALION .......eiiieiiieiie ettt 31
2.3 ROCK Strength (UCS) ....vveiiiee et 31
2.3.1 Correlations 0f UCS .........coiiiiiiieiiiee e 32
2.3.2 Friction ANQIE (@) .oecovveeiiie ettt 35
CHAPTER HI: LITERATURE REVIEW .....coiiiiiiiiie e 38
3.1 POre PressUre (PP)....eee oottt 38
3. 1.1 Bower’'s Method........coooooiiiiii 38
3.1.2 Eaton’s MEthOU.......cccoiiiiieiice e 40
3.1.3 Pore Pressure from WEell LOQS ........vveiivieeiiiec e 42
3.2 Failure Criteria and MeChaniSmS ..........ccecvuveiieiiieiiie e 43
3.2.1 MONI COUIOMD.....eiiiiiiiee e 44



3.2.2 MOQi COUIOMD ... 45

3.2.3 MOGITIEA LAUR......eeeeeiie ettt nee e 47
3.2.4 Overall COMPAIISONS.......cccuveiiieiieiiie sttt 48
CHAPTER IV: GEOMECHANICAL MODEL FEE Bl #307 .....ccccooveviieiiie e 49
4.1 STUAY AT ...ttt ettt 49
4.2 WEI OVEIVIBW ..ottt e et e et e et e e e e st e e nnnaee s 52
4.2 Data Gathering ......cccveeiiieiie et 54
42,1 LOQG DALA ....ccoiiiieiiii et 55
4.2.2 COre Data......ceeeeiiiiiiie et 56
R B O 1 1= A B - OSSPSR 58
A.2.4 TMAJE LOG . ittt 59
4.2.5 QUAlILY CONLIOL .....veeiiiiiii e 61
4.3 Mechanical Earth Model WOrKflow ...........ccooveiiiiiiiee e 62
A4 OVEIDUITEN ...ttt e e et eennnee e 62
4.5 EIQStIC PrOPEITIES ....vveeiiiieeiiiecciee ettt st e e eaee e e e snee e 64
4.5.1 Young’s modulus (E) .....coovveiiiieiiiie e 64
4.5.2 POiSSON’S RALIO (V) 1vveivireiiiieeiiiieesiieeesieeesieeesiva e sine e stae e s e e e sniaeesneee s 65
4.5.3 BUIK MOAUIUS (K) .evveiiiieeiiie et 66
4.5.4 Shear MOAUIUS (G) ...ccvvveiiiie e stee et 67
4.6 ROCK Streangth (UCS).......coiiii e 68
4.7 FaCies BreaKdOWN ..........ooiiiiiiiiiiieciceee et 72
4.8 Geologic FOrmation TOPS.......ccicvreeiiieeciee e 76
4.9 POre PreSsSUre (PP)...veeeiciee e e e see e stee s te e st e e se e stae e e saaeeanee e 78
4.10 Minimum HOrizontal StreSS (0h) ....covveeerreeiiiieeiiir e siee e 80
4.11 Loss and Breakout Thresholds...........cccooviiiiiiiiiiieie e 82
4.12 CrOSS PIOTS ....eiiiiiiiie sttt 87
CHAPTER V.ot e e e t ettt et e bbb 90
5.0 DISCUSSION AND CONCLUSIONS.......cccooiiiiiieiie e 90
5.1 Recommendations for FUtUre WOork............cccocvovieiiieniesnie e 94
5.2 Image of Final Model.............coooiiiiiie e 95
REFERENGCES ...ttt e b s 96
APPENDIX .ottt ettt re e 106



Appendix A: List OF EQUELIONS .......ccvviiiiiiieiieeiieseesee e 106
Appendix B: List 0f Variables ... 108
Appendix C: Conversion TabIesS..........cccviiiiiiiiiii e 112
Appendix D: Facies Python Code..........ccoovieiiiiiiiiiiciiiere e 113



LIST OF FIGURES

Figure 1: Oil and gas production in Ector Co., TX on July 28th, 2020, for the month of
July 2020 (ShaleXP.com, 2020).......cccuuiiiieiiieiiesiie st 13
Figure 2: Average price of WTI crude oil for the month of July 2020, portraying ~$41.01
average price per barrel of oil (Rotrends.net, 2020)..........ccccoeiiiiiieniiiiieiie e 14
Figure 3: In-situ principal stress example for a drilled vertical well..................c....coc... 24
Figure 4: Representation of a diagnostic fracture injection test and the corresponding
points of interest one can glean from it. This includes a minimum horizontal stress point,
a pore pressure point, a FIP (fracture initiation point), as well as an ISIP (initial shut in
PIESSUIE) POINL. .utieittietie ettt ettt ettt ettt b et e bt e e e et e e b e nbe e 27
Figure 5: Graphical representation of estimation of Biot based on lithology and effective
porosity of that lithology from log (Crain, 2000)..........cccvveiriiieiiiie e 30

Figure 6: Internal friction angle correlations compared to test data (Chang et al., 2006).

Figure 7: Graphical representation of determining friction angle from gamma ray data
(AIBUKNAri €t al., 2018)....cccviieiiiee e 37

Figure 8: Overburden and pore pressure gradients and effective stress (Formento, 2004).

Figure 9: Pore pressure, overburden stress, and effective stress versus the true vertical
depth (TVD) in a deep water well in the Gulf of Mexico (Zhang, 2013)..........c..ccccvee..ne. 43
Figure 10: Example of Mohr Circle with arrow demonstrating the moment of failure,

modified from (Zhang, 2013)......ccoiiiiiieiiiiie e 44



Figure 11: Map view of the study area in Fasken C Ranch. Red star indicated the Fee Bl
#307 well used in the model and the other two wells are offsets used to correlate tops. ..49
Figure 12: Super sequence correlation from a global, to basinal, to well log level

portraying major geologic formations and their correlative lithologies from Ulmo (2018).

Figure 13: Image of the well location of Fee Bl #307 well location from the Texas
Railroad Commission (RRC, 2020). ......coouiiiiiiiieiieeiiie e 52
Figure 14: Different wireline logs along with computed well log curves, and machine
learning facies of Fee BI #307 well. The computed well logs curves include, Young’s
modulus (YME), Poisson’s ratio (PR), bulk modulus (BM), shear modulous (SM),
uniaxial compressive strength (UCS). The available core measured data points are posted
on the corresponding well log curve track. Notice that the well log velocities, and density
are approximately same as their core measured Values. ...........cccccovveiiive e, 57
Figure 15: Log curve of caliper for the offset Fee BM #1 SWD well highlighting
potential borehole breakout intervals of borehole enlargement...............ccccoeviiveiiinenee. 59
Figure 16: Sections of the image log taken for the Fee BI #307 well highlighting drilling
INAUCE TraCtureS (DIF) . ... e 60
Figure 17: Processed FMI rosette provided by Fasken portraying the plane for minimum
horizontal stress direction 0f 80° - 90° / 260°-270°. .......ccoueiieiiiiiiieiieiee e 61
Figure 18: Example workflow used to build the wellbore stability model for the Fee Bl
HB0T WEIL ..t 62

Figure 19: Example of calculated overburden CUrVe...........cccceeviiiiiie i 63



Figure 20: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed Young’s modulus curve as along with core measured
Young’s modulus data POINES. ........ceeiiviiiiiiiiiiie it 65
Figure 21: Different well log curves of Fee BI #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed Poisson’s ratio curve as along with core measured
Poisson’s ratio data points in log view along with the facies model. ................ccccvvvvenenn. 66
Figure 22: Different well log curves of Fee BI #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed bulk modulus curve as along with core measured bulk
modulus data points in log view along with the facies model. ...........c..ccccooeviiiiiinenen. 67
Figure 23: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed shear modulus curve as along with core measured
shear modulus data points in log view along with the facies model. ................ccccove 68
Figure 24: Three calculated UCS curves with quality control data points from core. .....70
Figure 25: Gamma ray log curve of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed UCS curve as along with core measured UCS data

points in log view along with the facies model. .............cocoooviiii e, 71



Figure 26: Printed optimized facies classification accuracy percent for the Fee Bl #307
facieS SVM geNEIratiON SCIIPL. .....eeiueieiieiiieeiee ettt 72
Figure 27: Printed log view with facies column using python for the Fee BI #307 well. 73
Figure 28: Zoomed in view of all geomechanical logs along with corresponding facies

(010 ] [0 1RSSR 74
Figure 29: Facies classification key for calculated facies used on the Fee BI #307 well in
11 0T 3 1110 0 [ S STRTR 75
Figure 30: Map view, with scale, of the correlated geologic tops on the Fasken C Ranch
dataset, including the Fee BI #307 well used in this model................cccoeeviiiiiiiin, 76
Figure 31: Cross section view of the geologic tops on the Fasken C Ranch dataset,
including the Fee BI #307 well used in this model. ...........ccoovveviiiiiiie e 77
Figure 32: Associated depths of formation tops correlated on the Fasken C Ranch
dataset, including the Fee BI #307 well used in this model............c...cccoeeviiiiiiieinn, 78
Figure 33: Visualization of pore pressure and overburden calculated curves used in this
MOUEL UNIES 1S PSI. uvveeiiiiieiiii e ettt e e et e e e et e et e et e e s e e e st e e e enraeeanneas 79
Figure 34: Visualization of minimum horizontal stress calculated curve. Units is psi. ...81
Figure 35: Visualization of calculated loss threshold curve. Threshold units in ppg. .....83
Figure 36: Visualization of calculated breakout threshold curve, safe mud weight
window, and accompanying examples of wellbore complication risks. .............cc..c....... 84
Figure 37: Example of necessary curves to run a Mohr Coulomb, Mogi Coulomb, and
modified Lade breakout curve using the wellbore stability modeling module used in this

[ 000T0 <] RO PPTT 85

10



Figure 38: Example of calculated breakout threshold, loss threshold, and safe mud
weight windows; Along with offset caliper data, and facies logs, to help quality control
the calculated breakout and 10Ss thresholds. ..o 86
Figure 39: Cross plot of compressional and shear sonic log data colored by facies with
AN T2VAIUE OF 0.94. ..ottt ettt n ettt en et ene s 88

Figure 40: Cross plot of UCS and Young’s modulus colored by facies with an r? value of

0.90 and attributed best fit curve values. .............ccocooiiiiiiiiii, 88
Figure 41: Cross plot of Young’s modulus and Poisson’s ratio colored by facies. ......... 89
Figure 42: Cross plot of UCS and Poisson’s ratio colored by facies. ...........ccccocvvernennn. 89

Figure 43: Example of calculated breakout threshold, loss threshold, and safe mud
weight windows; Along with offset caliper data, and facies log, visualizing the potential
problematic intervals while drilling. Thresholds units in ppg. .....ccccovveevieeeviiee e, 91
Figure 44: Example of zoomed in view of full model demonstrating accurate depictions

of breakout and loss curve trends in relation to logs and facies Curves.............cccccceve..ne. 92

11



LIST OF TABLES

Table 1: Table showing elastic properties and their relationships to each other (Mavko et
L0101 ) TR 22
Table 2: List of basic lithologic rock types and the corresponding rock strength

estimations (Zhang, 2020). ........ooiiiiiieii e 33
Table 3: Various correlations for UCS and log based curves, red boxed equations used in
analysis (Najibi et al., 2014). Vp is in km/s, E is in GPa, and UCS is in MPa.................. 34
Table 4: Various correlations for UCS and log based curves, red boxed equations used in
analysis (Zhang, 2020). Ve is in km/s, E is in GPa, p is in g/cm3, and UCS is in MPa. ...34

Table 5: Examples of lab calculated correlations of internal friction angle for shales and

sands (Chang et al., 2006). Vp iS IN KM/S. ....viiiiiieiiiecciee e 35
Table 6: Surface hole location and well information for Fee BI #307 well..................... 53
Table 7: Surface hole location and well information for Fasken ‘32° #1 well................. 53
Table 8: Surface hole location and well information for Fasken ‘32° #1 well................. 54

Table 9: Table describing the available log data, aliasing, and start depths of the digital
log data for the Fee BI #307 WEIL. .......ccvviiiiiieiee e 55
Table 10: Table describing the available core data points for the Fee BI #307 well. ...... 56
Table 11: Table describing the surface location and well data for the Fee BM #1 SWD
WBILL bbbt 58
Table 12: Table referencing conversions to and from metric and imperial unit of

measurement systems (Zhang, 2011). ......ccooiuireiiire i 112

12



CHAPTER I: INTRODUCTION

In July 2020, shale exp.com reported Ector County, TX as the #44 ranked oil
producing county nationally; producing over 1.5 million barrels of oil (Figure 1). That is
equivalent to over 63 million dollars in production for one month of completing wells, at
42 dollars per barrel average on July 27", 2020 (Figure 2). Given the dollar value of oil
production, it is both crucial and prudent to garner as much information as possible to
optimize the capital used when operating wells in this area of study. One such path to
achieve this goal is using geomechanical modeling. In understanding how the rock breaks

one is able to glean much insight into components of the reservoir being produced.

