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ABSTRACT 

Rock mechanics play an integral role in drilling wellbores in the oil and gas 

industry. Cost of drilling can be increased by issues such as hole enlargement or collapse, 

lost circulation of drilling fluids, and unintentionally induced fractures. An integrated 

geomechanical model can be used, prior to drilling the wellbore, to help identify and avoid 

these costly occurrences. A detailed analysis of datasets from well log data were used to 

create a 1-D geomechanical model for the Fasken C Ranch, Fee BI #307 well. Calculated 

geomechanical curves were generated as inputs and a wellbore stability model was created 

determining breakout and loss thresholds for the well. The model was able to accurately 

predict intervals of potential wellbore breakout, as well as estimate a potential fluid weight 

window used for optimal drilling parameters through identified problematic section of 

stratigraphy. Predicting these thresholds builds confidence in the planned drilling 

parameters. It allows for cost effective decisions, minimizing the risk of problematic 

intervals in the drilling process. It also suggest a safe casing depth for an intermediate 

casing shoe based on the breakout thresholds. Developing pro-active approaches to 

wellbore instability can save capital in the field development and lead to further study 

utilizing the calculated geomechanical variables.   
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CHAPTER I: INTRODUCTION 

In July 2020, shale exp.com reported Ector County, TX as the #44 ranked oil 

producing county nationally; producing over 1.5 million barrels of oil (Figure 1). That is 

equivalent to over 63 million dollars in production for one month of completing wells, at 

42 dollars per barrel average on July 27th, 2020 (Figure 2). Given the dollar value of oil 

production, it is both crucial and prudent to garner as much information as possible to 

optimize the capital used when operating wells in this area of study. One such path to 

achieve this goal is using geomechanical modeling. In understanding how the rock breaks 

one is able to glean much insight into components of the reservoir being produced.  

Figure 1: Oil and gas production in Ector Co., TX on July 28th, 2020, for the month of 

July 2020 (ShaleXP.com, 2020) 
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Figure 2: Average price of WTI crude oil for the month of July 2020, portraying ~$41.01 

average price per barrel of oil (Rotrends.net, 2020). 

Geomechanics is a diverse field of study with many applications, while this thesis 

focuses on building a wellbore stability model, there is a myriad of other research done in 

the Permian Basin using geomechanics. Zheng et al. (2018) researched production based 

stress changes and their impact on wellbore stability. They demonstrated that as depletion 

and reservoir pressure changes with field development, so will the effective principal 

stresses. This particular is insightful due to the years of vertical well production in the 

Permian Basin. Wang and Weijermars (2019) specifically researched failure criteria in a 

lateral wellbore sense; observing elastically anisotropic shales and how they fail. Since 
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horizontal drilling is a new normal, this has implications on both drilling the well, 

understanding when the surrounding rock may collapse and fail, along with completing the 

well, in understanding pressure and principal stresses needed to break and drain the 

reservoir.  

Specifically, in the Permian Basin, Ouenes et al. (2016) discussed the use of 

geomechanical modeling to quantify natural fractures and well performance in Reagan 

County, TX. Their work catered to the lower Wolfcamp, analyzing fracture orientation and 

simulating hydraulic fracture stages, and viewing it from a micro seismic aspect utilizing 

geomechanical inputs. Kowan et al. (2017) utilized the same theories of this thesis 

calculating geomechanical properties from well logs to better analyze weak bedding planes 

and zones of under and over pressure that could lead to wellbore instability. They 

concluded that identifying geomechanical related hazards leads to more intelligent well 

design from the planning process.  

While operators in Ector county, TX may have done some work using 

geomechanical parameters, there is no available publications of any geomechanically 

calculated curves in this county in Texas. Drilling wells can be costly. Garnering a greater 

understanding of the rock and the geomechanical properties around the wellbore lead to a 

more cost-effective drilling program. In understanding the potential wellbore breakout and 

loss thresholds one can minimize risk of hole collapse or fluid loss when drilling the well. 

This can be seen in work available from Schlumberger (2012), that gives more detail into 

basic wellbore stability theory and defines “risk based” geomechanical modeling that can 

be used in drilling the Wolfcamp Shale play.   
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The purpose of this study is to utilize the offset well datasets to build a working 

model that can determine “high risk” or “problematic” geologic intervals in the drilling 

process. By using geomechanical parameters, both measured and calculated, thresholds of 

potential wellbore breakout and losses will be determined. A calculated “safe” fluid weight 

window to optimize wellbore stability through the identified problematic section of 

stratigraphy will be recognized. By establishing the process and workflow of building the 

first model in the area, others will be able to utilize the dataset to further understand and 

improve the initial model built.   
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CHAPTER II: GEOMECHANICAL PROPERTIES 

  

2.1 Elastic Properties 

The elastic properties of the rock are required to be calculated in order to build a 1D 

mechanical earth model from well data including: Young’s modulus (E), shear modulus 

(G), bulk modulus (K), and Poisson’s ratio (v). They must be either obtained through 

laboratory testing on core or derived using sonic well log measurements of compressional 

and shear waves along with a bulk density measurement (Knöll, 2016). While more 

accurate, the core measurements are assumed to be a more static property, while derived 

calculations are called dynamic properties (Słota-Valim, 2015). It is common to calculate 

the dynamic elastic properties for use in modelling due the expensive and time consuming 

nature of running laboratory tests to obtain the static elastic property measurements from 

core. That fact, coupled with the circumstance of only being able to pressure and measure 

triaxial strain on core once per sample, lends credence to the use of an approach utilizing 

the calculated dynamic elastic properties when building a mechanical earth model.  

2.1.1 Static Properties vs Dynamic Properties 

In an ideal world one would always use the static properties when determining the 

elastic properties of a rock. Given the less than ideal costs and time associated with the 

lab work required to obtain the static properties, it is commonplace to derive these values 

using sonic well log measurements of compressional and shear waves along with a bulk 

density measurement (Fei et al., 2016). It is possible to determine dynamic values 
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for Young’s modulus and Poisson’s ratio from well log data. Dynamic Young’s modulus 

differs from the static variant in that it is always a greater value under identical laboratory 

conditions (Fei et al., 2016). Dynamic Poisson’s ratio is relatively similar to the static 

variant, it may occasionally run higher (Fei et al., 2016). For details regarding pressure 

and temperature variances and their corresponding logarithmic and linear 

relationships, Fei et al. (2016) describes a statistical breakdown of each in turn. 

 

2.1.2 Young’s Modulus (E) 

Young’s modulus expresses the relationship between applied longitudinal stress and 

the longitudinal deformation/strain in a material. The modulus is a measure of the stiffness 

of a material (Słota-Valim, 2015). It can be thought of as the modulus of stiffness. It is 

expressed by the Equation 1 and Equation 2 below and is measured in units of pressure; 

Pa, bar, or psi (1 Pa = 10–5 bar = 0.000145038psi). Please note, Appendix A is a reference 

to all formula used in this thesis. Appendix B is a list of the variables in the sequential order 

they appear.   

Static:   E = σ / ε  (1) 

where,  

σ = stress (psi) 

ε = strain   

 

Dynamic: Edyn = ρ VS
2 [(3VP

2 – 4 VS
2) / (VP

2 – VS
2)]   (2) 
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where,    

ρ = bulk density (g/cm3) 

VS= shear wave velocity (ft/sec) 

VP= compressional or primary wave velocity (ft/sec) 

 

Or if one has calculated a shear modulus and Poisson’s ratio curves Equation 3 can be 

used. 

 

Edyn = 2 * G * (1 +  v)   (3) 

where,   

 

G = bulk modulus (psi) 

 

v = Poisson’s ratio  

 

 

2.1.3 Poisson’s Ratio (v) 

Poisson’s ratio expresses the relationship between transverse strain to axial strain or 

the deformation of a material (Słota-Valim, 2015). If strain is negative it is a product of 

stretching from axial tension or if there is a compression, the strain is positive. One way 

to think about Poisson’s ratio is how flexible a material is. The higher the value, the more 

flexible the material. For example, if one was to pinch a gummy bear it is much more 

flexible than when compared to a cork. Therefore, the gummy bear has a higher Poisson’s 

ratio and that of the cork is much lower.  Poisson’s ratio (v) is expressed by Equation 4 

and Equation 5 below.  
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Static:   v = εtrans /εaxial   (4) 

where,   

εaxial = axial strain  

εtrans = transverse strain   

Dynamic: vdyn = (VP 2 – 2*VS
2) (2(VP 2 – VS

2))  (5) 

 

2.1.4 Shear Modulus (G) 

The shear modulus expresses the ratio of shear stress to shear strain (Archer and 

Rasouli, 2012). It is commonly referred to as the modulus of rigidity of a material. It can 

describe how the material reacts to shear stress. The larger the value of the shear modulus 

the more rigid the material (Słota-Valim, 2015). It is expressed by Equation 6 or Equation 

7 in units of pressure; Pa, bar or psi. 

G = [F/A] / [Δx/l]  (6) 

where,   

F = the shear force applied  

A = the cross-sectional area of material parallel to the applied force vector  

Δx = shear displacement   

l = initial length  

G = ρVS
2  (7) 
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2.1.5 Bulk Modulus (K) 

The bulk modulus expresses the resistance of the material to change in 

volume when exposed to compression from all every direction (Słota-Valim, 2015). 

Think of it as the modulus of resistance, or how resistant the substance is to compression 

(Kadhim et al., 2016). Since bulk modulus deals with compressibility of a given volume 

of material it also is one of the modulus that affect a given unit of volume (Fei et al., 

2016). It is expressed by Equation 8 and Equation 9 in units of pressure; Pa, bar or psi. 

K = ΔP / [ΔV/V]  (8) 

or,  

K = ρ (VP 2 – (4/3) VS 
2) (9) 

where,    

ΔP = change of pressure  

ΔV = change in volume  

V = initial volume of material  

 

2.1.6 Derivatives of Elastic Properties 

All elastic properties of materials are interrelated and can be mathematically derived 

if the preferable data is not available (Mavko et al., 2009). Table 1 shows the mathematical 

relationships one can use to derive certain properties if others are known, or calculated 

using other means such as sonic data from well logs. 



22 

 

 

Table 1: Table showing elastic properties and their relationships to each other (Mavko et 

al., 2009). 
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Table 1 can be especially useful if one has access to limited data. There are also 

laboratory tested relationships for various lithologies if only a monopole sonic logging run 

with compressional or primary wave velocity data is available (Milovac, 2009). An 

example is Equation 10 used for sandstone below. 

VS = 0.8042* VP -855.9  (10) 

These conversions are useful tools given limiting data conditions to help build a mechanical 

earth model from well log data.  

 

2.2 In Situ Stress Components 

In situ stresses and rock mechanics properties play a key role in the assessment of 

wellbore design and execution (Aadnøy and Looyeh, 2019b). Understanding what stresses 

effect the rock at any given point is crucial in determining how rock will break. There are 

three perpendicular axis of stresses at any given point in a material in the subsurface, 

vertical stress or overburden stress (σv), minimum horizontal stress (σh), and maximum 

horizontal Stress (σH) as seen in Figure 3 below (Aadnøy and Looyeh, 2019b).  



24 

 

 

 

Figure 3: In-situ principal stress example for a drilled vertical well. 

 

It is vital to also realize that these three stresses may affect the wellbore or rock 

differently when studying it from a vertical to horizontal capacity depending on how the 

well was drilled. In general all three principal stresses are not hydrostatic, i.e. all have 

different magnitudes at any given wellbore direction (Aadnøy and Looyeh, 2019a).  

This thesis built a 1D mechanical earth model using vertical well data, meaning the 

stress components were only studied from a vertical wellbore design perspective. The 

subsequent sections 2.2.1 – 2.2.5 will provide details on each stress component.  
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2.2.1 Overburden Stress (σv) 

Overburden stress or vertical stress is defined as the pressure exerted on 

a material at a given depth due to the total mass of the rocks and/or fluids above it (Aird, 

2019). The simple way to consider overburden is just how much material is above, that is 

compacting the rock in a vertical capacity due to weight and gravity. It is possible to 

interpolate overburden over an interval if two vertical stress points are measured from lab 

tests. This is a common practice in computing overburden stress when faced with a lack 

of data availability (Aird, 2019). Overburden stress can be calculated using Equation 11 

and requires knowledge of depth/thickness and the bulk density of the given material to 

calculate from log-based data sets. 

