

Theory: Sample Vectors and the Covariance Matrix	
Data Adaptive Windows	
The Parallelization Parameters Tab	
Theory: Eigenvectors and Eigenvectors	
Examples	20
Theory: Principal Components, Karhunen-Loève Filtering, and the Total vs. Coherent Attributes	Energy 23
Theory: Eigenstructure Coherence and Energy ratio Coherence	25
Theory: Outer-product and generalized semblance-based similarity	
Theory: Sobel filter similarity	
Theory: The Coherent Energy (or RMS Amplitude-) Weighted Amplitude Gradient	
Theory: Energy- and RMS amplitude weighted Laplacian filters	
Multispectral Coherence, Gradients, and Laplacians	
Filter banks and spectral decomposition	
The Filter Bank Definition Tab (Defining Multispectral Filter Banks)	
Theory: Multispectral Coherence, Amplitude Gradients, and Laplacians	50
Theory: Multispectral Sobel Filter Similarity	
Examples	52
Pitfalls and Limitations	60
Stair Step Artifacts	61
Theory: Seismic Imaging of Reflectors	64

AASPI

Overview

One of the most useful volumetric attributes is to compute the reflector continuity along structural dip and azimuth. Originally called "coherence" by developers at Amoco in the mid-1990s, the coherence family of attributes now has many variations, some that are algorithmic, and some that are simply renaming to avoid conflicts with the original Amoco patents. Such names include generic names such similarity and dissimilarity as well as names more indicative of the implementation including crosscorrelation, semblance, Manhattan distance, eigenstructure, variance, phase discontinuity, chaos, Sobel filters, Laplacian filters, and so forth. Whatever you call it, a coherence algorithm compares adjacent waveforms along structure within an analysis window. Windows in which the data are similar to each other are considered to be coherent and plotted as white. Windows in which the data show significant variation are considered to be incoherent or dissimilar and plotted as gray and black. Such discontinuities provide a means of mapping both structural and stratigraphic edges, areas that are chaotic, such as mass transport complexes and karst collapse, and areas that are contaminated by either random or crosscutting coherent noise. With the exception of salt welds, there are no coherent reflectors internal to a salt dome, so they too will appear to be incoherent.

Program similarity3d provides a wide range of coherence algorithms including those based on semblance, eigenstructure analysis, and Sobel filters. Program similarity3d also outputs estimates of the total and coherent energy within a 3D analysis window, as well as lateral gradients and Laplacian filters along structure of the coherent amplitude. All computations are made along structure using the analytic (complex) trace. The algorithms can be combined with a suite of filter banks to generate attributes from bandpassed filtered data. Stacking the covariance matrix of the bandpassed filtered versions of the data provides a robust multispectral attribute analysis.

Computation flow chart

The input to program **similarity3d** includes inline and crossline components of reflector dip and a seismic amplitude volume. The inline and crossline components of dip are either the original components computed from program **dip3d**, or a filtered version computed from program **filter_dip_components**. Likewise, the seismic amplitude can be the original seismic amplitude, a structure-oriented filtered amplitude from program **sof3d**, spectrally balanced amplitude from program **spec_cmp** or **spec_cwt**, or even impedance inversion computed using a commercial software package. The output files include several types of similarity (coherence), the total and coherent energy of the analysis window, as well as inline and crossline coherent energy gradient components useful for direct analysis or as input to subsequent amplitude curvature computations. As of January 2017, one can compute these attributes for a suite of filter banks and combine the results to compute "multispectral" attributes.

Figure 1.

Output file naming convention

Program **similarity3d** will always generate the following output files:

Output file description	File name syntax
Program log information	similarity3d_unique_project_name_suffix.log
Program error/completion	
information	similarity3d_unique_project_name_suffix.err

where the values in red are defined by the program GUI. The errors we anticipated will be written to the **.err* file and be displayed in a pop-up window upon program termination. These errors, much of the input information, a description of intermediate variables, and any software trace-back errors will be contained in the **.log* file.

Unless the defaults are modified, **similarity3d** will also generate these "broadband" output files computed over the entire bandwidth of the data provided:

Output file description		File name syntax
Broadband ene similarity	ergy-ratio	energy_ratio_similarity_ <i>unique_project_name_suffix</i> _broadband.H
Broadband outer-product similarity (semblance)		outer_product_similarity_ <i>unique_project_name_suffix</i> _broadband.H
Broadband So similarity	bel-filter	sobel_filter_similarity_ <i>unique_project_name_suffix</i> _broadband.H

We can also generate attributes that are either functions of the energy or of the RMS amplitude within the analysis window. If we choose to *Output energy and weight gradients by coherent energy*, the following files will be called:

Output file description	File name syntax
The total energy in the analysis window	total_energy_unique_project_name_suffix.H
The coherent energy in the analysis window	coherent_energy_ <i>unique_project_name_suffix</i> _broadband.H
Broadband inline energy-	inline_energy_weighted
weighted gradient	gradient_ <u>unique_project_name_suffix_</u> broadband.H
Broadband crossline	crossline_energy_weighted_gradient_unique_project_name_suffix_broadb
energy-weighted gradient	and.H
Broadband energy-	energy weighted lanlacian unique project name suffix broadband H
weighted Laplacian	

If we choose to *Output RMS amplitude and weight gradients by coherent RMS amplitude*, the following files will be called:

Output file description	File name syntax		
The total (original data)			
RMS amplitude in the	total_RMS_amplitude_ <i>unique_project_name_suffix</i> .H		
analysis window			
The coherent RMS			
amplitude in the analysis	coherent_RMS_amplitude_ <i>unique_project_name_suffix</i> _broadband.H		
window			
Broadband inline RMS	ipling PMS amplitude weighted gradient unique project name suffix b		
amplitude weighted	roadband H		
gradient			

Broadband crossling amplitude we gradient	e RMS eighted	crossline_RMS_amplitude_weighted_gradient_ <i>unique_project_name_suffi</i> x_broadband.H
Broadband	RMS	RMS amplitude weighted laplacian unique project name suffix broadb
amplitude we	eighted	and H
Laplacian		

We can also compute multispectral attributes where the choice of energy-weighted or RMS amplitude weighted gradients is dependent on the chosen parameters:

Output file description	File name syntax
Multispectral	
energy-ratio	energy_ratio_similarity_unique_project_name_suffix_multi-spectral.H
similarity	
Multispectral	
outer-product	outer product similarity unique project name suffix multi-spectral H
similarity	outer_produce_siningity_anduc_project_name_sujjix_mata spectral.m
(semblance)	
Multispectral	
Sobel-filter	sobel_filter_similarity_unique_project_name_suffix_multi-spectral.H
similarity	
Multispectral	inline energy unicleted and that unique encient energy offic another the
inline energy-	Inline_energy_weighted_gradient_ <i>unique_project_name_sujjix_</i> multi-spectral.H
Nulticonstrol	
	crossline_energy_weighted_gradient_ <i>unique_project_name_suffix</i> _multi-
weighted gradient	spectral.H
Multispectral	
inline RMS	inline RMS amplitude weighted gradient <i>unique project name suffix</i> multi-
amplitude	spectral.H
weighted gradient	
Multispectral	
crossline RMS	crossline_RMS_amplitude_weighted_gradient_ <i>unique_project_name_suffix_</i> multi-
amplitude	spectral.H
weighted gradient	
Multispectral	
energy weighted	energy_weighted_laplacian_ <i>unique_project_name_suffix</i> _multi-spectral.H
Laplacian	
Multispectral RMS	
amplitude	RMS_amplitude_weighted_laplacian_unique_project_name_suffix_multi-
weighted	spectral.H
Laplacian	

Filter	bank	and	
broad		band	filter_banks_similarity3d_unique_project_name_suffixH
spectra	à		

Finally, we may choose to compute attributes for a suite of filter banks defined by an Ormsby filter with corner points f_1 , f_2 , f_3 , and f_4 :

Output file description	File name syntax			
Filter bank energy-ratio similarity	energy_ratio_similarity_unique_project_name_suffix_f1_f2_f3_f4.H			
Filter bank outer-product similarity (semblance)	outer_product_similarity_unique_project_name_suffix_f1_f2_f3_f4.H			
Filter bank Sobel-filter similarity	sobel_filter_similarity <i>unique_project_name_suffix_f1_f2_f3_f4</i> .H			
Filter bank Sobel-filter similarity	laplacian_filter_similarityunique_project_name_suffix_f1_f2_f3_f4.H			
Filter bank inline energy- weighted gradient	inline_energy_weighted_gradient_ <i>unique_project_name_suffix_f1_f2_f3_</i> <i>f4</i> .H			
Filter bank crossline energy-weighted gradient	crossline_energy_weighted_gradient_ <i>unique_project_name_suffix_</i> <i>f1_f2_f3_f4</i> .H			
Filter bank inline RMS amplitude weighted gradient	inline_RMS_amplitude_weighted_gradient_ <i>unique_project_name_suffix_f</i> 1_f2_f3_f4.H			
Filter bank crossline component of RMS amplitude weighted amplitude gradient	crossline_RMS_amplitude_weighted_gradient_ <i>unique_project_name_suff</i> <i>ix_f1_f2_f3_f4</i> .H			
Filter bank energy- weighted Laplacian	energy_weighted_laplacian_ <i>unique_project_name_suffix_f1_f2_f3_f4</i> .H			
Filter bank RMS amplitude weighted Laplacian	RMS_amplitude_weighted_laplacian_ <i>unique_project_name_suffix_f1_f2_</i> <i>f3_f4</i> .H			
Filter bank coherent energy	coherent_energy_unique_project_name_suffix_f1_f2_f3_f4.H			
Filter bank coherent RMS amplitude	coherent_RMS_amplitude_ <i>unique_project_name_suffix_f1_f2_f3_f4</i> .H			

Computing similarity attributes

Program **similarity3d** is launched from the same *Geometric Attributes* tab as **dip3d** and **filter_dip_components** from the **aaspi_util** GUI under:

🗙 aaspi_util GUI - Post Stack Utilities (Release Date	: 27 May 2021)) – 🗆	×
Eile Single Trace Calculations Spectra	l Attributes	Geometric Attributes Formation Attributes Volumetric Classification Image Processing H	Help
Attribute Correlation Tools Display Tools	Machine Le	ε dip3d ities Other Utilities Set AASPI Default Parameters	
Maximum Line no.:	3801	filter_dip_components	
Increment Line no.:	20	similarity3d	
Desired output axis 1:	Time All	mpute coherence, energy, and weighted gradients and Laplacian I attributes can be multispectral	
Desired output axis 2:	CDP no.	apparent_cmpt	
Desired output axis 3:	Line no.	euler_curvature glcm3d	
Reverse x-axis?	n 🖃	disorder	
Reverse y-axis? (Default is positive down)	auto 💷	nonparallelism	
Display color bar?	y _	similarity_multiple_input	

Double-clicking *similarity3d* generates the following GUI:

	X aaspi_similarity3d GUI (Release D	late: 27 May 2021)	-		_		×
	<u>F</u> ile						Help
	similarity3d - Calculate 3d simil	arity family, energy, and amp	litude gradient attributes				<u>^</u>
	Seismic input filename (*.H):	/ouhomes6/marf2925/projec	ts/GSB_AAPG/d_mig_GSB_AA	APG.H	Browse		
2	Inline dip filename (*.H):	/ouhomes6/marf2925/projec	ts/GSB_AAPG/inline_dip_lum	_filt_GSB_AAPG_1.H	Browse		
3	Crossline dip filename (*.H):	homes6/marf2925/projects/	GSB_AAPG/crossline_dip_lum	_filt_GSB_AAPG_1.H	Browse		
4	Average magnitude spectrum filename (*.H):				Browse		
	Unique project name:	GSB_AAPG					
	Suffix:	0					
	Verbose output?						
	Primary parameters	Analysis window parameters	Filter bank definition	Parallelization para	ameters		
5	Similarity Power (>0):	2	_				
6	Use constant test vector in outer product similarity?	N					
7	Energy vs RMS amplitude opti	ion: Output energy and wei	ght gradients by coherent e	nergy			
8	Desired Attribute Output						_
~~	Want energy ratio similarity	attribute?					
	Want outer product similarity	y (semblance) attribute? 🔽					
	Want Sobel filter similarity at	ttribute?					
	Want coherent energy-weig	hted gradient attributes? 🔽					
	Want energy-weighted Lapla	acian attribute? 🛛 🔽					
	Want total energy attribute?						
	Want coherent energy attrib	oute?					
	Save parameters and return	rn to Workflow GUI					
	<u></u>						
	(c) 2008-2021 AASPI for Linux	- authors at Univ. Oklahoma	Univ Alabama Univ Texas	Permian Basin, and	Execute	similar	± ∣tv3d
			, oniv. Alabama, oniv. Texas	in childen busin, and i		<u>e</u> annai	

Use the browser on the first three lines to choose (1) the input seismic data file (*d_mig_GSB_small.H*), (2) the inline dip (*inline_dip_lum_filt_GSB_small_1.H*) and crossline dip (*crossline_dip_lum_filter_GSB_small_1.H*) files generated previously by program **dip3d** and subsequently filtered by program **filter_dip_components**. The (4) average power spectrum is an advanced option that allows the definition of a data-adaptive analysis window, which may be useful for depth-migrated data where the dominant wavelength changes significantly from shallow to deeper depths. For now, use a fixed window.

The Primary Parameters Tab

Similarity values will range between 0 and 1, with most of the values biased towards 1. If one (5) takes the power of the similarity, the distribution moves towards zero, providing improved contrast in the resulting image. This option remains from a time when many workstation software programs had only limited color bar manipulation capabilities. In modern interpretation software, it makes no difference whether one maps nonlinearly (powers) the similarity and plots it against a linear gray scale color bar, or if one plots the unscaled similarity against a nonlinear gray scale color bar.

All but the Sobel filter similarity attribute are computed using a covariance matrix computed from the analytic (or complex trace). If one takes the outer product of the covariance matrix with the first eigenvector, the result is an eigenstructure coherence. In contrast, if one takes the outer product of the covariance matrix with a test vector that (6) has *J* equal components of $J^{-1/2}$, one obtains a semblance estimate of coherence. If this box is not checked, the algorithm computes the outer product of the sample vector passing through the analysis point. Mathematical details are provided in the theory boxes. By defining semblance in this manner one can compute the semblance in laterally and vertically tapered windows, which is critical to data-adaptive similarity computation.

The gradient of the eigenvector can be weighted either by the energy or by the square root of the energy (the RMS amplitude) of the coherent component of the data within the analysis window (see theory box). The RMS amplitude weighting option was added in April 2017 to provide an image that exhibits a comparable range to that of the original seismic amplitude data.

Moving down to (8) the *Desired Attribute Output* box, check those attributes you wish to compute. In this example, **similarity3d** will compute all of them to illustrate their use. However, when computing very large volumes, you may wish to limit your output to those attributes you find most useful. Be forewarned that if you wish to compute amplitude curvature, you need to generate the intermediate energy-weighted amplitude gradient output.

The Analysis Window Parameters Tab

The image below shows the GUI when the *Analysis window parameters* tab has been selected. By default, **similarity3d** will use (1) a fixed-size analysis window. We will investigate what happens if we toggle this button shortly. For now, define the (2) covariance window half height, (3) percent tapers applied to the samples vertically, and (4) whether you wish to balance the covariance matrix sample vectors prior to constructing it (see the appropriate Theory box below). At present, since the *Use fixed-size window* has been selected the (5) reference frequency option is disabled. Drop down to (6) the inline and (7) crossline window radii. The default will be ±1 trace in each direction, which for the GSB survey are 12.5 and 25 m. The default is also to use (8) a rectangular vs. an elliptical analysis window. For small windows like this, the rectangular window provides more robust estimates of inline and crossline coherent energy gradient components.

	🗙 aaspi_similarity3d GUI (Release D	ate: 27 May 2021)		_		×
	<u>F</u> ile					Help
	similarity3d - Calculate 3d simil	arity family, energy, and	amplitude gradient attributes			<u> </u>
	Seismic input filename (*.H):	/ouhomes6/marf2925/p	projects/GSB_AAPG/d_mig_GSB_AAPG.H	Browse		
	Inline dip filename (*.H):	/ouhomes6/marf2925/p	projects/GSB_AAPG/inline_dip_lum_filt_GSB_AAPG_1.H	Browse		
	Crossline dip filename (*.H):	homes6/marf2925/proj	Browse			
	Average magnitude spectrum filename (*.H):			Browse		
	Unique project name:	GSB_AAPG				
	Suffix:	0				
	Verbose output?					
	Primary parameters	Analysis window parame	ters Filter bank definition Parallelization par	ameters		
	Analysis Window Definition P	arameters				
	Use data-adaptive analysis	windows?	Use a fixed-size window			
2	Covariance Window Half Hei	ght (s):	0.02			
3	Taper applied to vertical and	alysis window (Percent):	0			
4	Balance data vector before computing covariance	s ce matrix?				
5	Percentile of average magni to define data-adaptive	tude spectrum windows:	80			
6	Inline Window Radius (m):		12.5104			
7	Crossline Window Radius (m):	25.0207			
8	Use rectangular analysis wir	ndow?	ч Ч			
	<u></u>					
	(c) 2008-2021 AASPI for Linux	< - authors at Univ. Oklal	homa, Univ. Alabama, Univ. Texas Permian Basin, and	Execute	<u>s</u> imila	ity3d

The Filter Bank Definition Tab (Default Parameters)

The image below shows the GUI when the *Filter bank definitions* tab has been selected. By default, **similarity3d** will use generate a single "broadband" volume for each of the selected volumes that has been band-pass filtered using an Ormsby filter defined by the four corner points (1) *f*1, (2) *f*2, (3) *f*3, and (4) *f*4. If you wish to change the values of these four corners points, be sure to click (5) Update the filter banks. The four corners points for the broad band filter are shown in the bottommost table. A description of the other parameters on this tab used to compute multispectral attributes can be found later in this documentation under *The Filter Bank Definition Tab (Defining Multispectral Filter Banks)*.