@ / Oil & Gas Data for Texas / Ector County, TX Oil & Gas Summary

OIL PRODUCTION “ GAS PRODUCTION q TOTAL BOE (16:1) q

1.5M BBLs 3.9M McCF 1.7M BBLs

Total County Oil Production for Mar 2020 Total County Gas Production for Mar 2020 Total County BOE Production for Mar 2020

ECTOR COUNTY, TX IS RANKED

#44

NATIONALLY IN OVERALL PRODUCTION

ECTOR COUNTY, TX IS RANKED

#20

STATEWIDE IN OVERALL PRODUCTION

Figure 1: Qil and gas production in Ector Co., TX on July 28th, 2020, for the month of

July 2020 (ShaleXP.com, 2020)
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Figure 2: Average price of WTI crude oil for the month of July 2020, portraying ~$41.01

average price per barrel of oil (Rotrends.net, 2020).

Geomechanics is a diverse field of study with many applications, while this thesis
focuses on building a wellbore stability model, there is a myriad of other research done in
the Permian Basin using geomechanics. Zheng et al. (2018) researched production based
stress changes and their impact on wellbore stability. They demonstrated that as depletion
and reservoir pressure changes with field development, so will the effective principal
stresses. This particular is insightful due to the years of vertical well production in the
Permian Basin. Wang and Weijermars (2019) specifically researched failure criteria in a

lateral wellbore sense; observing elastically anisotropic shales and how they fail. Since
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horizontal drilling is a new normal, this has implications on both drilling the well,
understanding when the surrounding rock may collapse and fail, along with completing the
well, in understanding pressure and principal stresses needed to break and drain the

reservoir.

Specifically, in the Permian Basin, Ouenes et al. (2016) discussed the use of
geomechanical modeling to quantify natural fractures and well performance in Reagan
County, TX. Their work catered to the lower Wolfcamp, analyzing fracture orientation and
simulating hydraulic fracture stages, and viewing it from a micro seismic aspect utilizing
geomechanical inputs. Kowan et al. (2017) utilized the same theories of this thesis
calculating geomechanical properties from well logs to better analyze weak bedding planes
and zones of under and over pressure that could lead to wellbore instability. They
concluded that identifying geomechanical related hazards leads to more intelligent well

design from the planning process.

While operators in Ector county, TX may have done some work using
geomechanical parameters, there is no available publications of any geomechanically
calculated curves in this county in Texas. Drilling wells can be costly. Garnering a greater
understanding of the rock and the geomechanical properties around the wellbore lead to a
more cost-effective drilling program. In understanding the potential wellbore breakout and
loss thresholds one can minimize risk of hole collapse or fluid loss when drilling the well.
This can be seen in work available from Schlumberger (2012), that gives more detail into
basic wellbore stability theory and defines “risk based” geomechanical modeling that can

be used in drilling the Wolfcamp Shale play.
15



The purpose of this study is to utilize the offset well datasets to build a working
model that can determine “high risk” or “problematic” geologic intervals in the drilling
process. By using geomechanical parameters, both measured and calculated, thresholds of
potential wellbore breakout and losses will be determined. A calculated “safe” fluid weight
window to optimize wellbore stability through the identified problematic section of
stratigraphy will be recognized. By establishing the process and workflow of building the
first model in the area, others will be able to utilize the dataset to further understand and

improve the initial model built.
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CHAPTER Il: GEOMECHANICAL PROPERTIES

2.1 Elastic Properties

The elastic properties of the rock are required to be calculated in order to build a 1D
mechanical earth model from well data including: Young’s modulus (E), shear modulus
(G), bulk modulus (K), and Poisson’s ratio (v). They must be either obtained through
laboratory testing on core or derived using sonic well log measurements of compressional
and shear waves along with a bulk density measurement (Knéll, 2016). While more
accurate, the core measurements are assumed to be a more static property, while derived
calculations are called dynamic properties (Stota-Valim, 2015). It is common to calculate
the dynamic elastic properties for use in modelling due the expensive and time consuming
nature of running laboratory tests to obtain the static elastic property measurements from
core. That fact, coupled with the circumstance of only being able to pressure and measure
triaxial strain on core once per sample, lends credence to the use of an approach utilizing

the calculated dynamic elastic properties when building a mechanical earth model.

2.1.1 Static Properties vs Dynamic Properties

In an ideal world one would always use the static properties when determining the
elastic properties of a rock. Given the less than ideal costs and time associated with the
lab work required to obtain the static properties, it is commonplace to derive these values
using sonic well log measurements of compressional and shear waves along with a bulk

density measurement (Fei et al., 2016). It is possible to determine dynamic values
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for Young’s modulus and Poisson’s ratio from well log data. Dynamic Young’s modulus
differs from the static variant in that it is always a greater value under identical laboratory
conditions (Fei et al., 2016). Dynamic Poisson’s ratio is relatively similar to the static
variant, it may occasionally run higher (Fei et al., 2016). For details regarding pressure
and temperature variances and their corresponding logarithmic and linear

relationships, Fei et al. (2016) describes a statistical breakdown of each in turn.

2.1.2 Young’s Modulus (E)

Young’s modulus expresses the relationship between applied longitudinal stress and
the longitudinal deformation/strain in a material. The modulus is a measure of the stiffness
of a material (Stota-Valim, 2015). It can be thought of as the modulus of stiffness. It is
expressed by the Equation 1 and Equation 2 below and is measured in units of pressure;
Pa, bar, or psi (1 Pa = 107° bar = 0.000145038psi). Please note, Appendix A is a reference
to all formula used in this thesis. Appendix B is a list of the variables in the sequential order

they appear.

Static: E=o0/¢ (1)
where,
o = stress (psi)

& = strain

Dynamic: Eayn = p Vs? [(3Ve? — 4 Vs?) [ (V& — Vs?)] )

18



where,
p = bulk density (g/cmq)
Vs=shear wave velocity (ft/sec)

Vp=compressional or primary wave velocity (ft/sec)

Or if one has calculated a shear modulus and Poisson’s ratio curves Equation 3 can be

used.

Edynzz*G*(1+ V) (3)
where,
G = bulk modulus (psi)

vV = Poisson’s ratio

2.1.3 Poisson’s Ratio (v)

Poisson’s ratio expresses the relationship between transverse strain to axial strain or
the deformation of a material (Stota-Valim, 2015). If strain is negative it is a product of
stretching from axial tension or if there is a compression, the strain is positive. One way
to think about Poisson’s ratio is how flexible a material is. The higher the value, the more
flexible the material. For example, if one was to pinch a gummy bear it is much more
flexible than when compared to a cork. Therefore, the gummy bear has a higher Poisson’s
ratio and that of the cork is much lower. Poisson’s ratio (V) is expressed by Equation 4

and Equation 5 below.
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Static: V= étrans /gaxial 4)
where,
caxial = axial strain

strans = transverse strain

Dynamic: vayn = (Vp 2 — 2*Vs?) (2(Ve 2 — Vs?)) ()

2.1.4 Shear Modulus (G)

The shear modulus expresses the ratio of shear stress to shear strain (Archer and
Rasouli, 2012). It is commonly referred to as the modulus of rigidity of a material. It can
describe how the material reacts to shear stress. The larger the value of the shear modulus
the more rigid the material (Stota-Valim, 2015). It is expressed by Equation 6 or Equation
7 in units of pressure; Pa, bar or psi.

G = [F/A]/[4Ax/]]  (6)
where,
F = the shear force applied
A = the cross-sectional area of material parallel to the applied force vector
Ax = shear displacement
| = initial length

G = pVs? (7)
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2.1.5 Bulk Modulus (K)

The bulk modulus expresses the resistance of the material to change in
volume when exposed to compression from all every direction (Stota-Valim, 2015).
Think of it as the modulus of resistance, or how resistant the substance is to compression
(Kadhim et al., 2016). Since bulk modulus deals with compressibility of a given volume
of material it also is one of the modulus that affect a given unit of volume (Fei et al.,
2016). It is expressed by Equation 8 and Equation 9 in units of pressure; Pa, bar or psi.

K =AP/[AV/IV] (8)
or,
K=p (Vp?-(4/3) Vs ?) (9)

where,
AP = change of pressure
AV = change in volume

V = initial volume of material

2.1.6 Derivatives of Elastic Properties

All elastic properties of materials are interrelated and can be mathematically derived
if the preferable data is not available (Mavko et al., 2009). Table 1 shows the mathematical
relationships one can use to derive certain properties if others are known, or calculated

using other means such as sonic data from well logs.
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Table 1: Table showing elastic properties and their relationships to each other (Mavko et

al., 2009).
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Table 1 can be especially useful if one has access to limited data. There are also
laboratory tested relationships for various lithologies if only a monopole sonic logging run
with compressional or primary wave velocity data is available (Milovac, 2009). An

example is Equation 10 used for sandstone below.

Vs =0.8042*% V/p -855.9 (10)

These conversions are useful tools given limiting data conditions to help build a mechanical

earth model from well log data.

2.2 In Situ Stress Components

In situ stresses and rock mechanics properties play a key role in the assessment of
wellbore design and execution (Aadngy and Looyeh, 2019b). Understanding what stresses
effect the rock at any given point is crucial in determining how rock will break. There are
three perpendicular axis of stresses at any given point in a material in the subsurface,
vertical stress or overburden stress (av), minimum horizontal stress (on), and maximum

horizontal Stress (on) as seen in Figure 3 below (Aadngy and Looyeh, 2019b).
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Figure 3: In-situ principal stress example for a drilled vertical well.

It is vital to also realize that these three stresses may affect the wellbore or rock
differently when studying it from a vertical to horizontal capacity depending on how the
well was drilled. In general all three principal stresses are not hydrostatic, i.e. all have

different magnitudes at any given wellbore direction (Aadngy and Looyeh, 2019a).

This thesis built a 1D mechanical earth model using vertical well data, meaning the
stress components were only studied from a vertical wellbore design perspective. The

subsequent sections 2.2.1 —2.2.5 will provide details on each stress component.
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2.2.1 Overburden Stress (av)

Overburden stress or vertical stress is defined as the pressure exerted on
a material at a given depth due to the total mass of the rocks and/or fluids above it (Aird,
2019). The simple way to consider overburden is just how much material is above, that is
compacting the rock in a vertical capacity due to weight and gravity. It is possible to
interpolate overburden over an interval if two vertical stress points are measured from lab
tests. This is a common practice in computing overburden stress when faced with a lack
of data availability (Aird, 2019). Overburden stress can be calculated using Equation 11
and requires knowledge of depth/thickness and the bulk density of the given material to

calculate from log-based data sets.

ov= X;pihig (11)
where,

g = is the gravitational constant (32.175 ft/s?)

hi = the vertical thickness of the i rock layer (ft)

pi = the density of the i rock layer (Ibm/ft3)

2.2.2 Minimum Horizontal Stress (on)

Minimum horizontal stress is often thought of as “closure stress™ as it directly
relates to the closure gradient of fractured pores made while drilling or fracking (Belyadi
and Belyadi, 2019). During drilling, there is a specific pressure exerted on the

surrounding rock that the fluid column of the hole is directly related to. This pressure of
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the fluid column must not exceed or be less than that of the surrounding pressure or
wellbore instability will occur. As the drill bit breaks the rock drilling down vertically,
the fluid column must be held at a specific pressure gradient to balance all three principal
stress components. We define this as the hydrostatic pressure of the fluid column
(Belyadi and Belyadi, 2019). Breakout pressure is defined by the maximum and
minimum horizontal stresses, pore pressure, and rock strength (Belyadi and Belyadi,
2019). If the pressure of the fluid column exceeds the breakout pressure of the
surrounding rock, it will break down and push the fluid out into the surrounding
formation, resulting in mud losses in the hole. Minimum horizontal stress can be obtained

by running a diagnostic fracture injection test (DFIT) (Figure 4).
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Example of DFIT test

TXSG (minimum
horizontal stress)

FIP

ISIP Pore
Pressure

Closure
stress

Pressure

Pumps shut off
"

Constant pump rate

No more flowback

Flowback

Volume and Time

Figure 4: Representation of a diagnostic fracture injection test and the corresponding
points of interest one can glean from it. This includes a minimum horizontal stress point, a
pore pressure point, a FIP (fracture initiation point), as well as an ISIP (initial shut in

pressure) point.

