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Abstract 

Silurian pinnacle reefs found within the Michigan Basin were prolific hydrocarbon 

producers in the mid-to-late twentieth century. During production, studies over these complex 

reservoirs were primarily focused on facies distributions and depositional environments 

interpreted from core and petrophysical log data. 2-D seismic was applied primarily for reef 

identification, and rarely incorporated in identifying facies. To date, only two studies using 

modern 3-D seismic data to characterize Silurian pinnacle reefs have been published (Toelle and 

Ganshin, 2018; Buist 2020). Toelle and Ganshin (2018) had poor well control, which 

significantly reduced the certainty of interpretations made. Buist (2020) utilized unsupervised 

Self-Organizing Maps for porosity and permeability correlation from seismic data in several 

reefs along the Southern Reef Trend. This study is the first to conduct a pre-stack seismic 

inversion over a Silurian pinnacle reef within the Michigan Basin, and both the pre-stack 

inversion volumes and post-stack seismic attributes are integrated with supervised and 

unsupervised machine learning techniques (Probability Neural Networks and Generative 

Topographic Maps) to characterize the reservoir properties of Ray Reef field along the Southern 

Reef Trend. 

The workflow for this study begins with the well log data. A feasibility study is 

conducted to analyze relationships between elastic properties such as velocities and impedances, 

and reservoir properties such as porosity and lithology. Simultaneous pre-stack inversion is then 

conducted to provide P and S-impedance volumes, velocity cubes, and lambda-rho mu-rho 

volumes. Attributes are generated on the post-stack data as well, and input into the Generative 

Topographic Map (GTM) algorithm. The GTM is able to identify non-linear relationships 

between the attributes, and identifies relationships between lithology and seismic attributes. Pre-
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stack inversion attributes are analyzed in traditional crossplots to classify zones of good, fair, and 

poor porosity. Probability Neural Networks (PNNs) are shown to excel at classifying the gas-

water contact within the reservoir, in addition to delineating salt units from the encasing 

carbonate units. 

The workflow described in this study identified a consistent relationship between 

lambda-rho and mu-rho attributes for porosity and possible fluid content within the Ray Reef gas 

storage reservoir in southeastern Michigan. Unsupervised machine learning techniques used also 

showed the ability to identify the reef core lithofacies from post-stack seismic data. These 

workflows have the potential to be applied on other pinnacle reef complexes within the Michigan 

Basin in addition to other carbonate reservoirs around the world. 
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Chapter 1: Introduction 

Motivation 

The motivation for this study is to analyze and characterize geologic features within an 

active carbonate gas storage reservoir and extract quantitative measurements of reservoir 

properties from seismic data. Analyses are done using both pre-stack attributes derived from 

inversion and post-stack seismic attributes. The prolific Niagaran pinnacle reef reservoirs within 

the Michigan basin are now common targets for natural gas storage fields and carbon-dioxide 

sequestration. Both of these uses carry great importance for both the local and future populations. 

Natural gas storage helps ensure availability of energy during harsh winter temperatures, which 

can cause surges in demand. CO2 sequestration studies of these pinnacle reefs could lead to 

widespread CO2 sequestration within pinnacle reefs to combat rising concentrations, and possible 

EOR of remaining hydrocarbons. Understanding the spatial distribution of reservoir properties 

such as lithology and porosity is a key aspect of gas storage and can greatly enhance gas storage 

efficiency. Ray Reef field in Macomb County, Michigan, is one of the larger pinnacle reef 

storage reservoirs, with a total working capacity of 48 billion ft3 of gas. It has been utilized for 

gas storage since 1966 after being a natural gas producing reservoir since 1959 (Gill, 1977). 

Carbonate lithologies are typically difficult to image in seismic data compared to siliciclastic 

lithologies due to their irregular pore geometry and crystalline matrix (Wang, 1997; Grammer, 

2009; Trout, 2012). Seismic imaging is further complicated by the numerous salt units both 

above the reservoir interval, as well as encasing it (Jones and Davison, 2014). Seismic reflection 

data is also affected by diagenetic processes such as dissolution, cementation, and 

dolomitization. Carbonate lithologies are also difficult to distinguish using conventional well log 

analyses, due to the fact they have identical physical properties and differ in allochem or cement 



2 

 

composition (Grammar 2009). The above challenges impose a challenge on geoscientists efforts 

to map the spatial extent of lithofacies and reservoir properties away from well locations. 

Ray Reef has been extensively drilled, with 84 wells within or nearby the pinnacle reef. 

Despite the dense well spacing commonly found in pinnacle reef reservoirs, little advancement 

was made on the understanding of the depositional framework of pinnacle reefs until recently 

(Mesolella, 1974; Gill 1977; Rine et al., 2017; Rine et al., 2020). To understand how seismic 

data and machine learning techniques can address these challenging imaging problems, several 

investigations incorporating modern depositional models are performed to analyze how each 

method can classify seismic facies in a heterogeneous gas storage reservoir within a mid-Silurian 

(Niagaran) pinnacle reef in the Michigan Basin. A high-resolution 3-D seismic survey that was 

acquired by Consumers Energy in 2019 includes conditioned pre-stack gathers and full-angle 

stack volumes over the Ray Reef. While the overall structure of the reef is well imaged, little 

information regarding the reservoir properties is revealed by the full-stack amplitude data. Well 

log data provides excellent vertical resolution, however the horizontal resolution is poor. Seismic 

data can supplement well log data in this sense as it has excellent horizontal resolution in 

comparison. A conventional lambda-mu-rho analysis was utilized to derive porosity from pre-

stack inversion attributes. A suite of post-stack volume attributes influenced by previous studies 

(Buist et al., 2021) on nearby reefs is generated and Generative Topographic Maps (GTMs) are 

applied to identify multi-dimensional relationships between the seismic attributes for a data-

driven classification of seismic facies. Seismic facies are identified via cross-plotting and 

constrained by available core data and detailed core profiles provided by Matt Rine to relate the 

seismic data to the geology, and provide a better understanding of the pinnacle reef reservoir. 
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Lastly supervised machine learning methods are tested for direct classification of seismic facies, 

and mapping of salt units around Ray Reef field. 

Insights from this study can be incorporated in other Silurian pinnacle reefs in this region 

where seismic data is available, or future seismic acquisition to enhance reservoir management. 

As many of the reefs are vintage reservoirs, they typically lack complete petrophysical datasets. 

For example, the majority of the log suites available for this study included gamma ray and 

neutron count, with occasional neutron porosity and density logs available. By incorporating the 

proposed seismic data analyses into well planning and reservoir management, uncertainties 

associated with encountering locations with undesirable storage and/or flow properties can be 

reduced compared to just using well data. In order to effectively utilize the data generated in this 

study, understanding the changes of depositional environments and associated facies, such as the 

reefal frame building organisms observed are important. Events such as relative sea level and 

salinity fluctuations, wind direction, and oxygen levels can promote or halt reef growth, which 

can impact deposition of potential reservoir quality rocks (Trout, 2012). As the reservoir is 

dolomitized, the process in which dolomitization is also important to understand, as certain 

reservoir zones can have enhanced porosity from dolomitization while others can have porosity 

reduced. In the case of the Ray reef, the entire reef complex has been overprinted by secondary 

dolomitization. Workflows demonstrated herein display ways to overcome the limitations of 

incomplete petrophysical log suites to assign quantitative measurements of reservoir properties 

from seismic facies and also discuss the possible associated pitfalls. 
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Chapter 2: Seismic characterization of the Ray pinnacle reef reservoir 

Geologic Setting: Michigan Basin, USA 

The Michigan Basin is an intracratonic basin which exhibits unusual circular symmetry 

and is relatively undeformed.  The basin covers an area of 316,000 km2 (Catacosinos et al., 

1991). It is bounded in the East by the Findlay-Algonquin Arch, the south by the Kankakee 

Arch, to the West by the Wisconsin Arch, and to the North by the Canadian Shield (Figure 2.1). 

The Michigan Basin was likely initiated as a northern continuation of the Illinois Basin area that 

formed in response to Cambrian extension (Sleep et al., 1980). Evolution of the basin from the 

Cambrian through the Ordovician can be divided into four episodes (Howell and Pluijm, 1990; 

Howell and Pluijm 1999): 

Figure 2.1: Regional map displaying the total thickness of Phanerozoic sedimentary rocks in the 

Michigan Basin. The study area is represented by the red box. Modified after Howell and Pluijm 

(1999). 
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a) Early extension-related subsidence (late Cambrian-early Ordovician) 

b) Initial basin-centered subsidence (mid Ordovician) 

c) Regional eastward tilting toward the Appalachian Basin (late Ordovician-early 

Silurian) 

d) Renewed basin-centered subsidence (early Silurian-end Silurian) 

Throughout the Silurian, basin-centered subsidence was the primary control on 

sedimentation (Zheng, 1999, Haynie, 2009). During the Niagaran (mid-late Silurian), the 

Michigan basin was in the southern equator, around 20-25° in a tropical environment which 

promoted reef growth (Figure 2.2) (Scotese, 2002, Rine et al., 2017).  Basin centered subsidence 

directly affected reef growth, as Niagaran pinnacle reefs found on the upper shelf are 

characterized by a large lateral extent and lower vertical extents. Pinnacle reefs on the lower 

shelf are typically taller and have a lesser lateral extent (Gill, 1977, Sears and Lucia, 1979). Reef 

development was concentrated along two parallel lineaments along the northern and southern 

rims of the Michigan Basin trending northeast-southwest. These trends are referred to as the 
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northern and southern reef trends respectively. Carbonate deposition is attributed to the 

beginning of a wide spread transgression of the continental platform (Briggs, 1978, Rine 2015). 

By the late Niagaran, restriction and isolation of the basin from open seas resulted in a cessation 

of reef growth and marked a transition to an arid, restricted marine depositional environment 

(Briggs, 1978). This resulted in the deposition of the Salina group, which is primarily comprised 

of evaporites with some restricted carbonate successions. The Salina Group is capped by 

relatively thick carbonate units deposited in a restricted marine environment, which represents 

the final stage in carbonate deposition. Following deposition of the lower Salina group, the 

Michigan Basin was isolated from surrounding seas which resulted in continuous deposition of 

thick evaporite units.   

