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Computation flow chart 
 
Program som_waveform_classification computes a 2D seismic facies map from a suite of seismic 
sample extracted about a time slice, horizon slice, or between two horizons using an 
unsupervised self-organizing mapping algorithm. The input can be seismic amplitude, 
impedance, Poisson’s ratio or other volumes that exhibit lateral changes in waveform or geologic 
stacking patterns about the horizon. Each time, phantom horizon, or stratal slice represents an 
“attribute’ in N-dimensional space. The centroids of the found classes are usually displayed as an 
N-dimensional vector, or wavelet, giving rise to the name “wavelet classification”.. Below is the 
flowchart showing the workflow of 2D seismic facies analysis.  
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Output file naming convention 
 
Program som_waveform_classification will always generate the following output files: 
 

Output file description File name syntax 

Program log information som_waveform_classification_unique_project_name_suffix.log 

Program error/completion   
information 

som_waveform_classification unique_project_name_suffix.err 

Waveform eigenvectors waveform_eigenvectors_unique_project_name_suffix.H 

Waveform eigenvalues waveform_eigenvalues_unique_project_name_suffix.H 

Classified data som_waveform_classification unique_project_name_suffix.H 

Classified data projected 
on SOM axis 1 

som_waveform_classification_axis1_ unique_project_name_suffix.H 
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Classified data projected 
on SOM axis 2 

som_waveform_classification_axis2_ unique_project_name_suffix.H 

Waveforms projected on 
latent space 

som_waveforms_projected_on_latent_space_unique_project_name_suffix.H 

Scaled prototype vectors scaled_prototype_vector_waveform_unique_project_name_suffix.H 

Unscaled prototype 
vectors unscaled_prototype_vector_waveform_unique_project_name_suffix.H 

Protype vector color 
matrix prototype_vector_color_matrix_unique_project_name_suffix.H 

Classification color bars som_waveforms_colors_unique_project_name_suffix.alut 

 
 
where the values in red are defined by the program GUI. The errors we anticipated will be written 
to the *.err file and be displayed in a pop-up window upon program termination. These errors, 
much of the input information, a description of intermediate variables, and any software trace-
back errors will be contained in the *.log file. 
 
SOM classification is initialized using the first two eigenvalues and eigenvectors, and in this 
application are identical to those generated by program pca_waveform_classification. This 2D 
plane (the simplest manifold in N-dimensional attribute space) is sampled by a suite of regularly 
spaced prototype vectors which are then projected onto the SOM latent space. At each iteration, 
the location of each prototype vector moves in the N-dimensional space to better represent the 
training data. These prototype vectors (some workers call them “neurons”) are then projected 
onto the 2D latent space at each iteration. Each sample in the input data represents a time slice, 
phantom horizon slice, or stratal slice. In order to classify, the input data are scaled using the 
mean and standard deviation for each slice. For this reason, there are two versions of the 
prototype vector waveforms – the one that is scaled and used internal to the program, and the 
one that is unscaled (in “world coordinates”) and is more useful to an interpreter.  Both of these 
waveforms can be plotted against a color map called the prototype vector color matrix. The 
classified results are provided in two formats – as a labeled data volume (consisting of integer 
values stored as floating point numbers) that can be plotted against a corresponding classification 
color bar, or as the classes projected against SOM latent space axes 1 and 2, which can be plotted 
using aaspi_crossplot or crossplot tools available in commercial software. Most commercial 
software packages allow an interpreter to define polygons in the crossplot space, thereby 
providing more control in constructing seismic facies. 
 