σv =  ∑ 𝜌𝑖ℎ𝑖𝑔 
𝑖    (11) 

where, 

g = is the gravitational constant (32.175 ft/s2) 

hi = the vertical thickness of the ith rock layer (ft) 

i = the density of the ith rock layer (lbm/ft3) 

 

2.2.2 Minimum Horizontal Stress (σh) 

Minimum horizontal stress is often thought of as “closure stress” as it directly 

relates to the closure gradient of fractured pores made while drilling or fracking (Belyadi 

and Belyadi, 2019). During drilling, there is a specific pressure exerted on the 

surrounding rock that the fluid column of the hole is directly related to. This pressure of 
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the fluid column must not exceed or be less than that of the surrounding pressure or 

wellbore instability will occur. As the drill bit breaks the rock drilling down vertically, 

the fluid column must be held at a specific pressure gradient to balance all three principal 

stress components. We define this as the hydrostatic pressure of the fluid column 

(Belyadi and Belyadi, 2019). Breakout pressure is defined by the maximum and 

minimum horizontal stresses, pore pressure, and rock strength (Belyadi and Belyadi, 

2019). If the pressure of the fluid column exceeds the breakout pressure of the 

surrounding rock, it will break down and push the fluid out into the surrounding 

formation, resulting in mud losses in the hole. Minimum horizontal stress can be obtained 

by running a diagnostic fracture injection test (DFIT) (Figure 4). 
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Figure 4: Representation of a diagnostic fracture injection test and the corresponding 

points of interest one can glean from it. This includes a minimum horizontal stress point, a 

pore pressure point, a FIP (fracture initiation point), as well as an ISIP (initial shut in 

pressure) point.  

  It is also worth noting that minimum horizontal stress can be calculated using 

isotropic or anisotropic components depending on your reservoir system and deposition 

as defined below in Equation 12 and Equation 13 from Zahiri et al. (2019). 

σh = [(v /1 - v ) σv ] +  [(1 - 2 v /1 - v)Pp α] + [(E/1 – v2) εy] + [(E v /1 – v2) εx]  (12) 

where, 

Pp = pore pressure (psi) 

α = Biot elastic constant  
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εy = vertical strain   

εx = lateral strain   

or,  

Isotropic σh = (v /1 – v)(σv - αv Pp) + αH Pp + σtect  (13) 

where,  

αv = Biot elastic constant (vertical)   

αH = Biot elastic constant (horizontal)   

σtect = tectonic stress (MPa) 

2.2.3 Maximum Horizontal Stress (σH) 

Maximum horizontal stress is more difficult to calculate and is often considered the 

most challenging component of the stress regimes to derive accurate values (Knöll, 

2016). Using measurements of pore pressure, rock strength, vertical stress, minimum 

horizontal stress, and the tectonic stress it is possible to derive the maximum horizontal 

stress using Equation 14, however, tectonic stress is exceedingly difficult to determine 

and is generally estimated (Snee and Zoback, 2016). 

σH = [(v /1 – v) * (σv -  Pp α)] + Pp α + σtect  (14) 

It is also possible to estimate the maximum horizontal stress from image logs, 

friction limit to stress data, caliper data, and drilling induced fracture data (DIF) (Han et 

al., 2019).  

The estimated maximum horizontal stress values should always be greater than 

the minimum horizontal stress values. If it is not possible to calculate maximum 
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horizontal stress due to lack of data one can also assume a value equal to minimum 

horizontal stress with the addition of a gradient of 0.1 psi/ft (Belyadi and Belyadi, 2019); 

while not wholly accurate, it at least is valid in principle.   

2.2.4 Biot’s Elastic Constant (α) 

Biot’s constant is a direct relationship of porosity, permeability, clay content, grain 

contact, grain strength, overburden pressure, and bulk modulus (Biot and Willis, 1957). 

In simpler terms defined in Crain (2000), it is the ratio of the volume change of fluid 

filled pores in relation to the volume change when fluid is free to move about the pore 

space. The matrix volume of material needs some porosity or the Biot’s elastic 

constant will be zero because there will be no change in volume. Biot’s elastic constant is 

one of the more difficult variables to calculate and derive due to lack of sample data 

available for laboratory testing and the potential heterogeneity of the material involved 

and the underlying volume of pore space, fluid content, and permeability variables of the 

given system.  For example, if one visualizes a very thin, one-millimeter beds of a 

porous limestone, interbedded with tight clays, it becomes easy to see how it would be 

difficult to determine the proper volumes of porosity relationships to get an 

accurate Biot’s elastic constant over a one foot sample interval. Equations 15-17 are used 

to determine Biot’s elastic constant from well log data; and using Figure 5 it is possible to 

estimate Biot’s constant with an estimated effective porosity of a known rock or assumed 

lithology. 

α = 1 - (Kb/ Km)  (15) 

where,  
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Kb = bulk modulus of base material  (g/cm3) 

Km = bulk modulus of rock matrix (g/cm3) 

Kb =  ρ*(1/(DTC2) – (4/3)*(1/(DTS2)))  (16) 

Km = ρm*(1 / (DTC2)-(4/3)*(1 / (DTS2)))  (17) 

where,  

DTC = compressional wave travel time (µs,m) 

DTS = shear wave travel time (µs,m) 

  

Figure 5: Graphical representation of estimation of Biot based on lithology and effective 

porosity of that lithology from log (Crain, 2000). 
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2.2.5 Stress Orientation 

Determining the stress orientation of a given depositional setting is a crucial part in 

understanding the two main horizontal stress components since they are perpendicular to 

each other (Belyadi and Belyadi, 2019). The simplest way to estimate the direction of 

horizontal stress components is identifying the direction of borehole breakout from image 

logs of the given intervals of study. One can also use caliper logs, if at least a 4-

arm caliper was used to identify the weakest direction of borehole instability and 

breakout (Haidary et al., 2015). Using either of these logs can give an understanding of 

where the borehole is the weakest and more prone to breakout. It can also help identify 

any anomalies of the weakest stress direction in different intervals. The direction that 

breakouts are observed is the minimum horizontal stress direction. Perpendicular to that 

is the maximum stress direction (Warner Jr and Holstein, 2007). This method for 

determining the minimum and maximum horizontal stress direction is used regularly 

assuming a vertical borehole, however, this can vary once the wellbore start to build 

angle and eventually becoming horizontal. This thesis will only focus on determining the 

stress orientation of the vertical borehole and does not enter into the curve and horizontal 

drilling realms of stress direction regimes and change. 

2.3 Rock Strength (UCS) 

Unconfined compressive strength (UCS) is the strength that describes the capacity 

of the rock to resist compressive stresses (Zhang, 2020). When testing for UCS in the lab, 

rock failure mechanisms are observed by preforming triaxial or uniaxial tests on specific 

samples based on the suitable nature of the rock in question. This lab test can give a lot of 
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information but is used in the geomechanical realm for UCS and friction angle (ϕ) data 

points. Lab testing is always preferable to derived log calculations, however, is it not 

economical to test an entire well’s worth of samples from core. Using laboratory testing, 

one can obtain good data points used to quality control test separate log-based 

calculations and correlations of UCS. Sections 2.3.1 and 2.3.2 will describe various 

methods for determining UCS from log and correlations as well as deriving friction angle 

from a gamma ray log and friction angle correlations. 

2.3.1 Correlations of UCS 

It is common to use known correlations of UCS and Young’s modulus for a starting 

point if one has calculated known facies of logs and has a good calibration of Young’s 

modulus for those logs. It is possible to use simple equations such as shown in Table 2 

below if a pseudo lithology is determined, but it is recommended to calibrate your UCS 

curves further using petrophysical data (Knöll, 2016).  
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Table 2: List of basic lithologic rock types and the corresponding rock strength estimations 

(Zhang, 2020). 

Table 3 and Table 4 are a full list of various equations to derive UCS from log 

based on lithology type and Young’s modulus as an alternative to strictly lithology.  
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Table 3: Various correlations for UCS and log based curves, red boxed equations used in 

analysis (Najibi et al., 2014). VP is in km/s, E is in GPa, and UCS is in MPa. 

 

Lithology Equation Reference 

Shales UCS = 7.22E0.712 Chang et al. (2006) 

Shales UCS = 23.524E0.4775 Horsrud, 2001 

Sands UCS = 156318*(1/Vp)2.064 McNally (1987) 

Sands UCS = (1.745*ρ *Vp2)-21 Moos et al. (1999) 

Limestone UCS = (7682/Vp)1.82/145 Milizer and Stoll (1973) 

Limestone & Dol UCS = 10(2.44+(109.14/Vp))/145 Golubev and Rabinovich (1976) 

Limestone UCS = 3.67*Vp
2.14 Najibi et al. (2015) 

 

Table 4: Various correlations for UCS and log based curves, red boxed equations used in 

analysis (Zhang, 2020). VP is in km/s, E is in GPa,  is in g/cm3, and UCS is in MPa. 
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Not all lithologic types of rock have a perfect correlative equation and it is 

important to try multiple variations based on the samples being studied and then compare 

back to laboratory testing results to obtain the most accurate and precise value for UCS 

(Adisornsupawat et al., 2011). One shale is not universal. A correlation of UCS based on 

a shale sample from the Gulf of Mexico may not be correlative to UCS of a shale sample 

from the North Sea (Table 3). Obtaining valid calculations for UCS can be difficult given 

all the preceding variables. 

2.3.2 Friction Angle (ϕ) 

The measure of the angle of internal friction (ϕ) is the measure of the ability of 

the rock to withstand a shearing stress (Aadnoy, 1998). It can be considered the angle 

observed between the normal force, and shearing force, during rock failure from a 

shearing stress. Like UCS, friction angle can be measured in a lab test as well as 

derived/correlated using log. Due to economic conditions friction angle is often 

estimated. Common equations used for estimation are observed in Table 5.  

 

Table 5: Examples of lab calculated correlations of internal friction angle for shales and 

sands (Chang et al., 2006). VP is in km/s.  
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This method is not perfect. Figure 6 portrays a graphical example of correlations using 

this method compared to lab data.  

 

Figure 6: Internal friction angle correlations compared to test data (Chang et al., 2006). 

 

There also exists an empirical correlation to determine friction angle (Kadyrov, 2013), 

found in the work by Albukhari et al. (2018). This method applied a cutoff to friction 

angle at certain API gamma ray readings as observed in Figure 7 below. 
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Figure 7: Graphical representation of determining friction angle from gamma ray data 

(Albukhari et al., 2018). 

Due to potential rock having high friction angles, one may need to “force” the 

cutoffs in individual cases. This can then be quality control tested by laboratory data and 

the gamma ray API cutoffs can be altered accordingly (Albukhari et al., 2018). 
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CHAPTER III: LITERATURE REVIEW 

3.1 Pore Pressure (Pp) 

Pore Pressure (Pp) is the pressure of fluids within the pores of a rock unit, or the 

pressure exerted by a column of fluid (Schlumberger, 2020). This is important in 

geomechanics because accurately defining pore pressure of your reservoir helps in 

determining minimum horizontal stress and directly affects your loss threshold. Drilling 

through significant zones with low loss thresholds will cause serious risk to operations 

ranging from loss of mud to loss of wellbore integrity, fluid influx, pressure kicks, or 

blowout (Zhang, 2020). While there are methods for calculating pore pressure before 

drilling using log curves, it is always encouraged to incorporate varying observations 

from the field to better fine tune your model. Effects such as depletion, or water/CO2 

flooding for secondary/tertiary recovery, can greatly affect the pore pressure of a given 

interval, but can be easily overlooked when just using log based calculation (Zahiri et al., 

2019). It is prudent to also look at field tests such as Leak Off Tests (LOTs) or Fracture 

Initiation Tests (FITs) that can help bring actual field data to quality control your pore 

pressure curves and give a baseline in a given section of rock (Zhang, 2020). Figure 4 

from section 2.2.2 gives an example of how a FIT can be used. Sections 3.1.1 – 3.3.3 will 

review different methods for estimating pore pressure. 

3.1.1 Bower’s Method 

Bowers (1995) devised a method to calculate the effective stresses from measured 

pore pressure data in shales, as well as the overburden stresses. He then analyzed the 
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corresponding sonic velocity data from the well logs and proposed that effective stress 

and sonic velocity has a power relationship Equation 18. 

VP
 =  Vml + Cσv

B  (18) 

where, 

Vml = compressional wave velocity at mud line (ft/s) 

C and B = constants for calibration 

Using the relationship from Equation 19, pore pressure can be derived. 

Pp = σv – ((VP - Vml)/C)1/B  (19) 

Be aware that using this method does have its pitfalls, it has been documented that this 

will lead to inaccurate pore pressures if uplift or unloading has occurred (Archer and 

Rasouli, 2012). If one believes unloading has occurred Bowers (1995) proposed the 

subsequent Equation 20.  

Ppulo =  σv – ((VP - Vml)/C)U/B*(σmax
1-U)   (20) 

where, 

Ppulo = pore pressure in unloading (psi) 

U = constants for calibration 

σmax = the estimated effective stress at the onset unloading (psi) 
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Rock that is poorly consolidated or unconsolidated may also lead to error and 

overestimation due to the sonic velocity differences (Rahimi, 2014). Bower’s method is 

effective with exception to the above situations and can be used in many areas of study. 

3.1.2 Eaton’s Method 

Eaton’s method was originally developed for under compacted, over pressured, shales in 

the Gulf of Mexico (Eaton, 1975). He proposed the following Equation 21 that 

empirically relates compressional sonic transit time and overburden to pore pressure 

gradient.   