Figure 2.2: Paleogeographic map of the Silurian approximately 430 Ma. Ray Reef is located at 

the red star. (Modified after Scotese, 2002). 
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Southern Reef Trend Stratigraphy 

The litho- and chronostratigraphy of reefs along the southern reef trend is well 

established (Figure 2.3). The upper Silurian deposits in the Michigan Basin are split into three 

groups: The Manistique, Niagara, and Salina Groups (Catacosinos et al., 2001; Rine et al., 2020). 

For this study, the lower Manistique Group is not investigated. The Niagara Group represents a 

bioclastic ramp facies succession and is divided into several formations. The Niagara Group 

thins basinward, from approximately 300 feet on the shelf to less than 90 feet in the central 

portion of the basin (Mesolella et al., 1974; Armstrong and Carter, 2010; Rine et al., 2020). The 

lowermost formation is the Lockport Formation (informally called the “Gray Niagaran”), which 

Figure 2.3: Overview of the Michigan Basin modified after Rine et al. (2017). A- 

Overview of the general depositional environments of the Niagaran. B- 

Chronostratigraphic column with the studied interval outlined in red. C – Representative 

cross section across the Michigan Basin illustrating the two reef trends within the basin. 
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is described as a gray micritic carbonate (Rine et al., 2017). Pinnacle reefs overly the Lockport 

Formation and occur within the Guelph Formation (also referred to as the “Brown Niagaran”). 

On the slope, the Guelph Formation is typically less than 30 feet thick, and is thickest where 

pinnacle reefs developed to thicknesses of 300-500 feet. Within the reefs, a variety of deep-water 

and shallow marine facies are present (Mesolella et al., 1974; Huh et al., 1977; Sears and Lucia, 

1979; Wold, 2008; Haynie, 2009; Trout 2012; Rine 2015). Pinnacle reefs of the Guelph 

Formation are encased and overlain by the restricted carbonates and evaporites of the Salina 

Group (Huh et al., 1977; Sears and Lucia, 1979; Rine et al., 2017). The Salina Group is split into 

multiple carbonate and evaporite formations. The lowermost, the A-0 Carbonate, is typically 

composed of thin carbonate and anhydrite (Leibold, 1992). The A-1 Evaporite overlies the A-0 

Carbonate, and is composed of halite and anhydrite. The A-1 Evaporite onlaps onto the Pinnacle 

reefs within the Guelph Formation (Wold 2008, Haynie, 2009). The A-1 Carbonate (formally the 

Ruff Formation) in our study area is dolomitized and overlies the pinnacle reefs (Wold, 2008; 

Haynie 2009; Trout 2012). A variety of facies are present within the A-1 Carbonate. Atop 

pinnacle reefs, it is characterized as a peritidal deposit, likely within a tidal flat environment as 

stromatolite boundstones and peloidal grain to mudstones are present in core. In the inter-reef 

region, the A-1 Carbonate is an organic-rich, laminated carbonate mudstone (Sears and Lucia, 

1979; Rine 2015; Rine et al., 2017). Recent studies have subdivided the A-1 Carbonate into the 

Lower A-1 Carbonate, Rabbit Ears anhydrite, and the Upper A-1 Carbonate (Haynie 2009, Rine 

et al., 2017). The A-2 Evaporite overlies the Upper A-1 Carbonate, and is typically composed of 

halite deposits. Within the Ray Reef study area, it is represented by a 20 to 50 ft thick anhydrite 

deposit and acts as the overlying seal for the reservoir. The A-2 Carbonate is the youngest 



9 

 

formation in the Salina Group studied, and represents the final period of carbonate deposition 

within a restricted marine environment (Rine et al., 2017; Rine et al., 2020). 

Pinnacle Reef Development 

Numerous models have been proposed to explain the development of Niagaran pinnacle 

reefs (Jordy, 1969, Mesolella et al., 1974; Gill, 1977; Huh et al., 1977; Sears and Lucia 1979; 

Rine et al., 2017). While most of the early proposed models varied slightly on relative timing of 

deposition of Guelph and Salina Group formations, all of the models presented the pinnacle reefs 

as having tall and symmetric geometries. The classical models also presented pinnacle reefs as 

having a patchy, unpredictable distribution of lithofacies. Rine (2017, 2020) proposed a new 

depositional model which utilized multiple fields with numerous cored wells available. In this 

model, pinnacle reefs are identified as having a predictable distribution of lithofacies, in addition 

to being structurally asymmetrical (Figure 2.4).  Paleo-winds oriented from the modern-day east 

to northeast resulted in southern trend reefs to have a steeply dipping (~60°) windward flank 

with a gently dipping (~15-20°) leeward flank (Figure 2.4b).  Reef development occurred in 

Figure 2.4: A- Two way time (TWT) structure map of the top A-1 Carbonate within Ray Reef. B- 

Geologic model of Niagaran pinnacle reefs proposed by Rine, 2017. C- XL 115 of the 3-D post 

stack seismic amplitude volume. The seismic data accurately matches the geometries of the 

proposed core-based geologic model. 
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several distinct stages (Figure 5). First, the bioherm initiated growth upon the Gray Niagaran in 

water depths below the storm-wave-base (SWB). Growth of the bioherm resulted in 

encountering higher-energy environments, and a gradual increase of corals and stromatoporoids 

is observed near the cap of the bioherm. The bioherm and reef core are separated by a small 

unconformity that is likely an exposure surface (Wold 2008; Rine et al., 2020). Following a rise 

Figure 2.5: Illustration of the key depositional sequences that influenced Niagaran pinnacle 

reef growth in the Michigan Basin proposed by Rine et al (2021). 
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in relative sea level (RSL), reef growth was initiated. Rapid reef growth due to keeping up with 

RSL rises resulted in the formation of the reef apron facies. Typically, the leeward apron has a 

larger aerial extent than the windward and is composed of finer grained deposits. Windward 

apron facies are conglomeritic and do not span far from the reef core. The next stage of reef 

development is the deposition of a stromatolitic cap, which was deposited in a high-energy 

intertidal deposit. A drop in RSL resulted in the full to partial exposure of the reef complex, and 

deposition of the A-0 Carbonate begins. A continued decrease in RSL resulted in hyper-saline 

oceanic conditions in addition to karsting and initial dolomitization of the reefs (Zheng, 1999). 

The A-1 Salt was deposited, which gradually pinches out toward the southern reef trend. A brief, 

relatively small rise in RSL deposited the lower A-1 Carbonate on the flanks of the reefs, and 

high-order fluctuations deposited the Rabbit Ears Anhydrite on the flanks of reef complexes. Sea 

level rose above the reef crest following REA deposition, and the carbonate factory was re-

established depositing the Upper A-1 Carbonate. On the reef crest, this is represented by a series 

of cyclical peritidal deposits marked by upward shallowing deposits with thin discontinuities. 

RSL fell again following Upper A-1 Carbonate deposition, and the A-2 Evaporite was deposited. 

This unit unconformably overlies the Upper A-1 Carbonate, and is composed of anhydrite on the 

crest and halite on the flanks. Finally, as basin waters freshened, the A-2 carbonate was 

deposited. This marked the final phase of carbonate deposition within the study interval. The A-2 

Carbonate filled in depressions of the reef and marked the end of the topographic influence of 

pinnacle reefs. 

While the stratigraphy of the reefs is understood, the relationship of porosity and 

permeability to depositional facies is uncertain. By incorporating Rine et al’s facies model for 

pinnacle reef architecture in conjunction with previous petrophysical models over Ray Reef 
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(Wold 2008; Haynie 2009) with modern seismic data, this study aims to investigate how seismic 

data can image the distribution of these key reservoir properties.  

 

Ray Reef Field, Michigan Basin 

Ray Reef 3-D Seismic Survey 

One seismic survey is used in this study: Ray3D (Figure 2.4a). This survey was acquired 

and processed in late 2019. Ray3D was contracted by Consumers Energy, the operator of the gas 

storage field, and processed by Sterling Geophysical. Ray3D is 9.4mi2, has an inline and 

crossline spacing of 110ft, station spacing of 110ft (55ft bins), a 2 second record length, and 1 

millisecond sample rate. Three volumes were initially available: pre-stack time migrated (PSTM) 

full angle stack, a 0-10 degree angle stack, and a 20-30 degree angle stack. In October 2020, pre-

stack offset gathers for the survey were also made available. The gathers have been processed by 

geophysicists at Sterling Geophysical using a standard amplitude-preserving processing 

workflow and are of good quality.  The PSTM full angle stack accurately captures the overall 

structure of the reef, however it images the flanks of the reef poorly likely due to their steep dips 

(Figure 2.4c). Using a smooth velocity model from the DT log in well 24224 located off the reef 

and R-117 located within the southern part of the reef, angles up to 30 degrees are available at 

the time interval of the reef. Seismic resolution is estimated at 50 ft at the reservoir interval. 

Ray3D has SEG positive polarity, where an increase in acoustic impedance is represented by a 

peak in the seismic amplitude data. It is important to note that at the time of seismic acquisition, 

Ray Reef was at near full storage capacity of 64.5 bcfg out of a total storage capacity of 65.4 

bcfg. 
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Ray Reef Well Dataset 

There are 84 wells within Ray3D. Formation tops and core descriptions were interpreted 

and provided by Matthew Rine from Consumer’s Energy. Fifteen of these wells are cored with 

core measured porosity and permeability (Figure 2.6). Seven cored wells have core facies  

Figure 2.6: A- Map of cored well locations within the Ray Reef field. TWT contours are shown in 

5 ms intervals. B- Average absolute open flow (AAOF) map of 40 active storage wells. 

 

descriptions done by professional geologist Matthew Rine in addition to water and oil saturation 

measurements. Due to the legacy nature of Ray Reef Field, it has a relatively poor suite of 

petrophysical logs available in non-cored wells. Many of the wells provide a combination of 

either Gamma Ray, Neutron, and/or Resistivity logs. Neutron logs were converted from neutron 

count to neutron porosity logs following the methods of Shier (1991) and Haynie (2009). 7 wells 

have sonic logs and 6 wells have density logs, however just one well has both sonic and density 

logs and is located off the reef complex (Well 24224). This is important to note as sonic and 

density logs are crucial for calculating time-to-depth relationships to integrate well data that is in 
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depth with the seismic data, which is in the time domain. Additionally, Average Absolute Open 

Flow (AAOF) for 40 operating storage wells was provided (Figure 2.6b). AAOF is a calculation 

of what the well would flow to atmosphere if there were no surface restrictions. This provides a 

normalized value of flow rates which allows for comparison of well performance independent of 

the back pressure on the well at surface. The units for AAOF are Million Cubic Feet per Day 

(MMCFD). 