X aaspi_similarity3d GUI (Release I	Date: 27 May 2021)			-		
Eile						1
similarity3d - Calculate 3d sim	larity family, energy, and amplitude	gradient attributes				
Seismic input filename (*.H):	/ouhomes6/marf2925/projects/GS	B_AAPG/d_mig_GSB_AA	PG.H	Browse		
Inline dip filename (*.H):	/ouhomes6/marf2925/projects/GS	B_AAPG/inline_dip_lum_	filt_GSB_AAPG_1.H	Browse		
Crossline dip filename (*.H):	homes6/marf2925/projects/GSB_/	APG/crossline_dip_lum	_filt_GSB_AAPG_1.H	Browse		
Average magnitude spectrum filename (*.H):				Browse		
Unique project name:	GSB_AAPG					
Suffix:	0					
Verbose output?						
Primary parameters	Analysis window parameters	lter bank definition	Parallelization para	meters		
			,			
Ormsby Filter Bank Definition	n Parameters					
Compute multi-spectral attr	ibute volumes	Compute broadba	nd attributes only		1	
Output attritbute volumes f	or each filter bank	Do NOT output att	ributes for each filter	. bank	i	
Output attritbute volumes f	or each filter bank begin low frequency taper (cycles/:	Do NOT output att	ributes for each filter	bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter	or each filter bank begin low frequency taper (cycles/s end low frequency taper (cycles/s)	Do NOT output att	ributes for each filter	bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter	or each filter bank begin low frequency taper (cycles/: end low frequency taper (cycles/s) begin high frequency taper (cycles	Do NOT output att	ributes for each filter	' bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter	or each filter bank begin low frequency taper (cycles/; end low frequency taper (cycles/s) begin high frequency taper (cycles/s) end high frequency taper (cycles/s)	Do NOT output att 5): 4 8 (/s): 90 (/s):	ributes for each filter	bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter	or each filter bank begin low frequency taper (cycles/s end low frequency taper (cycles/s) begin high frequency taper (cycles/s end high frequency taper (cycles/s	Do NOT output att 5): 4 8 - /s): 90): 120	ributes for each filter	· bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter bank	or each filter bank begin low frequency taper (cycles/s end low frequency taper (cycles/s) begin high frequency taper (cycles end high frequency taper (cycles/s s (0-50%)):	Do NOT output att 5): 4 8 (5): 90 (2): 120 (0):	ributes for each filter	bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter bank Number of filter banks appl	or each filter bank begin low frequency taper (cycles/s end low frequency taper (cycles/s) begin high frequency taper (cycles end high frequency taper (cycles/s s (0-50%)): ied to the data:	Do NOT output att 5): 4 8 (5): 90 (120) 0 (0)	ributes for each filter	' bank	j	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter bank Number of filter banks appl Construct linearly or exponen	or each filter bank begin low frequency taper (cycles/s) end low frequency taper (cycles/s) begin high frequency taper (cycles, end high frequency taper (cycles/s s (0-50%)): ied to the data: entially spaced filter banks?	Do NOT output att 5): 4 8 - /s): 90): 120 0 - 0 - Linearly spaced fill	ributes for each filter	' bank]	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter banks Number of filter banks appl Construct linearly or expon-	or each filter bank begin low frequency taper (cycles/; end low frequency taper (cycles/s) begin high frequency taper (cycles end high frequency taper (cycles/s s (0-50%)): ied to the data: entially spaced filter banks?	Do NOT output att 5): 4 8 - /s): 90 120 - 0 - 0 - Linearly spaced fill	ributes for each filter	' bank]	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter banks Number of filter banks appl Construct linearly or expon-	or each filter bank begin low frequency taper (cycles/; end low frequency taper (cycles/s) begin high frequency taper (cycles/s end high frequency taper (cycles/s s (0-50%)): ied to the data: entially spaced filter banks?	Do NOT output att 5): 4 8 /s): 90 0 0 Linearly spaced fill	ributes for each filter	· bank]	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter bank Number of filter banks appl Construct linearly or expon- Update the filter banks	or each filter bank begin low frequency taper (cycles/s end low frequency taper (cycles/s) begin high frequency taper (cycles end high frequency taper (cycles/s s (0-50%)): ied to the data: entially spaced filter banks?	Do NOT output att 5): 4 8 (5): 90 120 0 Linearly spaced fill 4	ributes for each filter	· bank]	
Output attritbute volumes f f1 Ormsby broadband filter f2 Ormsby broadband filter f3 Ormsby broadband filter f4 Ormsby broadband filter Taper applied to filter bank Number of filter banks appl Construct linearly or expon- Update the filter banks	or each filter bank begin low frequency taper (cycles/s) end low frequency taper (cycles/s) begin high frequency taper (cycles end high frequency taper (cycles/s s (0-50%)): ied to the data: entially spaced filter banks?	Do NOT output att Do NOT output att B B (5): 90 120 0 Linearly spaced fill 4 120	er banks	' bank]	

The Impact of Analysis Window Size

In general, the computation time increases linearly with the number of traces *M*, that fall within the analysis window, such that the cost increases as the square of the window radius. The increase in time with the analysis window height is smaller, since it only impacts the covariance matrix, and not the eigenvector and principal component computations. Larger lateral windows may also smear the results, leading to decreased lateral resolution. Larger vertical

windows may vertically mix stratigraphy. A good rule of thumb is to define the vertical and lateral analysis windows to be a fraction of the shortest period and wavelength. Windows larger than a period or wavelength not only smear or mix the results, they do so at increased cost. For high quality data, window heights of 0 s (one "sample") are permissible. This small value is possible since the covariance matrix is computed from the analytic trace, and thus has *two* sample vectors. Even for small vertical windows, an annoying stair-step artifact often occurs in similarity images. I will address this issue in the *Coherence Artifacts* section of this document.

Theory: Sample Vectors and the Covariance Matrix

Sample Vectors

The covariance matrix is constructed from a suite of sample vectors. In **similarity3d**, the "vectors" take the form of a suite of 2K+1 *M*-trace maps parallel to structure, centered about the analysis point. The objective is to map vertically consistent (high coherence) or inconsistent (low coherence) patterns across the suite of local maps. To achieve this objective, one needs to compute a covariance matrix.

The Covariance Matrix

The covariance matrix, **C**, is constructed by comparing each sample vector to itself and all its neighbors. **similarity3d** uses not only the 2K+1 *M*-trace sample vectors through the original seismic amplitude, **d**, but also an additional 2K+1 sample vectors through its Hilbert transform, **d**^H:

$$C_{mn} = \sum_{k=-K}^{K} \left[d(t_k, x_m, y_m) d(t_k, x_n, y_n) + d^{H}(t_k, x_m, y_m) d^{H}(t_k, x_n, y_n) \right].$$
(1a)

These additional (90⁰-phase rotated) sample vectors fall in the same window and thus do not modify the vertical resolution. However, they ameliorate areas of low signal-to-noise ratio about zero crossings, where the original absolute amplitude is smallest, but also where the corresponding Hilbert transform is largest, thereby suppressing low coherence artifacts commonly called "structural leakage" corresponding to amplitude zero crossings when viewed on coherence time slices. One can also taper the analysis windows using a weight w_k to minimize vertical edge effects

$$C_{mn} = \sum_{k=-K}^{K} w_k \Big[d(t_k, x_m, y_m) d(t_k, x_n, y_n) + d^H(t_k, x_m, y_m) d^H(t_k, x_n, y_n) \Big].$$
(1b)

Anomalously large samples may dominate the covariance matrix, which for large vertical analysis windows may result in shallower or deeper strong events dominating the computation, giving rise to vertical smear. For this reason, there is an option *Balance sample vectors* that uses the RMS amplitude of each sample vector to ameliorate this problem.

Data Adaptive Windows

In his dissertation on attribute analysis of depth-migrated data, Lin (2016), realized that the significant change in wavelength from shallow to deep can cause significant problems. If the window is too small to encompass a smeared discontinuity, the geology of deeper, longer-

wavelength data may look overly continuous and thus exhibit higher coherence. Alternatively, if the size of the window is too large, shallower, shorter wavelength features accurately imaged in the seismic data may be undesirably smeared or mixed by the coherence operator. An ancillary question arises: when is a coherence anomaly significant (against the background values) and when is it insignificant? To address these issues, Lin et al. (2015) uses an *F*-test to assign levels of significance to the result, which required estimation of the data bandwidth and signal-tonoise ratio in addition to the size of the analysis window. In that work they used the AASPI program **disorder** to estimate the signal-to-noise ratio, which treats locally linear discontinuities as geologic signal.

X aaspi_similarity3d GUI (Release Date: Januuary 4,	, 2017)	—	
]] <u>F</u> ile				
similarity3d - Calculate 3d sin	nilarity family, energy, and	amplitude gradient attributes		
Seismic Input Filename (*.H):	/ouhomes5/marf2925/pro	ojects/GSB_small/d_mig_GSB_small.H	Browse	
Inline Dip Filename (*.H):	omes5/marf2925/projects	s/GSB_small/inline_dip_lum_filt_d_mig_GSB_small_1.H	Browse	
Crossline Dip Filename (*.H):	es5/marf2925/projects/GS	B_small/crossline_dip_lum_filt_d_mig_GSB_small_1.H	Browse	
Average Power Spectrum Filename (*.H):			Browse	
Unique Project Name:	d_mig_GSB_small			
Suffix:	0			
Verbose Output?				
Primary parameters	Analysis window paramet	Parallelization parameters		
Analysis Window Definition	Parameters			
Use data-adaptive analysis	windows?	Use a data-adaptive window		
Adaptive Covariance Wind (Percent of period=1/f	ow Size: _ref)	100		
Taper applied to vertical a	nalysis window (Percent):	20		
Balance data vecto before computing covaria	ors nce matrix?			
Reference frequenc (Percentile of average pov (Used to define data-adap	y, f_ref /er spectrum): tive windows)	80		
Inline Window Radius (m):		12.5104		
Crossline Window Radius (m):	25.0207		

Clicking the Use data-adaptive analysis windows toggle changes the active areas of the GUI as shown above. First, several of the fixed window definition options are disabled (red arrows). Two of previously inactive options (green arrows) have been activated, the first of which is the *Average Power Spectrum Filename* created by a previous computation of **spec_cmp** or **spec_cwt**. The second previously inactive option, *Reference frequency, fref,* defines a percentile of the average spectrum as it changes with time or depth. For spectrally balanced data, resolution is determined not by the peak frequency (which in the ideal case of a perfectly flat spectrum is ill-defined), but by the highest useable frequency. In this example, this frequency was chosen to be the *p*=80 percentile of the spectrum at each time or depth sample. Given this (time and depth variant) frequency, one can define a corresponding period, and (using the

reference velocity for time-migrated data) the lateral wavelength. For depth-migrated data, wavelengths are used to define the window size in x, y, and z. The option that previously defined the temporal size of the fixed analysis window is now changed to be a percent of this period and/or wavelength (orange arrow). Since the p=80 frequency varies continuously, the size of the analysis window varies continuously, and thus needs to use tapered analysis windows in x, y, as well as in z, resulting in scaled traces. Lin (2016) shows that by applying these tapers to the covariance matrix, that one can generate accurate, yet flexible results for both energy ratio coherence and outer product similarity.

The Parallelization Parameters Tab

The parallelization parameters tab for **similarity3d** is the same for all AASPI applications. One can run across multiple processors and cores on a single node, across nodes if that is allowed by your IT department, or on large batch supercomputers using LSF, PBS, or SLURM scripts. Details on parallelization can be found in the parallelization section of the documentation *Overview: AASPI Software Parallelization*. **similarity3d** uses a stencil-based parallelization scheme; this results in suboptimal performance for surveys that do not approximate a rectangular shape, where cores assigned to dead or padded traces lie idle.