Pp = σv – (σv – Ppng)*(Δtn / Δt)n  (21) 

where, 

Ppng = pore pressure of hydrostatic pressure (psi) 

Δt = sonic delta time (µsec/m) 

 n = constant for calibration 

This method does not take into account unloading effects and requires 

determination of the normal transit time. Eaton’s method relies heavily on Terzaghi’s 

equation of 1948 : Which states that if a rock is subjected to stress, the stress is opposed 

by the fluid pressure of pores in the rock body (Zhang, 2020). 

This relationship demonstrates that effective stress sits somewhere between the 

overburden stress and the pore pressure. Figure 8 below supports the relationship.  
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Figure 8: Overburden and pore pressure gradients and effective stress (Formento, 2004). 

 

Once effective stress is understood then one can use resistivity and sonic well log data to 

estimate pore pressure using Eaton’s relationship in Equation 22. 

Pp = σv – (σv – Ghyd * TVD)*( Vnorm-Vcomp)
n      (22) 

where, 

Ghyd = gradient of hydrostatic pressure (KPa/m) 

Vnorm = Velocity log value according to normal trend 

Vcomp = Velocity log value according to compaction trend 
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TVD = True Vertical Depth 

3.1.3 Pore Pressure from Well Logs 

Pore pressure from well logs is recognized based on the divergence of the log 

measurements from a normal compaction trend line (Aadnoy, 1998). The trend line being 

an assumption of the log’s resistivity or sonic values if pore pressure was 

normal/hydrostatic. Hydrostatic pressure gradient is representative of a linear fitted trend 

line in low permeable beds (Aadnoy, 1998). One reason why quality control testing data 

to observed offset losses, leak off test data, and fracture initiation test data is so crucial, is 

they provide data points that the pore pressure gradient trend line must pass through for 

accurate pore pressure to be determined. Because pore pressure is a critical component of 

the loss threshold it can be accurately surmised that understanding the pore pressure 

gradient of a given well will greatly effect given acceptable mud weights to drill the 

given intervals with. This can lead to significant and costly problems drilling if pore 

pressure is underestimated. Figure 9 below demonstrates an example of a pore pressure 

plot. Keep in mind the fluid pressures in the wellbore must remain between overburden 

stress, and the normal pore pressure/pore pressure at hydrostatic. If at any point the 

interval of rocks pore pressure and pressure gradients change significantly outside the 

pressure of the fluid downhole it can lead to collapse. 
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Figure 9: Pore pressure, overburden stress, and effective stress versus the true vertical 

depth (TVD) in a deep water well in the Gulf of Mexico (Zhang, 2013). 

3.2 Failure Criteria and Mechanisms 

Calculating an estimation off wellbore failure criteria is not a perfect science and 

there are numerous methods. Rock can fail in two ways around the wellbore during 

drilling operations. The first stress induced failure is shear failure; this is caused by too 

low a density of mud weight. The second type stress induced failure is tensile failure, this 

is caused by too heavy a density of mud weight (Al-Ajmi, 2012). Failure criteria is 

important due to wellbore stability, one does not want too small a pressure downhole to 

support the surrounding rock or the wellbore will start to break and crumble in the hole; 

at minimum this is revealed by hole enlargement on caliper, while severe consequences 
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include total hole collapse (Al-Ajmi, 2012). The next sections will go over different 

methods to calculate the failure criteria including Mohr Coulomb, Mogi Coulomb, and 

modified Laude.  

3.2.1  Mohr Coulomb 

The Mohr Coulomb failure criteria is the most commonly used due to its simplicity. 

It is a triaxial assumption meaning that in the test data (𝜎 1 > 𝜎2 = 𝜎3 ), or one ignores the 

intermediate principal stress (𝜎2), as its assumed equal to the minor stress (𝜎3). A 

common visual associated with Mohr Coulomb failure criteria is the Mohr circle as seen 

below in Figure 10. 

 

Figure 10: Example of Mohr Circle with arrow demonstrating the moment of failure, 

modified from (Zhang, 2013). 
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Using equation 23 one can view the circle as the wellbore maximum shear stress 

and the line A-A’ as the “failure envelope” of acceptable wellbore stability. Once the 

circle touches the intersection point, wellbore failure and borehole collapse can occur. 

τ max = (1/2)(𝜎1 – 𝜎3)    (23) 

where, 

τ max = the maximum shear stress 

𝜎1 = maximum principal stress  

𝜎3 = minimum principal stress 

It is worth noting that the Mohr Coulomb method is known to underestimate the 

rock strength or overestimate the failure envelope in mud weight (Zhang et al., 2010). If 

using this method be aware it is potential to show more excess breakout compared to 

other methods such as Mogi Coulomb or modified Laude. 

3.2.2  Mogi Coulomb 

Mogi (1971) developed another method for describing rock failure. It is also a 

triaxial test like the Mohr Coulomb method, however, it develops a linear function to (𝜎2) 

using polyaxial test data (𝜎 1 > 𝜎2 > 𝜎3 ). It deals with the (𝜎2) stress slightly differently, 

as it takes it into account, rather than assumes it to be equal to the (𝜎3). Mogi discovered 

through laboratory testing that strain energy as a frictional force is proportional to the 

octahedral shear stress and will increase by increasing (𝜎2) until failure occurs. The linear 

relationship of his findings is seen below in Equation 24. 
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𝜏oct = a + b 𝜎m2   (24) 

where, 

𝜏oct = max octahedral shear stress 

𝜎m2 = intermediate effective mean stress 

a =  intersection of the line on 𝜏oct axis  

𝑏 = the line’s inclination 

The variables (a) and (b) have a direct relation to the angle of internal friction that 

can be calculated from the Mohr Coulomb parameters q and Co using Equations 25 – 27. 

a = ((2√2) / 3) * (Co / q)  (25) 

b = ((2√2) / 3) * ((q-1) / (q+1))  (26) 

where, 

Co = cohesion (KPa) 

q conversion = (1 + sin(ϕ)) / (1 -sin(ϕ))  (27) 

Because Mogi Coulomb takes into account the intermediate stress variable but is 

also a linear equivalent to Mohr Coulomb in conventional triaxial stress test space, it can 

be thought of as an expansion on the Mohr Coulomb method in that triaxial space 

(Rahimi, 2014).    
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3.2.3  Modified Lade 

Experimental observed from Lade (1977) concluded that for a cohesionless 

material, internal friction angle decreases with increasing normal stress. What became 

known as the modified Lade criterion first was developed by Ewy (1999). This method 

takes stress invariant parameters first and third stress invariants into account formulating 

the concept that as shear strength increases, so does the first stress invariant. It also 

assumes a material constant as zero. Ewy formulated a new measure for effective stress 

introducing the effective stress into the formula and the proposed Equations 28 -30 

below. 

(I1
n)3 / (I3

n) = 27 + η  (28) 

where, 

I1 = first stress invariant 

I3 = third stress invariant 

η = material constant 

I1
n = (𝜎’1 + S) + (𝜎’2 + S) + (𝜎’3 + S)       (29) 

I3
n

 = (𝜎’1 + S) * (𝜎’2 + S) * (𝜎’3 + S)       (30) 

where, 

S = stress 
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Using modified Lade to determine a failure criterion has two main benefits 

(Rahimi, 2014).  The first is that unlike the Mohr Coulomb method it takes into account 

the (𝜎2). The second is that the variables S and ɳ are derivable through the Mohr 

Coulomb method using cohesion and internal angles of friction based on triaxial lab test 

data. Equations 31 and 32 are the equations for S and η. 

S conversion = Co / tan(ϕ)  (31) 

η conversion = (4tan2(ϕ)*(9-7sin(ϕ))) / (1 - sin(ϕ))      (32) 

One downside to the modified Lade method is that it is not truly accurate in the 

presence of any tensile stress component because it has no tension cutoff due to the 

cohesionless material component of the initial experiments done by Lade (1977). 

3.2.4  Overall Comparisons 

When calculating breakout thresholds, one should always use more than one method to 

compare results against any possible quality control data. This includes offset calipers or 

borehole imaging data, to confirm presence of real breakout in the wellbore at a known 

mud weight (Knöll, 2016). All methods have their pitfalls. Zhang et al. (2010) gives 

example of challenges of all three. He gives examples of assessments that demonstrate 

that the Mohr Coulomb criterion can underestimate rock strength leading to an 

overestimation of breakout thresholds. The modified Lade criterion can both under and 

overestimate rock strength, depending on your other variable estimations. The Mogi 

Coulomb has been found to be the most accurate in terms of rock strength estimation, 

however, given your area of study this may not always be the case if accurate major, 
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intermediate, and minor stresses cannot be determined accurately. This model uses all 

three to get a side by side comparison how the different methods compare to caliper and 

image log data.  

CHAPTER IV: GEOMECHANICAL MODEL FEE BI #307 

4.1 Study Area 

My study area is in the west-central part of the Midland Basin (Bhatnagar et al., 2019; 

Verma and Scipione, 2020; Yandell et al., 2019), NW of the city of Midland as noted in 

Figure 11 below.  

  

Figure 11: Map view of the study area in Fasken C Ranch. Red star indicated the Fee BI 

#307 well used in the model and the other two wells are offsets used to correlate tops. 
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The geologic section of the well logs used from the Fee BI #307 well were from 

mid Pennsylvanian to late Permian in age. From the Upper Spraberry formation down to 

the Strawn formation, with core points being collected in the Wolfcamp and Cline 

formations of strata. A heterogenous mix of sandstone, mudstones, siltstones, organic 

carbon rich shales, carbonaceous shales, and carbonates can be found in the section of 

well log studied. A geologic section of super sequence correlation can be observed below 

in Figure 12 for reference. Utilizing well logs, image logs, and core measurements of the 

well Fee BI #307, I attempted to build a 1D mechanical earth model and subsequent 

wellbore stability model using the calculated geomechanical data.  
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Figure 12: Super sequence correlation from a global, to basinal, to well log level 

portraying major geologic formations and their correlative lithologies from Ulmo (2018). 
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 4.2 Well Overview 

The Fee BI #307 well is located East of Gardendale Texas, South of US State 

Highway 158 (Figure 13). It is a vertical oil well spudded October 20th, 2011, in Permian 

Basin, Northwest of Midland Texas (Table 6).  

 

Figure 13: Image of the well location of Fee BI #307 well location from the Texas Railroad 

Commission (RRC, 2020). 
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Well Name Fee BI #307 

Depth 11,115 FT 

API Serial Number 42-135-41138 

Company Fasken Oil and Ranch, LTD 

Field Spraberry Trend 

County Ector 

State Texas 

Latitude 32.04612500° 

Longitude -102.31391670° 

 

Table 6: Surface hole location and well information for Fee BI #307 well. 

 

Two other wells were used to correlate formation tops Table 7 and Table 8 below 

describe their well information, general locations can been seen in Figure 11.   

Well Name Fasken ‘32’ #1 

Depth 13,600 FT 

API Serial Number 42-135-34078 

Company Fasken Oil and Ranch, LTD 

Field Spraberry Trend 

County Ector 

State Texas 

Latitude 32.05031950° 

Longitude -102.34485080° 

 

Table 7: Surface hole location and well information for Fasken ‘32’ #1 well. 
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Well Name Fasken David ‘BO’ #1 

Depth 11,530 FT 

API Serial Number 42-135-33800 

Company Fasken Oil and Ranch, LTD 

Field Spraberry Trend 

County Ector 

State Texas 

Latitude 32.06777100° 

Longitude -102.29809200° 

 

Table 8: Surface hole location and well information for Fasken ‘32’ #1 well. 

 

4.2  Data Gathering 

The accessible data sets from the Fee BI #307 well in the Permian Basin were 

quality control checked and the subsequent data sets were available and used to build the 

model.  

Digital Data: 

- Quad combo well logging data in .las format (LIDAR point cloud data) 

- Caliper log data for offset Fee BM #1 SWD in .las format  

- FMI log data printout for pilot hole in .pdf format (portable document format) 

- Mud Log printout for pilot hole in .pdf format  

- Survey Report in .csv format (comma-separated values file) 

Core Data: 

- Clay mineralogy report in .xls format (Microsoft Excel file format) 

- Triaxial data test results in .xls format 

- XRD (X-ray powder diffraction) test data in .xls format 
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- Core image printout in .pdf format 

- Core image descriptions in .pdf format 

4.2.1  Log Data 

Table 9 below defines all the log curve data available for use in this model. 

Log curve name Alias 
Start depth 

(MD in ft) 

Gamma ray (API) GR 201 

Resistivity (ohm-m) RESD 201 

Compressional sonic travel time (µsec/ft) DTCO 6002 

Shear sonic travel time (µsec/ft) DTS 6002 

Bulk density (g/cm3) RHOB 6002 

 

Table 9: Table describing the available log data, aliasing, and start depths of the digital log 

data for the Fee BI #307 well. 
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4.2.2  Core Data 

Table 10 below defines all the core data points available for use in this model. 