Gardner’s relationship between velocity and density is applied to predict the respective 

missing logs in wells with either sonic or density logs present (Gardner, 1974). Following 

density and sonic log estimation, shear velocity logs were generated using the workflow 

proposed by Xu et al. (2007). The authors propose a model whereby limestones contain a variety 

of pore types which can be modeled by different aspect ratio inclusions. As the reservoir is 

completely dolomitized, mineralogical estimates for dolomite density were used rather than 

limestone. A density of 2.87 g/cm3 were used for dolomite within the reservoir with an aspect 

ratio of 0.20 for the macroporosity and 0.05 for the microporosity. The calculated Vp/Vs logs do 

not provide any values below the theoretical limit of 1.41, so the estimated logs are deemed 

satisfactory given the available data. Once well log estimation is completed, the wells with sonic 

and density logs were tied to the seismic data to construct a time-to-depth relationship. 

 

Methods 

The motivation of this study is to analyze the feasibility of identifying seismic facies 

utilizing interpreter knowledge aided by machine learning techniques and relate the seismic 

facies to lithology and/or variations in porosity. A seismic facies is defined as a geological unit 

which is distinct from adjacent and surrounding units in its seismic characteristics (Roksandic, 
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1978). While seismic amplitude data allows for mapping of formation tops away from well 

locations and observing general structure, post-stack amplitude data alone provides little 

quantitative information regarding changes in lithology, depositional environment, or reservoir 

quality. The following sections will review a variety of methods tested in this study to transform 

post-stack seismic data to measurements of different characteristics, and machine learning 

workflows used to identify non-linear relationships between these data. 

Post Stack Seismic Attributes 

A seismic attribute, defined by Chopra and Marfurt, (2005) is a quantitative measure of a 

seismic characteristic of interest. The goal of seismic exploration is to identify and characterize 

the static and dynamic characteristics of subsurface reservoirs. A good seismic attribute is either 

directly sensitive to the desired geologic feature or reservoir property of interest or gives insight 

to the depositional environment and/or structure, thereby allowing the interpreter to infer some 

feature or properties of interest. Instantaneous attributes provide better visualization of bedding 

continuity and lithology contrasts. Geometric attributes highlight discontinuities such as faults, 

fractures, and folds (Chopra and Marfurt, 2005). 

Previous studies over Niagaran reefs investigating unsupervised machine learning 

techniques applied to post-stack seismic data have identified that frequency-based and 

instantaneous attributes have the potential to differentiate high and low porosity and permeability 

zones from volume attributes (Toelle, 2018; Buist, 2020). For this study, a similar suite of 

volume attributes is generated on each volume. This included: Instantaneous frequency, cosine of 

instantaneous phase, and iso-frequency volumes output from spectral decomposition. 

Instantaneous phase is defined as the arc tangent of the ratio of the imaginary and real parts of 

the seismic trace (Taner, 1978). It is independent of amplitude and is related to the propagation 
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of the seismic wave front and can be applied to analyze stratigraphic continuity and 

configurations (Barnes, 2016). As instantaneous phase is a cyclic attribute, the cosine of the 

instantaneous phase is chosen to avoid the cyclic values as the GTM algorithm will interpret the 

discontinuity in the phase at 90° and -90° as different values, when in reality they are zero 

crossings. With cosine of instantons phase, zero crossings are represented by values of zero and 

correctly interpreted by the algorithm. Instantaneous frequency is the time derivative of 

instantaneous phase. Low instantaneous frequency values have been shown to correlate to high 

porosity zones within Niagaran reefs along the northern reef trend (Toelle, 2018). This 

relationship was interpreted to be caused by attenuation of the seismic wave front caused by the 

increase in pore space. Three iso-frequency cubes from spectral decomposition were also used as 

input using a continuous wavelet transform (CWT). Nejad et al. (2009) applied spectral 

decomposition utilizing the CWT method to image reef structure and also delineated regions of 

high and low porosity within the reef. Another study of frequency attributes in carbonates related 

low frequency shadows observed in frequency volumes from CWT spectral decomposition to 

hydrocarbon accumulations (Saadatinejad et al., 2012). For this study, 24, 53, and 87 Hz 

frequency components were chosen based on their strong response observed in the spectral 

domain, and these frequencies highlighted internal variations within the reef. 

 

Pre Stack Inversion 

All AVO studies are based on the plane wave Zoeppritzs equations, which model a plane 

wave in terms of P and S wave velocity and density. However, due to the complexities of 

Zoeppritzs equations, approximations are commonly used. Pre-stack simultaneous inversion 

implemented by the Hampson-Russell software utilizes the Fatti et al. (1994) extension of the 



17 

 

Aki-Richards (1980) approximation of Zoeppritzs equations (Hampson and Russell, 2005). Fatti 

et al. (1994) reformulated the Aki-Richards formula so that the reflectivity as a function of angle 

is represented by the P-impedance and S-impedance rather than velocity and density. Integrating 

the reflectivity component in Fatti’s equation provides the P-wave and S-wave impedances from 

pre-stack seismic gathers. The inversion workflow used also provides P-wave and S-wave 

velocity attribute cubes. The resulting residual error cubes were also saved as volume attributes. 

These provide a measure of the difference between the seismic full spectrum inversion attributes 

and the low-frequency background model. Due to the low maximum angle range (angles < 30°), 

a stable density cube was not able to be produced from the inversion. The simultaneous inversion 

method used is a deterministic method – which means the inversion result will provide one 

single solution that minimizes the error between the initial model and the reconstructed synthetic 

seismic output from the inversion. This method is advantageous for this dataset as the limited 

well control and strong understanding of the geology allows the interpreter to impose constraints 

on the seismic inversions to honor the structure and stratigraphic relationships within Ray Reef. 

The goal of the pre-stack inversion is to remove the wavelet from the seismic data and to 

transition from an interface property (seismic amplitude) to a layer property (impedance) which 

allows for more direct geologic interpretations (Maurya and Sarkar, 2016).  

The low frequency model (LFM) constructed in this study utilized 3 wells: Well 24224, 

located off the reef, Wells R-117 and R-207 which are both located within the reef. Well 24224 

was selected as it provides good control of lithologies encountered off the reef, and has both 

sonic and density logs. Well R-117 has a measured sonic log and estimated density log, while 

Well R-207 has a measured density log and estimated sonic log. Additionally, Well R-207 

provides accurate density values for the capping A-2 Anhydrite. All wells have a calculated S-
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wave velocity log. Four interpreted horizons were used as input: The A-2 Carbonate, A-2 Salt, 

A-1 Carbonate, and the Clinton formation horizons. The model honors the stratigraphic 

relationships of the reef complex. The A-2 Salt onlaps and is truncated by the A-1 Carbonate 

horizon, and a follow-top layering solution was used for the A-1 Carbonate zone. The LFM is a 

crucial part of the inversion process, as seismic amplitude data is band-limited and is missing 

low-frequency information (Chopra and Castagna, 2014). The well log data is smoothed with a 

30 sample median filter within each defined zone and interpolated between well locations using 

an inverse-distance weighting algorithm. 

 

Angle Versus Offset (AVO) Attribute Analyses 

Angle versus offset or Angle Versus Angle (AVO/AVA) analysis exploits and extracts 

variations between P-wave and S-wave velocities to identify lithological and fluid properties 

(Castagna 1993; Goodway et al, 1997; Chopra and Castagna, 2014). AVO has been a common 

workflow to identify potential hydrocarbon exploration prospects and to give insight to lithology, 

porosity, and possible fluid content from seismic data (Ostrander 1982; Goodway et al., 1997; 

Chopra and Costagna 2014; Sams et al., 2017). Challenges do arise with carbonate reservoirs and 

AVO methods, as their pore structures are typically heterogeneous, especially in dolomite 

reservoirs. Porosity types can vary from intercrystalline, vuggy, moldic, channels and fracture 

porosity (Wang 1997; Trout 2012). In Ray Reef, analyses of core from a variety of depositional 

environments (i.e. windward talus, reef crest, leeward apron) suggest secondary dissolution can 

completely replace, fill, or enhance existing porosity (Trout 2012). In addition to complicated 

pore structures, the reduction in P wave velocity (and Vp/Vs) associated with the presence of gas 

observed in siliciclastic rocks is typically not as dramatic in carbonates due to carbonates being 
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less compressible than unconsolidated sandstones (Chopra and Castagna, 2014).  Despite these 

shortcomings, AVO workflows that were originally developed for unconsolidated sandstone 

reservoirs have been successfully applied to numerous carbonate reservoirs (Harvey 1993; Li et 

al., 2003; Mahmoud et al., 2009; Chopra and Castagna 2014). Using the Zp and Zs inversion 

attributes, lambda-rho and mu-rho (LMR) volumes were calculated (Russell, 2003). Lambda-rho 

is defined as: 𝜆𝜌 = 𝑍𝑃
2 − 𝑐𝑍𝑆

2 and mu-rho is: 𝜇𝜌 = 𝑍𝑆
2. Lambda (λ) and mu (μ) are the Lamé’s 

constants of compressibility and rigidity respectively (Goodway et al., 1997, Goodway 2006). It 

is important to note that LMR attributes do not contain any information that are inherently new 

in regards to the Zp and Zs inversion attributes, as they represent a transformation of data present 

in the P and S impedance volumes. The squaring of the impedances does allow for larger 

separation of data points, and previous studies have related variations present within LMR space 

to lithology, porosity, and pore fluids. Furthermore, as the local structure is well known and the 

reservoir is completely dolomitized, these templates can guide classification of seismic facies 

which correspond to favorable reservoir zones.  