X aaspi_similarity3d GUI (Relea	ase Date: Januuary 4, 2017)	_		\times
]] <u>F</u> ile				Help
similarity3d - Calculate 3d similarit	ty family, energy, and amplitude gradient attributes			^
Seismic Input Filename (*.H): /ouł	homes5/marf2925/projects/GSB_small/d_mig_GSB_small.H	Browse		
Inline Dip Filename (*.H): ome	es5/marf2925/projects/GSB_small/inline_dip_lum_filt_d_mig_GSB_small_1.H	Browse		
Crossline Dip Filename (*.H): es5/	marf2925/projects/GSB_small/crossline_dip_lum_filt_d_mig_GSB_small_1.H	Browse		
Average Power Spectrum Filename (*.H):][Browse		
· Unique Project Name: d_m	ig_GSB_small			
Suffix: 0				
Verbose Output?				
Primary parameters Ana	alysis window parameters Parallelization parameters			
Use MPI: 🗹				
Processors per node: 24	Determine Maximum Processors on localhost			
Node list (separated by blanks):	localhost			
Build an LSF Script?	Do Not Run Under LSF			
Build a PBS Script?	Do Not Run Under PBS			
Build a SLURM Script?	Do Not Run Under SLURM			
Maximum LSF run time (hrs):	10			
Maximum number of processors	per node: 40			
Available batch processors:	2			
	Determine Optimum Number of Batch Processors			
Batch Queue:				
(c) 2008-2017 AASPI for Linux - T	The University of Oklahoma	Execu	ıte <u>s</u> imil	arity3d

After selecting all the parameters, you wish to change, click *Execute similarity3d* and generate several output files:

1401 Jan	5 16:47	similarity3d.parms
37 Jan	5 16:47	live_processor_list
2325 Jan	5 16:47	inline_energy_gradient_GSB_small_0_broadband.H00
4981 Jan	5 16:47	inline_energy_gradient_GSB_small_0_broadband.H
2328 Jan	5 16:47	crossline_energy_gradient_GSB_small_0_broadband.H00
4990 Jan	5 16:47	crossline_energy_gradient_GSB_small_0_broadband.H
2316 Jan	5 16:47	sobel_filter_similarity_GSB_small_0.H00
4744 Jan	5 16:47	sobel_filter_similarity_GSB_small_0.H
2327 Jan	5 16:47	outer_product_similarity_GSB_small_0_broadband.H00
4777 Jan	5 16:47	outer_product_similarity_GSB_small_0_broadband.H
2326 Jan	5 16:47	energy_ratio_similarity_GSB_small_0_broadband.H00
4774 Jan	5 16:47	energy_ratio_similarity_GSB_small_0_broadband.H
2313 Jan	5 16:47	filter_coeff_similarity3d_GSB_small_0.H00
4625 Jan	5 16:47	filter_coeff_similarity3d_GSB_small_0.H
82042 Jan	5 17:01	similarity3d_GSB_small_0.out

The *similarity3d.parms* file contains the parameters defined by the GUI, which in turn is read by a python script called aaspi_similarity.py that invokes the executable program **similarity3d** (see the documentation on AASPI software structure for more details). The *live_processor_list*

contains a list of the 24 cores that I wished to run on. This list is checked by the software to assure that they indeed exist and can be used.

Next in the above list appear the AASPI-format output files. The names echo the previously checked attributes under the *Desired Attribute Output tab*. Notice that several of these have the suffix "broadband" attached to them. These are attributes computed for the entire frequency band defined by the broadband filter entered in the *Filter bank definition* tab which is typically the original bandwidth of the input data. The last file listed, *similarity3d_GSB_small_0.out* is the "output" file that contains information internal to the program. This is the file to examine if the software encounters errors. The AASPI software team works hard to provide useful error messages for errors we have encountered to date. More important, the team works even harder to capture these potential errors in the interactive GUI where they can be readily addressed. The beginning of this **.out* file echoes the python script parameters:

item[use_mpi]=y item[processors_per_node]=24 processors_per_node= 24 item[node_list]=localhost item[use_mpi]=y item[verbose]=n item[input_fn]=/ouhomes5/marf2925/projects/GSB_small/d_mig_GSB_small.H item[average_power_spectrum_fn]= item[inline_dip_fn]=/ouhomes5/marf2925/projects/GSB_small/inline_dip_lum_filt_d_mig_GSB_small_1.H item[crossline_dip_fn]=/ouhomes5/marf2925/projects/GSB_small/crossline_dip_lum_filt_d_mig_GSB_small_1.H item[energy_ratio_similarity_fn]=energy_ratio_similarity_GSB_small_0.H item[sobel_filter_similarity_fn]=sobel_filter_similarity_GSB_small_0.H item[outer_product_similarity_fn]=outer_product_similarity_GSB_small_0.H item[inline_energy_gradient_fn]=inline_energy_gradient_GSB_small_0.H item[crossline_energy_gradient_fn]=crossline_energy_gradient_GSB_small_0.H item[coherent_energy_fn]= item[total_energy_fn]= item[filter_coeff_fn]=filter_coeff_similarity3d_GSB_small_0.H item[error_fn]=similarity3d_GSB_small_0.err item[inline_window_radius]=12,5104 item[crossline_window_radius]=25.0207 item[unique_project_name]=GSB_small item[suffix]=0 item[cov_window_height]=0.02 item[f_ref_percentile]=80 item[percent_taper]=20 item[dtheta_interp]=0.25 item[similarity_power]=2 item[similarity_mean]=0 item[constant_vector]=y item[remove_data_mean] does NOT exist! item[wr_band_limited_attributes]=n item[wr_multispectral_attributes]=n item[f_low]=5 item[f_high]=120 item[f_width]=0 item[balance_cov]=n item[output_coh_at_envelope_peaks] does NOT exist! item[percentile_avg_spectrum] does NOT exist! item[use_adaptive_windows]=n item[full_window_energy] does NOT exist! item[rectangular_window]=y item[build_lsf_script]=n item[build_pbs_script]=n

which are then put into the calling arguments of the message-passing interface routine **mpirun**:

[./live_processor_list]
[~v] [/vuhomes/marf2925/AASPI_GIT/bin64/similarity3d] ["average_power_spectrum_fn="] ["balance_cov=n"] ["balance_cov=n"]
["constant_vector=y"] ["cons_tmi_vector=y"] ["cov_window_height=0.02"] ["crossline_dip_fn=/ouhomes5/warf2925/projects/GSB_small/crossline_dip_lum_filt_d_mig_GSB_small_1.H"] ["crossline_energy_creations_fn=crossline_energy_creation_fCSB_small_0.H"]
["crossline_window_radius=25,0207"] ["dtheta_interp=0.25"] ["energy_ratio_similarity_fn=energy_ratio_similarity_GSB_small_0.H"]
["f_high=120"] ["f_low=5"] ["f_ref_percentile=80"] ["f_width=20"]
["filter_coeff_fn=filter_coeff_similarity3d_GSB_small_0,H"] ["inline_dip_fn=/ouhomes5/marf2925/projects/GSB_small/inline_dip_lum_filt_d_mig_GSB_small_1,H"] ["inline_energy_gradient_fn=inline_energy_gradient_GSB_small_0,H"] ["inline_mindow_radius=12_5104"]
["input_fn/ouhomes5/marf2925/projects/GSB_small/d_mig_GSB_small.H"] ["outer_product_similarity_fn=outer_product_similarity_GSB_small_0.H"] ["percent_taper=20"] ["rectangular_window=y"]
["similarity_mean=0"] ["similarity_power=2"] ["sobel_filter_similarity_fn=sobel_filter_similarity_GSB_small_0,H"] ["suffix=0"]
["total_energy_fn="] ["unique_project_name=GSB_small"] ["use_adaptive_windows=n"] ["use_umpi=g"]
["verbose=n"] ["wr_band_limited_attributes=n"] ["wr_multispectral_attributes=n"]
18 send process_name = tripolite.ou.edu
19 send process_name = tripolite.ou.edu
21 send process_name = tripolite.ou.edu
22 send process_name = tripolite.ou.edu
this program will be run as multiple processes under MPI! number of processes 25 0 receive process_name = tripolite.ou.edu

Lower down in the image above, note that some of the processors declare that they been accessed. Internal to the output, the software echoes out its progress (all this output also appears in the Linux xterm or Windows window from which **aaspi_util** was launched):

0: first_line_out,current_line,last_line_out,ETA	2501	2511	3801	0.290 h
0: first_line_out,current_line,last_line_out,ETA	2501	2513	3801	0₊293 h
0: first_line_out,current_line,last_line_out,ETA	2501	2515	3801	0,292 h
0: first_line_out,current_line,last_line_out,ETA	2501	2517	3801	0,292 h
0: first_line_out,current_line,last_line_out,ETA	2501	2519	3801	0.291 h
0: first_line_out,current_line,last_line_out,ETA	2501	2521	3801	0,290 h
0: first_line_out,current_line,last_line_out,ETA	2501	2523	3801	0,287 h
0: first_line_out,current_line,last_line_out,ETA	2501	2525	3801	0.284 h
0: first_line_out,current_line,last_line_out,ETA	2501	2527	3801	0,283 h
0: first_line_out,current_line,last_line_out,ETA	2501	2529	3801	0.282 h
0: first_line_out,current_line,last_line_out,ETA	2501	2531	3801	0,280 h
0: first_line_out,current_line,last_line_out,ETA	2501	2533	3801	0,279 h
0: first_line_out,current_line,last_line_out,ETA	2501	2535	3801	0,278 h
0: first_line_out,current_line,last_line_out,ETA	2501	2537	3801	0,277 h
0: first_line_out,current_line,last_line_out,ETA	2501	2539	3801	0.275 h
0: first_line_out,current_line,last_line_out,ETA	2501	2541	3801	0.274 h
0: first_line_out,current_line,last_line_out,ETA	2501	2543	3801	0,273 h

where we see the first and last line to be run, the current line, and the "estimated time of arrival" or ETA for job completion in hours. The AASPI programming convention is to preface any printout by the processor number followed by a colon, ":". The lines in the printout above are all preceded by "0:", indicating that these messages are generated by the master process.