 

  Dynamic Moduli   

 

Measured 
Depth 

Bulk 
Density 

UCS 
Compressional 

Transit Time 

Shear 
Transit 

Time 

Shear 
modulus 

(G) 

Young's 
modulus 

(E) 

Bulk 
modulus 

(K) 
Poisson's 

Ratio () 

 

 

(ft) (gm/cm3) (psi) (s/ft) (s/ft) (psi) (psi) (psi)  

9,657.50 2.69 54150 50.48 96.36 3,904,675 10,236,742 9,019,072 0.311 
 

9,740.00 2.646 102589 52.86 111.37 4,474,534 11,008,539 6,798,733 0.23 
 

9,938.50 2.609 50133 60.38 106.32 3,111,324 7,852,772 5,498,359 0.262 
 

9,995.50 2.589 30346 69.08 115.77 2,604,355 6,372,852 3,841,371 0.223 
 

10,324.50 2.484 21675 83.81 138.89 1,735,934 4,213,636 2,452,508 0.214 
 

10,374.00 2.729 38106 60.16 106.78 3,226,031 8,178,309 5,863,840 0.268 
 

 

Table 10: Table describing the available core data points for the Fee BI #307 well.  

 

Comparing the calculated geomechanical log data to core one can determine the 

validity of the calculated curves. Figure 14 below is an example of how they look in the 

model.  
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Figure 14: Different wireline logs along with computed well log curves, and machine 

learning facies of Fee BI #307 well. The computed well logs curves include, Young’s 

modulus (YME), Poisson’s ratio (PR), bulk modulus (BM), shear modulous (SM), uniaxial 

compressive strength (UCS). The available core measured data points are posted on the 

corresponding well log curve track. Notice that the well log velocities, and density are 

approximately same as their core measured values.  
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4.2.3  Offset Data 

One offset dataset was brought into this analysis and depth corrected to match tops 

from the Fee BM #1 SWD well to quality control breakout thresholds with a caliper log. 

Table 11 below will portray the well information.  

Well Name Fee BM #1 SWD 

Depth 14,200 FT 

API Serial Number 42-003-42169 

Company Fasken Oil and Ranch, LTD 

Field Spraberry Trend 

County Andrews 

State Texas 

Latitude 32.13607780° 

Longitude -102.26774520° 

 

Table 11: Table describing the surface location and well data for the Fee BM #1 SWD 

well. 

The following Figure 15 gives an example of the caliper curve and highlighted 

areas of borehole breakout used in the quality control process when viewing the breakout 

curve. 
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Figure 15: Log curve of caliper for the offset Fee BM #1 SWD well highlighting potential 

borehole breakout intervals of borehole enlargement.  

4.2.4  Image Log 

The image log for this well displays good examples of drilling induced fractures 

(Figure 16). It is clear by the 180° symmetry that these can be used to help determine 

minimum and maximum horizontal stress directions and are true drilling induced 

fractures (Tingay et al., 1998). The fractures in Figure 16 cut lithologies and are not 

bound by bedding, this proves them as drilling induced fractures and can be used to 
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determine present day minimum stress orientation. Forand et al. (2017) provides 

examples of bed bounded natural fracture systems on image logs.  

 

Figure 16: Sections of the image log taken for the Fee BI #307 well highlighting drilling 

induced fractures (DIF). 

The image log from Figure 16 portrays the plane of minimum horizontal stress at 70° - 

110° / 250° - 280°. This plane is confirmed when observing the processed FMI rosette for 

this depth interval ranging from 80° - 90° / 260°-270° as seen in Figure 17 below. 
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Figure 17: Processed FMI rosette provided by Fasken portraying the plane for minimum 

horizontal stress direction of 80° - 90° / 260°-270°.  

4.2.5  Quality Control 

All data files were quality controlled and any poor or null values were removed. 

Any significant log quality resolution data was removed from the triple combo data and 

exported in an ASCII file for use.  
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4.3 Mechanical Earth Model Workflow  

 Figure 18 below is a representation of the workflow used to build the wellbore 

stability model from the aforementioned data in sections 4.1 – 4.2.5. 

 

Figure 18: Example workflow used to build the wellbore stability model for the Fee BI 

#307 well. 

4.4  Overburden  

As previously discussed in section 2.2.1, overburden stress is mainly derived from 

the bulk density log using σv =  ∑ 𝜌𝑖 ℎ𝑖𝑔
 
𝑖    (11. In cases where a bulk density log is 

unavailable in shallower hole section, an acceptable method is to interpolate the 

overburden curve using the average slope intercept of your available overburden 

calculated from logs (Zhang, 2020). The following Figure 19 portrays a representation of 

overburden stress. 
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Figure 19: Example of calculated overburden curve. 
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Since there were no known over pressured intervals it was assumed that the slope of 

the overburden stress line was constant and hydrostatic. 

4.5  Elastic Properties  

In this section I calculate Young’s modulus, Poisson’s ratio, shear modulus, and 

bulk modulus as well as compared it to the core measurements.  

4.5.1  Young’s modulus (E) 

Equation 2 and Equation  

Edyn = 2 * G * (1 +  v)   (3 were used to calculate the dynamic Young’s 

modulus from sonic data and density log curves and shear modulus and Poison’s ratio 

respectively. I chose to use the calculation from Equation  

Edyn = 2 * G * (1 +  v)   (3 as it was a superior correlation with the quality 

control data points from core 

Quality control data points were available throughout the Wolfcamp formation and 

the upper section of the Cline formation from 9657’ MD – 10374’ MD. The overall 

calculated Young’s modulus curve looks strong compared to both the quality control points 

from core as well as the generated facies model as seen below in Figure 20. 
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Figure 20: Different well log curves of Fee BI #307 well, between the depths of 9250 ft. 

(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log 

display panel shows the computed Young’s modulus curve as along with core measured 

Young’s modulus data points. 

4.5.2  Poisson’s Ratio (v) 

Equation 5 was used to calculate the dynamic Poison’s ratio curve from sonic log 

data curves. Quality control data points were available throughout the Wolfcamp 

formation and the upper section of the Cline formation from 9657’ MD – 10374’ MD. 

The overall calculated Poison’s ratio curve looks strong compared to both the quality 

control points from core as well as the generated facies model as seen below in Figure 21. 
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Figure 21: Different well log curves of Fee BI #307 well, between the depths of 9250 ft. 

(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log 

display panel shows the computed Poisson’s ratio curve as along with core measured 

Poisson’s ratio data points in log view along with the facies model. 

4.5.3  Bulk Modulus (K) 

K = ρ (VP 2 – (4/3) VS 2) (9 from section 2.1.4 was used to calculate a 

dynamic bulk modulus from density and sonic log data curves and is displayed in Kpsi. 

Quality control data points were available throughout the Wolfcamp formation and the 

upper section of the Cline formation from 9657’ MD – 10374’ MD. The overall 
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calculated bulk modulus curve looks strong compared to both the quality control points 

from core as well as the generated facies model as seen below in Figure 22. 

 

Figure 22: Different well log curves of Fee BI #307 well, between the depths of 9250 ft. 

(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log 

display panel shows the computed bulk modulus curve as along with core measured bulk 

modulus data points in log view along with the facies model. 

4.5.4  Shear Modulus (G) 

G = ρVS2  (7 from section 2.1.3 was used to calculate the shear modulus 

curves from bulk density and shear sonic log data. Quality control data points were 

available throughout the Wolfcamp Formation and the upper section of the Cline 

formation from 9657’ MD – 10374’ MD. The overall calculated shear modulus curve 



68 

 

looks strong compared to both the quality control points from core as well as the 

generated facies model as seen below in Figure 23. 

 

Figure 23: Different well log curves of Fee BI #307 well, between the depths of 9250 ft. 

(base of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log 

display panel shows the computed shear modulus curve as along with core measured shear 

modulus data points in log view along with the facies model. 

4.6  Rock Streangth (UCS) 

Calculating Rock strength can be one of the more challenging components of 

building a wellbore stability model as discussed in section 2.3. For this analysis, three 

different methods were utilized to generate three separate UCS curves and then compared 

to the UCS core data points. The first was based on a strict lithologic factor using the 
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facies model and then using the correlations from Table 2 from section 2.3.1. The second 

method was using the same lithologic factors and using both sonic and calculated 

Young’s modulus curves, then using the correlations from Table 3 from section 2.3.1. 

The final method was through an attempted multi linear regression from gamma ray, bulk 

density, and compressional sonic data curves from the logs. The dataset I used for the 

linear regression was from 4 wells from the Suggs pad in the Permian Basin. These wells 

were obtained from the Hydraulic Fracture Test Site Collaboration ran by the Gas 

Technology Institute. The following Figure 23 gives a graphical representation of all 

three methods and demonstrates the second method using lithologic factors, sonic, and 

calculated Young’s modulus curves as the best fit curve for UCS in the model given the 

offset quality control core data points. Note that the calculated UCS curves do slightly 

underpredict rock strength compared to core data points and can lead to slightly weaker 

rock strength than reality.   
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Figure 24: Three calculated UCS curves with quality control data points from core. 

 

Upon review, I went through and took note that the first two core points were not 

correlating strongly. These points were around intervals of the machine learning facies of 

sandstone and carbonate intervals. Using equations from Table 4, I recalculated UCS for 

those facies making them stronger to better correlate to the first two core points. The 

result does correlate better, but is still not perfect. Given the calculated breakout 

thresholds, it is still within reason. Figure 25 gives a representation of the final UCS 

curve used in the model.  
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Figure 25: Gamma ray log curve of Fee BI #307 well, between the depths of 9250 ft. (base 

of lower Spraberry) to 10150 ft. (Strawn formation). The last track of the well log display 

panel shows the computed UCS curve as along with core measured UCS data points in log 

view along with the facies model. 
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4.7  Facies Breakdown 

I used a machine learning techniques called support vector machine to classify 

facies. Support vector machines (SVMs) are a type of supervised learning model that can 

be trained on data to perform classification and regression tasks.  For more information 

on the original workflow please look into Hall (2016) and Bohling and Dubois (2003). I 

trained my SVM on four different wells in Midland Basin (Hissong, 2020, Appendix D). 

Using this methodology, I was able to train a facies model to the Fee BI #307 well log 

with ~ 89% facies classification accuracy as seen in Figure 26 below. See Figure 12 from 

section 4.2.2 for a zoomed in image of the generated facies column against all calculated 

curves and core points.  

 

Figure 26: Printed optimized facies classification accuracy percent for the Fee BI #307 

facies SVM generation script. 

The following Figures 27 - 29 give an overall example of facies to log comparisons 

used in this model as well as a zoomed in view to support the analysis and a facies 

classification key. 
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Figure 27: Printed log view with facies column using python for the Fee BI #307 well. 
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Figure 28: Zoomed in view of all geomechanical logs along with corresponding facies 

column. 
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Figure 29: Facies classification key for calculated facies used on the Fee BI #307 well in 

this model. 
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4.8  Geologic Formation Tops 

Geologic formation tops were correlated using three offset wells in the Fasken C 

Ranch dataset. Figures 30 - 32 below are the log view, map view, and actual depth values 

associated with the geologic tops used in this model and analysis.  

 

Figure 30: Map view, with scale, of the correlated geologic tops on the Fasken C Ranch 

dataset, including the Fee BI #307 well used in this model. 



77 

 

 

Figure 31: Cross section view of the geologic tops on the Fasken C Ranch dataset, 

including the Fee BI #307 well used in this model. 
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Figure 32: Associated depths of formation tops correlated on the Fasken C Ranch dataset, 

including the Fee BI #307 well used in this model. 

4.9  Pore Pressure (Pp) 

To achieve an accurate pore pressure, usually one would use data sources from the 

drilling program to calibrate a log-based pore pressure curve. While I did use Eaton’s 

method seen in Pp = σv – (σv – Ppng)*(Δtn / Δt)n  (21 in section 3.1, I did not have 

access to any FIT data points, or LOT data points to obtain a baseline for the pore 

pressure trend line. The n value was assumed to be one as I did not have any quality 

control data to calibrate the pore pressure curve to and no areas of overpressure or 

gradient changes could be calculated or calibrated as they were unknowns.  
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Figure 33 below is the calculated graphical representation of the estimation of the 

pore pressure and calculated overburden curve used to define pore pressure for this 

model. 

 

Figure 33: Visualization of pore pressure and overburden calculated curves used in this 

model. Units are in psi.   
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4.10  Minimum Horizontal Stress (σh) 

As discussed in section 2.2.2 the minimum horizontal stress curve is imperative 

because it is the main component of the loss threshold that will be described in section 

4.11. Assuming an isotropic system, I used Equation 13 from section 2.2.2, using 

calculated curves for Poisson’s ratio, overburden, and Biot’s constant, the estimated pore 

pressure discussed in section 4.8, as well as estimated tectonic stress from Lund Snee and 

Zoback (2016). Figure 34 is an example of the minimum horizontal stress curve. 