Generative Topographic Mapping (GTM) 

The Generative Topographic Mapping algorithm (Bishop et al., 1998) is a non-linear 

dimensional reduction technique, allowing interpreters to analyze multi-dimensional 

relationships between multiple seismic attributes in a two dimensional latent space. It was 

formulated as a probabilistic extension of the popular self-organizing map (SOM) algorithm that 

is commonly applied to seismic data.  GTM addresses some shortfalls of the SOM algorithm, 

such as the inability to initialize framework parameters, and no measure of convergence of the 

algorithm. Roy (2013) provides a comprehensive analysis and review of the mathematical 

implementation of GTM to seismic data. In summary, GTM represents the distribution of multi-
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dimensional data vectors by a 2-D deformed manifold that iteratively adjusts to best fit the data 

in data space (Roy, 2013). A set of non-linear basis functions is used to map points to the 

dimensional latent space into the manifold within the data space. Data vectors are modelled by a 

suite of Gaussian PDFs centralized on the mapped grid points on the manifold, which is used to 

define the space in which the data vector lies (Figure 2.7). This initial portion is referred to as a  

constrained Gaussian mixture, as the Gaussian centers are constrained by the grid points within 

the latent space. Through each iteration, components of the mixture model are moved towards 

the data vector that represents it best. An expectation maximization algorithm is used to update 

the mapping parameters for each iteration. The probability of a data vector being represented by 

the 2D manifold can then be calculated and used for visualization. 

The individual post-stack attribute volumes were used as input for the unsupervised GTM 

algorithm. The algorithm analyzes the data points in an n-dimensional (in this study, n=5 as 5 

attribute volumes were used) data space. Once a best fit is reached, the mean responsibility of a 

data point residing within this 2-D manifold is calculated, and the X and Y coordinates for each 

voxel is output to a respective SEG-Y cube. These X and Y coordinate cubes can then be cross 

plotted using either a 2-D color bar or crossplotting software. The data points which correspond 

Figure 2.7: Illustration from Roy (2013) which shows the transformation of grid points from 

latent space to data space, and the Gaussian centers within the D-dimensional data space 
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to the investigation box are highlighted in the cross-section and user-defined polygons are then 

drawn around the data points while also honoring the natural clusters of the GTM output. 

Polygons are iteratively adjusted using in-context interpretation to appropriately correlate to 

other well locations. All data points within a polygon are assigned a single discrete value, or 

class, and a discretized SEG-Y volume is output by the software once a satisfactory classification 

is achieved.  This workflow allows the interpreter to impose their geologic knowledge as a form 

of “supervision” on the unsupervised GTM algorithm. As only the reef complex itself is being 

target for gas storage, the GTM algorithm was limited spatially to only the reef complex and 

vertically between the top of the A-1 Carbonate and the top of the underlying Clinton Formation. 

Seismic Facies Classification 

To identify seismic facies, crossplots of seismic attributes were used. Initially, crossplots 

were introduced seismic data to visually analyze the relationship between two to three variables 

(White, 1991). With the introduction of AVO analyses, crossplotting became a common tool to 

identify AVO anomalies (Hilterman and Verm, 1994). With the recent emphasis on quantitative 

interpretation (Chopra and Marfurt, 2006; Chopra and Costanga, 2014), crossplotting of elastic 

properties derived from seismic inversion has been shown as a powerful tool for delineating 

high-quality reservoir zones (Bellman, 2018). To relate the unsupervised classification and 

inversion attributes to the geology, the data corresponding to cored wells is analyzed first. Using 

a nested cross-plotting software, investigation boxes are drawn at cored well locations within the 

pinnacle reef reservoir. The data points which correspond to the investigation box are highlighted 

in the cross-section and user-defined polygons are then drawn around the data points. Polygons 

are then iteratively adjusted using in-context interpretation to appropriately correlate to other 

well locations. All data points within a polygon are assigned a single discrete value, or class, and 
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a discretized SEG-Y volume is output by the software once a satisfactory classification is 

achieved.  This workflow allows the interpreter to use a data-driven classification while honoring 

the clusters within unsupervised GTM algorithm, and constrain classifications of the inversion 

attributes. 

Hydraulic Flow Units (HFU) 

Hydraulic flow unit classification is carried out on the basis of Flow Zone Indicator values. 

While graphical clustering from a log-log plot is the simplest method of HFU classification, it is 

not sufficient to determine cutoff values between HFU’s, especially in a dataset with numerous 

permeability and porosity logs such as Ray Reef (Dezfoolian et al., 2013). A hierarchical 

clustering analysis was employed on the log FZI values to overcome the limitations of graphical 

clustering (Pedregosa et al., 2011). The Agglomerative clustering method used is initialized by 

setting the number of flow units equal to the number of samples, and iteratively merging samples 

with similar log FZI values into distinct clusters. Several methods of linkage criteria for cluster 

merging are available, and the Ward method was selected as this method minimizes the sum of 

squared differences within all clusters (Pedregosa et al., 2011). As agglomerative clustering 

requires the number of clusters as a known input, similar to K-Means, the sum squared distance 

was calculated for a variety of number of HFU’s. The results of this test show that any increase 

in the number of HFU’s past four does not significantly reduce the reduction in flow unit 

estimation error (Figure 2.21). A histogram plot is used as conformation of this, as the FZI 

values typically exhibit a superposition of log-normal distributions for each respective distinct 

flow unit (Amaefule et al., 1993). The histogram confirms that four HFU’s will make a good 

approximation for classification (Figure 2.21). The resulting classification of HFU’s correlate 

well in the log-log plot of RQI vs ϕz (Figure 2.21). HFU 2 consists of the best performing 

reservoir zones, with high porosity and permeability values. HFU 0 and 3 consist of average to 
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below average reservoir zones, and HFU 1 is the worst performing reservoir zone with the lowest 

porosity and permeability values.  

 

Probabilistic Neural Networks (PNN) 

Probabilistic Neural Networks (PNNs) are feed forward neural networks and are a form 

of supervised classification first proposed by Specht (1990), which gives an example architecture 

for the framework of a PNN. PNNs determine decision boundaries for classification utilizing 

probability density functions (PDFs) using Parzen windows and Bayes criteria (Specht 1990; 

Hajmeer and Basheer, 2002, Lubo-Robles 2020). Bayes criteria is a strategy in which classified 

patterns minimize the expected risk (Mood & Graybill, 1962; Specht 1990). As the probability 

densities of the patterns of the categories desired to be separated are unknown and only the 

training data are available, the PDFs are estimated within each training sample. For a given set of 

training data (in this case seismic attributes) a, the average estimated density function g(a) is: 

𝑔(𝒂) =  
𝟏

𝑵
∑ 𝒆

− ∑
(𝒃𝒎−𝒂𝒏𝒎)𝟐

𝟐𝝈𝟐
𝑴
𝒎=𝟏𝑵

𝑵=𝟏  , where M is the number of training attributes, N is the number 

of training samples, b are the validation attributes that we aim to classify, and 𝜎 is a smoothing 

parameter. The PNN begins by computing the distance between validation and training 

attributes, which is then input into the Gaussian activation function (Masters 1995; Lubo-Robles 

2020). The average estimated density function is calculated in the summation layer, and then the 

output layer is where the PNN classifies the unknown sample based on which estimated density 

function is largest. PNNs also provide confidence of the resulting classification after Masters, 

1995: 𝑃[𝐴|𝐵] =  
𝑔𝐴(𝐵)

∑ 𝑔𝑗(𝐵)𝑗
 where P is the probability of an observation B be the product of class A, 

gA(a) is the estimated density function for class A, and J represents the number of classes. The 



24 

 

PNN as described above only requires optimization of one parameter, the smoothing parameter 

𝜎. This is optimized following Lubo-Robles’ (2020) workflow where the minimum error E is 

given by: 𝐸 =  ∑
𝑒(𝑟)

𝑅
𝑅
𝑟=1 , where R is the number of validation samples, and e is equal to one if 

the validation sample was misclassified or zero if the sample was correctly classified. A range of 

values for 𝜎 is tested starting at 0.1 to 5 in increments of 0.5. The error E is computed for each 

iteration for each training sample and for each possible attribute combination. Following testing, 

the attribute combination and corresponding 𝜎 value is selected for classification salt and 

carbonate facies from seismic data. 

 

Exploratory Data Analysis 

Prior to conducting the pre-stack inversion, the petrophysical well logs must first be 

analyzed to determine if the inversion will provide meaningful data. The petrophysical analyses 

are initialized by tying the wells to the seismic data (Figure 2.8). A statistical wavelet is extracted 

over a 75 ms window from the post-stack seismic data. The wavelet is then convolved with a 

computed P-impedance well log to create a synthetic seismic trace. The synthetic seismic trace is 

shifted to match well tops with prominent reflectors (Figure 2.8). Once a time-to-depth 

relationship is created at well locations with sonic or density logs, a series of well log cross-plots 

are created to understand the relationships between rock physics parameters measured in the 

seismic amplitude data. In general, the seismic amplitude response of a given subsurface 

interface is dependent on contrasts in density, P-wave and S-wave velocities (Chopra & 

Castagna, 2014). These factors are influenced by geological variations within each layer, such as 

lithology, mineralogy, porosity, stress, pressure, and pore fluid content (Castagna et al., 1993).  
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As no laboratory measurements are available of elastic rock physics parameters and no 

wells that penetrate the reef reservoir have a complete log suite, variations in porosity, Zp, Zs, 

and Vp with respect to lithology are utilized to understand what the seismic inversion may 

reveal. The goal of these cross-plots is to see if there is any relationship between possible 

inversion products and important reservoir factors, such as lithology and porosity. Fluid 

substitution was not attempted due to limited petrophysical logs available (i.e. no S-wave logs, 

estimated density and sonic logs). Well 24224 located southeast of the reef complex is analyzed 

Figure 2.8: Well 24224 log suite and well-to-seismic tie. The S-wave was predicted using 

Xu et al. 2007 method. A correlation coefficient of 0.8 was achieved for the well tie. Note 

the A-0 Carbonate, Brown, and Gray formations are sub-seismic resolution off the reef. 
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first, as it is the only well with both sonic and density logs (Figure 2.8). While it does not 

intersect the reservoir, cross-plotting the calculated Zp and Vp logs provide a good relationship 

between the laterally encasing A-2 Salt of the Salina Group and the carbonates within the Salina 

Group (Figure 2.9). 