As with programs rgb_cmy_plot, crossplot, and hlsplot, the user can request the following 
optional colorbars for the more common interpretation software packages: 
 

Output file description File name syntax 

Petrel classification color bars som_waveforms_colors_unique_project_name_suffix.iesx 

Landmark classification color bars som_waveforms_colors_unique_project_name_suffix.cl2 
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Kingdom Suite classification color bars 
som_waveforms_colors_unique_project_name_suffix.CLM 

Seisware classification color bars som_waveforms_colors_unique_project_name_suffix.xml 

Voxelgeo classification color bars som_waveforms_colors_unique_project_name_suffix.color 

Geoprobe classification color bars som_waveforms_colors_unique_project_name_suffix.gpc 

Transform classification color bars som_waveforms_colors_unique_project_name_suffix.cmp 

Geomodeling classification color bars 
som_waveforms_colors_unique_project_name_suffix.geomodeling 

Seisware classification color bars som_waveforms_colors_unique_project_name_suffix.CLM 

 
 
Because the AASPI software uses the Petrel *.alut format files for its display; this file will always 
be generated.  
 
 

Theory 
Self-organizing mapping (SOM) is closely related to vector quantization methods (Haykin, 1999). Initially 

we assume that the J input data vectors are represented by smaller number of P prototype vectors (or “neurons”) 
in an N-dimensional attribute space Rn, xj= [xj1, xj2, xj3 …. xjN] where N is the number of input attributes (or 
amplitude samples for “waveform” classification). Each of the j=1,2,…,J input data vectors are represented by a 
point in N-dimensional space. The seismic response of similar stratigraphy results in waveforms that are similar 
and points in N-dimensional space that “cluster” together. The objective of the SOM algorithm is to locate the 
centroids of these clusters and to organize them in a manner that similar clusters can be mapped to similar colors. 
In general, we do not know the number of distinct clusters. To address this issue, we over-define the number of 
possible clusters using a large number (typically 256) prototype vectors. Because of the organization in the latent 
space, prototype vectors that clump together will be represented by nearly identical colors. Using a crossplot 
tool, the interpreter can draw polygons around clumped clusters to construct a single seismic facies.  

PVs are also called “SOM units”. The PVs are initially distributed on a structured 2D hexagonal or 
rectangular grid defined by the first two eigenvectors of the input data.  While the location of the prototype 
vectors are allowed to move within the 2D latent space, defining a 2D manifold in I-dimensional attribute space, 
the relative location of each PVs to its neighbors is preserved.  

Let’s consider a 2D SOM represented by P prototype vectors mp= (mp1, mp2, …, mpN), where p=1, 2, …, P 
that represent the N is the dimension of the input data (the number of samples in waveform classification). After 
initialization, the distance of each input vector xj is computed to each of the P prototype vectors. The nearest 
prototype vector (the “best matching” PV) will be updated to better represent the location of xj as part of SOM 
neighborhood training. 
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Running program som_waveform_classification and plotting the results 
 
Program som_waveform_classification is launched from the Formation Attributes in the main 
aaspi_util GUI: 
 

Given the previous background, Kohonen (2001) defines the SOM training algorithm using the following 
five steps: 
Step 1: Consider input vector xj, which is randomly chosen from the set of input vectors. 
Step 2: Compute the Euclidean distance between xj and each PV mp, p=1, 2,…,P. The prototype vector, mb, that 
exhibits the minimum distance to the input vector xj is called the best matching unit: 
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Step 3: At each iteration, t, update the best matching unit prototype vector and neighbors that fall within a radius 
σ(t). The updating rule for the weight of the pth PV inside and outside this neighborhood radius is given by   
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where the neighborhood radius defined as σ(t) is predefined for a problem and decreases with each iteration t. 
rb and rp are the position vectors of the best-matching unit PV mb and the pth PV mp. We define the “neighborhood 
function” hbp(t), the “exponential learning function” α(t), and the number of iterations or “length of training” T. 
hbp(t) and α(t) decrease with each iteration in the learning process as  
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Step 4: Iterate through each learning step (steps 1-3) until the convergence criterion (which depends on the 
predefined lowest neighborhood radius and the minimum distance between the PVs in the latent space) is 
reached. 
Step 5: Color-code the trained PVs as they are projected onto the 2D latent space (u1, u2) using a 2D color bar 
(Matos et al., 2009) defined by hue, H, and saturation, S:   
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The following window will appear:  