However, without DFIT data points, or LOT data points to quality control check pore 

pressure to, it is only an estimation.  
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Figure 34: Visualization of minimum horizontal stress calculated curve. Units are in psi.  
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4.11  Loss and Breakout Thresholds 

While calculating all the geomechanical rock properties is helpful to the drilling 

process, the true benefit is to the well planning process and potential cost savings comes 

from defining accurate breakout and loss threshold curves along with a safe mud weight 

windows (Singh et al., 2019). By analyzing zones that could potentially lead to serious 

loss/flow hole conditions, or defining intervals of potential wellbore breakout, one can be 

proactive in the drilling program. This leads to having an easier time testing new zones of 

interest, having less problems running casing, as well as less problems drilling the curve 

and lateral sections of the wellbore (Haidary et al., 2015). To understand the next 

calculated log images, one must understand the concepts behind calculating loss and 

breakout threshold. The loss threshold is calculated using Equation 33. 

Loss Threshold = (σh / MD ) / 0.052   (33) 

where, 

MD = measured depth (ft) 

It represents the mud weight, that if the pressure of the fluid in the hole reaches, 

will overcome the surrounding lithology’s pore space. It leads to fluid being pushed out 

into the surrounding formation and mud losses occurring in the hole. In a vertical sense, it 

is a good indication of potential mud loss or fluid flow zones. This leads to better 

planning. and potential cost savings. One can budget extra mud on location or predict 

zones to use lost circulation material or an LCM program to minimize mud losses or fluid 



83 

 

flows if they are unavoidable. The calculated loss threshold curves are represented by a 

light blue shaded line in the model as seen in Figure 35. 

 

Figure 35: Visualization of calculated loss threshold curve. Threshold units are in ppg. 

 

The breakout threshold is more complicated to calculate due to the uncertainty in 

rock strength. There are multiple methods as discussed in section 4.5. The breakout 

threshold is the point at which your fluid column is too weak to support the surrounding 

lithology and rock starts to fall into the current borehole, leading to cavings, and borehole 

collapse (Zhang, 2020). The following Figure 36 is the visual representation of the 

breakout threshold as a yellow shaded curve and an orange shaded curve. The yellow 
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curve represents when the first grain of lithologic sediment falls into the borehole, while 

the orange shaded section represents the threshold for 10% of the surrounding sediment 

breaking apart and falling into the borehole leading to hole instability and collapse. 

 

Figure 36: Visualization of calculated breakout threshold curve, safe mud weight window, 

and accompanying examples of wellbore complication risks. 
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Figure 36 also gives an example of the safe mud weight window represented as 

the white area. This is an ideal mud weight used to drill this section that is modeled to 

encounter no wellbore breakout or fluid losses at a given mud weight. 

Three separate breakout threshold calculations were used that were also discussed 

in sections 3.2.1 – 3.2.3 in the literature review. They were generated using Tech Log 

2019 wellbore stability modeling module using the variables in Figure 37 below. 

 

Figure 37: Example of necessary curves to run a Mohr Coulomb, Mogi Coulomb, and 

modified Lade breakout curve using the wellbore stability modeling module used in this 

model. 

The three separate log tracks below in Figure 38 gives an example of the full 

wellbore of the Fee Bi #307 well and the calculated breakout threshold, loss threshold, 

and safe mud weight windows along with offset caliper data to help quality control the 
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calculated breakout thresholds. The green line represents a mud weight of 9.0 ppg as a 

reference point.  

 

Figure 38: Example of calculated breakout threshold, loss threshold, and safe mud weight 

windows; Along with offset caliper data, and facies logs, to help quality control the 

calculated breakout and loss thresholds. 

An image log and offset caliper log were also used to quality control the breakout 

thresholds for this model. Figure 15 is the offset caliper showing breakout at ~ 7500’ MD 
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– 8500’ MD and in Figure 15 the red caliper log shows breakout from ~ 7000-8000’ MD 

leading credence to our calculated breakout thresholds in the same figure. The image log 

from Figure 16 also shows drilling induced fractures through some of the intervals the 

breakout threshold predicts breakout which is promising.    

4.12  Cross Plots 

Figures 39 – 42 are cross plots from the calculated geomechanical properties from the 

model colored by the generated facies. The r2 values and lithologic groupings are strong 

which builds confidence in the facies model and the UCS curve in terms of lithology. The 

groupings observed lead credence to the facies model as well, visualizing clear clusters of 

limestone, siliciclastic mudstone, and organic rich mudstones in regards to their 

geomechanical parameters. Weaker shales are clearly distinguishable from stronger sands 

and limestone. 
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Figure 39: Cross plot of compressional and shear sonic log data colored by facies with an 

r2 value of 0.94. 

 

Figure 40: Cross plot of UCS and Young’s modulus colored by facies with an r2 value of 

0.90 and attributed best fit curve values. 
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Figure 41: Cross plot of Young’s modulus and Poisson’s ratio colored by facies.  

 

 

Figure 42: Cross plot of UCS and Poisson’s ratio colored by facies. 
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CHAPTER V 

5.0 DISCUSSION AND CONCLUSIONS 

Building the mechanical earth model for Fee BI #307 well was a rewarding and 

challenging undertaking. The final model generated, while not perfect, does a fantastic 

job predicting known breakouts in the area and is realistic when put up against the 

generated facies model. Figure 43 below gives a representation of potential areas of 

concern for breakout. While there are weaknesses to the model that will be discussed 

below, the generated wellbore stability model is a strong tool that can help make good 

decisions in the drilling process and is a useful baseline for future geomechanical study in 

the area.  
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Figure 43: Example of calculated breakout threshold, loss threshold, and safe mud weight 

windows; Along with offset caliper data, and facies log, visualizing the potential 

problematic intervals while drilling. Thresholds units are in ppg. 
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Potential areas of concerns for breakout are from 7380’ MD – 8105’ MD with a 

safe mud weight of ~11.3ppg and 9630’ MD – 10269’ MD with a safe mud weight of 

~11.7ppg. 

The facies model appears very accurate when viewed with all the log curves and 

calculated curves along with the trend of the breakout threshold where our mudstones are 

appearing weaker and more prone to breakout and limestones are appearing stronger and 

more resilient. Figure 44 below is a zoomed in view of an example of just how well the 

breakout threshold are correlating to the lithologic and log-based character of the curves 

and generated facies. It is clear the model is doing a superb job at capturing trends in rock 

strength and weakness, especially in the smaller sand and limestone stringers.  

 

Figure 44: Example of zoomed in view of full model demonstrating accurate depictions 

of breakout and loss curve trends in relation to logs and facies curves. 
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It would be advised if targeting any of the intervals in the Spraberry trend, to 

make sure to set intermediate casing below the depth of 8105’ MD. This guaranties 

avoidance of potential hole stability problems in the curve and lateral sections of the 

wellbore based on the predicted breakout threshold, the correlating data with image logs, 

the offset caliper corroboration, and calculated UCS and facies curves of the model.  

All calculated log curves with the exception of UCS look to be strong and show a 

good correlation with quality control data points from core seen in Figure 14 in section 

4.2.2.  Young’s modulus, Poisson’s ratio, and bulk modulus curves demonstrate strong 

correlation to core data points. UCS in any of the three methods used to calculate it all 

appeared on the weaker end of the core data points as seen in Error! Reference source 

not found. and Error! Reference source not found. in section 4.5. Since it is weaker 

than core it may be safe to assume that the breakout curve is slightly skewed on the side 

of weaker rock strength, meaning it may portray a lower mud weight needed to reach the 

breakout point than reality. That being said, there is also such strong corroboration in 

quality control points for predicted breakout sections that it does not seem to be hurting 

the overall breakout model predictions by a significant amount when looking at the image 

log and caliper.   

The only potential weak point of this model is the fact that there was no available 

quality control point or calibration data for the pore pressure gradient curve and in turn 

the minimum horizontal stress curve. Observing Figure 38 the loss threshold does seem 

to trend with predicted facies and other calculated/digital curves, however, given the lack 

of those data points, I cannot confidently assert it is calibrated well and predicting a true 
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loss threshold. However, some prediction is better than no prediction, and the fact that it 

does trend well is encouraging. I would not take the loss threshold mud weights at face 

value due to the above facts. But rather use the curve as a general guideline. Then look 

for future ways to improve the confidences in the pore pressure curve calculation or 

corresponding actual drilling data for losses observed while drilling offset wells.  

5.1 Recommendations for Future Work 

 The “low hanging fruit” is finding quality control points for the pore pressure or 

offset drilling data to calibrate the loss threshold. The rest of the facets of the model 

appear to be strong and correlate well with lab driven data points from core. On the 

whole this model seems to be accurate, however, there is always room for improvement. 

Any nearby cored wells or quad-combo wells could be compared to improve upon and 

tighten up the calibration of some of the elastic property curves. Potential different 

techniques or a different facies model could be generated to get a stronger correlation for 

the UCS curve to core. This project and calculated dataset could be used along with the 

workflows to generate more 1D mechanical earth models of the surrounding area in Ector 

county and eventually be built into a full 3D model calibrated to a number of sources. 

This thesis was written based on a wellbore stability standpoint, however, the calculated 

elastic properties and calculated geomechanical curves could be used in completions 

modelling to help predict frac growth and recoverable oil. Generating an initial 

mechanical earth model is just a starting point for a great deal of potential future projects 

and the curves and workflows used in the modelling process are a good baseline for 

insights into the engineering and completions realm of the business. 
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5.2 Image of Final Model 

 



96 

 

REFERENCES 

Aadnøy, B.S., and Looyeh, R., 2019, Drilling Design and Selection of Optimal Mud 

Weight: Petroleum Rock Mechanics, p. 165–181, doi:10.1016/b978-0-12-815903-

3.00010-8. 

Aadnøy, B.S., and Looyeh, R., 2019, In Situ Stress: 105–144 p., doi:10.1016/b978-0-12-

815903-3.00008-x. 

Aadnøy, B.S., and Looyeh, R., 2019, Rock Strength and Rock Failure: Petroleum Rock 

Mechanics, p. 145–163, doi:10.1016/b978-0-12-815903-3.00009-1. 

Aadnøy, B.S., and Looyeh, R., 2019, Failure Criteria: Petroleum Rock Mechanics, p. 53–

62, doi:10.1016/b978-0-12-815903-3.00005-4. 

Aadnoy, B.S., 1998, Geomechanical Analysis for Deep-Water Drilling: lADC/SPE 

Drilling Conference,. 

Abbas, A.K., Flori, R.E., and Alsaba, M., 2018, Geomechanical modeling and wellbore 

stability analysis approach to plan deep horizontal wells across problematic 

formations: SPE/AAPG/SEG Unconventional Resources Technology Conference 

2018, URTC 2018, doi:10.15530/urtec-2018-2879569. 

Adisornsupawat, K., Tan, C.P., Anis, L., Vantala, A., Juman, R., and Boyce, B., 2011, 

Enhanced geomechanical modeling with advanced sonic processing to delineate and 

evaluate tight gas reservoirs: Society of Petroleum Engineers - SPE Middle East 



97 

 

Unconventional Gas Conference and Exhibition 2011, UGAS, p. 546–554, 

doi:10.2118/142813-ms. 

Aird, P., 2019, Deepwater Geology & Geoscience: 17–68 p., doi:10.1016/b978-0-08-

102282-5.00002-8. 

Al-Ajmi, A.M., 2012, Mechanical Stability of Horizontal Wellbore Implementing Mogi-

Coulomb Law: Advances in Petroleum Exploration and Development, v. 4, p. 28–

36. 

Albukhari, T.M., Beshish, G.K., Abouzbeda, M.M., and Madi, A., 2018, Geomechanical 

wellbore stability analysis for the reservoir section in J-NC186 oil field: 1st 

International Conference on Advances in Rock Mechanics, TuniRock 2018, p. 179–

193. 

Archer, S., and Rasouli, V., 2012, A log based analysis to estimate mechanical properties 

and in-situ stresses in a shale gas well in the Northern Perth Basin: WIT 

Transactions on Engineering Sciences, v. 80, p. 163–174, doi:10.2495/PMR120151. 

Asquith, G., and Krygowski, D., 2004, Basic Well Log Analysis (E. A. Mancini, Ed.): 

Tulsa, The American Association of Petroleum Geologist Methods in Exploration 

Series No.16, 244 p. 

Belyadi, H., and Belyadi, F., 2019, Rock mechanical properties and in situ stresses 

Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using 

Displacement Discontinuity Method ( DDM ): Science Direct. 



98 

 

Bhatnagar, P., S. Verma, R. Bianco, 2019, Geomorphologic character of an Upper 

Leonardian mass transport deposit, Midland Basin: insights from 3D seismic data: 

Interpretation, 7, no. 4, 1–14. http://dx.doi.org/10.1190/INT-2019-0036.1 

Biot, M.A., and Willis, D.G., 1957, The Elastic Coeficients of the Theory of 

consolidation: Journal of Applied Mechanics, v. 48, p. 594–601, doi:10.1016/B978-

0-444-98950-5.50011-3. 

Bohling, G.C., and Dubois, M.K., 2003, An integrated application of neural network and 

Markov chain techniques to prediction of lithofacies from well logs: Kansas 

Geological Survey, p. 6pp. 