At the bottom of the output file, you will find the files being closed by the master process, normal completion messages by all processes, and some statistics on the computation by each process. Note the prefixes ranging from "1:" to "24:" in the screen capture below, indicating normal completion on each of the 24 slaves. The times are wall-clock times, such that if other compute-intensive processes are using the cycles on even one process, inter-process synchronization will cause the entire program to slow down. In this case, the test program took 0.287 hr to complete running on 12 dual core processors (for a total of 24 CPUs).

Theory: Eigenvectors and Eigenvectors

While all students of linear algebra learn the mathematical definition and numerical computation of eigenvalues and eigenvectors, very few have learned their physical significance. Along with simple measures of statistics such as the mean, median, percentiles, and variance, eigenvectors and eigenvalues are among the most useful mathematical tools in seismic data analysis and have particular value in image processing and pattern recognition. Any matrix can be decomposed into eigenvalues and eigenvectors (Kirlin and Done, 1999). Other than for least-squares fitting, most of the matrices we encounter in attribute analysis will be square. The covariance matrices described in the previous theory box will be real, square, symmetric matrices resulting in non-negative eigenvalues. For square matrices, one can write:

$$\sum_{m=1}^{M} C_{nm} v_m^{(k)} = \lambda_k v_n^{(k)},$$

or in matrix form

$$\mathbf{C}\mathbf{v}^{(k)} = \lambda_k \mathbf{v}^{(k)}, \tag{3}$$

where **C** is an *M*-by-M square covariance matrix, λ_k is the k^{th} eigenvalue and $\mathbf{v}^{(k)}$ is its corresponding eigenvector. In general, there are *M* eigenvalue-eigenvector pairs (equal to the number of traces used to construct **C**), though not all of them need to be different, and where some of the eigenvalues λ_k may equal 0, indicating a rank-deficient matrix. By convention, the eigenvectors are normalized to be vectors of unit length

$$\sum_{j=1}^{J} \left(v_{j}^{(k)} \right) = 1,$$
(4a)

while the eigenvalue-eigenvector pairs are sorted from largest to smallest

$$\left|\lambda_{1}\right| \geq \left|\lambda_{2}\right| \geq \ldots \geq \left|\lambda_{J}\right|. \tag{4b}$$

Be forewarned that the positive and negative direction of the eigenvector is undefined. This direction will be defined when forming a principal component.

(2)

19:	read and scale data	0,000	0,000	
19:	send data via MPI	0,000	0.000	
19:	receive data via MPI	0.063	0.008	
19:	send results via MPI	0.001	0.000	
19:	receive results via MPI	0.000	0.000	
19:	Hilbert transform	0.001	0.000	
19+	calculate cov matrix	0.000	0.000	
19+	calculate eigenvectors	0.008	0.001	
19+	project data onto ul	0.001	0,000	
19+	write results to disk	0.000	0,000	
19+	total time	0.287	0.039	
10+	19 * memoru residino onlu on slaves deallor	v.20r	0.000	
	19 * shared arrays residing on both master	and slave de:	allocated	
	18 number of traces processed* 26691	and stave de. 1	11000000	
proc	need to hamber of craces processed, 2003.	time (br)	time/trace (s)	
18+	read and scale data	0.000	0.000	
10+	eend data waa MPI	0,000	0,000	
10+	seno data via MPI	0.059	0,000	
10+	aced populto with MPI	0.001	0.000	
10+	sciule soults via MPI	0.000	0.000	
10+	Hilbort transform	0.001	0,000	
10;	Hilbert transform	0.001	0.000	
10;	calculate cov matrix	0.000	0.000	
10:	calculate eigenvectors	0.000	0.001	
10:	project data onto VI	0.001	0.000	
101	Write results to disk	0,000	0.000	
10:	tutai time 10 • eseren estátus enla en aleman dealle:	V.20/	0.053	
	10 t along residing only on slaves deallou	cated	-11	
-+-1	data umittan ta dialet 7250255 teasa	OF1 openlar		
LUCAI	data written to disk: 3230233 traces	Sor samples	s	
ucar (popol	Con note +			
manst	ren nale : To,004 mbyles/s			
	v : memory deallocated residing only on ma 0 t shaned suggest passiding on both pasts	aster dealloca		
	V ; snared arrays residing on both master	ano siave oe≀ ⊣	allocated	
	2 thermal completion, program similarity30	1		
	E thormal completion, program similarity30	4		
	5 thornal completion, program similarity30	1		
	9 thermal completion, program similarity30	1		
	9 thermal completion, program similarity/	4		
	7 thermal completion, program similarity30	4		
	27 thermal completion, program similarity30	4		
	1 thermal completion, program similarity/	1		
	11 thormal completion, program similarity30	4		
	14 thermal completion, program similarity30	4		
	10 thermal completion, program similarity30	4		
	12 thormal completion, program SimilaritySu	4		
	17 thermal completion, program similarity/	1		
	17 thermal completion, program similarity/	1		
	24 thermal completion, program similarity30	1		
	24 inormal completion, program similaritys	1		
	18 thormal completion, program SimilaritySu	4		
	21 thermal completion, program SimilaritySt	4		
	19 thermal completion, program SimilaritySo	4		
	0 thermal completion, program Similarity30	4		
loot	o filet /oubomes5/manf2925/one-ieste/CCD avail/	J procelina di-	lum filt d min CCP orall	1 4
1081	Ig file; /ounomess/martz323/projects/638_small/(prossiine_dip	lum filt d min CSB cmpll 4	N
	Closing file: /ouhomes/Mart2323/HHor1_Data/Cf	Planall/anaco	line die lum filt dimie C	
	Closing file: /ouhomes/manf2325/projects/65	occoline die	lim_filt_d_mio_CCD_cmall_4	D_SMail_i,H
	Closing file: /ouhomes/Warf2025/HHSF1_Data/Cf	B small/oppose	lipe dip lum filt d min CO	R email 4 LOO
losi	of filet /ouhomes5/manf2925/ongiests/CCD ows11//	d min CSB cmp	ппе_агр_там_тттс_а_M19_63 П Ц	p_smarr_r.Hee
1031	Closing filet /outpress/mart2323/projects/638_SMail/(Closing filet /outpress/mart29995/00CBI Data/d	_mig_Cob_SMA. _mig_COB_small	1 40	

The output contains a fairly long list of files:

EO4 4	T	4.0	00+40	askal College stationstate CCD anall O basedhand U
5014	Jan	10	08:19	sobel_filter_similarity_GSB_small_V_DroadDand_H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_V97.V-120.V-120.V-143.V.H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_074.097.097.0-120.0.H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_051.074.074.097.0.H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_05.028.028.051.0.H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_028.051.051.074.0.H
5059	Jan	10	08:19	sobel_filter_similarity_GSB_small_00.05.05.028.0.H
4873	Jan	10	08:19	outer_product_similarity_GSB_small_05.028.028.051.0.H
4873	Jan	10	08:19	outer_product_similarity_GSB_small_00.05.05.028.0.H
4840	Jan	10	08:19	energy_ratio_similarity_GSB_small_0_multi-spectral.H
4825	Jan	10	08:19	energy_ratio_similarity_GSB_small_0_broadband.H
4870	Jan	10	08:19	energy_ratio_similarity_GSB_small_097.0-120.0-120.0-143.0.H
4870	Jan	10	08:19	energy_ratio_similarity_GSB_small_074.097.097.0-120.0.H
4870	Jan	10	08:19	energy_ratio_similarity_GSB_small_051.074.074.097.0.H
4870	Jan	10	08:19	energy ratio similarity GSB small 0 5.028.028.051.0.H
4870	Jan	10	08:19	energy_ratio_similarity_GSB_small_028.051.051.074.0.H
4870	Jan	10	08:19	energy ratio_similarity_GSB_small_00.05.05.028.0.H
4843	Jan	10	08:19	outer_product_similarity_GSB_small_0_multi-spectral.H
4828	Jan	10	08:19	outer_product_similarity_GSB_small_0_broadband.H
4873	Jan	10	08:19	outer product similarity GSB small 0 97.0-120.0-120.0-143.0.H
4873	Jan	10	08:19	outer_product_similarity_GSB_small_074.097.097.0-120.0.H
4873	Jan	10	08:19	outer_product_similarity_GSB_small_051.074.074.097.0.H
4873	Jan	10	08:19	outer_product_similarity_GSB_small_028.051.051.074.0.H
5050	Jan	10	08:19	inline energy gradient GSB small 0 multi-spectral.H
5035	Jan	10	08:19	inline energy gradient GSB small 0 broadband.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 97.0-120.0-120.0-143.0.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 74.097.097.0-120.0.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 51.074.074.097.0.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 5.028.028.051.0.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 28.051.051.074.0.H
5080	Jan	10	08:19	inline energy gradient GSB small 0 0.05.05.028.0.H
5063	Jan	10	08:19	crossline energy gradient GSB small 0 multi-spectral.H
5048	Jan	10	08:19	crossline energy gradient GSB small 0 broadband.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 97.0-120.0-120.0-143.0.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 74.097.097.0-120.0.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 51.074.074.097.0.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 5.028.028.051.0.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 28.051.051.074.0.H
5093	Jan	10	08:19	crossline energy gradient GSB small 0 0.05.05.028.0.H
0070	Taur	10	00+70	L ITA.D. II

Where the attributes computed for each of the six filter banks have the values of the Ormsby filter appended to their names, a broad band result, and multi-spectral results where appropriate. At present, there is no multispectral result for total energy or coherent energy, though let us know if you think such output might be useful.

Examples

similarity3d provides a suite of different edge-detection attributes. The energy ratio similarity attribute produces results like the eigenstructure coherence algorithm described by Gersztenkorn and Marfurt (1999) with the difference that it is computed along structure and uses analytic traces (the original traces and their Hilbert transform or quadrature) rather than simply, the real traces in the computation. Numerically, energy ratio similarity is the ratio of the energy of the Karhunen-Loève filtered data over the total (unfiltered) energy of the input data within the analysis window. The total energy through a time slice at t=1.760 s through the GSB survey looks like the following image (see next page).

The corresponding time slice through the coherent energy volume looks very similar:

Figure 3.