 

The Primary parameters tab 
 
As with most AASPI programs, we enter (1) an input file name, (2) a unique project name, and (3) 
a suffix, where the latter option allows us to compare runs with different choices of parameters. 
There are two tabs, the first of which is (4) the Primary parameters tab. The maximum number 
of colors used in most workstations is 256, with Kingdom Suite only allowing 240. For this reason, 
the default number of prototype vectors is 256. Because the prototype vectors span the original 
planar manifold and 2D latent space at equal intervals, the program will use the maximum 
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number of prototype vectors that does not exceed this value. The (6) dimensionality of the 
manifold is hardcoded to be 2. In earlier work by Roy and Marfurt (2010) and Matos et al. (2009) 
we evaluated a 3D latent space plotted against an RGB color bar but saw little advantage in doing 
so.  The input data are subjected to principal component analysis, where the (7) standard 
deviations along axes 1 and 2 are the square roots of the eigenvalues λ1 and λ2. Three standard 
deviations represent 99.7% of the data if the scaled input data can be represented by a normal 
distribution.  The input data are decimated and then presented in a random order for each 
iteration in the training where in this example we have chosen (8) 20 to be the maximum number 
of iterations.  We have adopted the Petrel color bar *.alut format for display in the AASPI 
software; for this reason, this option (9) is always chosen. In this example, we have also (10) 
placed a checkmark in front of the Kingdom Suite option, thereby generating a  *.CLM file that 
we can load for display in that interpretation package. Before going to the second tab, note the 
(11) four steps in the computation. The first step performs the classification. The second step 
generates the corresponding colorbar for the last iteration and is required to properly display the 
results in either the AASPI or commercial software. The third and fourth steps are optional and 
provide some insight into how the SOM algorithm performs. 

The Temporal operation window tab 
 
Program som_waveform_classification provides a formation by formation classification where 
the N attributes are the N samples of the seismic trace extracted with the target area. There are 
three options on defining the operation window which are found under the (12) Temporal 
operation window tab:  
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 By default the samples are (13) extracted within a fixed time window. For waveform 
classification,  
 
The second option is to (14) analyze the waveforms between two picked horizons. This option 
will invoke program stratal_slice in a subsequent python script, proportionally constructing a 
suite of slices between the two horizons. In this example the (16) upper horizon is the Meramec, 
and (17) the lower horizon the Woodford. Details on the defining horizons can be found by 
clicking the (18) Help – Horizon Definition tab. If the two horizon option is chosen, the user will 
be prompted to (19) define the number of stratal slices used. This option is the method of choice 
when looking for patterns in Poisson’s ratio, λρ, μρ, ZP, ZS, or other geomechanical parameters. 
Finally, we may choose to (15) the analysis window about a single picked horizon. When this 
option is chosen the subsequent python script will invoke program flatten before classifying the 
waveforms. Because the seismic waveform is a function of the seismic source wavelet as well as 
of the reflectivity pattern, this option should be chosen if we wish to classify a formation using a 
seismic amplitude volume as input. Note that such an analysis may not produce the desired 
results for formations that are not approximately constant thickness.  
 

Step 1: Execute program som_waveform_classification 
 
With these parameters chosen, we can return to (11) Step 1, and Execute 
som_waveform_classification.  In my example the first few lines that appear on my screen (the 
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xterm window in Linux, the black AASPI window in Windows) shows the execution of program 
stratal_slice: 
 
 
 

 
 
followed by the program som_waveform_classification: 
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When complete, a pop-up window will appear reporting the status of the program. In the case 
or normal completion, the panel will look like this:   
 

 

Step 2: Plotting the classification results 
 
Returning to the GUI, we invoke (11) Step 2. Plot SOM results. Here, the GUI invokes the python 
script aaspi_aaspiviewer_poststack.py that we commonly use to quality control most AASPI 
results. The multiplexed 2D colorbar generated in the previous step maps the distribution of the 
prototype vectors as they appear in the latent space at the final iteration. Because there is only 
one value for each trace in the windowed formation, the data file 
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som_waveform_classification_unique_project_name_suffix.H is only one sample thick. The 
python script “slices” and transposes this file prior to plotting the results: 

 
 
where I have whited-out the actual numbers and CDP numbers for reasons of data 
confidentiality. Although a total of 231 classes were used, most interpreters may see only ten or 
so distinct colors, indicating that most of the clusters have clumped together into a smaller 
subset. 
 