It is also worth noting that minimum horizontal stress can be calculated using
isotropic or anisotropic components depending on your reservoir system and deposition

as defined below in Equation 12 and Equation 13 from Zahiri et al. (2019).

on=[(v/1-v)on]+ [(1-2v/1-V)Pya]+ [(E/1—-V?) e] + [(EV/L-V?) &) (12)
where,

Pp = pore pressure (psi)
a = Biot elastic constant
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ey = vertical strain
ex = lateral strain
or,
Isotropic on = (V/1 —V)(ov - 0w Pp) + on Pp +otect  (13)
where,
ay = Biot elastic constant (vertical)
an = Biot elastic constant (horizontal)

otect = tectonic stress (MPa)

2.2.3 Maximum Horizontal Stress (o+)

Maximum horizontal stress is more difficult to calculate and is often considered the
most challenging component of the stress regimes to derive accurate values (Knoll,
2016). Using measurements of pore pressure, rock strength, vertical stress, minimum
horizontal stress, and the tectonic stress it is possible to derive the maximum horizontal
stress using Equation 14, however, tectonic stress is exceedingly difficult to determine

and is generally estimated (Snee and Zoback, 2016).

OH = [(V /1 —V) * (O'v' Pp OC)] + Ppa + Otect (14)
It is also possible to estimate the maximum horizontal stress from image logs,
friction limit to stress data, caliper data, and drilling induced fracture data (DIF) (Han et

al., 2019).

The estimated maximum horizontal stress values should always be greater than

the minimum horizontal stress values. If it is not possible to calculate maximum
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horizontal stress due to lack of data one can also assume a value equal to minimum
horizontal stress with the addition of a gradient of 0.1 psi/ft (Belyadi and Belyadi, 2019);

while not wholly accurate, it at least is valid in principle.

2.2.4 Biot’s Elastic Constant («)

Biot’s constant is a direct relationship of porosity, permeability, clay content, grain
contact, grain strength, overburden pressure, and bulk modulus (Biot and Willis, 1957).
In simpler terms defined in Crain (2000), it is the ratio of the volume change of fluid
filled pores in relation to the volume change when fluid is free to move about the pore
space. The matrix volume of material needs some porosity or the Biot’s elastic
constant will be zero because there will be no change in volume. Biot’s elastic constant is
one of the more difficult variables to calculate and derive due to lack of sample data
available for laboratory testing and the potential heterogeneity of the material involved
and the underlying volume of pore space, fluid content, and permeability variables of the
given system. For example, if one visualizes a very thin, one-millimeter beds of a
porous limestone, interbedded with tight clays, it becomes easy to see how it would be
difficult to determine the proper volumes of porosity relationships to get an
accurate Biot’s elastic constant over a one foot sample interval. Equations 15-17 are used
to determine Biot’s elastic constant from well log data; and using Figure 5 it is possible to
estimate Biot’s constant with an estimated effective porosity of a known rock or assumed

lithology.

a=1-(Ko/ Kn) (15)
where,
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Kb = bulk modulus of base material (g/cm?®)
m = bulk modulus of rock matrix (g/cmq)
Ko= p*(1/(DTC?) — (4/3)*(1/(DTS?)))
Km = pm*(1 / (DTC?)-(4/3)*(1 / (DTS?)))
where,
DTC = compressional wave travel time (us,m)

DTS = shear wave travel time (us,m)

Biot's Poroelastic Constai

0 0.05 01 0.15 02 025
Effective Porosity, fraction

(16)

1)

03

0.35

04

Figure 5: Graphical representation of estimation of Biot based on lithology and effective

porosity of that lithology from log (Crain, 2000).
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2.2.5 Stress Orientation

Determining the stress orientation of a given depositional setting is a crucial part in
understanding the two main horizontal stress components since they are perpendicular to
each other (Belyadi and Belyadi, 2019). The simplest way to estimate the direction of
horizontal stress components is identifying the direction of borehole breakout from image
logs of the given intervals of study. One can also use caliper logs, if at least a 4-
arm caliper was used to identify the weakest direction of borehole instability and
breakout (Haidary et al., 2015). Using either of these logs can give an understanding of
where the borehole is the weakest and more prone to breakout. It can also help identify
any anomalies of the weakest stress direction in different intervals. The direction that
breakouts are observed is the minimum horizontal stress direction. Perpendicular to that
is the maximum stress direction (Warner Jr and Holstein, 2007). This method for
determining the minimum and maximum horizontal stress direction is used regularly
assuming a vertical borehole, however, this can vary once the wellbore start to build
angle and eventually becoming horizontal. This thesis will only focus on determining the
stress orientation of the vertical borehole and does not enter into the curve and horizontal

drilling realms of stress direction regimes and change.

2.3 Rock Strength (UCS)

Unconfined compressive strength (UCS) is the strength that describes the capacity
of the rock to resist compressive stresses (Zhang, 2020). When testing for UCS in the lab,
rock failure mechanisms are observed by preforming triaxial or uniaxial tests on specific

samples based on the suitable nature of the rock in question. This lab test can give a lot of
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information but is used in the geomechanical realm for UCS and friction angle (¢) data
points. Lab testing is always preferable to derived log calculations, however, is it not
economical to test an entire well’s worth of samples from core. Using laboratory testing,
one can obtain good data points used to quality control test separate log-based
calculations and correlations of UCS. Sections 2.3.1 and 2.3.2 will describe various
methods for determining UCS from log and correlations as well as deriving friction angle

from a gamma ray log and friction angle correlations.

2.3.1 Correlations of UCS

It is common to use known correlations of UCS and Young’s modulus for a starting
point if one has calculated known facies of logs and has a good calibration of Young’s
modulus for those logs. It is possible to use simple equations such as shown in Table 2
below if a pseudo lithology is determined, but it is recommended to calibrate your UCS

curves further using petrophysical data (Knéll, 2016).
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Field characteristics

Examples

Very weak

Extremely
weak

pocket knife with
dittficulty. Shallow
indentation made by firm
below with point of a
geological hammer.
Crumbles under firm
blows with point ot a
geological hammer, can be
peeled by a pocket kmife
Indented by thumbnail

Extremely Specimen can only be Fresh basalt, chert,
strong chipped with a geologic diabase, gneiss, granite,
hammer quartzite
Very Specimen requires many Amphibolite,
strong blows ot a geological sandstone, basalt,
hammer to fracture it gabbro, gneiss,
granodiorite,
limestone, marble,
rhyolite, tuff
Strong Specimen requires more Limestone, marble,
than one blow to fracture it | phyllite, sandstone,
schist, shale
Medium Cannot be scraped or Claystone, coal,
strong peeled with a pocket knife. | concrete, schist, shale,
Specimen can be fractured | siltstone
with a single blow from a
geological hammer.
Weak 2—25 Can be peeled with a Chalk, rocksalt, potash

Highly weathered or
altered rock

Stiff fault gouge

Table 2: List of basic lithologic rock types and the corresponding rock strength estimations

(Zhang, 2020).

Table 3 and Table 4 are a full list of various equations to derive UCS from log

based on lithology type and Young’s modulus as an alternative to strictly lithology.
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ch—431(5d)
- " \10

Lithology Equation Reference
Igneous and Metamorphic | £, = 1.263 E; — 29.5 King ( 1983)
Igneous and Metamorphic 1705 King ( 1983)

Sedimentary E,=0.74E; —0.82 Eissa and Kazi ( 1988 )
Sedimentary log(Es) = 0.02 + 0.7 log(pE,;) | Eissa and Kazi ( 1988 )
Sedimentary Es = 0.018 EZ + 0.422 E4 Lacy (1997 )
Sedimentary UCS = 0.278 EZ + 2.458 E Lacy ( 1997 )
Soft Rocks UCS =2.28+4.0189 E; Bradford et al. ( 1988 )

Hard Rocks (E; > 15 Gpa)

E; = 1.153 E4 — 15.2

Nur and Wang ( 1999 )

Shale

UCS = 0.77 v33

Horsrud ( 2001 )

Shale E; = 0.076 v, Horsrud ( 2001 )

Shale E; = 0.0158 E37* Ohen ( 2003)

Mudstone E; = 0.103 UCS 08¢ Lashkaripour ( 2002 )

Limestone E; = 0541 E; + 12.852 Ameen et al. (2009)

Limestone 083 Asef and Farrokhrouz
UCS = 2.94 (W) (2010)

Different Rocks

UCS = 2.304 vp*3

Kilic and Teymen ( 2008 )

Table 3: Various correlations for UCS and log based curves, red boxed equations used in

analysis (Najibi et al., 2014). Vp is in km/s, E is in GPa, and UCS is in MPa.

Lithology Equation Reference

Shales UCS = 7.22£0%712 Chang et al. (2006)

Shales UCS = 23.524F%477> Horsrud, 2001

Sands UCS = 156318*(1/V,)2%% McNally (1987)

Sands UCS = (1.745%p *Vp?)-21 Moos et al. (1999)

Limestone UCS = (7682/V,)*#2/145 Milizer and Stoll (1973)
Limestone & Dol | UCS = 10(244+(109:14/Vp)) /1 45 Golubev and Rabinovich (1976)
Limestone UCS =3.67*V,21 Najibi et al. (2015)

Table 4: Various correlations for UCS and log based curves, red boxed equations used in

analysis (Zhang, 2020). Ve is in km/s, E is in GPa, p is in g/cm3, and UCS is in MPa.
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Not all lithologic types of rock have a perfect correlative equation and it is
important to try multiple variations based on the samples being studied and then compare
back to laboratory testing results to obtain the most accurate and precise value for UCS
(Adisornsupawat et al., 2011). One shale is not universal. A correlation of UCS based on
a shale sample from the Gulf of Mexico may not be correlative to UCS of a shale sample
from the North Sea (Table 3). Obtaining valid calculations for UCS can be difficult given

all the preceding variables.

2.3.2 Friction Angle (¢)

The measure of the angle of internal friction (¢) is the measure of the ability of
the rock to withstand a shearing stress (Aadnoy, 1998). It can be considered the angle
observed between the normal force, and shearing force, during rock failure from a
shearing stress. Like UCS, friction angle can be measured in a lab test as well as
derived/correlated using log. Due to economic conditions friction angle is often

estimated. Common equations used for estimation are observed in Table 5.

Lithology Equation for internal friction angle | Reference

Shale sin~*((v, — 1000)/(v, + 1000)) Lal (1999)

Sandstone 57.8 —105¢ Weingarten and
Perkins (1995)

Table 5: Examples of lab calculated correlations of internal friction angle for shales and

sands (Chang et al., 2006). Vp is in km/s.

35



This method is not perfect. Figure 6 portrays a graphical example of correlations using

this method compared to lab data.
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Figure 6: Internal friction angle correlations compared to test data (Chang et al., 2006).

There also exists an empirical correlation to determine friction angle (Kadyrov, 2013),
found in the work by Albukhari et al. (2018). This method applied a cutoff to friction

angle at certain APl gamma ray readings as observed in Figure 7 below.
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Figure 7: Graphical representation of determining friction angle from gamma ray data

(Albukhari et al., 2018).

Due to potential rock having high friction angles, one may need to “force” the

cutoffs in individual cases. This can then be quality control tested by laboratory data and

the gamma ray API cutoffs can be altered accordingly (Albukhari et al., 2018).
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CHAPTER IIl: LITERATURE REVIEW

3.1 Pore Pressure (Pp)

Pore Pressure (Pp) is the pressure of fluids within the pores of a rock unit, or the
pressure exerted by a column of fluid (Schlumberger, 2020). This is important in
geomechanics because accurately defining pore pressure of your reservoir helps in
determining minimum horizontal stress and directly affects your loss threshold. Drilling
through significant zones with low loss thresholds will cause serious risk to operations
ranging from loss of mud to loss of wellbore integrity, fluid influx, pressure kicks, or
blowout (Zhang, 2020). While there are methods for calculating pore pressure before
drilling using log curves, it is always encouraged to incorporate varying observations
from the field to better fine tune your model. Effects such as depletion, or water/CO2
flooding for secondary/tertiary recovery, can greatly affect the pore pressure of a given
interval, but can be easily overlooked when just using log based calculation (Zahiri et al.,
2019). It is prudent to also look at field tests such as Leak Off Tests (LOTSs) or Fracture
Initiation Tests (FITs) that can help bring actual field data to quality control your pore
pressure curves and give a baseline in a given section of rock (Zhang, 2020). Figure 4
from section 2.2.2 gives an example of how a FIT can be used. Sections 3.1.1 — 3.3.3 will

review different methods for estimating pore pressure.