Bowers, G.L., 1995, Pore pressure estimation from velocity data; accounting for 

overpressure mechanisms besides under compaction, in SPE/AAPG/SEG 

Unconventional Resources Technology Conference, The Leading Edge. 

Chang, C., Zoback, M.D., and Khaksar, A., 2006, Empirical relations between rock 

strength and physical properties in sedimentary rocks: Journal of Petroleum Science 

and Engineering, v. 51, p. 223–237. 

Crain, E.R., 2000, Crain’s petrophysical handbook: Rocky Mountain House. 

Eaton, B.A., 1975, The Equation for Geopressure Prediction from Well Logs. 

Ewy, R.T., 1999, Wellbore-Stability Predictions by Use of a Modified Lade Criterion: 

SPE Drilling & Completion, v. 14, p. 85–91. 

http://dx.doi.org/10.1190/INT-2019-0036.1


99 

 

Fanchi, J.R., 2006, Petroleum Engineering Handbook Volume 1: Society of Petroleum 

Engineers, 864 p. 

Fei, W., Huiyuan, B., Jun, Y., and Yonghao, Z., 2016, Correlation of Dynamic and Static 

Elastic Parameters of Rock: Electronic Journal of Geotechnical Engineering, v. 21, 

p. 1551–1560. 

Forand, D., Heesakkers, V., and Schwartz, K., 2017, Constraints on natural fracture and 

in-situ stress trends of unconventional reservoirs in the Permian Basin, USA: 

SPE/AAPG/SEG Unconventional Resources Technology Conference 2017, 

doi:10.15530/-urtec-2017-2669208. 

Formento, J.-L., 2004, Seismic Pore Pressure Prediction, in EAGE, Paris, 

https://www.cgg.com/technicaldocuments/cggv_0000001681.pdf. accessed on 28 

July, 2020. 

Haidary, S.A., Shehri, H.A., Ahmem, A.A.M., and Alqam, M.H., 2015, Wellbore 

Stability Analysis for Trouble Free Drilling: Society of Petroleum Engineers, doi: 

https://doi.org/10.2118/175170-MS. 

Hall, B., 2016, Facies classification using machine learning: Leading Edge, v. 35, p. 906–

909, doi:10.1190/tle35100906.1. 

Han, Y., Liu, C., Phan, D., AlRuwaili, K., and Abousleiman, Y., 2019, Advanced 

wellbore stability analysis for drilling naturally fractured rocks: SPE Middle East Oil 

https://www.cgg.com/technicaldocuments/cggv_0000001681.pdf


100 

 

and Gas Show and Conference, MEOS, Proceedings, v. 2019-March, 

doi:10.2118/195021-ms. 

Hissong, R., 2020, Support vector machine prediction of lithofacies in Midland Basin in 

Wolf camp formation for GEOL 6323 Quantitative interpretation class project: UT 

Permian Basin.   

Kadhim, F., Samsuri, A., and Idris, A.K., 2016, Using Well Log Data to Estimate 

Dynamic Elastic Properties of Carbonate Formations: European Centre for Research 

Training and Development UK, v. 4, p. 1–15. 

Kadyrov, T., 2013, Integrated Wellbore Stability Analysis for Well Trajectory 

Optimization and Development: The West Kazakhstan Field: Colorado School of 

Mines. 

Knöll, L., 2016, The Process of Building a Mechanical Earth Model Using Well Data: 

Master Thesis, https://www.mendeley.com/viewer/?fileId=554d030a-17f3-f285-

6c4d-a7d6a5bf7858&documentId=f4b91a59-9423-3f5a-9aea-e623667ae994. 

accessed on 28 July, 2020. 

Kowan, J., Ong, S., and Sheridan, J., 2017, Efficient Well Delivery in Shale Plays – 

Examples from the Marcellus and Permian, in 2017 Applied Geoscience Conference 

“Geomechanics of Unconventionals,” Houston, p. 15–16, 

doi:10.1145/3086467.3086475. 

https://www.mendeley.com/viewer/?fileId=554d030a-17f3-f285-6c4d-a7d6a5bf7858&documentId=f4b91a59-9423-3f5a-9aea-e623667ae994
https://www.mendeley.com/viewer/?fileId=554d030a-17f3-f285-6c4d-a7d6a5bf7858&documentId=f4b91a59-9423-3f5a-9aea-e623667ae994


101 

 

Lade, P. V., 1977, Elasto-Plastic Stress-Strain Theory for Cohesionless Soil with Curved 

Yield Surfaces: Solid Structures, v. 13, p. 1019–1035. 

Liner, T.J., 2018, Subsurface Analysis of Mississippian Tripolitic Chert in Northwest 

Arkansas: University of Arkansas. 

Lund Snee, J.E., and Zoback, M.D., 2016, State of stress in Texas: Implications for 

induced seismicity: Geophysical Research Letters, v. 43, p. 10,208-10,214, 

doi:10.1002/2016GL070974. 

Luo, X., Were, P., Liu, J., and Hou, Z., 2015, Estimation of Biot’s effective stress 

coefficient from well logs: Environmental Earth Sciences, v. 73, p. 7019–7028, 

doi:10.1007/s12665-015-4219-8. 

Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook: Cambridge 

University Press, doi: 10.1017/CBO9780511626753. 

Mechanics, P.R., 1993, List of Symbols: North-Holland Mathematical Library, v. 48, p. 

327–328, doi:10.1016/S0924-6509(08)70091-6. 

Milovac, J., 2009, Seismic-Rock physics seminar, 

http://www.rpl.uh.edu/papers/milovac_intro.pdf., accessed on 28 July, 2020. 

Ming, K., and Dorobek, S.L., 1995, the Permian Basin of West Texas and New Mexico 

Tectonic History of a Foreland Basin and Its Effects on Stratigraphic Development: 

Society for Sedimentary Geology, p. 150–174, doi:1-56576-016-6. 

http://www.rpl.uh.edu/papers/milovac_intro.pdf


102 

 

Mogi, K., 1971, Fracture and Flow Under High Triaxial Compression: Geophysical 

Research, v. 76, p. 1255–1269. 

Najibi, A.R., Ghafoori, M., Gholam, L.R., and Asef, M.R., 2014, Empirical relations 

between strength and static and dynamic elastic properties of Asmari and Sarvak 

limestones, two main oil reservoirs in Iran: Journal of Petroleum Science and 

Engineering, v. 126, 

https://www.researchgate.net/publication/270344929_Empirical_relations_between_

strength_and_static_and_dynamic_elastic_properties_of_Asmari_and_Sarvak_limes

tones_two_main_oil_reservoirs_in_Iran/citations. 

Osaki, L., Uko, E.D., Tamunobereton-ari, I., and Alabraba, M., 2019, Geomechanical 

Characterization of a Reservoir in Part of Niger Delta, Nigeria: Asian Journal of 

Applied Science and Technology (AJAST), v. 3, p. 10–30. 

Ouenes, A., Umholtz, N.M., and Aimene, Y.E., 2016, Using geomechanical modeling to 

quantify the impact of natural fractures on well performance and microseismicity: 

Application to the Wolfcamp, Permian Basin, Reagan County, Texas: Interpretation, 

v. 4, p. SE1–SE15, doi:10.1190/int-2015-0134.1. 

Patzek, T., 2005, Biot Theory (Almost) For Dummies: Seminar at the University of 

Houston, p. 32. 

Rahimi, R., 2014, The effect of using different rock failure criteria in wellbore stability 

analysis: Masters Thesis, p. 72, https://scholarsmine.mst.edu/masters_theses/7270., 

accessed on 28 July, 2020. 

https://scholarsmine.mst.edu/masters_theses/7270


103 

 

Rotrends.net, 2020, Crude oil price graph graphical representation, 

rotrends.net/2566/crude-oil-prices-today-live 

chart#targetText=Crude%20Oil%20Prices%20Today%20%2D%20Live%20Chart,2019

%20is%2052.81%20per%20barrel. July 27th, 2020 BPD WTI crude oil price graphical 

representation, accessed on 27 July, 2020. 

RRC (Texas Rail Road Commission), 2020, https://gis.rrc.texas.gov/GISViewer/, 

accessed on 27 July, 2020. 

Schlumberger, 2020, Schlumberger Oilfield Glossory: Pore Pressure: 

https://www.glossary.oilfield.slb.com/en/Terms/p/pore_pressure.aspx., accessed on 

28 July, 2020. 

ShaleXP.com, 2020, Oil & Gas Activity in Ector County, TX, 

https://www.shalexp.com/texas/ector-county, accessed on 28 July, 2020. 

Singh, A., Rao, K.S., and Ayothiraman, R., 2019, An analytical solution to wellbore 

stability using Mogi-Coulomb failure criterion: Journal of Rock Mechanics and 

Geotechnical Engineering, v. 11, p. 1211–1230, doi:10.1016/j.jrmge.2019.03.004. 

Słota-Valim, M., 2015, Static and dynamic elastic properties, the cause of the difference 

and conversion methods – case study: Research Gate, v. 71, p. 816–826, 

doi:10.18668/ng2015.11.02. 

Tingay, M., Reinecker, J., and Müller, B., 1998, Borehole breakout and drilling-induced 

fracture analysis from image logs: , p. 1–8. 

https://www.glossary.oilfield.slb.com/en/Terms/p/pore_pressure.aspx


104 

 

Verma, S., and M. Scipione, 2020, Influence of the Early Paleozoic structures on the Permian 

strata, Midland Basin: insights from multi-attribute seismic analysis: Journal of Natural 

Gas Science and Engineering, https://doi.org/10.1016/j.jngse.2020.103521. 

Ulmo, G., 2018, Geologic Nomenclature of the Midland Basin and Basin Formation, in 

Midland, TX, at SM Energy: Short Courses p. 13. 

 

Wang, J., and Weijermars, R., 2019, Expansion of Horizontal Wellbore Stability Model 

for Elastically Anisotropic Shale Formations With Anisotropic Failure Criteria: 

Permian Basin Case Study, in 53rd U.S. Rock Mechanics/Geomechanics 

Symposium, New York City, New York, American Rock Mechanics Association. 

Warner Jr, H.R., and Holstein, E.D., 2007, Petroleum Engineering Handbook: , p. 1103–

1147. 

Yandell, J., C. Whaley, S. Verma, and M. A. Henderson, 2019, Integration of 3D seismic, 

Well, and Core Data to investigate channel-like features in the Grayburg Formation, 

Midland Basin, TX: Poster presentation at AAPG SWS section annual meeting. 

Zahiri, J., Abdideh, M., and Ghaleh Golab, E., 2019, Determination of safe mud weight 

window based on well logging data using artificial intelligence: Geosystem 

Engineering, v. 22, p. 193–205, doi:10.1080/12269328.2018.1504697. 

 

 

https://doi.org/10.1016/j.jngse.2020.103521


105 

 

Zhang, J., 2011, Pore pressure prediction from well logs: Methods, modifications, and 

new approaches: Earth-Science Reviews, v. 108, p. 50–63, 

doi:10.1016/j.earscirev.2011.06.001. 

Zhang, J., 2013, Effective stress, porosity, velocity and abnormal pore pressure prediction 

accounting for compaction disequilibrium and unloading: Marine and Petroleum 

Geology, v. 45, p. 2–11, doi:10.1016/j.marpetgeo.2013.04.007. 

Zhang, J.J., 2020, Applied Petroleum Geomechanics: Gulf Professional Publishing, 553 

p. 

Zhang, L., Cao, P., and Radha, K.C., 2010, Evaluation of Rock Strength Criteria for 

Wellbore Stability Analysis: International Journal of Rock Mechanics and Mining 

Sciences, v. 47, p. 1304–1316, doi:10.1016/j.ijrmms.2010.09.001. 

Zheng, W., Xu, L., Pankaj, P., Ajisafe, F., and Li, J., 2018, Advanced Modeling of 

Production Induced Stress Change Impact on Wellbore Stability of Infill Well 

Drilling in Unconventional Reservoirs, in Proceedings of the 6th Unconventional 

Resources Technology Conference,. 