Step 3. Plotting the prototype vectors against their color at the last iteration 
 
The som_waveform_classification program also outputs the prototype vectors which can be 
corendered with the 2D colorbar, giving a visualization of the relation between prototype vectors 
and facies colors. The two files are named as 
prototype_vector_color_matrix_unique_project_name_suffix.H and 
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prototype_vector_waveforms_unique_project_name_suffix.H. Clicking (11) Step 3. Plot 
waveforms in the GUI invokes the python script aaspi_corender.py to corender the two files: 
 
  

 
 
where in this example the unscaled Poisson’s ratio wavelet is plotted against a rectangular color 
background. Note that there are no longer 231 distinct colors. 
 
Internal to the program, the classification is actually applied to the scaled data, which therefore 
generate scaled waveforms that even though they are for Poisson’s ratio, now have both positive 
and negative values: 
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Step 4. Plotting the location of the prototype vectors in the latent space at each 
iteration 
 
To gain some insight into the inner workings of the som_waveform_classification program we 
can plot the location of the prototype vectors projected onto the latent space against SOM axes 
1 and 2 for each iteration. The zeroth iteration (the program initialization) consists of equally 
spaced prototype vectors distributed on an ellipse whose axes are the first two eigenvectors and 
whose ranges, ±3σ, were defined as an input parameter. Returning to the GUI, we (11) click Step 
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4. Plot SOM PV iterations after which the GUI plots the file 
som_waveforms_projected_on_latent_space_unique_project_name_suffix.H 
 by invoking the python script aaspi_aaspiviewer_poststack.py. A subset of the images looks like 
this: 
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Note that at iteration 0, the prototype vectors are equally distributed across an ellipse. A great 
deal of reorganization takes place in the first two or three iterations. By iteration 12 there are no 
more changes. Ideally, each iteration should have its own colorbar, but this would require 
multiple files that would be more difficult to animate. Instead, the colorbar used in this display 
for each prototype vector correspond to their final location at iteration 12. 
 

A more flexible display option in interpretation workstations: Crossplotting the results 
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The user can use crossplot module in the aaspi_util to crossplot two SOM axes in order to 
generate the SOM facies map with a 2D color map. The crossplot module can be found under the 
Display Tools tab in the aaspi_util GUI: 
 

 
 
The crossplot GUI is shown below: 
 

   
 
The input for crossplot are som_waveform_classification_axis1_ unique_project_name_suffix.H 
and som_waveform_classification_axis2_ unique_project_name_suffix.H.  SOM axes 1 and 2 are 
taken as inputs for x and y axes in the crossplot. To ensure a smooth color transition, 4096 colors 
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are used for the 2D colorbar to be generated (64 by 64 colors). The result is shown below 
(computed from flattened seismic amplitude data about the top Red Fork formation): 
 

  

 
 
Program crossplot  generated a crossplotted volume, a 2D color map, and a 2D histogram of the 
crossplotted volume. The 2D histogram shows clusters of facies, where these clusters are color-
coded by the color at the corresponding position in the 2D color map. In this example, we observe 
the different stages of the channels, as well as the flood plain deposits.  
 

Visualization by crossplotting two SOM axes in Petrel 

 
Please refer to the documentation of som3d for using the crossplotting functionalities in Petrel 
for visualizing the som_waveform_classification facies map. 
 
An example using seismic amplitude phantom horizon slices about the top Red Fork formation, 
Oklahoma. 
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