3.1.1 Bower’s Method
Bowers (1995) devised a method to calculate the effective stresses from measured

pore pressure data in shales, as well as the overburden stresses. He then analyzed the

38



corresponding sonic velocity data from the well logs and proposed that effective stress

and sonic velocity has a power relationship Equation 18.
Vp= Vm + Co\° (18)
where,
Vmi = compressional wave velocity at mud line (ft/s)
C and B = constants for calibration
Using the relationship from Equation 19, pore pressure can be derived.
Pp = ov— ((Vp- Vm)/C)'® (19)

Be aware that using this method does have its pitfalls, it has been documented that this
will lead to inaccurate pore pressures if uplift or unloading has occurred (Archer and
Rasouli, 2012). If one believes unloading has occurred Bowers (1995) proposed the

subsequent Equation 20.
Ppuio = av— ((Vp - Vini)/C)"B* (omax' V) (20)
where,
Ppuio = pore pressure in unloading (psi)
U = constants for calibration

omax = the estimated effective stress at the onset unloading (psi)
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Rock that is poorly consolidated or unconsolidated may also lead to error and
overestimation due to the sonic velocity differences (Rahimi, 2014). Bower’s method is

effective with exception to the above situations and can be used in many areas of study.

3.1.2 Eaton’s Method
Eaton’s method was originally developed for under compacted, over pressured, shales in
the Gulf of Mexico (Eaton, 1975). He proposed the following Equation 21 that
empirically relates compressional sonic transit time and overburden to pore pressure

gradient.

Po=ov—(ov—Pprg*din [ 4" (21)

where,

Ppng = pore pressure of hydrostatic pressure (psi)

At = sonic delta time (psec/m)

n = constant for calibration

This method does not take into account unloading effects and requires
determination of the normal transit time. Eaton’s method relies heavily on Terzaghi’s
equation of 1948 : Which states that if a rock is subjected to stress, the stress is opposed

by the fluid pressure of pores in the rock body (Zhang, 2020).

This relationship demonstrates that effective stress sits somewhere between the

overburden stress and the pore pressure. Figure 8 below supports the relationship.
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Figure 8: Overburden and pore pressure gradients and effective stress (Formento, 2004).

Once effective stress is understood then one can use resistivity and sonic well log data to
estimate pore pressure using Eaton’s relationship in Equation 22.

Pp = ov — (ov — Ghyd * TVD)*( Vhorm-Veomp)" (22)
where,
Gnya = gradient of hydrostatic pressure (KPa/m)
Vhorm = Velocity log value according to normal trend

Veomp = Velocity log value according to compaction trend
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TVD = True Vertical Depth

3.1.3 Pore Pressure from Well Logs

Pore pressure from well logs is recognized based on the divergence of the log
measurements from a normal compaction trend line (Aadnoy, 1998). The trend line being
an assumption of the log’s resistivity or sonic values if pore pressure was
normal/hydrostatic. Hydrostatic pressure gradient is representative of a linear fitted trend
line in low permeable beds (Aadnoy, 1998). One reason why quality control testing data
to observed offset losses, leak off test data, and fracture initiation test data is so crucial, is
they provide data points that the pore pressure gradient trend line must pass through for
accurate pore pressure to be determined. Because pore pressure is a critical component of
the loss threshold it can be accurately surmised that understanding the pore pressure
gradient of a given well will greatly effect given acceptable mud weights to drill the
given intervals with. This can lead to significant and costly problems drilling if pore
pressure is underestimated. Figure 9 below demonstrates an example of a pore pressure
plot. Keep in mind the fluid pressures in the wellbore must remain between overburden
stress, and the normal pore pressure/pore pressure at hydrostatic. If at any point the
interval of rocks pore pressure and pressure gradients change significantly outside the

pressure of the fluid downhole it can lead to collapse.
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Figure 9: Pore pressure, overburden stress, and effective stress versus the true vertical

depth (TVD) in a deep water well in the Gulf of Mexico (Zhang, 2013).

3.2 Failure Criteria and Mechanisms

Calculating an estimation off wellbore failure criteria is not a perfect science and
there are numerous methods. Rock can fail in two ways around the wellbore during
drilling operations. The first stress induced failure is shear failure; this is caused by too
low a density of mud weight. The second type stress induced failure is tensile failure, this
is caused by too heavy a density of mud weight (Al-Ajmi, 2012). Failure criteria is
important due to wellbore stability, one does not want too small a pressure downhole to
support the surrounding rock or the wellbore will start to break and crumble in the hole;

at minimum this is revealed by hole enlargement on caliper, while severe consequences
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include total hole collapse (Al-Ajmi, 2012). The next sections will go over different
methods to calculate the failure criteria including Mohr Coulomb, Mogi Coulomb, and

modified Laude.

3.2.1 Mohr Coulomb

The Mohr Coulomb failure criteria is the most commonly used due to its simplicity.
It is a triaxial assumption meaning that in the test data (¢ 1 > 02 = g3 ), or one ignores the
intermediate principal stress (a2), as its assumed equal to the minor stress (a3). A
common visual associated with Mohr Coulomb failure criteria is the Mohr circle as seen

below in Figure 10.

Moment of
wellbore failure

Figure 10: Example of Mohr Circle with arrow demonstrating the moment of failure,

modified from (Zhang, 2013).
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Using equation 23 one can view the circle as the wellbore maximum shear stress
and the line A-A’ as the “failure envelope” of acceptable wellbore stability. Once the

circle touches the intersection point, wellbore failure and borehole collapse can occur.

T max — (1/2)(0’1 - 0'3) (23)

where,

7 max = the maximum shear stress

o1 = maximum principal stress

o3 = minimum principal stress

It is worth noting that the Mohr Coulomb method is known to underestimate the
rock strength or overestimate the failure envelope in mud weight (Zhang et al., 2010). If
using this method be aware it is potential to show more excess breakout compared to

other methods such as Mogi Coulomb or modified Laude.

3.2.2 Mogi Coulomb

Mogi (1971) developed another method for describing rock failure. It is also a
triaxial test like the Mohr Coulomb method, however, it develops a linear function to (o?2)
using polyaxial test data (o 1 > 02 > g3 ). It deals with the (a2) stress slightly differently,
as it takes it into account, rather than assumes it to be equal to the (o3). Mogi discovered
through laboratory testing that strain energy as a frictional force is proportional to the
octahedral shear stress and will increase by increasing (o) until failure occurs. The linear

relationship of his findings is seen below in Equation 24.
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Zot=a+b om (24)
where,
Zoct = Max octahedral shear stress
ome = intermediate effective mean stress
a = intersection of the line on 7zt axis
£ = the line’s inclination

The variables (a) and (b) have a direct relation to the angle of internal friction that

can be calculated from the Mohr Coulomb parameters g and C, using Equations 25 — 27.
a=(2N2)/3) *(Colq) (25)
b=(2N2)/3) *((g-1) | (a+1)) (26)
where,
o = cohesion (KPa)
g conversion = (1 + sin(¢4)) / (1 -sin(¢)) 27)

Because Mogi Coulomb takes into account the intermediate stress variable but is
also a linear equivalent to Mohr Coulomb in conventional triaxial stress test space, it can
be thought of as an expansion on the Mohr Coulomb method in that triaxial space

(Rahimi, 2014).
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3.2.3 Modified Lade

Experimental observed from Lade (1977) concluded that for a cohesionless
material, internal friction angle decreases with increasing normal stress. What became
known as the modified Lade criterion first was developed by Ewy (1999). This method
takes stress invariant parameters first and third stress invariants into account formulating
the concept that as shear strength increases, so does the first stress invariant. It also
assumes a material constant as zero. Ewy formulated a new measure for effective stress
introducing the effective stress into the formula and the proposed Equations 28 -30

below.
("3 (") =27 +5 (28)
where,
I1 = first stress invariant
Is = third stress invariant
n = material constant
W"=(c1+S)+(c2+S)+(c3+S) (29)
I3"=(g1+S)*(g2+S)* (g3 +Y9) (30)
where,

S = stress
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Using modified Lade to determine a failure criterion has two main benefits
(Rahimi, 2014). The first is that unlike the Mohr Coulomb method it takes into account
the (02). The second is that the variables S and 7 are derivable through the Mohr
Coulomb method using cohesion and internal angles of friction based on triaxial lab test

data. Equations 31 and 32 are the equations for S and 7.
S conversion = Co/ tan(g¢)  (31)
3 conversion = (4tan®(¢)*(9-7sin(4))) / (1 - sin(p)) (32)

One downside to the modified Lade method is that it is not truly accurate in the
presence of any tensile stress component because it has no tension cutoff due to the

cohesionless material component of the initial experiments done by Lade (1977).

3.2.4 Overall Comparisons
When calculating breakout thresholds, one should always use more than one method to
compare results against any possible quality control data. This includes offset calipers or
borehole imaging data, to confirm presence of real breakout in the wellbore at a known
mud weight (Kndll, 2016). All methods have their pitfalls. Zhang et al. (2010) gives
example of challenges of all three. He gives examples of assessments that demonstrate
that the Mohr Coulomb criterion can underestimate rock strength leading to an
overestimation of breakout thresholds. The modified Lade criterion can both under and
overestimate rock strength, depending on your other variable estimations. The Mogi
Coulomb has been found to be the most accurate in terms of rock strength estimation,

however, given your area of study this may not always be the case if accurate major,
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intermediate, and minor stresses cannot be determined accurately. This model uses all

three to get a side by side comparison how the different methods compare to caliper and

image log data.

CHAPTER IV: GEOMECHANICAL MODEL FEE Bl #307

4.1 Study Area
My study area is in the west-central part of the Midland Basin (Bhatnagar et al., 2019;

Verma and Scipione, 2020; Yandell et al., 2019), NW of the city of Midland as noted in

Figure 11 below.
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Figure 11: Map view of the study area in Fasken C Ranch. Red star indicated the Fee Bl

#307 well used in the model and the other two wells are offsets used to correlate tops.
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The geologic section of the well logs used from the Fee BI #307 well were from
mid Pennsylvanian to late Permian in age. From the Upper Spraberry formation down to
the Strawn formation, with core points being collected in the Wolfcamp and Cline
formations of strata. A heterogenous mix of sandstone, mudstones, siltstones, organic
carbon rich shales, carbonaceous shales, and carbonates can be found in the section of
well log studied. A geologic section of super sequence correlation can be observed below
in Figure 12 for reference. Utilizing well logs, image logs, and core measurements of the
well Fee Bl #307, | attempted to build a 1D mechanical earth model and subsequent

wellbore stability model using the calculated geomechanical data.
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Figure 12: Super sequence correlation from a global, to basinal, to well log level

portraying major geologic formations and their correlative lithologies from Ulmo (2018).
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4.2 Well Overview

The Fee Bl #307 well is located East of Gardendale Texas, South of US State
Highway 158 (Figure 13). It is a vertical oil well spudded October 20", 2011, in Permian

Basin, Northwest of Midland Texas (Table 6).
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Figure 13: Image of the well location of Fee Bl #307 well location from the Texas Railroad

Commission (RRC, 2020).
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Well Name Fee Bl #307
Depth 11,115 FT
API Serial Number 42-135-41138
Company Fasken Oil and Ranch, LTD
Field Spraberry Trend
County Ector
State Texas
Latitude 32.04612500°
Longitude -102.31391670°

Table 6: Surface hole location and well information for Fee Bl #307 well.

Two other wells were used to correlate formation tops Table 7 and Table 8 below

describe their well information, general locations can been seen in Figure 11.

Well Name Fasken ‘32 #1
Depth 13,600 FT
API Serial Number 42-135-34078
Company Fasken Oil and Ranch, LTD
Field Spraberry Trend
County Ector
State Texas
Latitude 32.05031950°
Longitude -102.34485080°

Table 7: Surface hole location and well information for Fasken <32 #1 well.



Well Name Fasken David ‘BO’ #1
Depth 11,530 FT
API Serial Number 42-135-33800
Company Fasken Oil and Ranch, LTD
Field Spraberry Trend
County Ector
State Texas
Latitude 32.06777100°
Longitude -102.29809200°

Table 8: Surface hole location and well information for Fasken <32’ #1 well.

4.2 Data Gathering
The accessible data sets from the Fee BI #307 well in the Permian Basin were
quality control checked and the subsequent data sets were available and used to build the

model.