 

Figure 2.9: Zp vs Vp crossplot for Well 24224 located off of the reef. These attributes excel at 

differentiating salt from carbonate lithologies 

 The A-2 Salt is characterized by low Vp and Zp values, while the carbonates present have high 

Zp and Vp values. Well R-117 penetrates the reef core complex, and the Guelph Formation is 

303 ft thick at this location. R-117 has core measured porosity and permeability logs throughout 

the entire Guelph Formation in addition to a measured P-wave sonic log. Density is estimated 

from the sonic log using Gardner’s relationship, and then S-wave velocity is estimated using Xu 

et al (2007) workflow. The Vp/Vs ratio and Zp logs are cross plotted and data points are colored 

by porosity to analyze the relationship between velocity, density and porosity. It is apparent that 
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as porosity increases Zp and Vp/Vs decreases (Figure 2.10). 

 

Figure 2.10: Crossplot of Vp/Vs and P-Impedance at well R-117 which intersect the reef core. 

Porous reservoir rock is delineated from tight non-reservoir rock, and a trend of increasing 

porosity with decreasing Vp/Vs and P-Impedance is observed. 

 

Calculating lambda-rho mu-rho (LMR) logs following the method after Goodway et al. (1997) 

and cross plotting the logs indicates that LMR attributes can separate porosity as well within the 

reef core, as low LMR values correspond to high porosity zones primarily within the reef core 

above the gas water contact, and some subtle horizontal spread is present and can likely be 
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attributed to the effect of gas (Figure 2.11). 

 

Figure 2.11: Crossplot of computed LMR values for well R-117. This crossplot enhances 

separation of porous and tight samples, as porous zones correspond to low LR and MR values. 

Overall, the trends present are similar to those described by Goodway et al (1997) and Hoffe 

(2008). Relationships observed in the well logs confirm the feasibility to identify petrophysical 

properties from cross-plotting that correspond to high and low porosity zones using products 

attainable from a pre-stack inversion.  
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Results 

Investigation 1: Inversion and LMR Analyses 

The goal of conducting seismic inversion is to calculate quantitative measurements of the 

visualized subsurface which can be utilized to map changes in porosity, fluid content, or lithology 

(Chopra and Constagna, 2014). In this study, the goal is to attempt to understand the distribution 

of high quality reservoir zones, and enhance our understanding of why the zones are there.  

 

Pre-stack Inversion Analysis 

Figure 2.12 provides a comparison between the Zp volume from the pre-stack inversion 

and the geologic model for pinnacle reefs proposed by Rine (2017). A good correlation is observed 

between the Zp volume and the computed Zp logs in well R-117.  

Figure 2.12: Comparison of the PSTM amplitude data through Ray Reef and the inverted P-

Impedance volume.  

 

Surrounding wells with estimated sonic and density logs have similar trends observed in the 

inversion result, but do not exactly match. This can be attributed to uncertainties associated with 

the calculated logs and their respective well-to-seismic ties. In post-stack amplitude data, Ray Reef 

is characterized by planar internal reflectors which decrease in amplitude toward the base of the 
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reef and become more discontinuous (Figure 2.12). Uncertainties arise when trying to interpret the 

extent of the reef core and bioherm and little geologic information can be extracted from the 

seismic amplitude directly. It is also difficult to differentiate the overlying A-1 Carbonate from the 

A-2 Anhydrite (Figure 2.12) from the seismic amplitude data due to the lack of acoustic impedance 

between anhydrite and dolomite lithologies. Well log data indicates that these units are just below 

the estimated resolution of the seismic data but should be detectable. The A-2 Anhydrite ranges in 

thickness from 30 to 50 feet and the A-1 Carbonate ranges from 30 to 45 feet thick above Ray 

Reef. By removing the effect of the wavelet and analyzing the Zp transect, the two units can now 
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be distinguished, as the A-2 Anhydrite is characterized by high Zp values due to its high density 

and Vp values (Figure 2.13). 

 

 Analyzing a cross-section through the reef crest and comparing that to the model of Rine (2017), 

similar layer geometries are observed (Figure 2.13). The A-2 Anhydrite correlates with the thin 

high Zp layer overlying the reef. Additionally, the lower porosity, more cemented reef bioherm 

Figure 2.13: Qualitative interpretation of lithology from the P-Impedance attribute 

volume output from the pre-stack inversion. Similar geometries of isolated low to 

medium Zp values are observed within the reef complex as proposed by Rine (2017). 

A-2 Salt 
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facies correspond to a region of high Zp values near the base of the reef. The reef core is 

characterized by mid to high porosity and lower Zp values. An onlapping band of low Zp values 

onto the reef core complex is interpreted as the proximal leeward apron (Figure 2.13). Potential 

localized karsts may also be indicated by semi-circular depressions of mid Zp values indicated by 

white arrows. These are approximately at two exposure surfaces, one between the peritidal 

stromatolite cap sequence at the top of the reef, and another at the top of the bioherm (Wold, 2008; 

Rine et al., 2020). Prior to the seismic inversion, interpretation of these depositional facies and 

potential karts was not possible from the PSTM amplitude data. 

Lambda-Mu-Rho (LMR) attributes aim to transform P and S impedance values to values 

related to the Lamé constants to aid in determining rock and fluid properties (Goodway et al., 

1997). Mu (μ) is the Lame parameter of rigidity and Lambda (λ) is the Lame parameter for 

compressibility. These parameters are dependent on a rock’s velocity, porosity, and fluid content. 

The exploratory data analyses done indicates that zones with low LMR values correspond to 

porous (greater than 10%) zones, and porosity gradually decreases as LMR values increase (Figure 

11). Using the pre-stack Zp and Zs volumes as input, Mu-Rho and Lambda-Rho volumes are 

calculated (Figure 2.14). When viewed independently, the reef core complex is characterized by 

low λρ and μρ values. Both attributes also visualize the overlying A-2 Anhydrite and reef bioherm 

well and both are represented by high values in each attribute. This correlates well with well log 

observations of these units, as the A-2 Anhydrite has higher measured density values, as well as 
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measured sonic values. 

 

Figure 2.14: Comparison of the PSTM amplitude data and the LR and MR attribute volumes 

computed from inversion attributes A fairly consistent distribution of low LR is observed, with 

minor alternating layers of high LR. The MR volume is primarily low values throughout the central 

portion of the reef, with high MR values present in the South. 

While the bioherm has similar density values as the reef core complex, the measured sonic logs 

are typically higher due to the decrease in porosity within the bioherm. The bioherm is also 

typically below the GWC, and the presence of water would result in an increase in λρ values as it 

is less compressible than gas. The onlapping A-2 Salt is also characterized by low λρ and μρ 

values, similar to the reef core complex. To remove data points belonging to the A-2 Salt, a Zp 
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vs. Vp crossplot is used to classify voxels belonging to the salt unit following the relationship 

observed in well 24224 shown in Figure 2.9 (Figure 2.16). The relationships seen in the well logs 

is observed in the seismic and classifies the A-2 Salt well.  

Cross plotting the λρ and μρ volumes and using the Hoffe (2008) LMR template as a 

background guide, the LMR attribute crossplot has similar relationships as those observed in the 

background template. The majority of data points plot within the bounds of limestone and dolomite 

lithologies, and diagonal lines connect data points with constant P-impedance (Figure 2.15). Data 

Figure 2.15: Crossplot of LMR colored by Zp values. The inserted background 

guide is proposed after Hoffe (2008). The calculated LMR volumes follow the 

proposed trends, with almost all of the data points plotting within the values for 

dolomite and limestone. 
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points from the inversion volumes plot within the proposed region for carbonate lithologies. In 

addition, coloring the data points by their P-impedance values shows that values with similar P-

impedance plot along diagonal lines. As λρ and μρ attributes are typically cross-plotted to identify 

zones of favorable porosity and fluid content, seismic facies will be defined from user defined 

polygons from the LMR crossplot. Investigation boxes are drawn at cored well locations at 

intervals of good, fair, poor, and tight porosity and their corresponding data points are highlighted 

in the LMR cross plot. Polygons are then picked around these data points, and iteratively adjusted 

to best match other well data. During the classification workflow, it became apparent that possible 

fluid effects were present in λρ values within zones of good and fair porosity, and these were sub-

classified from each respective class. Figure 2.16 shows the final classified seismic cube and 

crossplot. The classification provides a patchy and heterogeneous distribution of the good porosity, 

gas prone seismic facies that is intersected by high-porosity wells, and not located at zones of low 

porosity (Figure 2.16). A broad laterally consistent and vertically layered distribution of good and 

fair porosity zones are classified within the reservoir interval in the reef. This distribution of 

predicted porosity in broad layered zones is consistent with well-based geostatistical models 

previously published on Ray Reef (Wold, 2008; Haynie, 2009) (Figure 19). The lowermost part of 

the reservoir, the bioherm, is classified as predominately tight porosity, which is correct in some 

well locations (R-117) while incorrect in others (R-109). The LMR classification did not detect 

any zones of high porosity within this interval, which may be attributed to a limited amount of 

wells which log this interval. Wold (2008) used a sequence stratigraphic approach for rock type 

classification from core analysis, and the resulting petrophysical models have a stratified 

distribution of porosity values with cyclical layers of low to high porosity (Figure 2.17). While the 

seismic data is not high enough resolution to capture the fine-scale cyclicity, it captures the large 



36 

 

scale cyclicity with a good-fair-good stacking pattern of porosity classifications. Haynie’s (2009) 

approach of defining petrofacies (rock types based on similar petrophysical properties) resulted in 

models that honored the heterogeneities present within the formation through stochastic modeling 

methods and variography (Figure 2.17). While heterogeneous, a broad and consistent distribution 

of porous facies was observed, similar to the results of this study (Figure 2.19). One discrepancy  

 

Figure 2.16: Classified seismic facies volume of Ray Reef using LMR attributes. Good porosity 

correlates to greater than 10% porosity, fair porosity is 5 to 10%, poor porosity is 2 to 5% and 

tight is less than 2%. 
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Figure 2.17: Comparison of the classified seismic facies using LMR attributes to two previous 

studies of Ray Reef. Wold (2008) utilized a sequence stratigraphic approach for defining 

depositional facies. Haynie, 2009 based their model on petrofacies – lithologies with similar 

petrophysical and depositional attributes. The classified volume is displayed with core porosity 

logs overlain. 
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between this seismic-based study is that both well-based studies found a limited amount of porous 

dolomite within the bioherm interval. Another is that the small-scale heterogeneity observed in 

core data was not captured by the seismic facies. Overall, the LMR classifications within the reef 

core reservoir correlates well with previous geostatistical models of ray reef as similar trends in 

porosity are observed. 