Theory: Principal Components, Karhunen-Loève Filtering, and the Total vs. Coherent Energy Attributes

Because principal components are scaled versions of the eigenvectors, they are informally used interchangeably with each other. Recall that the eigenvectors have been scaled to be of unit length. In contrast, the *j*th principal component is a scaled version of the *j*th eigenvector, $\mathbf{v}^{(j)}$, where the scale factor is the inner product or correlation of the eigenvector (in this equation considered to be an eigenmap) with a sample vector (*M*-trace data slice) that contains the analysis point (t_0, x_n, y_n) at the center of the window:

$$d_{PC}^{(j)}(t_0, x_n, y_n) = \sum_{m=1}^{M} \left[v^{(j)}(x_m, y_m) d(t_0, x_m, y_m) \right] v^{(j)}(x_n, y_n),$$
(5)

where *M* is the number of traces in the analysis window and *J*=*M* is the total number of eigenvalue-eigenvector pairs. The data can be reconstructed by summing the principal components:

$$d_{PC-filt}(t_0, x_n, y_n) = \sum_{j=1}^{L} d_{PC}^{(j)}(t_0, x_n, y_n) .$$
(6)

If L=J, the total number of principal components, we reconstruct the original data. If L<J, we obtain a filtered version of the data, where the first few principal components represent the more correlated part of the data and the latter principal components represent successively less correlated parts of the data, such as random noise or cross-cutting coherent reflectors that are misaligned with the analysis window. For small analysis windows comprising 5 or 9 traces, the first principal component (where L=1) usually represents more than 95% of the data variability and provides a good filter. In contrast, for larger windows comprising 25 or more traces, such a simple filter may be too aggressive, where L=2 or 3 better represents the coherent signal.

Marfurt (2006) provides details on principal component structure-oriented filtering, while Chopra and Marfurt (2007) show the differences between principal component, mean, median, alpha-trimmed mean, and lowerupper-middle (LUM) filters. These latter four filters are a function only of the sample vector (data slice) that contains the analysis point (e.g., for the mean filter, the average of the samples along the center data slice). In contrast, the PC filter first constructs a covariance matrix from the 2K+1 sample vectors, and then computes the eigenvectors $\mathbf{v}^{(j)}$ prior to cross-correlating it with the center sample vector. These eigenvectors are thus based on the statistics of neighboring sample vectors, and not just the single sample vector through the analysis point. Interpreters and statisticians commonly refer to the above equation as a "principal-component filter". However, this filter has been used in seismic data processing for decades where it is more commonly called the Karhunen-Loève filter (e.g., Hemon and Macé, 1978; Kirlin and Done, 1999). Depending on the data quality, one may wish to sum more than one principal component to obtain a quality image that preserves signal but rejects noise (Davogustto et al., 2011).

The total energy attribute is simply the sum of the energy of the weighted/balanced analytic traces described in equation 1b used to compute the covariance matrix:

$$E_{tot} = \sum_{k=-K}^{+K} \sum_{m=1}^{M} \left\{ d(t_k, x_m, y_m)^2 + \left[d^H(t_k, x_m, y_m)^2 \right] \right\}.$$
(7)

In contrast, the coherent energy attribute is the sum of the energy of the corresponding weighted/balanced PC-filtered traces:

$$E_{coh} = \sum_{j=1}^{L} \sum_{k=-K}^{+K} \sum_{m=1}^{M} \left\{ \left[d_{PC}^{(j)}(t_k, x_m, y_m) \right]^2 + \left[d_{PC}^{(j)H}(t_k, x_m, y_m) \right]^2 \right\}.$$
(8)

However, when taking the ratio of the coherent energy to the total energy volumes the time slice through the energy ratio similarity volume shows significant detail:

Figure 4.

Theory: Eigenstructure Coherence and Energy ratio Coherence

The eigenstructure coherence described by Gersztenkorn and Marfurt (1999) was computed from the eigenvalues of the covariance matrix:

$$c_{eigen} = \frac{\lambda_1}{\sum_{j=1}^J \lambda_j} \,. \tag{9}$$

The closely related but slightly more general energy ratio coherence described by Chopra and Marfurt (2007) is the ratio between the coherent to the total energy in the analysis window, each of which were described in a previous theory box:

$$c_{ratio} = \frac{E_{coh}}{E_{tot}} \,. \tag{10}$$

In principle, one could limit the sum of the two energy values to be just that of the center trace, which might provide improved lateral resolution. In practice, such estimates are noisier than the full window estimates and have been disabled in the software.

Co-rendering the coherent energy plotted against a fire color bar with the energy ratio coherence plotted against a monochrome black color bar using the AASPI program **corender** one gives:

Figure 5.

The overlying gray scale on top of the gray part of the fire color bar is a poor choice since it leads to "gray on gray", thereby losing the edges. I therefore modify the settings to use a rainbow color bar as shown in the following screen capture images (see next page):

Figure 6.

Let us now turn to the outer product similarity, which, as discussed in the theory box, contains both eigenstructure coherence and semblance coherence as special cases. Selecting the constant test vector (defaulted) the structure-oriented, semblance similarity computed from the same analytic traces (indeed the same covariance matrix, **C**) as the energy ratio similarity image, one obtains the following image:

Figure 7.

The differences between energy ratio similarity and semblance are quite subtle. As discussed by Chopra and Marfurt (2007), one can also think of semblance-based coherence to be the ratio between the coherent energy and total energy in an analysis window, except that the "coherent component" of the data is defined by the average trace rather than by the first principal component. Further analysis will show that for a consistent waveform exhibiting laterally variable amplitudes, all the lateral variability can be represented by the first eigenvector, such that the energy ratio coherence will have a value of 1.0. In contrast, since the amplitudes differ between each trace, the semblance will no longer be zero. When animating between these two images, note first that the fault and channel edges are slightly sharper in the energy ratio similarity. However, also note that some of the channels appear more coherent in the energy ratio similarity image but show more internal detail in the outer product (semblance) similarity. These lateral changes in amplitude for a fixed waveform will be

expressed by the eigenvector and will be captured by the energy-weighted coherent amplitude gradient discussed later.

Theory: Outer-product and generalized semblance-based similarity

Semblance is well known to geophysicists who have done seismic velocity analysis. After its introduction by Bahorich and Farmer (1995), Marfurt et al. (1999) improved upon the original 3-trace cross-correlation algorithm by using a structure-oriented M-trace semblance coherence estimate:

$$c_{semb} = \frac{\sum_{k=-K}^{+K} \left\{ \frac{1}{M} \sum_{m=1}^{M} [d(t_k, x_m, y_m)] \right\}^2}{\sum_{k=-K}^{+K} \frac{1}{M} \left\{ \sum_{m=1}^{M} [d(t_k, x_m, y_m)]^2 \right\}},$$
(11)

that can be interpreted to be the ratio of the energy of the average trace (in the numerator) to the average of the energies of each of the traces (in the denominator).

Using the more compact matrix notation, the outer-product similarity is defined to be:

$$c_{outer} = \frac{\mathbf{r}^{\mathrm{T}} \mathbf{C} \mathbf{r}}{E_{tot}},\tag{12}$$

Where E_{tot} is the total energy defined earlier, and **r** is a test vector (e.g., Kirlin and Done, 1999). A reasonable test vector is to use the sample vector (structure-oriented amplitude slice) used to construct the covariance matrix **C** that contains the analysis point. If one sets **r**=**v**⁽¹⁾, that is, to be the first eigenvector, one obtains eigenstructure coherence. Finally, if one sets

$$\mathbf{r} = \frac{1}{M^{1/2}} \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix},$$
(13)

One obtains a semblance estimate of coherence. The primary advantage of using this more general definition is that it allows one to compute semblance from laterally tapered windows of the analytic traces, facilitating a data-adaptive window computation of semblance (Lin, 2016).

Next, let us look at the differences between the outer product similarity computed using a constant test vector **r** described in the theory box above, to one using the sample vector containing the analysis point (i.e., uncheck the box after *Use constant test vector in outer product similarity*). The result looks like this:

For computational reasons, I think it is more efficient to compute a shorter wavelength (higher spatial resolution) inline and crossline coherent energy gradient, and then filter the results back using long wavelength amplitude curvature.

Figure 8.

Sobel-filter similarity is like that found along with other sharpening algorithms Photoshop and other image-processing software and is related to the algorithm described by Luo et al. (2003) using the generalized Hilbert transforms. Simply put, it is the magnitude of the inline and crossline derivatives of seismic amplitude along structural dip. The time slice at t=1.760 s looks like those generated by the energy ratio and semblance algorithms:

Figure 9.

Luo et al. (2003) use large operators, which will work well for relatively flat geology. However, for more complex structure, such operators should either follow dip or be applied to flattened volumes. An alternative workflow to obtain a long-wavelength amplitude-based edge detection is to first compute the inline and crossline components of the coherent energy gradient, and then use them as input to compute amplitude curvature in program **curvature3d**.

Theory: Sobel filter similarity

The Sobel filter is one of the more popular filters used in image processing and is embedded in most digital camera photo enhancement software. Luo et al. (1995) generalized the Sobel filter for application to seismic data by normalizing the inline and crossline derivatives by the energy. The details of their normalization are not defined. Generalizing the derivatives in x and y (always computed along structure) to be convolution operators $D^{(x)}$ and $D^{(y)}$:

$$\frac{\partial d}{\partial x} = \sum_{j=1}^{J} D_{j}^{(x)} d_{j} \text{ , and}$$
(14a)

$$\frac{\partial d}{\partial y} = \sum_{j=1}^{J} D_j^{(y)} d_j .$$
(14b)

The Sobel filter similarity can be defined as,

$$c_{Sobel} = \frac{\sum_{k=-K}^{+K} \left\{ \left[\sum_{j=1}^{J} D_{j}^{(x)} d_{j} \right]^{2} + \left[\sum_{j=1}^{J} D_{j}^{(y)} d_{j} \right]^{2} + \left[\sum_{j=1}^{J} D_{j}^{(x)} d_{j}^{H} \right]^{2} + \left[\sum_{j=1}^{J} D_{j}^{(y)} d_{j}^{H} \right]^{2} \right\}^{1/2}}{\sum_{k=-K}^{+K} \left\{ \left[\sum_{j=1}^{J} \left| D_{j}^{(x)} \right| \left| d_{j} \right| \right]^{2} + \left[\sum_{j=1}^{J} \left| D_{j}^{(y)} \right| \left| d_{j} \right| \right]^{2} + \left[\sum_{j=1}^{J} \left| D_{j}^{(x)} \right| \left| d_{j} \right| \right]^{2} + \left[\sum_{j=1}^{J} \left| D_{j}^{(x)} \right| \left| d_{j} \right| \right]^{2} + \left[\sum_{j=1}^{J} \left| D_{j}^{(x)} \right| \left| d_{j} \right| \right]^{2} + \left[\sum_{j=1}^{J} \left| D_{j}^{(x)} \right| \left| d_{j} \right| \right]^{2} \right\}^{1/2},$$
(15)

where the values in the denominator are absolute values, forming a normalization. In the figures in this book, the spatial derivatives are computed using the spatial derivative operator defined by Marfurt (2006). As the analysis window becomes larger, the derivatives in the Sobel filter approximate the inline and crossline Hilbert transform, providing long wavelength results like that described by Luo et al. (2003).