Digital Data:

- Quad combo well logging data in .las format (LIDAR point cloud data)

- Caliper log data for offset Fee BM #1 SWD in .las format

- FMI log data printout for pilot hole in .pdf format (portable document format)
- Mud Log printout for pilot hole in .pdf format

- Survey Report in .csv format (comma-separated values file)

Core Data:

- Clay mineralogy report in .xls format (Microsoft Excel file format)
- Triaxial data test results in .xls format

- XRD (X-ray powder diffraction) test data in .xIs format
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- Core image printout in .pdf format

- Core image descriptions in .pdf format

4.2.1 Log Data

Table 9 below defines all the log curve data available for use in this model.

Log curve name Alias S(ta—rﬁ%
Gamma ray (API) GR 201
Resistivity (ohm-m) RESD 201
Compressional sonic travel time (usec/ft) | DTCO 6002
Shear sonic travel time (psec/ft) DTS 6002
Bulk density (g/cm?®) RHOB 6002

Table 9: Table describing the available log data, aliasing, and start depths of the digital log

data for the Fee BI #307 well.
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4.2.2 Core Data

Table 10 below defines all the core data points available for use in this model.

Dynamic Moduli

. Shear Shear Young's Bulk
) eDaesputLed Dgrl:s”i(ty ucs C%n;lggtiats%l rcw)wneal T;?;Zit mo(dGu)I us mo(dEu)l us mo(dKu)I us I;o;ts; cs)o( r:, )s
(ft) (gm/cm?®) | (psi) (uslft) (us/ft) (psi) (psi) (psi)
9,657.50 2.69 54150 50.48 96.36 3,904,675 | 10,236,742 | 9,019,072 0.311
9,740.00 2.646 102589 52.86 111.37 4,474,534 | 11,008,539 | 6,798,733 0.23
9,938.50 2.609 50133 60.38 106.32 3,111,324 | 7,852,772 | 5,498,359 0.262
9,995.50 2.589 30346 69.08 115.77 2,604,355 | 6,372,852 | 3,841,371 0.223
10,324.50 2.484 21675 83.81 138.89 1,735,934 | 4,213,636 2,452,508 0.214
10,374.00 2.729 38106 60.16 106.78 3,226,031 | 8,178,309 | 5,863,840 0.268

Table 10: Table describing the available core data points

for the Fee BI #307 well.

Comparing the calculated geomechanical log data to core one can determine the

validity of the calculated curves. Figure 14 below is an example of how they look in the

model.
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Figure 14: Different wireline logs along with computed well log curves, and machine
learning facies of Fee BI #307 well. The computed well logs curves include, Young’s
modulus (YME), Poisson’s ratio (PR), bulk modulus (BM), shear modulous (SM), uniaxial
compressive strength (UCS). The available core measured data points are posted on the
corresponding well log curve track. Notice that the well log velocities, and density are

approximately same as their core measured values.
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4.2.3 Offset Data
One offset dataset was brought into this analysis and depth corrected to match tops
from the Fee BM #1 SWD well to quality control breakout thresholds with a caliper log.

Table 11 below will portray the well information.

Well Name Fee BM #1 SWD
Depth 14,200 FT
API Serial Number 42-003-42169
Company Fasken Oil and Ranch, LTD
Field Spraberry Trend
County Andrews
State Texas
Latitude 32.13607780°
Longitude -102.26774520°

Table 11: Table describing the surface location and well data for the Fee BM #1 SWD

well.

The following Figure 15 gives an example of the caliper curve and highlighted
areas of borehole breakout used in the quality control process when viewing the breakout

curve.

58



 FEE BM [MD]
CALI D
875 __in_ 12.00|1:1000

noyealg

noyealg

et vr Vi

F (2500)

F (9000)

=
=71
=
=
g
g — (5500)
E (10000

2

F-(10500)

noyealg

Figure 15: Log curve of caliper for the offset Fee BM #1 SWD well highlighting potential

borehole breakout intervals of borehole enlargement.

4.2.4 Image Log

The image log for this well displays good examples of drilling induced fractures
(Figure 16). It is clear by the 180" symmetry that these can be used to help determine
minimum and maximum horizontal stress directions and are true drilling induced
fractures (Tingay et al., 1998). The fractures in Figure 16 cut lithologies and are not

bound by bedding, this proves them as drilling induced fractures and can be used to
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determine present day minimum stress orientation. Forand et al. (2017) provides

examples of bed bounded natural fracture systems on image logs.
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Figure 16: Sections of the image log taken for the Fee Bl #307 well highlighting drilling

induced fractures (DIF).

The image log from Figure 16 portrays the plane of minimum horizontal stress at 70° -
110°/ 250° - 280°. This plane is confirmed when observing the processed FMI rosette for

this depth interval ranging from 80° - 90° / 260°-270° as seen in Figure 17 below.
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180 Depth : (ft) |7187.00

Figure 17: Processed FMI rosette provided by Fasken portraying the plane for minimum

horizontal stress direction of 80° - 90° / 260°-270°.

4.2.5 Quality Control
All data files were quality controlled and any poor or null values were removed.
Any significant log quality resolution data was removed from the triple combo data and

exported in an ASCII file for use.
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4.3 Mechanical Earth Model Workflow
Figure 18 below is a representation of the workflow used to build the wellbore

stability model from the aforementioned data in sections 4.1 — 4.2.5.

Step1 | Gather Data Digital Logs, Sonic curves, RHOB curves, Core data, Image logs, Offset calipers
Step 2 QC Data Quality control check all data sources for accuracy, error, and null values
Calculate Elastic . . .
Step 3 K, G, v, E, o, (from well logs) and stress directions (from image log)
QC vs Core . . .
Step 4 ) Quality control check all elastic properties vs core
Points
Step 5 g, g, g, o, and stress directions
Step 6 o Ca';"'late Use Bower’s, Eaton’s, and log based methods
ore Pressure -
Step 7 QC Pore Quality control check pore pressure curves against DFIT, DST, or LOT and best fit points against the gradient curve to
P Pressure determine optimal pore pressure calculation
Step 8 Calculate Use best correlations available to calculate multiple UCS curves, the three methods used were based on lithology,
ucs lithology and E, and a multilinear regression from GR, RHOB, and DTC
Step 9 Qcucs Quality control check UCS curves against core points to determine optimal UCS calculation
Step 10 Calculate Loss and Determine loss threshold from O, and determine breakout threshold using three methods; Mohr Coulomb, Mogi
Breakout Thresholds Coulomb, and modified Laude methods

Step 11 :t:'gu?vﬂ:j; Using all the above data build a 1 dimensional, log based, model for wellbore stability

Figure 18: Example workflow used to build the wellbore stability model for the Fee Bl

#307 well.

4.4 Overburden

As previously discussed in section 2.2.1, overburden stress is mainly derived from
the bulk density log using ov = }; p;h;g (11. In cases where a bulk density log is
unavailable in shallower hole section, an acceptable method is to interpolate the
overburden curve using the average slope intercept of your available overburden
calculated from logs (Zhang, 2020). The following Figure 19 portrays a representation of

overburden stress.
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Figure 19: Example of calculated overburden curve.
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Since there were no known over pressured intervals it was assumed that the slope of

the overburden stress line was constant and hydrostatic.

4.5 Elastic Properties
In this section | calculate Young’s modulus, Poisson’s ratio, shear modulus, and

bulk modulus as well as compared it to the core measurements.

4.5.1 Young’s modulus (E)

Equation 2 and Equation

Edyn=2*G* (1 + v) (3 were used to calculate the dynamic Young’s
modulus from sonic data and density log curves and shear modulus and Poison’s ratio

respectively. | chose to use the calculation from Equation

Edyn=2*G* (1 + v) (3 as it was a superior correlation with the quality

control data points from core

Quality control data points were available throughout the Wolfcamp formation and
the upper section of the Cline formation from 9657° MD — 10374’ MD. The overall
calculated Young’s modulus curve looks strong compared to both the quality control points

from core as well as the generated facies model as seen below in Figure 20.
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Figure 20: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed Young’s modulus curve as along with core measured

Young’s modulus data points.

4.5.2 Poisson’s Ratio (V)

Equation 5 was used to calculate the dynamic Poison’s ratio curve from sonic log
data curves. Quality control data points were available throughout the Wolfcamp
formation and the upper section of the Cline formation from 9657’ MD — 10374’ MD.
The overall calculated Poison’s ratio curve looks strong compared to both the quality

control points from core as well as the generated facies model as seen below in Figure 21.
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Figure 21: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed Poisson’s ratio curve as along with core measured

Poisson’s ratio data points in log view along with the facies model.

4.5.3 Bulk Modulus (K)

K=p (VP ?-(4/3) VS ?) (9 from section 2.1.4 was used to calculate a
dynamic bulk modulus from density and sonic log data curves and is displayed in Kpsi.
Quality control data points were available throughout the Wolfcamp formation and the

upper section of the Cline formation from 9657° MD — 10374* MD. The overall
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calculated bulk modulus curve looks strong compared to both the quality control points

from core as well as the generated facies model as seen below in Figure 22.

10500

L1in7sn_|

Figure 22: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed bulk modulus curve as along with core measured bulk

modulus data points in log view along with the facies model.

4.5.4 Shear Modulus (G)

G =pVS2 (7 from section 2.1.3 was used to calculate the shear modulus
curves from bulk density and shear sonic log data. Quality control data points were
available throughout the Wolfcamp Formation and the upper section of the Cline

formation from 9657° MD — 10374” MD. The overall calculated shear modulus curve
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looks strong compared to both the quality control points from core as well as the

generated facies model as seen below in Figure 23.
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Figure 23: Different well log curves of Fee Bl #307 well, between the depths of 9250 ft.
(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log
display panel shows the computed shear modulus curve as along with core measured shear

modulus data points in log view along with the facies model.

4.6 Rock Streangth (UCS)

Calculating Rock strength can be one of the more challenging components of
building a wellbore stability model as discussed in section 2.3. For this analysis, three
different methods were utilized to generate three separate UCS curves and then compared

to the UCS core data points. The first was based on a strict lithologic factor using the

68



facies model and then using the correlations from Table 2 from section 2.3.1. The second
method was using the same lithologic factors and using both sonic and calculated
Young’s modulus curves, then using the correlations from Table 3 from section 2.3.1.
The final method was through an attempted multi linear regression from gamma ray, bulk
density, and compressional sonic data curves from the logs. The dataset | used for the
linear regression was from 4 wells from the Suggs pad in the Permian Basin. These wells
were obtained from the Hydraulic Fracture Test Site Collaboration ran by the Gas
Technology Institute. The following Figure 23 gives a graphical representation of all
three methods and demonstrates the second method using lithologic factors, sonic, and
calculated Young’s modulus curves as the best fit curve for UCS in the model given the
offset quality control core data points. Note that the calculated UCS curves do slightly
underpredict rock strength compared to core data points and can lead to slightly weaker

rock strength than reality.
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Figure 24: Three calculated UCS curves with quality control data points from core.

Upon review, | went through and took note that the first two core points were not
correlating strongly. These points were around intervals of the machine learning facies of
sandstone and carbonate intervals. Using equations from Table 4, | recalculated UCS for
those facies making them stronger to better correlate to the first two core points. The
result does correlate better, but is still not perfect. Given the calculated breakout
thresholds, it is still within reason. Figure 25 gives a representation of the final UCS

curve used in the model.
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Figure 25: Gamma ray log curve of Fee Bl #307 well, between the depths of 9250 ft. (base

of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log display

panel shows the computed UCS curve as along with core measured UCS data points in log

view along with the facies model.
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4.7 Facies Breakdown

| used a machine learning techniques called support vector machine to classify
facies. Support vector machines (SVMs) are a type of supervised learning model that can
be trained on data to perform classification and regression tasks. For more information
on the original workflow please look into Hall (2016) and Bohling and Dubois (2003). |
trained my SVM on four different wells in Midland Basin (Hissong, 2020, Appendix D).
Using this methodology, | was able to train a facies model to the Fee BI #307 well log
with ~ 89% facies classification accuracy as seen in Figure 26 below. See Figure 12 from
section 4.2.2 for a zoomed in image of the generated facies column against all calculated

curves and core points.

print('Optimized facies classification accuracy = %.2f' % accuracy(cv_conf))

Optimized facies classification accuracy = 0.89

Figure 26: Printed optimized facies classification accuracy percent for the Fee Bl #307

facies SVM generation script.

The following Figures 27 - 29 give an overall example of facies to log comparisons
used in this model as well as a zoomed in view to support the analysis and a facies

classification key.
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Figure 27: Printed log view with facies column using python for the Fee BI #307 well.
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Figure 28: Zoomed in view of all geomechanical logs along with corresponding facies

column.
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Figure 29:

this model.