 To analyze how the classified porosity seismic facies correspond to the measured well logs, 

a map of storage capacity was calculated. Two geobody extractions were done: the first extracted 

all voxels within the good porosity facies, and the second with the fair porosity facies. Horizons 

were draped over the top and base of each geobody, and an isochron was computed for each 

respective pair of horizons. The isochron values were then multiplied by the corresponding 

porosity value for each facies (0.12 for good porosity; 0.7 for fair porosity). These maps were then 
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added together to create the final storage capacity map for Ray Reef (Figure 2.18a).

 

Figure 2.18:A- Storage capacity map computed for Ray Reef from the classified seismic facies. B- 

Interpreted storage capacity map. C- Average Absolute Open Flow map of Ray Reef generated 

using observation data from 40 wells within Ray Reef. D - Table displaying the mean storage 

capacity of wells with measured porosity data and predicted storage capacity from the classified 

seismic facies model generated in this study. 
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 The storage capacity map displays high porosity zones within the central reef core and northern 

reef talus apron. Porous zones associated with windward talus deposits are also captured by the 

storage capacity map along the southeastern margin of the reef. The porosity model misclassifies 

the porous northern windward talus deposits as low porosity where core porosity values in wells 

R-105 and R-108 indicate these are high-porosity zones (Figure 2.18b). The southern reef core is 

characterized by low storage capacity, and core data suggests that this is due to partial salt plugging 

of the pores in this region (Figure 2.18b). Comparing the interpretations from the storage capacity 

map to the Average Absolute Open Flow Map, which shows well flow performance independent 

of subsurface conditions, suggests good qualitative correlation within the northern region of Ray 

Reef (Figure 2.18c). This indicates that while having good storage capacity is key for good well 

performance, other factors can influence well flow as the south-central portion of the reef exhibits 

good storage capacity but poor flow. These pores may be more isolated and disconnected, thus 

inhibiting flow. Figure 2.18d displays the correlation between the mean storage capacity of cored 

wells and the computed storage capacity from the classified seismic facies model. The overall 

average error for all wells is 37%, however wells R-119 and R-301were partially cored. R-119 

only cored the reef bioherm, which accounts for the large over-prediction of storage capacity. Well 

R-301 was cored for 130 ft whereas the reef is approximately 310 ft thick in this location. Only 

using the fully cored wells, the average error decreases to 21%. This lower error provide promising 

correlation between the classified porosity facies and well data, and indicates the seismic data is 

capturing the large scale trends. 
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Investigation 2: Rock Type Classification from Seismic Data 

Understanding the distribution and structure of the reservoir lithofacies is a key aspect of 

reservoir modeling that will influence petrophysical modeling. Being able to predict or calculate 

a probability volume for rock type or lithofacies away from well locations using seismic data can 

serve as valuable input in reservoir modeling (Tellez et al., 2021). This investigation comprises 

of two workflows that aim to use machine learning techniques to classify rock types within the 

Ray Reef gas storage reservoir. The first applies the unsupervised GTM algorithm above to post-

stack seismic attributes and the second study applies a supervised PNN to extrapolate rock types 

classified from porosity and permeability logs to seismic data. 

2.1: Generative Topographic Mapping (GTM) 

Commonly, pre-stack seismic data is not available for a variety of reasons. Without pre-

stack conditioned gathers, the amount of information we can solve for through inversion is 

limited to P-impedance and AVO studies are not possible. Using the GTM algorithm described 

previously, the goal for this study was to identify seismic facies from clusters in the post-stack 

GTM result and relate those to the geologic or petrophysical properties of the reservoir. To 

overcome the limitations of post-stack seismic data, we begin by investigating the data 

corresponding to the cored well R-107 and extrapolate classifications to other cored wells. As 

seismic data has limited vertical resolution, the multiple depositional facies described in Rine et 

al’s (2017) reef model were lumped into three main facies: the bioherm, reef core complex, and 

overlying peritidal facies.  
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The input seismic attributes were chosen based off previous studies and interpreter 

experience. Previous studies over southern Niagaran reefs investigating unsupervised machine 

learning techniques applied to seismic data have identified that frequency-based attributes have 

the potential to differentiate high and low porosity zones from volume attributes (Buist, 2020). 

Figure 2.19 provides an overview of the attributes used as input for the GTM. This included: 

Figure 2.19: Summary of the input attributes for the GTM. Each attribute is extracted 

15 ms TWT below the top of the A-1 Carbonate, and is representative of the reef core 

complex of the Guelph Formation. 
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Instantaneous frequency, cosine of instantaneous phase, and iso-frequency volumes output from 

spectral decomposition. Within the reef core, the cosine of instantaneous phase attribute has an 

anomalous negative phase zone near the central portion of the reef, which may indicate a 

stratigraphic change. The portion of the reservoir mapped by the phantom horizon is mostly 

positive, with negative values around the western and northern margins (Figure 2.19). 

Instantaneous frequency is the time derivative of instantaneous phase. Low instantaneous 

frequency values have been shown to correlate to high porosity zones within Niagaran reefs 

along the northern reef trend (Toelle, 2018). The zone of negative instantaneous phase correlates 

strongly with high instantaneous frequency values, and core data from wells R-117 and R-107 

indicate this is a zone of high porosity in both wells. This calls into question the validity of the 

relationship between instantaneous frequency and porosity, however the attribute does reveal 

subtle changes within the reservoir. Three iso-frequency cubes from spectral decomposition were 

also used as input. The extractions of the 24, 53, and 87 Hz frequency components are displayed, 

and each reveals features unique to those frequencies (Figure 2.19). The 24 Hz displays a 

relatively weaker magnitude response, however the low frequency captures strong responses in 

the northern part of the reef not seen in the higher frequency components. The 53 and 86 Hz 

components both image internal variations in frequency and possible heterogeneities present 

within the reservoir interval. The margins of the reef complex are represented by a weak 

response in the 53 Hz and a strong response within the 86 Hz, which may be due to tuning 

effects related to thickness (Figure 2.19). Individually, the attributes reveal subtle clues about the 

reef complex, but are difficult to directly link to lithology or reservoir quality.  
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The full angle stack classification is shown in Figure 2.19. The top A-1 Carbonate 

horizon is shifted down 15 ms to create a phantom horizon. This horizon has the same geometry 

and TWT structure as the A-1 Carbonate horizon and is 15 ms below the original A-1 Carbonate 

horizon.  This phantom horizon displays the classified volume approximately through the top of 

the Guelph (“Brown Niagaran”) Formation (Figure 2.20a). The crossplots of the two latent space 

axes volumes display the data corresponding to the cross-section shown below (Figure 2.19d). 

Using the workflow described above, the polygons were initially centered about the clusters, and 

calibrated to the wells with core lithology logs. This resulted in a good match of the overlying 

peritidal facies and reef core complex at cored wells within the reef complex. However, the reef 

bioherm is poorly discriminated from the reef apron and talus facies as seen in well R-101. There 

is also an anomalous classification of Bioherm/Apron facies in the upper section of well R-301. 

The arbitrary line through the reef suggests that Ray Reef is composed of three bioherms that 

Figure 2.20: A- Phantom horizon 15 ms TWT below the top A-1 Carbonate. B- Classified 

crossplot colored by point density. C- Classified crossplot colored by class. D- Arbitrary line 

through the classified volume. 
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likely amalgamated together through growth, which then acted as the substrate for subsequent 

reef growth.  

As the reef core complex is the primary reservoir target, and the best classified seismic 

facies by the GTM, further analyses focused on quantifying reservoir thickness away from well 

locations. A geobody extraction was done for the reef core seismic facies (Figure 2.21) by 

inserting a horizon probe into the discretized volume (Figure 2.21). To ensure an accurate 

 

Figure 2.21: Top row: Evolution from the classified volume to a voxel-based extraction for the 

Reef Core seismic facies defined from the GTM. Bottom Row: The Reef Core isochron is 

converted to an isochron, and is a representative reservoir thickness map. High AAOF values 

correlate to anomalously thick reservoir zones. 

extraction, the visible extents of the horizon probe used for the extraction was limited to avoid 

extraction of mis-classified facies at the top of the A-1 Carbonate horizon. Surfaces were then 

wrapped along the top and base of the extracted geobody. An isochron was calculated by 

subtracting the base surface from the top. Using the sonic log from well R-117, an average 

interval velocity of 19,500 ft/s was used to transform from TWT thickness to thickness in feet 
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(Figure 2.21). A map of average absolute open flow (AOF) was produced using a simple 

interpolation algorithm (Figure 2.20). It becomes apparent that the northern and central reef 

complexes exhibit good flow performance, while the southern reef complex has average to low 

flow performance. Comparing the AAOF map to the isochore created from the geobody 

extraction, it is clear that wells that encounter thicker intervals display better flow performance. 

As the reef core lithofacies are characterized primarily by broad, stratified layers of porous 

dolomite, the wells which penetrate the thickest portions of the reef core are likely to perform the 

best. 

Unsupervised classification of seismic facies was accomplished by applying generative 

topographic mapping to post-stack seismic attributes in a pinnacle reef gas-storage reservoir with 

vintage well control. The reef core and overlying peritidal facies were well classified which 

allows for quick mapping of their respective morphologies. The bioherm and flanking facies 

were difficult to discriminate. This may be attributed to the poor imaging of the flanks of the reef 

complex due to their steep dips and velocity pull-up. Quantification of reservoir thickness from 

seismic data was accomplished through extracting geobodies from the classified reef core facies, 

and applying a constant interval velocity. 