 

 

 



106 

 

APPENDIX 

Appendix A: List of Equations 

Static:   E = σ / ε  .....................................................................................................  (1) 

Dynamic: Edyn = ρ VS
2 [(3VP

2 – 4 VS
2) / (VP

2 – VS
2)]  ................................................  (2) 

Edyn = 2 * G * (1 +  v)  .......................................................................................................  (3) 

Static:   v = εtrans /εaxial  .............................................................................................  (4) 

Dynamic: vdyn = (VP 2 – 2*VS
2)/(2 (VP 2 – VS

2))  ..........................................................  (5) 

G = [F/A] / [Δx/l]  ...................................................................................................  (6) 

G = ρVS
2  ...............................................................................................................  (7) 

K = ΔP / [ΔV/V]  ......................................................................................................  (8) 

K = ρ (VP 2 – (4/3) VS 
2)  ...................................................................................................  (9) 

VS = 0.8042* VP -855.9 ...........................................................................................  (10) 

σv =  ∑ ρihig
 
i   .......................................................................................................... (11) 

σh = [(v /1 - v ) σv ] +  [(1 - 2 v /1 - v)Pp α] + [(E/1 – v2) εy] + [(E v /1 – v2) εx]  .....  (12) 

Isotropic σh = (v /1 – v)(σv - αv Pp) + αH Pp + σtect  ........................................................  (13) 

σH = [(v /1 – v) * (σv -  Pp α)] + Pp α + σtect  ............................................................  (14) 

α = 1 - (Kb/ Km)  ..............................................................................................................  (15) 

Kb =  ρ*(1/(DTC2) – (4/3)*(1/(DTS2)))  ..................................................................  (16) 

Km = ρm*(1 / (DTC2)-(4/3)*(1 / (DTS2)))  ...............................................................  (17) 

VP
 =  Vml + Cσv

B  ..............................................................................................................  (18) 

Pp = σv – ((VP - Vml)/C)1/B  ...............................................................................................  (19) 

Ppulo =  σv – ((VP - Vml)/C)U/B*(σmax
1-U)  ...........................................................................  (20) 
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Pp = σv – (σv – Ppng)*(Δtn / Δt)n  .....................................................................................  (21) 

Pp = σv – (σv – Ghyd*TVD)*( Vnorm-Vcomp)
n ......................................................................... (22) 

τ max = (1/2)(𝜎1 – 𝜎3)    ..............................................................  (23) 

𝜏oct = a + b 𝜎m2  ..............................................................................................................  (24) 

a = ((2√2) / 3) * (Co / q)  ................................................................................................  (25) 

b = ((2√2) / 3) * ((q-1) / (q+1))  .....................................................................................  (26) 

q conversion = (1 + sin(ϕ)) / (1 -sin(ϕ))  .......................................................................  (27) 

(I1
n)3 / (I3

n) = 27 + η............................................................................................................ (28) 

I1 = (𝜎1 + S) + (𝜎2 + S) + (𝜎3 + S)  ...............................................................................  (29) 

I3 = (𝜎1 + S) * (𝜎2 + S) * (𝜎3 + S)  .................................................................................  (30) 

S conversion = Co / tan(ϕ)  ..............................................................................................  (31) 

η conversion = (4tan2(ϕ)*(9-7sin(ϕ))) / (1 - sin(ϕ))  .....................................................  (32) 

Loss Threshold = (σh / MD ) / 0.052  .............................................................................  (33) 
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Appendix B: List of Variables 

σ = stress  

ε = strain   

ρ = bulk density  

VS= shear wave velocity  

VP= compressional or primary wave velocity  

εaxial = axial strain  

εtrans = transverse strain   

F = the shear force applied  

A = the cross-sectional area of material with area parallel to the applied force vector  

Δx = shear displacement   

l = initial length  

ΔP = change of pressure 

ΔV = change in volume  

V = initial volume of material  

σv = overburden stress 

 σh = minimum horizontal stress,  

 σH = maximum horizontal stress 

g = is the gravitational constant (32.175 ft/s2)  

h = the vertical thickness of rock formation (ft) 

i = the density of the ith rock layer (lbm/ft3) 
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Pp = pore pressure  

α = Biot elastic constant  

εy = vertical strain   

εx = lateral strain 

αv = Biot elastic constant (vertical)  

αH = Biot elastic constant (horizontal)  

σtect = tectonic stress  

ϕ = friction angle 

C, B, and U = constants for calibration Bowers method 

Ppulo = pore pressure in unloading 

σmax = the estimated effective stress at the onset unloading 

Ppng = pore pressure of hydrostatic pressure 

Δt = sonic delta time 

 n = constant for calibration Eaton’s 

Ghyd = gradient of hydrostatic pressure 

Vnorm = Velocity log value according to normal trend 

Vcomp = Velocity log value according to compaction trend 

TVD = True Vertical Depth 

τ max = the maximum shear stress 
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𝜎1 = maximum principal stress 

𝜎2 = intermediate principal stress 

𝜎3 = minimum principal stress 

𝜏oct = max octahedral shear stress 

𝜎m2 = intermediate effective mean stress 

a = intersection of the line on 𝜏oct axis  

𝑏 = the line’s inclination 

Co = Cohesion 

I1 = first stress invariant 

I3 = third stress invariant 

η = material constant 

S = stress 

DTC = compressional wave travel time 

DTS = shear wave travel time 

Kb = bulk modulus of base material   

Km = bulk modulus of rock matrix  

K = bulk modulus 

G = shear modulus 
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v = Poisson’s ratio 

E = Young’s modulus 

MD = measured depth 
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Appendix C: Conversion Tables 

 

Table 12: Table referencing conversions to and from metric and imperial unit of 

measurement systems (Zhang, 2011). 
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Appendix D: Facies Python Code 

 

import numpy as np # linear algebra 

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

import os 

for dirname, _, filenames in os.walk('/kaggle/input'): 

    for filename in filenames: 

        print(os.path.join(dirname, filename)) 

# From R Hissong, using Brendon Hall (Facies Classification with Machine Learning: 

Notebook workflow used for a UTPB Quantitative Interpretation Lab 4-18-2020) 

# This notebook demonstrates how to train a machine learning algorithm to predict facies 

from well log data. The dataset we will use comes from a downloaded and digitized 

public logs from the TRRC. This exercise uses machine learning techniques to predict log 

facies from core defined facies analysis on logs. For more info on the original workflow 

and data, see Bohling and Dubois (2003) and Dubois et al. (2007). 

# The dataset we will use is log data from four wells that have been labelled with a facies 

type based on log data and ran through a random forest method broken down into 6 

facies. We will use this log data to train a support vector machine to classify facies types. 

Support vector machines (or SVMs) are a type of supervised learning model that can be 

trained on data to perform classification and regression tasks. The SVM algorithm uses 

the training data to fit an optimal hyperplane between the different classes (or facies, in 

our case). We will use the SVM implementation in scikit-learn. 

# First we will explore the dataset. We will load the training data from 4 wells, and take a 

look at what we have to work with. We will plot the data from a couple wells, and create 

cross plots to look at the variation within the data. 

# Next we will condition the data set. We will remove the entries that have incomplete 

data. The data will be scaled to have zero mean and unit variance. We will also split the 

data into training and test sets. 

# We will then be ready to build the SVM classifier. We will demonstrate how to use the 

cross validation set to do model parameter selection. 

# Finally, once we have a built and tuned the classifier, we can apply the trained model to 

classify facies in wells which do not already have labels. We will apply the classifier to 

two wells, but in principle you could apply the classifier to any number of wells that had 

the same log data. 

%matplotlib inline 
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import pandas as pd 

import numpy as np 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import matplotlib.colors as colors 

from mpl_toolkits.axes_grid1 import make_axes_locatable 

from pandas import set_option 

set_option("display.max_rows", 10) 

pd.options.mode.chained_assignment = None 

training_data = pd.read_excel("../input/testdata/test.xlsx",sheet_name='RH Facies Lab 

Data') 

training_data 

# we will remove one well from the training set so that we can compare  

# the predicted and actual facies labels. 

blind = training_data[training_data['Well Name'] == 'well 2'] 

training_data = training_data[training_data['Well Name'] != 'well 2'] 

blind 

# Let's clean up this dataset. The 'Well Name' column  

# can be turned into a categorical data type. 

training_data['Well Name'] = training_data['Well Name'].astype('category') 

training_data['Well Name'].unique() 

#Now we label and color our facies 

# 1=Mudstone_Org_Si  2=Mudstone_Org   3=Mudstone_ORG_Cal  

# 4=Mudstone_Cal_Si 5=Limestone_Arg_Dol 6=Limestone_Arg 

facies_colors = ['#A09D92','#8E7308','#0B0901','#F5D451', 

       '#EE44BB','#44BBEE'] 

facies_labels = ['MSOrgSi', 'MSOrg', 'MSOrgCal', 'MSCalSi', 'LSArgDol', 

                 'LSArg'] 
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#facies_color_map is a dictionary that maps facies labels 

#to their respective colours 

facies_color_map = {} 

for ind, label in enumerate(facies_labels): 

    facies_color_map[label] = facies_colors[ind] 

#note: this next step gives you a breakdown of the data, if you need to see if data busts 

exist like -999s then just delete the 3 rows and use "training_data.describe()" function to 

generate a table  

def label_facies(row, labels): 

    return labels[ row['Facies'] -1] 

    training_data.loc[:,'FaciesLabels'] = training_data.apply(lambda row: label_facies(row, 

facies_labels), axis=1) 

training_data.describe() 

# Let's take a look at the data from individual wells in a more familiar log plot form.  

# We will create plots for the five well log variables, as well as a log for facies labels. 

def make_facies_log_plot(logs, facies_colors): 

    #make sure logs are sorted by depth 

    logs = logs.sort_values(by='Depth') 

    cmap_facies = colors.ListedColormap( 

            facies_colors[0:len(facies_colors)], 'indexed') 

    ztop=(5896); zbot=(8140) 

    cluster=np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1) 

    f, ax = plt.subplots(nrows=1, ncols=6, figsize=(8, 12)) 

    ax[0].plot(logs.GR, logs.Depth, '-g') 

    ax[1].plot(logs.ILD_log10, logs.Depth, '-') 

    ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5') 

    ax[3].plot(logs.PHIND, logs.Depth, '-', color='r') 

    ax[4].plot(logs.RHOB, logs.Depth, '-', color='black') 

    im=ax[5].imshow(cluster, interpolation='none', aspect='auto', 
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                    cmap=cmap_facies,vmin=1,vmax=6) 

    divider = make_axes_locatable(ax[5]) 

    cax = divider.append_axes("right", size="20%", pad=0.05) 

    cbar=plt.colorbar(im, cax=cax) 

    cbar.set_label((17*' ').join([ 'MSOrgSi ', ' MSOrg ', ' MSOrgCal ', ' MSCalSi ', ' 

LSArgDol ', 

                 ' LSArg '])) 

    cbar.set_ticks(range(0,1)); cbar.set_ticklabels('') 

    for i in range(len(ax)-1): 

        ax[i].set_ylim(ztop,zbot) 

        ax[i].invert_yaxis() 

        ax[i].grid() 

        ax[i].locator_params(axis='x', nbins=3) 

    ax[0].set_xlabel("GR") 

    ax[0].set_xlim(0,200) 

    ax[1].set_xlabel("ILD_log10") 

    ax[1].set_xlim(0,500) 

    ax[2].set_xlabel("DeltaPHI") 

    ax[2].set_xlim(0,0.8) 

    ax[3].set_xlabel("PHIND") 

    ax[3].set_xlim(0.1,0.5) 

    ax[4].set_xlabel("RHOB") 

    ax[4].set_xlim(1,3) 

    ax[5].set_xlabel('Facies') 

    ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([]) 

    ax[4].set_yticklabels([]); ax[5].set_yticklabels([]) 

    ax[5].set_xticklabels([]) 

    f.suptitle('Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94) 
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# We then show log plots for well 3. 

make_facies_log_plot( 

    training_data[training_data['Well Name'] == 'well 3'], 

    facies_colors) 

# Now for well 4. 

make_facies_log_plot( 

    training_data[training_data['Well Name'] == 'well 4'], 

    facies_colors) 

# Now for well 5. 

#Note:since we set our well 2 as training data it can not be displayed using this code 

make_facies_log_plot( 

    training_data[training_data['Well Name'] == 'well 5'], 

    facies_colors) 

#count the number of unique entries for each facies, sort them by 

#facies number (instead of by number of entries) 

facies_counts = training_data['Facies'].value_counts().sort_index() 

#use facies labels to index each count 

facies_counts.index = facies_labels 

facies_counts.plot(kind='bar',color=facies_colors,  

                   title='Distribution of Training Data by Facies') 

facies_counts 

#save plot display settings to change back to when done plotting with seaborn 

inline_rc = dict(mpl.rcParams) 

one_hot_encoded_training_predictors = pd.get_dummies(training_data) 

import seaborn as sns 

sns.set() 

sns.pairplot(training_data.drop(['Well 

Name','Facies','Depth','DeltaPHI','PHIND'],axis=1), 
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             #Not sure why but I cant get the DeltaPHI or PHIND to plot it gives a error -Rob  

             hue='FaciesLabels', palette=facies_color_map, 

             hue_order=list(reversed(facies_labels))) 

#switch back to default matplotlib plot style 

mpl.rcParams.update(inline_rc) 

#Now have visualized all we can, now its time to condition the data for use in creating 

our predictors and vectors 

# We extract just the feature variables we need to perform the classification.  

# The predictor variables are the four wireline wells and facies variables.  

# We also get a vector of the facies labels that correspond to each feature vector. 

correct_facies_labels = training_data['Facies'].values 

feature_vectors = training_data.drop(['Well Name', 'Depth','Facies','FaciesLabels'], 

axis=1) 

feature_vectors.describe() 

#make note if counts are off or min/max is unusual 

#This creates our vectors 

from sklearn import preprocessing 

scaler = preprocessing.StandardScaler().fit(feature_vectors) 

scaled_features = scaler.transform(feature_vectors) 

feature_vectors 

# Split to test and training data, test will be used to compare the accuracy of the model 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( 

        scaled_features, correct_facies_labels, test_size=0.2, random_state=42) 

#Training the classifier 

from sklearn import svm 

clf = svm.SVC() 

clf.fit(X_train,y_train) 

#Predict 
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predicted_labels = clf.predict(X_test) 

# a function has been written to display the matrix along with facies labels and various 

error metrics. 

def display_cm(cm, labels, hide_zeros=False, 

                             display_metrics=False): 

    """Display confusion matrix with labels, along with 

       metrics such as Recall, Precision and F1 score. 