Mudstone:
Organic Rich, Silicious

Mudstone:
Organic Rich

Mudstone:
Organic Rich, Calcareous

Mudstone:
Calcareous, Silicious

Limestone:
Argillaceous, Dolomitic

Limestone:
Argillaceous

Facies classification key for calculated facies used on the Fee Bl #307 well in
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4.8 Geologic Formation Tops

Geologic formation tops were correlated using three offset wells in the Fasken C

Ranch dataset. Figures 30 - 32 below are the log view, map view, and actual depth values

associated with the geologic tops used in this model and analysis.

Fasken ‘32" 1
42135340780000
\ Fasken David ‘BO’ 1
A 42135338000000
s
. 2\ Fee ‘BI' 307
5 i " §—/42135411380000
:" .0 E o . "‘..‘-,“'»."‘. - .. S
4 o Vot 1 Scale = 1.68947
X > “, :t 4+
E o aa 0% o o438 0 4000 8000 12000
Figure 30: Map view, with scale, of the correlated geologic tops on the Fasken C Ranch

dataset, including the Fee BI #307 well used in this model.
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Figure 31: Cross section view of the geologic tops on the Fasken C Ranch dataset,

including the Fee Bl #307 well used in this model.
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Color  Name MD (ft) VD (ft) TVD Seismic (ft) Subsea (ft)

[l c8_u_spraberry 8115.90 8115.90 5149.90 -5149.90
[ ci8_BAsE U Spraberry 8323.80 8323.80 5357.80 -5357.80 Fasken 32’ 1
B cs_t spraberry 8553.10 8553.10 5587.10 -5587.10 .
[ c8_Base_t Spraberry 8905.70 8905.70 5939.70 -5939.70 42135340780000
B csoean 9197.10 9197.10 6231.10 -6231.10
B s wolfamp 9384.60 9384.60 6418.60 -6418.60
W csucine 10143.40 10143.40 7177.40 -7177.40
B csstawn 10367.40 10367.40 7401.40 -7401.40

| Color Name MD (ft) TVD (ft) TVD Seismic (ft) Subsea (ft)
B cs_u_spraberry 8151.10 8151.10 5229.10 -5229.10

‘ [ c8_8ase_u_spraberry 8384.80 8384.80 5462.80 -5462.80
B cs_tspraberry 8620.60 8620.60 5698.60 -5698.60
- CLB_Base_L_Spraberry 8959.20 8959.20 6037.20 -6037.20 FaSken DaVid 'BO' 1
Il csoean 9235.60 9235.60 6313.60 -6313.60 Q 42135338000000
W s _woifamp 9472.40 9472.40 6550.40 -6550.40
B csucline 10275.10 10275.10 7353.10 -7353.10
B csstawn 10474.50 10474.50 7552.50 -7552.50

Color  Name ™MD (ft) VD (ft) TVD Seismic (ft) Subsea (ft)

B cs_u_sprabenry 8163.60 8163.60 5190.60 -5190.60
I cus_Base_u_spraberry 8396.10 8396.10 5423.10 -5423.10
B c_t sprabery 8624.40 8624.40 5651.40 -5651.40)
B cis_Base_L Spraberry 8978.00 8978.00 6005.00 -6005.00) Fee ‘Bl’ 307 Traired facs I
B csoen 9265.20 9265.20 6292.20 -6292.20 O 42135411380000 rained facies we
B e woifamp 9428.00 9428.00 6455.00 -6455.00
B cs_ucine 10195.40 10195.40 7222.40 -7222.40|
W csstawn 10395.80 10395.80 7422.80 -7422.80)

Figure 32: Associated depths of formation tops correlated on the Fasken C Ranch dataset,

including the Fee BI #307 well used in this model.

4.9 Pore Pressure (Pp)

To achieve an accurate pore pressure, usually one would use data sources from the
drilling program to calibrate a log-based pore pressure curve. While 1 did use Eaton’s
method seen in Pp = ov — (ov — Ppng) *(4m | A)" (21 in section 3.1, | did not have
access to any FIT data points, or LOT data points to obtain a baseline for the pore
pressure trend line. The n value was assumed to be one as | did not have any quality
control data to calibrate the pore pressure curve to and no areas of overpressure or

gradient changes could be calculated or calibrated as they were unknowns.
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Figure 33 below is the calculated graphical representation of the estimation of the

pore pressure and calculated overburden curve used to define pore pressure for this
model.
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Figure 33: Visualization of pore pressure and overburden calculated curves used in this
model. Units are in psi.
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4.10 Minimum Horizontal Stress (on)

As discussed in section 2.2.2 the minimum horizontal stress curve is imperative
because it is the main component of the loss threshold that will be described in section
4.11. Assuming an isotropic system, | used Equation 13 from section 2.2.2, using
calculated curves for Poisson’s ratio, overburden, and Biot’s constant, the estimated pore
pressure discussed in section 4.8, as well as estimated tectonic stress from Lund Snee and
Zoback (2016). Figure 34 is an example of the minimum horizontal stress curve.
However, without DFIT data points, or LOT data points to quality control check pore

pressure to, it is only an estimation.
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Figure 34: Visualization of minimum horizontal stress calculated curve. Units are in psi.
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4.11 Loss and Breakout Thresholds

While calculating all the geomechanical rock properties is helpful to the drilling
process, the true benefit is to the well planning process and potential cost savings comes
from defining accurate breakout and loss threshold curves along with a safe mud weight
windows (Singh et al., 2019). By analyzing zones that could potentially lead to serious
loss/flow hole conditions, or defining intervals of potential wellbore breakout, one can be
proactive in the drilling program. This leads to having an easier time testing new zones of
interest, having less problems running casing, as well as less problems drilling the curve
and lateral sections of the wellbore (Haidary et al., 2015). To understand the next
calculated log images, one must understand the concepts behind calculating loss and

breakout threshold. The loss threshold is calculated using Equation 33.

Loss Threshold = (on/ MD ) / 0.052 (33)

where,

MD = measured depth (ft)

It represents the mud weight, that if the pressure of the fluid in the hole reaches,
will overcome the surrounding lithology’s pore space. It leads to fluid being pushed out
into the surrounding formation and mud losses occurring in the hole. In a vertical sense, it
is a good indication of potential mud loss or fluid flow zones. This leads to better
planning. and potential cost savings. One can budget extra mud on location or predict

zones to use lost circulation material or an LCM program to minimize mud losses or fluid
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flows if they are unavoidable. The calculated loss threshold curves are represented by a

light blue shaded line in the model as seen in Figure 35.

Mogi_10pc_Breakout

Mogi_MIN_Breakout

MW_9

8 16
Mogi_MIN_Breakout
8 PPg 16
cies Mogi_10pc
| []8]s] 16
Facies Losses

Figure 35: Visualization of calculated loss threshold curve. Threshold units are in ppg.

The breakout threshold is more complicated to calculate due to the uncertainty in
rock strength. There are multiple methods as discussed in section 4.5. The breakout
threshold is the point at which your fluid column is too weak to support the surrounding
lithology and rock starts to fall into the current borehole, leading to cavings, and borehole
collapse (Zhang, 2020). The following Figure 36 is the visual representation of the

breakout threshold as a yellow shaded curve and an orange shaded curve. The yellow
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curve represents when the first grain of lithologic sediment falls into the borehole, while

the orange shaded section represents the threshold for 10% of the surrounding sediment

breaking apart and falling into the borehole leading to hole instability and collapse.
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Figure 36: Visualization of calculated breakout threshold curve, safe mud weight window,

and accompanying examples of wellbore complication risks.
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Figure 36 also gives an example of the safe mud weight window represented as
the white area. This is an ideal mud weight used to drill this section that is modeled to

encounter no wellbore breakout or fluid losses at a given mud weight.

Three separate breakout threshold calculations were used that were also discussed
in sections 3.2.1 — 3.2.3 in the literature review. They were generated using Tech Log

2019 wellbore stability modeling module using the variables in Figure 37 below.

Hole Deviation >

Hole Azimuth >

Biot Coefficient >

Poisson Ratio (Static) >

Friction Angle >

Pore Pressure >

Vertical Stress >

Minimum Horizontal Stress >

|
|
|
|
Unconfined Compressive Strength > |
|
|
|
|
|

|
|
|
|
|
| Tensile Strength >
|
|
|
|

Figure 37: Example of necessary curves to run a Mohr Coulomb, Mogi Coulomb, and
modified Lade breakout curve using the wellbore stability modeling module used in this

model.

The three separate log tracks below in Figure 38 gives an example of the full
wellbore of the Fee Bi #307 well and the calculated breakout threshold, loss threshold,

and safe mud weight windows along with offset caliper data to help quality control the
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calculated breakout thresholds. The green line represents a mud weight of 9.0 ppg as a

reference point.
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Figure 38: Example of calculated breakout threshold, loss threshold, and safe mud weight
windows; Along with offset caliper data, and facies logs, to help quality control the

calculated breakout and loss thresholds.

An image log and offset caliper log were also used to quality control the breakout

thresholds for this model. Figure 15 is the offset caliper showing breakout at ~ 7500° MD
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—8500” MD and in Figure 15 the red caliper log shows breakout from ~ 7000-8000° MD
leading credence to our calculated breakout thresholds in the same figure. The image log
from Figure 16 also shows drilling induced fractures through some of the intervals the

breakout threshold predicts breakout which is promising.

4.12 Cross Plots
Figures 39 — 42 are cross plots from the calculated geomechanical properties from the
model colored by the generated facies. The r? values and lithologic groupings are strong
which builds confidence in the facies model and the UCS curve in terms of lithology. The
groupings observed lead credence to the facies model as well, visualizing clear clusters of
limestone, siliciclastic mudstone, and organic rich mudstones in regards to their
geomechanical parameters. Weaker shales are clearly distinguishable from stronger sands

and limestone.
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DT Compressional vs. DT Shear

DTS vs DTC

Figure 39: Cross plot of compressional and shear sonic log data colored by facies with an

r’value of 0.94.

rength vs. Youngs Modulous

y=a0 + a1*x + a2*x*2
UCS vs Youngs ¥=3223.47 + (557.49 * x) + (268.54 * (x » 2.00))
0-3223.47
Modulous a1=557.49
a2-268.54
12=0.903

Figure 40: Cross plot of UCS and Young’s modulus colored by facies with an r? value of

0.90 and attributed best fit curve values.
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Youngs Modulous vs. Poisons Ratio

Youngs modulous
vs Poisons ratio

Figure 41: Cross plot of Young’s modulus and Poisson’s ratio colored by facies.

rength vs. Poisons Ratio

UCS vs Poisons
ratio

Figure 42: Cross plot of UCS and Poisson’s ratio colored by facies.
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CHAPTER V

5.0 DISCUSSION AND CONCLUSIONS
Building the mechanical earth model for Fee Bl #307 well was a rewarding and
challenging undertaking. The final model generated, while not perfect, does a fantastic
job predicting known breakouts in the area and is realistic when put up against the
generated facies model. Figure 43 below gives a representation of potential areas of
concern for breakout. While there are weaknesses to the model that will be discussed

below, the generated wellbore stability model is a strong tool that can help make good

decisions in the drilling process and is a useful baseline for future geomechanical study in

the area.
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Figure 43: Example of calculated breakout threshold, loss threshold, and safe mud weight

windows; Along with offset caliper data, and facies log, visualizing the potential

problematic intervals while drilling. Thresholds units are in ppg.
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Potential areas of concerns for breakout are from 7380° MD — 8105° MD with a
safe mud weight of ~11.3ppg and 9630 MD — 10269° MD with a safe mud weight of

~11.7ppg.

The facies model appears very accurate when viewed with all the log curves and
calculated curves along with the trend of the breakout threshold where our mudstones are
appearing weaker and more prone to breakout and limestones are appearing stronger and
more resilient. Figure 44 below is a zoomed in view of an example of just how well the
breakout threshold are correlating to the lithologic and log-based character of the curves
and generated facies. It is clear the model is doing a superb job at capturing trends in rock

strength and weakness, especially in the smaller sand and limestone stringers.
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Figure 44: Example of zoomed in view of full model demonstrating accurate depictions

of breakout and loss curve trends in relation to logs and facies curves.
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It would be advised if targeting any of the intervals in the Spraberry trend, to
make sure to set intermediate casing below the depth of 8105° MD. This guaranties
avoidance of potential hole stability problems in the curve and lateral sections of the
wellbore based on the predicted breakout threshold, the correlating data with image logs,

the offset caliper corroboration, and calculated UCS and facies curves of the model.