Investigation 2.2: Identification of Hydraulic Flow Units from Seismic Data 

Direct measurements of porosity, permeability, mineralogy, and pore structure from 

subsurface reservoirs of porosity and permeability can give geoscientists and engineers a 

thorough understanding of the reservoir. Being able to relate porosity to permeability, especially 

in heterogeneous lithologies such as dolomite and other carbonates is often a challenge due to the 

complexities imposed by diagenesis and post-depositional deformation (Amaefule 1993; Pranter 

et al 2005). Diagenesis and dolomitization can result in the complete replacement or destruction 
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of the original rock fabric, which makes relating porosity and permeability – key reservoir 

properties – to lithology difficult. Amaefule (1993) proposed a methodology which identifies the 

classification of distinct hydraulic units within reservoir zones with similar flow performance, 

termed hydraulic flow units (HFU’s). The theory of HFU’s is based on the Kozeny-Carmen 

equation and mean hydraulic radius. The Kozeny-Carmen equation models fluid flow pathways 

as a bundle of capillary tubes, and applies Poisseuille’s and Darcy’s Laws to formulate a 

relationship between porosity and permeability. Amaefule (1993) derived two new variables 

from the Kozeny-Carmen relationship, Reservoir Quality Index (RQI) and the Flow Zone 

Indicator (FZI). RQI is defined as 𝑅𝑄𝐼(𝜇𝑚) = 0.0314√
𝑘

𝜙𝑒
, and FZI is defined as 𝐹𝑍𝐼(𝜇𝑚) =

 
𝑅𝑄𝐼

𝜙𝑧
, where k is permeability in milidarcies,  ϕe is the effective porosity, and ϕz is the pore 

volume-to-grain ratio. Using the equation 𝑙𝑜𝑔𝑅𝑄𝐼 = 𝑙𝑜𝑔 ϕz+ logFZI and using a log-log plot of 

RQI and ϕz, samples with similar FZI values will lie on a linear line with a unit slope. Samples 

which lie on the same line will have similar pore throat attributes, and therefore make up a 

distinct hydraulic unit (Amaefule 1993; Prasad, 2003). 
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FZI values were calculated within Ray Reef using core measured porosity and 

permeability values from 14 wells which intersect the reservoir (Figure 2.22). 

 

Figure 2.22: Series of plots displaying the defined Hydraulic flow units (HFU's). Note the linear 

trend of Log(FZI) values on the RQI-PHI_z plots. 

While the aim of this study was to predict these flow units away from well locations 

utilizing seismic data, this workflow was not successful (Figure 2.23). Supervised neural 

networks were trained utilizing pre-stack inversion attributes generated in Investigation 1, 
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however no robust network could be trained (Figure 2.23). 

 

Figure 2.23: Multiattribute analysis for log FZI prediction from seismic data to find optimal 

combination of attributes and operator length. When validated on blind wells, the prediction 

fails. 

The neural network failed during validation, regardless of the architecture used (PNN, 

MLFN, DFFN). The failure is attributed to a poor depth-to-time relationship within the cored 

wells. Many cored wells lack a measured sonic or density log, and require a manual time-to-

depth conversion utilizing formation tops and seismic surfaces. This problem is compounded as 

none of the cored wells penetrate the underlying Clinton Formation, so the TD of the wells in 

TWT is uncertain as well. Another challenge this workflow faces is that many of these HFU’s 

are well below seismic resolution. Resolution of the post-stack seismic data is approximately 40 

ft. Many of the fluctuations of HFU’s are on the order of one to five feet. Attempting to find 

relationships between these small-scale changes is a challenging prospect, and this is amplified 

by the poor time-to-depth relationship. A final possible issue is that no seismic attributes in Ray 

Reef are sensitive to changes in permeability. 
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Investigation 3: Probability Neural Network 

3.1: GWC Classification 

Utilizing supervised machine learning techniques is a powerful tool for classifying 

seismic facies that can provide a measure of confidence in the results (Lubo-Robles et al., 2021).  

The gas-water contact (GWC) in the Ray Reef field is not observable utilizing AVO analyses, as 

there is little variation in amplitudes, or conventional AVO attributes, with offset or angle. 

Additionally, the complex and heterogeneous pore structures documented within Ray Reef 

(moldic, vuggy, fracture etc.) identified by Trout (2012) indicate that Gassmann’s Theory for 

fluid substitution is not valid for Ray Reef, preventing accurate rock physics and AVO modeling 

(Gassman, 1954) (Figure 2.24). This study aims to classify the GWC utilizing attributes from the 

pre-stack seismic inversion accomplished in Investigation 1. In the Hampson-Russell 

Figure 2.24: Examples of pore type heterogeneity within Ray Reef from Trout 

(2012). CT scans of two core samples reveal the pore geometries in three 

dimensions, which fail Gassman's assumptions. 
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simultaneous inversion workflow, it was apparent that a misfit was present at the GWC in well 

R-117 during the inversion analyses (Figure 2.24). The resulting inversion attributes (Zp, Zs, and 

VpVs) all over estimated their respective values at the GWC. The residual volume attributes 

output from the inversion display a high positive residual approximately at the GWC surface 

 

Figure 2.25: Inversion analysis for Well R-117 displaying the anomalous misfit at the gas water 

contact. The GWC was not used as an input surface in the inversion workflow. 

provided by Consumers Energy which was sourced from well log picks (Figure 2.26). To create 

a training data set, training data in the form of polygons were picked on inlines and crosslines on 

a 10-line spacing. Two facies were picked: facies 1 corresponds to the GWC. This was picked on 

the Zp residual volume and was limited to the zone of high residual Zp at the base of the reef 

(Figure 2.26). Facies 2 was designated as “Not GWC” and polygons were picked on within the 
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Salina Group off of the reef (Figure 2.26). After picking the training polygons, a training data set 

was produced. In the workflow used, the polygons are used to extract data points (voxels) from 

the desired input attributes. Seven attributes were used as input for the training data and 

subsequent exhaustive search: Zp, Zp-R, VpVs-R, Vp, Vp-R, Vs-R, and Vs. These attributes 

were selected as they all exhibit anomalous values at the approximate GWC (Figure 2.26). An 

exhaustive search of the training data was done to identify the optimal combination of attributes 

and their respective smoothing parameter, 𝜎 which return the lowest error, E. The combination of 

Vp-R, Vp, VpVs, Vs-R, Zp with a sigma of 1.5 were found to return the best average error of 

0.097. With the PNN model trained, it was then applied to the seismic dataset (Figure 2.27). The 

time interval was limited to just above and below where the GWC is believed to be, over a 

Figure 2.26: Example of high residual error observed in seismic inversion attributes. 
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window of 464-500 ms TWT. This was done to avoid misclassification of the overlying A-2 

Anhydrite as GWC, as they have a similar expression in the attributes used (Figure 2.26). The 

PNN classification returns a patchy, but fairly continuous result of the GWC facies within the 

lower portion of the reef (Figure 2.27). 

 

Figure 2.27: Top: Geobody extraction of PNN classified GWC voxels. Left: comparison of PNN 

GWC surface and the GWC surface provided by Consumer’s Energy. Right: Seismic amplitude 

display of IL 90 with PNN GWC surface displayed. The PNN GWC surface cross cuts amplitudes 

and has less TWT relief than the CE GWC. 

Almost all of the classified voxels are constrained within the reef, with minimal classifications 

outside. It also appears to cross-cut seismic amplitude reflectors when viewed in cross-section, 

supporting the claim that interpreting the GWC from amplitude would not be feasible. Using the 

classified SEG-Y volume output from the classification, a geobody is extracted to enhance the 3-

D visualization of the GWC (Figure 2.27). A PNN GWC surface is then created via draping a 

horizon over the top of the geobody and compared to the initial GWC surface provided by 

Consumer’s Energy (Figure 2.27). The two are remarkably similar, with the PNN GWC surface 
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having slightly less structural relief than the initial (Figure 27). While the GWC contact was 

previously known in Ray Reef, this validated workflow can be applied to other Niagaran reefs 

within the Michigan Basin with seismic surveys available.   

3.2: Salt Classification 

A second analysis using PNN’s was done to classify the A-2 Salt and the carbonate 

lithologies. In the PSTM amplitude data, the A-2 Salt is characterized by coherent, planar 

reflectors that are consistent throughout the survey (Figure 2.28). The top of the A-2 Salt 

correlates strongly with a negative amplitude (decrease in acoustic impedance) and is easily 

mapped throughout the survey. Pre-stack inversion attributes greatly enhance the visualization of 

the A-2 Salt from the encasing carbonate lithologies, as it is represented by low Zp and Vp 

values as discussed in Investigation 1. The motivation for this analysis is to investigate how PNN 

classification of evaporite deposits done by supervised machine learning compares to the user 

classification done in the conventional crossplot analyses. A similar workflow was followed as in 

Investigation 3.1, and training polygons were picked every 15 lines for both inline and crosslines 

for both the A-2 Salt and carbonate lithologies (i.e. “Not Salt”). An exhaustive search was done 

to determine the optimal combination of attributes and sigmas. The combination of the Vp, 

VpVs, Zp and Zs attributes with a sigma of 0.5 was found to produce the best average error of 

0.037. With an optimal suite of attributes and sigma value, the PNN was trained and applied to 

Figure 2.28: Vertical seismic display through the PSTM amplitude data displaying the 

planar, dim seismic character of the A-2 Salt. 
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the data set (Figure 28).

 

Figure 2.29: Overview of the PNN Salt classification. In the horizon slice, minor patches of 

misclassifications are present, but overall the salt is correctly classified. Geobody extraction of 

the salt and not-salt seismic facies accurately captures the morphology of the reef complex. 

 Minor misclassifications are apparent within the resulting facies volume (Figure 29). 

Overall the classified salt facies correlate well with the mapped surfaces mapped from the PSTM 

amplitude data. Geobody extractions of the classified salt and carbonate units with at least 75% 

confidence accurately capture the morphology and structure of the reef complex and A-2 Salt. 

The capping A-2 Anhydrite is partially identified as well, as the extraction resulted in a patchy 

distribution of salt above the reef complex (Figure 2.29). 
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Discussion 

Lithology from Seismic Data 

Attempts to derive lithological information from seismic data was a key aspect of this 

research. A common observation in this study among all the methods was that fine scale 

variations were not able to be resolved, while larger scale trends were. The deterministic 

inversion method used provides a “best fit” result, and the resulting inversion models likely do 

not honor the heterogeneities present within the dolomite reservoir that have been observed in 

outcrops of other dolomite reservoirs and from core (Hirstius, 2003; Pranter et al., 2005, Haynie 

2009; Trout 2012). Insufficient wells with both sonic and density logs and the complete lack of 

shear logs results prevented the use of stochastic inversion methods that would honor this 

heterogeneity. Nonetheless, quantitative interpretations were possible utilizing a traditional λρ-

μρ analyses (Figure 2.16). Of the methods attempted, this produced the best correlations to well 

data. The classified seismic facies correlate well with cored well locations, however there is no 

clear correlation with AAOF data (Figure 2.6, Figure 2.16). While high porosity is typically 

accompanied by good permeability in Ray Reef (Wold 2008; Haynie 2009), there may be other 

factors influencing well performance. The unsupervised GTM classification results correlated 

with the peritidal facies and reef core facies the best, however neither of the distal or proximal 

aprons could be correlated to core data (Figure 2.21). Qualitatively, from the pre-stack inversion 

attributes (mainly P-impedance), depositional environments could be interpreted identifying 

similar geometries from Rine et al.’s (2017) geologic model. In order to see similar geometries, a 

cross-section perpendicular to the reef’s strike provides the best visualization for interpretation 

(Figure 2.13). Anomalously low Zp values observed in this section could likely be related to 

karsting caused by subaerial exposure (Wold 2008). These are important facies to be able to 
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identify, as the windward talus deposits and exposure surfaces are commonly found to have high 

porosity and permeability values. 