The coherent energy gradient is a vector and has two components – an inline and a crossline component. The simplest way to understand it to is to envision a time structure map about which one has computed the RMS amplitude in a ± 20 ms window. Now, using your interpretation workstation attribute calculator, compute the derivative first in the inline and then in the crossline directions, giving RMS amplitude gradients. Alternatively, compute the envelope volumetrically. Then compute an inline and crossline derivative as described by Barnes (2011). A naïve application would give rise to structural leakage artifacts, described by, and addressed by Barnes (2011), although the algorithmic details of the artifact suppression are not disclosed.

similarity3d also computes amplitude derivatives, but along structural dip. Specifically, since the data in an analysis window can be estimated by its first "eigenmap" (the first eigenvector), we can compute inline and crossline derivatives of the coherent part of the energy (see theory box) by computing the derivative of the eigenmap. **similarity3d** then allows us to weight these derivatives by either the energy or the RMS amplitude (square root of the energy given by the first eigenvalue, λ_1) for interpretation and as input to program **curvature3d**. The resulting inline

and crossline coherent energy gradients looks much like shaded relief maps, except they are shades of the lateral variation of energy, not of time structure.

Theory: The Coherent Energy (or RMS Amplitude-) Weighted Amplitude Gradient

Like most volumetric attributes, the computation is performed in a running analysis window centered and aligned with the local estimate of structural dip and azimuth. A typical analysis window may consist of 3 by 3 or *J*=9 traces and $\pm K$ =5 time or depth samples which are used to construct a *J*-*by*-*J* covariance matrix, **C**, as defined in equation 1 using both the original data, **d**, and its Hilbert transform, **d**^H. Next, one computes the *J* eigenvectors, **v**^(j) of the covariance matrix, **C** (also described in Appendix 1).

The first unit length eigenvector, $\mathbf{v}^{(1)}$, best represents the seismic amplitude variation laterally across the *J*-trace analysis window. The corresponding first eigenvalue, λ_1 , represents the energy represented by this eigenvector. Since the *J*-trace analysis window extends laterally in the inline and crossline directions, the eigenvector $\mathbf{v}^{(1)}$ defines a small (e.g. 3×3) map. The derivatives of this map are simply

$$\frac{\partial v^{(1)}}{\partial x} = \sum_{j=1}^{J} D_{1j}^{(x)} v_j^{(1)} \text{, and}$$

$$\frac{\partial v^{(1)}}{\partial x} = \frac{J}{2}$$
(16a)

$$\frac{\partial v^{(1)}}{\partial y} = \sum_{j=1}^{J} D_{1j}^{(y)} v_j^{(1)} \,. \tag{16b}$$

Where $\mathbf{D}_1^{(x)}$ and $\mathbf{D}_1^{(y)}$ are convolution operators that approximate the first derivative on the seismic grid.

Since λ_1 represents the energy of the window, the energy-weighted amplitude gradient, **g**, is simply

$$\mathbf{g} = \begin{bmatrix} g_x \\ g_y \end{bmatrix} \equiv \lambda_1 \begin{bmatrix} \frac{\partial v^{(1)}(x, y)}{\partial x} \\ \frac{\partial v^{(1)}(x, y)}{\partial y} \end{bmatrix}.$$
(17)

Our initial implementation used the weight λ_1 , which by construction emphasized the higher energy reflectors in the seismic data volume. To obtain an image more representative of the range of seismic amplitudes, one can weigh the gradients as,

$$\mathbf{g} = \begin{bmatrix} g_x \\ g_y \end{bmatrix} \equiv \sqrt{\lambda_1} \begin{bmatrix} \frac{\partial v^{(1)}(x, y)}{\partial x} \\ \frac{\partial v^{(1)}(x, y)}{\partial y} \end{bmatrix},$$
(18)

where $\sqrt{\lambda_1}$ can be interpreted as the RMS amplitude of the coherent component of the seismic data within the analysis window. Very effective displays can be made by co-rending the coherent energy and the coherent energy gradient, with the former being plotted against a heat or fire color bar and the latter being plotted against a grayscale and rendered 50% transparent.

Since it is a vector, the coherent energy gradient, \mathbf{g} , can be rotated to be aligned with an azimuth φ using simple trigonometry

$$\mathbf{g}(\varphi) = \begin{bmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{bmatrix} \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$
(19)
using AASPI program **apparent_cmpt** or an attribute calculator in your interpretation workstation.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Co-rendering these gradients using program **corender**, with coherent energy as the base attribute, and a binary black-white color bar for the gradient components, and transparency = 100 at gradient values of 0, gives the following two images:

Figure 14.

Figure 15.

Since it is a 2D vector, the coherent energy gradient can be rotated, much like a shaded relieve volume can. Ideally, one would do this using commercial software to allow a degree of interactivity. If your software does not have such functionality, use aaspi program **apparent_cmpt** to do so to obtain images like these:

Geometric Attributes: Program similarity3d

Figure 16.

Theory: Energy- and RMS amplitude weighted Laplacian filters

The Laplacian filter is another popular filter used in image processing and embedded in most digital camera photo enhancement software. Until December 2020, we computed the Laplacian filter by calculating the *mean* amplitude curvature using program **curvature3d** and the inline and crossline amplitude gradients as input. While this multistep process provides a great deal of flexibility, computing the mean amplitude curvature within similarity3d provides an opportunity to not only compute the Laplacian of multiple spectral components, but also, by summing the covariance matrices for each filter bank as described below, to compute a multispectral Laplacian filter. As with the amplitude gradient, the 2nd derivatives in in x and y (always computed along structure) are approximated by convolution operators $D_2^{(x)}$ and $D_2^{(y)}$ that use all the data in the analysis window:

$$\frac{\partial^2 v^{(1)}}{\partial x^2} = \sum_{j=1}^J D_{2j}^{(x)} v_j^{(1)}, \text{ and}$$
(20a)
$$\frac{\partial^2 v^{(1)}}{\partial y^2} = \sum_{j=1}^J D_{2j}^{(y)} v_j^{(1)},$$
(20b)

where $\mathbf{v}^{(1)}$ is the first eigenvector, which best represents the lateral amplitude pattern in both the original data, d_j and its Hilbert transform d_j^{H} .

Because the eigenvector by definition is a unit vector, $| \mathbf{v}^{(1)} | \equiv 1$, we can normalize the Laplacian by the coherent energy, E_{coh} , of the analysis window, which is the first eigenvector, λ_1 ,

$$L_{\text{energy-weighted}} = \lambda_1 \left(\frac{\partial^2 v^{(1)}}{\partial x^2} + \frac{\partial^2 v^{(1)}}{\partial y^2} \right), \tag{21}$$

Or by the coherent RMS amplitude of the analysis window

$$L_{\text{RMS-amplitude-weighted}} = \sqrt{\lambda_1} \left(\frac{\partial^2 v^{(1)}}{\partial x^2} + \frac{\partial^2 v^{(1)}}{\partial y^2} \right).$$
(22)

Figure 17. Time slice at t=1.76 s through the energy-weighted Laplacian showing faulting in the lower right and channels cutting through the slope in the middle. This image provides less insight into the geology than those using the energy-weighted gradient and energy ratio coherence.

Figure 18. In contrast, the energy-weighted Laplacian shows very nice delineation of the hexagonal syneresis features at t=1.52 s where we see large features in the center and smaller features on the right, which are likely controlled by the lithology. The linear features on the left correlate to downlapping reflectors on the slope.

Figure 19. The time slice at t=1.24 s appears to show many of the smaller faults that were note well imaged by coherence. We have seen similar detail when computing amplitude curvature using AASPI program **curvature3d**. Recall that the Laplacian is basically the mean amplitude curvature.

Multispectral Coherence, Gradients, and Laplacians

Filter banks and spectral decomposition

Hardage (2009) recognized that because of the variable signal-to-noise ratio at different frequencies, that faults were more easily identified in his data on the low frequency components that were less contaminated by strong interbed multiples. Gao (2013) showed how different components of narrow band spectral probes highlighted different edges at different frequencies. Li and Lu (2014) and Honorio et al. (2016) computed coherence from a suite of spectral components and combined them using RGB colour blending, resulting in not only improved discontinuity images, but in addition, an estimate at which spectral bands such discontinuities occurred. The main limitation of this approach is that only three spectral components can be co-rendered at any one time.