All calculated log curves with the exception of UCS look to be strong and show a
good correlation with quality control data points from core seen in Figure 14 in section
4.2.2. Young’s modulus, Poisson’s ratio, and bulk modulus curves demonstrate strong
correlation to core data points. UCS in any of the three methods used to calculate it all
appeared on the weaker end of the core data points as seen in Error! Reference source
not found. and Error! Reference source not found. in section 4.5. Since it is weaker
than core it may be safe to assume that the breakout curve is slightly skewed on the side
of weaker rock strength, meaning it may portray a lower mud weight needed to reach the
breakout point than reality. That being said, there is also such strong corroboration in
quality control points for predicted breakout sections that it does not seem to be hurting
the overall breakout model predictions by a significant amount when looking at the image

log and caliper.

The only potential weak point of this model is the fact that there was no available
quality control point or calibration data for the pore pressure gradient curve and in turn
the minimum horizontal stress curve. Observing Figure 38 the loss threshold does seem
to trend with predicted facies and other calculated/digital curves, however, given the lack

of those data points, | cannot confidently assert it is calibrated well and predicting a true
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loss threshold. However, some prediction is better than no prediction, and the fact that it
does trend well is encouraging. |1 would not take the loss threshold mud weights at face
value due to the above facts. But rather use the curve as a general guideline. Then look
for future ways to improve the confidences in the pore pressure curve calculation or

corresponding actual drilling data for losses observed while drilling offset wells.

5.1 Recommendations for Future Work

The “low hanging fruit” is finding quality control points for the pore pressure or
offset drilling data to calibrate the loss threshold. The rest of the facets of the model
appear to be strong and correlate well with lab driven data points from core. On the
whole this model seems to be accurate, however, there is always room for improvement.
Any nearby cored wells or quad-combo wells could be compared to improve upon and
tighten up the calibration of some of the elastic property curves. Potential different
techniques or a different facies model could be generated to get a stronger correlation for
the UCS curve to core. This project and calculated dataset could be used along with the
workflows to generate more 1D mechanical earth models of the surrounding area in Ector
county and eventually be built into a full 3D model calibrated to a number of sources.
This thesis was written based on a wellbore stability standpoint, however, the calculated
elastic properties and calculated geomechanical curves could be used in completions
modelling to help predict frac growth and recoverable oil. Generating an initial
mechanical earth model is just a starting point for a great deal of potential future projects
and the curves and workflows used in the modelling process are a good baseline for

insights into the engineering and completions realm of the business.
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5.2 Image of Final Model
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APPENDIX

Appendix A: List of Equations
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Appendix B: List of Variables

o = Stress

¢ = strain

p = bulk density

Vs=shear wave velocity

Vp=compressional or primary wave velocity
€axial = axial strain

&trans = transverse strain

F = the shear force applied

A = the cross-sectional area of material with area parallel to the applied force vector
Ax = shear displacement

| = initial length

AP = change of pressure

AV = change in volume

V = initial volume of material

ov = overburden stress
on = minimum horizontal stress,
on = maximum horizontal stress

g = is the gravitational constant (32.175 ft/s?)

h = the vertical thickness of rock formation (ft)

pi = the density of the i rock layer (Ibm/ft®)
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Pp = pore pressure

a = Biot elastic constant

ey = vertical strain

ex = lateral strain

ay = Biot elastic constant (vertical)
an = Biot elastic constant (horizontal)
otect = tectonic stress

¢ = friction angle

C, B, and U = constants for calibration Bowers method

Ppuio = pore pressure in unloading

omax = the estimated effective stress at the onset unloading

Ppng = pore pressure of hydrostatic pressure

At = sonic delta time

n = constant for calibration Eaton’s

Ghyd = gradient of hydrostatic pressure

Vhorm = Velocity log value according to normal trend

Veomp = Velocity log value according to compaction trend

TVD = True Vertical Depth

7 max = the maximum shear stress
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o1 = maximum principal stress

o2 = intermediate principal stress

o3 = minimum principal stress

Zoct = Max octahedral shear stress

omp = intermediate effective mean stress

a = intersection of the line on 7ot axis

0 = the line’s inclination

Co = Cohesion

I1 = first stress invariant

I3 = third stress invariant

n = material constant

S = stress

DTC = compressional wave travel time
DTS = shear wave travel time

Ky = bulk modulus of base material

Km = bulk modulus of rock matrix

K = bulk modulus

G = shear modulus
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Vv = Poisson’s ratio

E = Young’s modulus

MD = measured depth
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Appendix C: Conversion Tables

Conversions

Conversions

1 g/lem” =9.81 MPa/km

1 ppg = 0.051948 psi/ft

1 g/em® = 0.00981 MPa/m

1 ppg =0.12 g/cm’

1 g/lem’ =1 SG

1 ppg=0.12 SG

1 MPa/km =0.102 SG = 0.102 g/cm’

1 ppg = 1.177 MPa/km

1 MPa/km = 1 kPa/m

l ppg= 1.177 kPa/m

1 g/em’ = 8.345 ppg

1 psi/ft = 19.25 ppg

1 g/cm® = 0.4335 psi/ft

I psi/ft=2.31 g/em’

1 SG =8.345 ppg

I psi/ft = 22.66 MPa/km

1 SG=0.4335 psi/ft

1 psi/ft=2.31 SG

1 SG = 62.428 pcf (Ib/ft°)

1 ppg = 7.4805 pcf

Table 12: Table referencing conversions to and from metric and imperial unit of

measurement systems (Zhang, 2011).
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Appendix D: Facies Python Code

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file 1/0O (e.g. pd.read_csv)
import 0s
for dirname, _, filenames in os.walk('/kaggle/input’):
for filename in filenames:
print(os.path.join(dirname, filename))

# From R Hissong, using Brendon Hall (Facies Classification with Machine Learning:
Notebook workflow used for a UTPB Quantitative Interpretation Lab 4-18-2020)

# This notebook demonstrates how to train a machine learning algorithm to predict facies
from well log data. The dataset we will use comes from a downloaded and digitized
public logs from the TRRC. This exercise uses machine learning techniques to predict log
facies from core defined facies analysis on logs. For more info on the original workflow
and data, see Bohling and Dubois (2003) and Dubois et al. (2007).

# The dataset we will use is log data from four wells that have been labelled with a facies
type based on log data and ran through a random forest method broken down into 6
facies. We will use this log data to train a support vector machine to classify facies types.
Support vector machines (or SVMs) are a type of supervised learning model that can be
trained on data to perform classification and regression tasks. The SVM algorithm uses
the training data to fit an optimal hyperplane between the different classes (or facies, in
our case). We will use the SVM implementation in scikit-learn.

# First we will explore the dataset. We will load the training data from 4 wells, and take a
look at what we have to work with. We will plot the data from a couple wells, and create
cross plots to look at the variation within the data.

# Next we will condition the data set. We will remove the entries that have incomplete
data. The data will be scaled to have zero mean and unit variance. We will also split the
data into training and test sets.

# We will then be ready to build the SVM classifier. We will demonstrate how to use the
cross validation set to do model parameter selection.

# Finally, once we have a built and tuned the classifier, we can apply the trained model to
classify facies in wells which do not already have labels. We will apply the classifier to
two wells, but in principle you could apply the classifier to any number of wells that had
the same log data.

%matplotlib inline
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import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.colors as colors

from mpl_toolkits.axes_gridl import make_axes_locatable
from pandas import set_option
set_option("display.max_rows", 10)
pd.options.mode.chained_assignment = None

training_data = pd.read_excel("../input/testdata/test.xlsx",sheet_name='RH Facies Lab
Data’)

training_data

# we will remove one well from the training set so that we can compare

# the predicted and actual facies labels.

blind = training_data[training_data['Well Name'] == ‘well 2']

training_data = training_data[training_data['Well Name'] != 'well 27

blind

# Let's clean up this dataset. The 'Well Name' column

# can be turned into a categorical data type.

training_data['Well Name'] = training_data['Well Name'].astype('category’)

training_data['Well Name'].unique()

#Now we label and color our facies

# 1=Mudstone_Org_Si 2=Mudstone_Org 3=Mudstone_ ORG_Cal

# 4=Mudstone_Cal_Si 5=Limestone_Arg_Dol 6=Limestone_Arg

facies_colors = [#A09D92','#8E7308',#0B0901','#F5D451",
‘HEE44BB','#44BBEE']

facies_labels = ['MSOrgSi', 'MSOrg', 'MSOrgCal', 'MSCalSi', 'LSArgDol’,

'LSArgT]
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#facies_color_map is a dictionary that maps facies labels

#to their respective colours

facies_color_map = {}

for ind, label in enumerate(facies_labels):
facies_color_map[label] = facies_colors[ind]

#note: this next step gives you a breakdown of the data, if you need to see if data busts
exist like -999s then just delete the 3 rows and use "training_data.describe()" function to
generate a table

def label_facies(row, labels):
return labels[ row['Facies] -1]

training_data.loc[:,'FaciesLabels’] = training_data.apply(lambda row: label_facies(row,
facies_labels), axis=1)

training_data.describe()
# Let's take a look at the data from individual wells in a more familiar log plot form.
# We will create plots for the five well log variables, as well as a log for facies labels.
def make_facies_log_plot(logs, facies_colors):

#make sure logs are sorted by depth

logs = logs.sort_values(by='Depth’)

cmap_facies = colors.ListedColormap(

facies_colors[0:len(facies_colors)], 'indexed’)

ztop=(5896); zbot=(8140)

cluster=np.repeat(np.expand_dims(logs['Facies’].values,1), 100, 1)

f, ax = plt.subplots(nrows=1, ncols=6, figsize=(8, 12))

ax[0].plot(logs.GR, logs.Depth, '-g')

ax[1].plot(logs.ILD log10, logs.Depth, '-"

ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5")

ax[3].plot(logs.PHIND, logs.Depth, '-', color="r")

ax[4].plot(logs.RHOB, logs.Depth, '-', color="black’)

im=ax[5].imshow(cluster, interpolation="none’, aspect="auto’,
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cmap=cmap_facies,vmin=1,vmax=6)
divider = make_axes_locatable(ax[5])
cax = divider.append_axes("right", size="20%", pad=0.05)
cbar=plt.colorbar(im, cax=cax)

cbar.set_label((17*' ").join([ 'MSOrgSi ', ' MSOrg ',  MSOrgCal ', ' MSCalSi ', '
LSArgDol ',

'LSArg 1))

char.set_ticks(range(0,1)); cbar.set_ticklabels(")
for i in range(len(ax)-1):

ax[i].set_ylim(ztop,zbot)

ax[i].invert_yaxis()

ax[i].grid()

ax[i].locator_params(axis="x', nbins=3)
ax[0].set_xlabel("GR™)
ax[0].set_xlim(0,200)
ax[1].set_xlabel("ILD_log10™)
ax[1].set_xlim(0,500)
ax[2].set_xlabel("DeltaPHI")
ax[2].set_xlim(0,0.8)
ax[3].set_xlabel("PHIND")
ax[3].set_xlim(0.1,0.5)
ax[4].set_xlabel("RHOB")
ax[4].set_xlim(1,3)
ax[5].set_xlabel('Facies’)
ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([])
ax[4].set_yticklabels([]); ax[5].set_yticklabels([])
ax[5].set_xticklabels([])
f.suptitle("Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94)
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# We then show log plots for well 3.
make_facies_log_plot(

training_data[training_data['Well Name'] == 'well 37,

facies_colors)
# Now for well 4.
make_facies_log_plot(

training_data[training_data['Well Name'] == ‘well 47,

facies_colors)
# Now for well 5.
#Note:since we set our well 2 as training data it can not be displayed using this code
make_facies_log_plot(

training_data[training_data['Well Name'] == 'well 57,

facies_colors)
#count the number of unique entries for each facies, sort them by
#facies number (instead of by number of entries)
facies_counts = training_data['Facies'].value_counts().sort_index()
#use facies labels to index each count
facies_counts.index = facies_labels
facies_counts.plot(kind='bar',color=facies_colors,

title="Distribution of Training Data by Facies')

facies_counts
#save plot display settings to change back to when done plotting with seaborn
inline_rc = dict(mpl.rcParams)
one_hot_encoded_training_predictors = pd.get_dummies(training_data)
import seaborn as sns
sns.set()

sns.pairplot(training_data.drop(['Well
Name','Facies','Depth’,'DeltaPHI','PHIND",axis=1),
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#Not sure why but I cant get the DeltaPHI or PHIND to plot it gives a error -Rob
hue="FaciesLabels', palette=facies_color_map,
hue_order=list(reversed(facies_labels)))