Supervised seismic facies classification excelled at more broad classifications of 

lithology utilizing pre-stack inversion attributes, like salt vs. carbonate (Figure 2.29). Fine-scale 

classifications of HFU’s were not feasible in this particular data set due to the poor time-to-depth 

relationship and the resolution of the seismic data. Salt classification in Ray Reef was best 

achieved via crossplotting of inversion attributes and translating well-log relationships to the 

seismic data (Figure 2.9; Figure 2.16). The PNN did correctly identify the GWC in Ray Reef 

field utilizing residual inversion attributes. Further analysis needs to be done to understand if this 

was a user-induced misfit of the GWC during the inversion process, or if there is an observable 

amplitude anomaly caused by the GWC. 

Reservoir Characterization from Seismic Data 

One of the goals this study sought to address was to analyze the spatial distribution of 

reservoir properties from seismic data. This goal was hindered by the lack of shear, sonic and 

density logs within Ray Reef. Despite the lack of measured wells, the methods used to estimate 

logs resulted in a good stable pre-stack inversion. Transforming inversion attributes (Zp, Zs) into 

λρ-μρ volumes allowed for easier estimation of porosity from seismic data (Figure 2.16). This 

workflow could be valuable to apply to other pinnacle reef reservoirs with pre-stack data 

available, as zones with favorable reservoir conditions were identified. Comparing the results to 

well-based geostatistical models, the λρ-μρ classified volume provides a smoother model that has 

characteristics of the sequence stratigraphic approach by Wold (2008) and the petrofacies 

approach of Haynie (2009). The classified porosity volume can serve as a valuable probability 

volume input for future petrophysical models of Ray Reef. The GTM unsupervised classification 



58 

 

provided an estimate of reservoir thickness directly from post-stack seismic attributes. This is a 

valuable tool as with the consistent spatial distribution of porous reservoir rock observed in Ray 

Reef (Haynie, 2009), reservoir thickness will have a big impact on well performance as seen 

with the correlation with AAOF (Figure 2.21). PNN’s failed at predicting HFU’s and other key 

reservoir properties directly from seismic in Ray Reef. This is attributed to the poor TDR and 

relationships of input attributes to the desired logs (Figure 2.23). Being able to predict HFU’s 

directly from seismic data would allow for direct interpretation of well performance from 

seismic data, which would be an invaluable asset during well planning or monitoring. For this 

reason, this method should be tried on a pinnacle reef data set with a robust time-depth 

relationship available (i.e. VSP’s, checkshots, shear logs, etc.).  

Pitfalls and Best Practices 

This study followed several standard assumptions, but interpreters must be aware of the 

pitfalls associated with any assumptions. The first pitfall, which has been discussed previously, is 

the basic TDR used in some of the cored wells, and wells with no sonic or density log available. 

By using a shared or interpolated TDR from seismic horizons to formation tops, possible effects 

from anisotropy and attenuation due to gas are not accounted for. Moreover, the total depth of 

every well was not accurately tied to a definite seismic horizon. The stretch/squeezing of 

reflectors can dramatically affect porosity and permeability logs’ positions in cross-section, 

which ultimately influences the classification of seismic facies using the core data overlay as a 

guide. 

Another pitfall that is difficult to know in legacy fields such as Ray Reef, is whether or 

not there are fluid/gas effects on measured logs. Sonic logs are heavily affected by the presence 

of gas (Chopra and Castagna, 2014). Density logs are affected as well, but to a lesser extent. This 
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unknown can cause errors which carry throughout the study. For example, if an attenuated sonic 

log was used for density estimation, that will underestimate density. In turn, the calculated P-

impedance, calculated shear log, and influence on the seismic inversion low frequency model 

will be contaminated by the attenuated sonic log. Valid, but simple log estimation was also done 

in this study (Gardner’s relationship). While other methods exist, no wells within the reservoir 

had both sonic and density logs to analyze the variations imposed by different methods. 

Future Work Recommendations 

 Ray Reef still has a lot of unanswered questions. One area of interest not investigated in 

this study was rock physics modeling. A comprehensive rock physics analyses would serve as a 

strong link between the geology, seismic inversion and the petrophysical logs. For instance, it 

was not apparent the effect dolomitization had from this study. The three previous studies over 

Ray Reef also had this question remaining (Wold, 2008; Haynie 2009; Trout 2012).  Limited 

analyses have been done on the rock fabrics and pore structures on the microscopic scale for 

dolomitized pinnacle reefs in Michigan Basin, and travel restrictions prevented such analyses 

being done for this study. A robust rock physics understanding could also allow for more 

advanced inversion techniques, such as geostatistical inversion (Vernengo et al., 2014) and other 

stochastic methods. This would greatly improve the inversion result, as stochastic methods better 

represent the heterogeneity imposed by the dolomitization of the reef in addition to provide a 

measure of uncertainty (Haynie, 2009). 

 Understanding the TDR with more certainty is a valuable undertaking. Whether that is 

done through additional logging of Ray Reef, or applying neural networks trained on other 

southern trend reefs to predict missing logs within Ray Reef, that can greatly improve the 

understanding of Ray Reef from seismic data. Doing so could allow for fine-scale mapping of 
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horizons in Ray3D, such as the base of the reef (Lockport Formation; “Gray Niagaran”), and 

onlapping units such as the A-0 Carbonate and Rabbit Ears Anhydrite not considered in this 

study. These seismic-constrained horizons could then be used as input to constrain future 

reservoir modeling studies. 
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Chapter 3: Conclusions 

1. Seismic facies were classified from seismic data using a variety of data-driven 

approaches that incorporated in-context interpretation through crossplotting of 

seismic attributes. The λρ-μρ crossplot workflow identified zones of good, fair and 

poor porosity within Ray Reef. Due to the deterministic inversion method, these 

results may not honor the heterogeneity present in the reservoir, however the large 

scale trends in porosity distribution were accurately captured within the reef reservoir 

from seismic data. A consistent distribution of good to fair porosity facies were 

observed in vertically stacked layers. This is consistent with Wold’s (2008) and 

Haynie’s (2009) findings. Future work incorporating stochastic methods have 

potential to improve these findings. Facies-based inversion could also constrain the 

results to honor the high degree of heterogeneity present in carbonate lithologies (i.e. 

Sams et al., 2017). It is observed that areas with higher storage capacity exhibit better 

measured well flow performance.  

2. Unsupervised machine learning applied to post-stack seismic attributes identified the 

reef core and capping peritidal facies within Ray Reef. It struggled to differentiate the 

bioherm and apron facies. Future studies should investigate other attribute 

combinations, in addition to other unsupervised classification methods. This study 

utilized a literature search to select promising attributes, however no statistical 

analyses was done on the selected attributes. Statistical methods such as those used in 

Chenin (2020) for optimal attribute suites may provide better results. Qualitative 

interpretation of P-Impedance derived from pre-stack inversion can provide direct 

insight of depositional facies when used in conjunction with Rine et al’s (2017) core-

based geologic model. 
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3. Supervised machine learning methods excelled at delineating salt vs. carbonate 

lithologies in Ray3D. Geobody extraction of these results can potentially serve as 

input for geocellular modeling from seismic data. HFU estimation using a variety of 

supervised neural networks from seismic data was unsuccessful in this study, but has 

potential for success in future studies with robust time-depth and rock physics 

relationships. 

4. Workflows were trialed on one dataset. Future work should apply successful 

workflows demonstrated herein, such as λρ-μρ and GTM classification, to other 

nearby southern trend reefs. Shear log prediction was unable to be robustly validated 

in this study, and future pre-stack inversions should investigate alternative shear wave 

predictions. 
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Appendix A: Pre-stack Inversion parameters 

In this appendix, figures are provided of the data input into the pre-stack seismic 

inversion. The low frequency model used in this study was generated using three wells: Wells 

24224, R-117, and R-122. 24224 was chosen as it had measured sonic and density logs, and 

provided control for off-reef lithologies. R-117 was chosen as it had a measured sonic log and 

calculated density log. R-122 was chosen as it had a measured density log and calculated sonic 

log, and provided control for facies located along the reef margin. Horizons used in constructing 

the low frequency model are: the A-2 Carbonate, A-1 Carbonate, A-2 Salt, and Clinton 

Formation. Where horizons intersect, the low frequency model was designated to handle 

truncated and pinch out of layers (i.e. where the A-2 Salt pinches out against the A-1 Carbonate 

horizon). A 30 sample median filter was applied to the model following lateral interpolation. 

This filter honored the vertical and lateral contrast, and provided the least amount of 

interopolation artifacts in the model. The inverse distance power option in HampsonRussel was 

used for lateral interpolation of well log data. To determine the optimal number of iterations to 

use in the inversion, a test was done to analyze the error vs. iteration relationship. The resulting 

plot suggests that 4 iterations provides the optimal minimal error. 
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Figure A.30: Conditioned offset  gathers as received from Sterling Geophysical colored by angle 

using a simple velocity model from available sonic logs. 

 

Figure 31: Angle gathers used for pre-stack seismic inversion. Minor trace statics were applied 

to flatten reflectors, and an angle mute were applied for angles greater than 25 degrees. The 

volume was cropped to the interval of interest to enhance computation time. 
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Figure A.32: Cross sections through the low frequency models used in the pre-stack seismic 

inversion. 
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Figure A.33: Pre-stack inversion analysis for the optimal number of iterations. Note after 4 

iterations, error for P and S-impedances increase. 
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