       Based on Zach Guo's print_cm gist at 

       https://gist.github.com/zachguo/10296432 

    """ 

    precision = np.diagonal(cm)/cm.sum(axis=0).astype('float') 

    recall = np.diagonal(cm)/cm.sum(axis=1).astype('float') 

    F1 = 2 * (precision * recall) / (precision + recall) 

    precision[np.isnan(precision)] = 0 

    recall[np.isnan(recall)] = 0 

    F1[np.isnan(F1)] = 0 

    total_precision = np.sum(precision * cm.sum(axis=1)) / cm.sum(axis=(0,1)) 

    total_recall = np.sum(recall * cm.sum(axis=1)) / cm.sum(axis=(0,1)) 

    total_F1 = np.sum(F1 * cm.sum(axis=1)) / cm.sum(axis=(0,1)) 

    #print total_precision 

    columnwidth = max([len(x) for x in labels]+[5]) # 5 is value length 

    empty_cell = " " * columnwidth 

    # Print header 

    print("    " + " Pred", end=' ') 

    for label in labels:  

        print("%{0}s".format(columnwidth) % label, end=' ') 

    print("%{0}s".format(columnwidth) % 'Total') 

    print("    " + " True") 
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    # Print rows 

    for i, label1 in enumerate(labels): 

        print("    %{0}s".format(columnwidth) % label1, end=' ') 

        for j in range(len(labels)):  

            cell = "%{0}d".format(columnwidth) % cm[i, j] 

            if hide_zeros: 

                cell = cell if float(cm[i, j]) != 0 else empty_cell 

            print(cell, end=' ') 

        print("%{0}d".format(columnwidth) % sum(cm[i,:])) 

    if display_metrics: 

        print() 

        print("Precision", end=' ') 

        for j in range(len(labels)): 

            cell = "%{0}.2f".format(columnwidth) % precision[j] 

            print(cell, end=' ') 

        print("%{0}.2f".format(columnwidth) % total_precision) 

        print("   Recall", end=' ') 

        for j in range(len(labels)): 

            cell = "%{0}.2f".format(columnwidth) % recall[j] 

            print(cell, end=' ') 

        print("%{0}.2f".format(columnwidth) % total_recall) 

        print("       F1", end=' ') 

        for j in range(len(labels)): 

            cell = "%{0}.2f".format(columnwidth) % F1[j] 

            print(cell, end=' ') 

        print("%{0}.2f".format(columnwidth) % total_F1)           

def display_adj_cm( 

        cm, labels, adjacent_facies, hide_zeros=False,  
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        display_metrics=False): 

    """This function displays a confusion matrix that counts  

       adjacent facies as correct. 

    """ 

    adj_cm = np.copy(cm) 

    for i in np.arange(0,cm.shape[0]): 

        for j in adjacent_facies[i]: 

            adj_cm[i][i] += adj_cm[i][j] 

            adj_cm[i][j] = 0.0 

    display_cm(adj_cm, labels, hide_zeros,  

                             display_metrics) 

#create our confusion matrix 

from sklearn.metrics import confusion_matrix 

conf = confusion_matrix(y_test, predicted_labels) 

display_cm(conf, facies_labels, hide_zeros=True) 

# define our accuracy 

def accuracy(conf): 

    total_correct = 0. 

    nb_classes = conf.shape[0] 

    for i in np.arange(0,nb_classes): 

        total_correct += conf[i][i] 

    acc = total_correct/sum(sum(conf)) 

    return acc 

# Define error within 'adjacent facies' 

#This needs to be updated for 6 facies model ,np.array 

adjacent_facies = np.array([[1], [0,3], [1], [0,3], [1], [1], [1], [5], [3]]) 

def accuracy_adjacent(conf, adjacent_facies): 

    nb_classes = conf.shape[0] 
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    total_correct = 0. 

    for i in np.arange(0,nb_classes): 

        total_correct += conf[i][i] 

        for j in adjacent_facies[i]: 

            total_correct += conf[i][j] 

    return total_correct / sum(sum(conf)) 

#display accuracy 

print('Facies classification accuracy = %f' % accuracy(conf)) 

print('Adjacent facies classification accuracy = %f' % accuracy_adjacent(conf, 

adjacent_facies)) 

#Note: the misclassification is not severe (how close it is to value of 1) 

#Note: this will take some time please wait for it to run the parameter loop... 

#this checks our C values and trained well error 

do_model_selection = True 

if do_model_selection: 

    C_range = np.array([.01, 1, 5, 10, 20, 50, 100, 1000, 5000, 10000]) 

    gamma_range = np.array([0.0001, 0.001, 0.01, 0.1, 1, 10]) 

    fig, axes = plt.subplots(3, 2,  

                        sharex='col', sharey='row',figsize=(10,10)) 

    plot_number = 0 

    for outer_ind, gamma_value in enumerate(gamma_range): 

        row = int(plot_number / 2) 

        column = int(plot_number % 2) 

        cv_errors = np.zeros(C_range.shape) 

        train_errors = np.zeros(C_range.shape) 

        for index, c_value in enumerate(C_range): 

            clf = svm.SVC(C=c_value, gamma=gamma_value) 

            clf.fit(X_train,y_train) 
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            train_conf = confusion_matrix(y_train, clf.predict(X_train)) 

            cv_conf = confusion_matrix(y_test, clf.predict(X_test)) 

            cv_errors[index] = accuracy(cv_conf) 

            train_errors[index] = accuracy(train_conf) 

        ax = axes[row, column] 

        ax.set_title('Gamma = %g'%gamma_value) 

        ax.semilogx(C_range, cv_errors, label='CV error') 

        ax.semilogx(C_range, train_errors, label='Train error') 

        plot_number += 1 

        ax.set_ylim([0.2,1]) 

    ax.legend(bbox_to_anchor=(1.05, 0), loc='lower left', borderaxespad=0.) 

    fig.text(0.5, 0.03, 'C value', ha='center', 

             fontsize=14)    

    fig.text(0.04, 0.5, 'Classification Accuracy', va='center',  

             rotation='vertical', fontsize=14) 

#display accuracy at %.2f 

clf = svm.SVC(C=10, gamma=1)         

clf.fit(X_train, y_train) 

cv_conf = confusion_matrix(y_test, clf.predict(X_test)) 

print('Optimized facies classification accuracy = %.2f' % accuracy(cv_conf)) 

print('Optimized adjacent facies classification accuracy = %.2f' % 

accuracy_adjacent(cv_conf, adjacent_facies)) 

#display cm confusion matrix with precisions 

display_cm(cv_conf, facies_labels,  

           display_metrics=True, hide_zeros=True) 

#display adj_cm confusion matrix with precisions 

display_adj_cm(cv_conf, facies_labels, adjacent_facies,  

           display_metrics=True, hide_zeros=True) 
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# Applying the classification model to the blind data 

# We held a well back from the training, and stored it in a dataframe called blind: (well 2) 

blind 

#defines Y_blind as facies 

y_blind = blind['Facies'].values 

#drops uneeded columns 

well_features = blind.drop(['Facies','Well Name', 'Depth'], axis=1) 

well_features.describe() 

# Now we can transform this with the scaler we made before: 

X_blind = scaler.transform(well_features) 

# use the predictor we created storing it back in the dataframe: 

y_pred = clf.predict(X_blind) 

blind['Prediction'] = y_pred 

# Let's see how we did with the confusion matrix 

cv_conf = confusion_matrix(y_blind, y_pred) 

print('Optimized facies classification accuracy = %.2f' % accuracy(cv_conf)) 

print('Optimized adjacent facies classification accuracy = %.2f' % 

accuracy_adjacent(cv_conf, adjacent_facies)) 

#not to shabby... 

#display the confusion matrix with precisions 

display_cm(cv_conf, facies_labels, 

           display_metrics=True, hide_zeros=True) 

#now lets see how it does on the adj facies confusion matrix 

# but does remarkably well on the adjacent facies predictions. 

display_adj_cm(cv_conf, facies_labels, adjacent_facies, 

               display_metrics=True, hide_zeros=True) 

def compare_facies_plot(logs, compadre, facies_colors): 

    #make sure logs are sorted by depth 
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    logs = logs.sort_values(by='Depth') 

    cmap_facies = colors.ListedColormap( 

            facies_colors[0:len(facies_colors)], 'indexed') 

    ztop=(5896); zbot=(8140) 

    cluster1 = np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1) 

    cluster2 = np.repeat(np.expand_dims(logs[compadre].values,1), 100, 1) 

    f, ax = plt.subplots(nrows=1, ncols=7, figsize=(9, 12)) 

    ax[0].plot(logs.GR, logs.Depth, '-g') 

    ax[1].plot(logs.ILD_log10, logs.Depth, '-') 

    ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5') 

    ax[3].plot(logs.PHIND, logs.Depth, '-', color='r') 

    ax[4].plot(logs.RHOB, logs.Depth, '-', color='black') 

    im1 = ax[5].imshow(cluster1, interpolation='none', aspect='auto', 

                    cmap=cmap_facies,vmin=1,vmax=6) 

    im2 = ax[6].imshow(cluster2, interpolation='none', aspect='auto', 

                    cmap=cmap_facies,vmin=1,vmax=6) 

    divider = make_axes_locatable(ax[6]) 

    cax = divider.append_axes("right", size="20%", pad=0.05) 

    cbar=plt.colorbar(im2, cax=cax) 

    cbar.set_label((17*' ').join(['MSOrgSi ', ' MSOrg ', ' MSOrgCal ', ' MSCalSi ', ' 

LSArgDol ', 

                 ' LSArg '])) 

    cbar.set_ticks(range(0,1)); cbar.set_ticklabels('') 

    for i in range(len(ax)-2): 

        ax[i].set_ylim(ztop,zbot) 

        ax[i].invert_yaxis() 

        ax[i].grid() 

        ax[i].locator_params(axis='x', nbins=3) 
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    ax[0].set_xlabel("GR") 

    ax[0].set_xlim(0,200) 

    ax[1].set_xlabel("ILD_log10") 

    ax[1].set_xlim(0,500) 

    ax[2].set_xlabel("DeltaPHI") 

    ax[2].set_xlim(0,0.8) 

    ax[3].set_xlabel("PHIND") 

    ax[3].set_xlim(0.1,0.5) 

    ax[4].set_xlabel("RHOB") 

    ax[4].set_xlim(1,3) 

    ax[5].set_xlabel('Facies') 

    ax[6].set_xlabel(compadre) 

    ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([]) 

    ax[4].set_yticklabels([]); ax[5].set_yticklabels([]) 

    ax[5].set_xticklabels([]) 

    ax[6].set_xticklabels([]) 

    f.suptitle('Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94) 

    # Now we create the comparison of predicted facies vs actual from the random forest 

classification dataset 

    compare_facies_plot(blind, 'Prediction', facies_colors) 

#### Now lets test this bad boy on a well with no facies descriptions 

#we will have to import the well 1 dataset so please add it in now 

# Now that we have a trained facies classification model we can use it to 

# identify facies in wells that do not have core data.  

# In this case, we will apply the classifier to one well,  

# but we could use it on any number of wells for which we have the same set of well logs 

for input. 

# This dataset is similar to the training data except it does not have facies labels.  

#/kaggle/input/well-1/well1.xlsx 
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well_data = pd.read_excel("../input/well-1/well1.xlsx",sheet_name='Sheet1') 

well_data['Well Name'] = well_data['Well Name'].astype('category') 

well_features = well_data.drop(['Well Name', 'Depth'], axis=1) 

# The data needs to be scaled using the same constants we used for the training data. 

X_unknown = scaler.transform(well_features) 

# predict facies of unclassified data 

y_unknown = clf.predict(X_unknown) 

well_data['Facies'] = y_unknown 

well_data 

# defines well 1 as unique 

well_data['Well Name'].unique() 

# We can use the well log plot to view the classification results along with the well logs. 

make_facies_log_plot( 

    well_data[well_data['Well Name'] == 'well 1'], 

    facies_colors=facies_colors) 

# Finally we can write out a csv file with the well data along with the facies classification 

results. 

# CONGRATS!!!!!!!!!!!  you just did some high level facies prediction and 

classifications by machine learning 

well_data.to_csv('well_data_with_facies.csv') 

 