#switch back to default matplotlib plot style

mpl.rcParams.update(inline_rc)

#Now have visualized all we can, now its time to condition the data for use in creating
our predictors and vectors

# We extract just the feature variables we need to perform the classification.

# The predictor variables are the four wireline wells and facies variables.

# We also get a vector of the facies labels that correspond to each feature vector.
correct_facies_labels = training_data['Facies’].values

feature_vectors = training_data.drop(['Well Name', ‘Depth’,'Facies’,'FaciesLabels],
axis=1)

feature_vectors.describe()
#make note if counts are off or min/max is unusual
#This creates our vectors
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(feature_vectors)
scaled_features = scaler.transform(feature_vectors)
feature_vectors
# Split to test and training data, test will be used to compare the accuracy of the model
from sklearn.model_selection import train_test_split
X_train, X_test, y train, y_test = train_test_split(
scaled_features, correct_facies_labels, test_size=0.2, random_state=42)
#Training the classifier
from sklearn import svm
clf = svm.SVC()
clf.fit(X_train,y_train)
#Predict
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predicted_labels = clf.predict(X_test)

# a function has been written to display the matrix along with facies labels and various
error metrics.

def display_cm(cm, labels, hide_zeros=False,
display_metrics=False):
"""Display confusion matrix with labels, along with
metrics such as Recall, Precision and F1 score.
Based on Zach Guo's print_cm gist at
https://gist.github.com/zachguo/10296432
precision = np.diagonal(cm)/cm.sum(axis=0).astype('float’)
recall = np.diagonal(cm)/cm.sum(axis=1).astype(‘float’)
F1 =2 * (precision * recall) / (precision + recall)
precision[np.isnan(precision)] =0
recall[np.isnan(recall)] = 0
F1[np.isnan(F1)] =0
total_precision = np.sum(precision * cm.sum(axis=1)) / cm.sum(axis=(0,1))
total_recall = np.sum(recall * cm.sum(axis=1)) / cm.sum(axis=(0,1))
total F1 =np.sum(F1 * cm.sum(axis=1)) / cm.sum(axis=(0,1))
#print total_precision
columnwidth = max([len(x) for x in labels]+[5]) # 5 is value length
empty_cell =" " * columnwidth
# Print header
print(" "+ " Pred", end="")
for label in labels:
print("%{0}s".format(columnwidth) % label, end=""
print("%{0}s".format(columnwidth) % 'Total’)

print(" "+ " True")
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# Print rows
for i, labell in enumerate(labels):
print("  %{0}s".format(columnwidth) % labell, end="")
for j in range(len(labels)):
cell = "%{0}d".format(columnwidth) % cmli, j]
if hide_zeros:
cell = cell if float(cm[i, j]) !'= 0 else empty_cell
print(cell, end="")
print("%{0}d".format(columnwidth) % sum(cm[i,:]))
if display_metrics:
print()
print("Precision”, end="")
for j in range(len(labels)):
cell ="%{0}.2f".format(columnwidth) % precision[j]
print(cell, end="")
print("%{0}.2f".format(columnwidth) % total_precision)
print(" Recall”, end="")
for j in range(len(labels)):
cell = "%{0}.2f".format(columnwidth) % recall[j]
print(cell, end="")
print("%{0}.2f".format(columnwidth) % total recall)
print("  F1", end="")
for j in range(len(labels)):
cell = "%{0}.2f".format(columnwidth) % F1[j]
print(cell, end="")
print("%{0}.2f".format(columnwidth) % total F1)
def display_adj_cm(

cm, labels, adjacent_facies, hide_zeros=False,
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display_metrics=False):
""" This function displays a confusion matrix that counts
adjacent facies as correct.
adj_cm = np.copy(cm)
for i in np.arange(0,cm.shape[0]):
for j in adjacent_facies[i]:
adj_cm[i][i] += adj_cml[i][j]
adj_cm[i][j] = 0.0
display_cm(adj_cm, labels, hide_zeros,
display_metrics)
#create our confusion matrix
from sklearn.metrics import confusion_matrix
conf = confusion_matrix(y_test, predicted_labels)
display_cm(conf, facies_labels, hide_zeros=True)
# define our accuracy
def accuracy(conf):
total_correct = 0.
nb_classes = conf.shape[0]
for i in np.arange(0,nb_classes):
total_correct += conf[i][i]
acc = total_correct/sum(sum(conf))
return acc
# Define error within ‘adjacent facies'
#This needs to be updated for 6 facies model ,np.array
adjacent_facies = np.array([[1], [0,3], [1], [0,3], [1], [1], [1], [5], [31D)
def accuracy_adjacent(conf, adjacent_facies):

nb_classes = conf.shape[0]
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total correct = 0.
for i in np.arange(0,nb_classes):
total_correct += conffi][i]
for j in adjacent_facies[i]:
total_correct += conffi][j]
return total_correct / sum(sum(conf))
#display accuracy
print(‘Facies classification accuracy = %f' % accuracy(conf))

print('Adjacent facies classification accuracy = %f' % accuracy_adjacent(conf,
adjacent_facies))

#Note: the misclassification is not severe (how close it is to value of 1)
#Note: this will take some time please wait for it to run the parameter loop...
#this checks our C values and trained well error
do_model selection = True
if do_model_selection:
C_range = np.array([.01, 1, 5, 10, 20, 50, 100, 1000, 5000, 10000])
gamma_range = np.array([0.0001, 0.001, 0.01, 0.1, 1, 10])
fig, axes = plt.subplots(3, 2,
sharex="col', sharey="row’,figsize=(10,10))
plot_number =0
for outer_ind, gamma_value in enumerate(gamma_range):
row = int(plot_number / 2)
column = int(plot_number % 2)
cv_errors = np.zeros(C_range.shape)
train_errors = np.zeros(C_range.shape)
for index, c_value in enumerate(C_range):
clf = svm.SVC(C=c_value, gamma=gamma_value)

clf.fit(X_train,y_train)
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train_conf = confusion_matrix(y_train, clf.predict(X_train))
cv_conf = confusion_matrix(y_test, clf.predict(X_test))
cv_errors[index] = accuracy(cv_conf)
train_errors[index] = accuracy(train_conf)
ax = axes[row, column]
ax.set_title('Gamma = %g'%gamma_value)
ax.semilogx(C_range, cv_errors, label="CV error’)
ax.semilogx(C_range, train_errors, label="Train error’)
plot_number += 1
ax.set_ylim([0.2,1])
ax.legend(bbox_to_anchor=(1.05, 0), loc="lower left', borderaxespad=0.)
fig.text(0.5, 0.03, 'C value', ha='center’,
fontsize=14)
fig.text(0.04, 0.5, 'Classification Accuracy', va='"center’,
rotation="vertical', fontsize=14)
#display accuracy at %.2f
clf = svm.SVC(C=10, gamma=1)
clf.fit(X_train, y_train)
cv_conf = confusion_matrix(y_test, clf.predict(X_test))
print('Optimized facies classification accuracy = %.2f' % accuracy(cv_conf))

print('Optimized adjacent facies classification accuracy = %.2f' %
accuracy_adjacent(cv_conf, adjacent_facies))

#display cm confusion matrix with precisions
display_cm(cv_conf, facies_labels,
display_metrics=True, hide_zeros=True)
#display adj_cm confusion matrix with precisions
display_adj_cm(cv_conf, facies_labels, adjacent_facies,

display_metrics=True, hide_zeros=True)
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# Applying the classification model to the blind data

# We held a well back from the training, and stored it in a dataframe called blind: (well 2)
blind

#defines Y_blind as facies

y_blind = blind['Facies’].values

#drops uneeded columns

well_features = blind.drop(['Facies’,'Well Name', '‘Depth’], axis=1)
well_features.describe()

# Now we can transform this with the scaler we made before:

X_blind = scaler.transform(well_features)

# use the predictor we created storing it back in the dataframe:

y_pred = clf.predict(X_blind)

blind['Prediction] =y _pred

# Let's see how we did with the confusion matrix

cv_conf = confusion_matrix(y_blind, y_pred)

print('Optimized facies classification accuracy = %.2f' % accuracy(cv_conf))

print('Optimized adjacent facies classification accuracy = %.2f' %
accuracy_adjacent(cv_conf, adjacent_facies))

#not to shabby...
#display the confusion matrix with precisions
display_cm(cv_conf, facies_labels,

display_metrics=True, hide_zeros=True)
#now lets see how it does on the adj facies confusion matrix
# but does remarkably well on the adjacent facies predictions.
display_adj_cm(cv_conf, facies_labels, adjacent_facies,

display_metrics=True, hide_zeros=True)

def compare_facies_plot(logs, compadre, facies_colors):

#make sure logs are sorted by depth
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logs = logs.sort_values(by='Depth’)
cmap_facies = colors.ListedColormap(
facies_colors[0:len(facies_colors)], 'indexed’)

ztop=(5896); zbot=(8140)

clusterl = np.repeat(np.expand_dims(logs['Facies’].values,1), 100, 1)

cluster2 = np.repeat(np.expand_dims(logs[compadre].values,1), 100, 1)

f, ax = plt.subplots(nrows=1, ncols=7, figsize=(9, 12))

ax[0].plot(logs.GR, logs.Depth, '-g')

ax[1].plot(logs.ILD_log10, logs.Depth, '-)

ax[2].plot(logs.DeltaPHI, logs.Depth, -, color='0.5")

ax[3].plot(logs.PHIND, logs.Depth, '-', color="r")

ax[4].plot(logs.RHOB, logs.Depth, '-', color="black’)

im1 = ax[5].imshow(clusterl, interpolation="none’, aspect="auto’,
cmap=cmap_facies,vmin=1,vmax=6)

im2 = ax[6].imshow(cluster2, interpolation="none’, aspect="auto’,
cmap=cmap_facies,vmin=1,vmax=6)

divider = make_axes_locatable(ax[6])

cax = divider.append_axes("right", size="20%", pad=0.05)

cbhar=plt.colorbar(im2, cax=cax)

char.set_label((17*' ").join(['MSOrgSi ', ' MSOrg ', ' MSOrgCal ', * MSCalSi ', '
LSArgDol ',

'LSArg 1))
cbar.set_ticks(range(0,1)); cbar.set_ticklabels(")
for i in range(len(ax)-2):
ax[i].set_ylim(ztop,zbot)
ax[i].invert_yaxis()
ax[i].grid()
ax[i].locator_params(axis="x', nbins=3)
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ax[0].set_xlabel("GR")

ax[0].set_xlim(0,200)

ax[1].set_xlabel("ILD_log10")

ax[1].set_xlim(0,500)

ax[2].set_xlabel("DeltaPHI")

ax[2].set_xlim(0,0.8)

ax[3].set_xlabel("PHIND")

ax[3].set_xlim(0.1,0.5)

ax[4].set_xlabel("RHOB")

ax[4].set_xlim(1,3)

ax[5].set_xlabel('Facies’)

ax[6].set_xlabel(compadre)

ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([])
ax[4].set_yticklabels([]); ax[5].set_yticklabels([])
ax[5].set_xticklabels([])

ax[6].set_xticklabels([])

f.suptitle("Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94)

# Now we create the comparison of predicted facies vs actual from the random forest
classification dataset

compare_facies_plot(blind, 'Prediction’, facies_colors)
##### Now lets test this bad boy on a well with no facies descriptions
#we will have to import the well 1 dataset so please add it in now
# Now that we have a trained facies classification model we can use it to
# identify facies in wells that do not have core data.
# In this case, we will apply the classifier to one well,

# but we could use it on any number of wells for which we have the same set of well logs
for input.

# This dataset is similar to the training data except it does not have facies labels.

#/kaggle/input/well-1/well1.xlsx
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well_data = pd.read_excel("../input/well-1/well1.xIsx",sheet_name='Sheet1')
well_data['Well Name'] = well_data['Well Name'].astype('category’)
well_features = well_data.drop(['Well Name', 'Depth’], axis=1)
# The data needs to be scaled using the same constants we used for the training data.
X_unknown = scaler.transform(well_features)
# predict facies of unclassified data
y_unknown = clf.predict(X_unknown)
well_data['Facies’] = y_unknown
well_data
# defines well 1 as unique
well_data['Well Name'].unique()
# We can use the well log plot to view the classification results along with the well logs.
make_facies_log_plot(
well_data[well_data['Well Name'] == ‘well 17,
facies_colors=facies_colors)

# Finally we can write out a csv file with the well data along with the facies classification
results.

classifications by machine learning

well_data.to_csv(‘well_data_with_facies.csv')
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