Using the spectral voices computed from programs **spec_cwt**, and **spec_cmp**, and the crosscorrelation components from **spectral_probe** as input to **similarity3d**, one can compute the coherence response for a suite of filter banks. (Note that AASPI program **spec_max_entropy** provides suboptimum input to **similarity3d** since it favors discrete rather than continuous spectral components, resulting in "holes" in the output spectral voices). However, this workflow requires running program **similarity3d** multiple times, resulting in significant intermediate output that may not be used. For this reason, in January 2017 we released a multispectral option in program **similarity3d**, which can be found on the *Filter bank definition* tab:

The Filter Bank Definition Tab (Defining Multispectral Filter Banks)

Ele similarity family, energy, and amplitude gradient attributes Seismic input filename (* H): Jouhomes6/marf2925/projects/GSB_AAPG/mig_GSB_AAPG_1H Browsee Inline dip filename (* H): Jouhomes6/marf2925/projects/GSB_AAPG/mig_dbp_lum_filt_GSB_AAPG_1H Browsee Crossline dip filename (* H): Jouhomes6/marf2925/projects/GSB_AAPG/crossline_dbp_lum_filt_GSB_AAPG_1H Browsee Average magnitude spectrum filename (* H): Jouhomes6/marf2925/projects/GSB_AAPG/crossline_dbp_lum_filt_GSB_AAPG_1H Browsee Suffix: 0 0 D D Verbose output? If Primary parameters Analysis window parameters Filter bank definition Parallelization parameters Compute multi-spectral attribute volumes Compute multispectral and broadband attributes Do NOT output attributes for each filter bank Do NOT output attributes for each filter bank (1 Ormsby broadband filter end low frequency taper (cycles/s) 0 It D (2 Ormsby broadband filter end low frequency taper (cycles/s) It Iteration and the end low frequency taper (cycles/s) Iteration and this	🗙 aaspi_similarity	3d GUI (Release	Date: 27 May	2021)					- 0	1
similarity3d - Calculate 3d similarity family, energy, and amplitude gradient attributes Seismic input filename (* H): [rouhomes6/marf2925/projects/GSB_AAPG/d_mig_GSB_AAPG_1 H] Browse Inline dip filename (* H): [rouhomes6/marf2925/projects/GSB_AAPG/rossline_dip_lum_filt_GSB_AAPG_1 H] Browse Average magnitude spectrum [rouwse] Browse Browse Verage magnitude spectrum [rouwse] Browse Browse Verage magnitude spectrum [rouwse] Browse Browse Verbose output? [rouwse] Browse Browse Verbose output? [rouwse] Browse Browse Ormsby Filter Bank Definition Parameters Compute multispectral and broadband attributes Do NOT output attributes for each filter bank 10 Ormsby Fiber Bank Definition Parameters Compute multispectral and broadband attributes Do NOT output attributes for each filter bank 12 Ormsby broadband filter begin low frequency taper (cycles/s): [0 [1 [1 13 Ormsby broadband filter begin low frequency taper (cycles/s): [10 [3 [3 [3 [3 14 Ormsby broadband filter begin low frequency taper (cycles/s): [30 [30 [30 [30 [30 [30 [30 </th <th>Eile</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Eile									
Seismic input filename (* H): Inime dip filename (* H): Inime dip filename (* H): Inimes6/marf2925/projects/GSB_AAPG/Inime_dip_lum_file_GSB_AAPG_1 H Browse Brows	similarity3d - Cal	lculate 3d sim	ilarity famil	y, energy, and amp	litude gr	adient attributes				
Inline dip filename (* JH): [ouhomes6/marf2925/projects/GSB_AAPG/inline_dip_lum_filt_GSB_AAPG_1.H Browse Crossline dip filename (* H): [homes6/marf2925/projects/GSB_AAPG/crossline_dip_lum_filt_GSB_AAPG_1.H Browse Average magnitude spectrum filename (* H): [GSB_AAPG Browse Unique project name: GSB_AAPG Browse Suffix: 0 0 Verbose output? If Filter bank definition Ormsby Filter Bank Definition Parameters Compute multispectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank 10 omsby broadband filter begin low frequency taper (cycles/s): 10 16 omsby broadband filter begin high frequency taper (cycles/s): 100 17 omsby broadband filter begin high frequency taper (cycles/s): 100 16 of Somsby broadband filter bed low frequency taper (cycles/s): 50 17 of omsby broadband filter bed in fire frequency taper (cycles/s): 100 16 of Somsby broadband filter bed in the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 70 70 90 Filter Bank 4 50 70 <td>Seismic input file</td> <td>ename (*.H):</td> <td>/ouhome</td> <td>s6/marf2925/projec</td> <td>ts/GSB_4</td> <td>APG/d_mig_GSB_AA</td> <td>APG.H</td> <td>Browse</td> <td></td> <td></td>	Seismic input file	ename (*.H):	/ouhome	s6/marf2925/projec	ts/GSB_4	APG/d_mig_GSB_AA	APG.H	Browse		
Crossline dip filename (* H): Inomes6/marf2925/projects//GSB_AAPG/crossline_dip_lum_file_GSB_AAPG_1H Browse Average magnitude spectrum Image project name: GSB_AAPG Suffix: 0 0 Verbose output? Image project name: GSB_AAPG Ormsby Filter Bank Definition Parameters Filter bank definition Parallelization parameters Compute multi-spectral attribute volumes Compute multispectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f2 Ormsby broadband filter end low frequency taper (cycles/s): 10 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f4 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f3 Ormsby broadband filter banks (0-50%)): S0 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 30 50 Filter Bank 1 0 10 30 filter Bank 2 10 30 50 filter banks </td <td>Inline dip filenam</td> <td>ne (*.H):</td> <td>/ouhomes</td> <td>s6/marf2925/projec</td> <td>ts/GSB_4</td> <td>APG/inline_dip_lum</td> <td>_filt_GSB_AAPG_1.H</td> <td>Browse</td> <td></td> <td></td>	Inline dip filenam	ne (*.H):	/ouhomes	s6/marf2925/projec	ts/GSB_4	APG/inline_dip_lum	_filt_GSB_AAPG_1.H	Browse		
Average magnitude spectrum Browse Inique project name: GSB_AAPG Suffix: 0 Verbose output? F Primary parameters Analysis window parameters Filter Bank Definition Parameters Filter bank definition Ormsby Filter Bank Definition Parameters Compute multi-spectral attribute volumes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1 Ormsby broadband filter begin low frequency taper (cycles/s): 0 f2 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f4 Ormsby broadband filter banks (0.50%): 50 raper applied to filter banks (0.50%): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 30 50 Filter Bank 1 0 10 30 filter Bank 2 70 90 90 Filter Bank 4 50 70 70 90 Filter Bank 4 50 70 90 <td>Crossline dip file</td> <td>name (*.H):</td> <td>homes6/</td> <td>marf2925/projects/</td> <td>GSB_AAF</td> <td>G/crossline_dip_lum</td> <td>filt_GSB_AAPG_1.H</td> <td>Browse</td> <td></td> <td></td>	Crossline dip file	name (*.H):	homes6/	marf2925/projects/	GSB_AAF	G/crossline_dip_lum	filt_GSB_AAPG_1.H	Browse		
Unique project name: GSB_AAPG Suffix: 0 Verbose output? Image: State of the state	Average magnitu filename	ude spectrum (*.H):						Browse		
Suffix: 0 Verbose output? I Primary parameters Analysis window parameters Filter bank definition Parallelization parameters Ormsby Filter Bank Definition Parameters Compute multi-spectral attribute volumes Compute multi-spectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank Do NOT output attributes for each filter bank f1 Ormsby broadband filter begin low frequency taper (cycles/s): 10 Filter Bank 1 Filter Bank 1 f2 Ormsby broadband filter begin high frequency taper (cycles/s): 10 Filter Bank 1 Filter Bank 1 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 50 So Filter Bank 1 f4 Ormsby broadband filter banks (0-50%): 50 So So Number of filter banks applied to the data: 5 So So Update the filter banks 10 10 30 So Filter Bank 1 0 10 10 30 Filter Bank 3 30 50 70 Filter Bank 4 50 70 Filter Bank 4 50 70 70 90 10 90 <th>Unique project n</th> <th>ame:</th> <th>GSB_AAP</th> <th>G</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Unique project n	ame:	GSB_AAP	G						
Verbose output? F Primary parameters Analysis window parameters Filter bank definition Parallelization parameters Ormsby Filter Bank Definition Parameters Compute multispectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank 10 Omsby broadband filter begin low frequency taper (cycles/s): 10 12 Omsby broadband filter end low frequency taper (cycles/s): 10 13 Omsby broadband filter end high frequency taper (cycles/s): 100 14 Omsby broadband filter end high frequency taper (cycles/s): 100 14 Omsby broadband filter end high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 30 50 Filter Bank 3 30 50 Filter Bank 4 50 70 Filter Bank 5 70 90 Filter Bank 5 0 10 Broad Band Fill 0 10 90 Broad Band Fill 0 10 <	Suffix:		0							
Primary parameters Analysis window parameters Filter bank definition Parallelization parameters Ormsby Filter Bank Definition Parameters Compute multispectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank Output attribute volumes for each filter bank Do NOT output attributes for each filter bank 11 Ormsby broadband filter begin low frequency taper (cycles/5): I0 12 Omsby broadband filter ned high frequency taper (cycles/5): I0 14 Ormsby broadband filter end high frequency taper (cycles/5): I10 17 aper applied to filter banks (0-50%)): S0 Number of filter banks (0-50%)): S0 Number of filter banks (0-50%)): S0 Vipdate the filter banks Inearly spaced filter banks? Update the filter banks Inearly spaced filter banks? Update the filter banks 30 50 70 Filter Bank 1 0 10 10 30 50 Filter Bank 3 30 50 70 Filter Bank 4 50 Filter Bank 5 70 90 110 <tr< td=""><td>Verbose output?</td><td>2</td><td>Г</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	Verbose output?	2	Г							
Ormsby Filter Bank Definition Parameters Compute multi-spectral attribute volumes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1 Ormsby broadband filter begin low frequency taper (cycles/s): f2 Ormsby broadband filter begin high frequency taper (cycles/s): f3 Ormsby broadband filter end high frequency taper (cycles/s): f4 Ormsby broadband filter end high frequency taper (cycles/s): f3 Ormsby broadband filter end high frequency taper (cycles/s): f4 Ormsby broadband filter banks (0-50%)): Taper applied to filter banks applied to the data: Construct linearly or exponentially spaced filter banks? Update the filter banks filter Bank 1 0 0 10 filter Bank 3 30 50 70 filter Bank 4 50 filter Bank 5 70 filter Bank 4 50 filter Bank 5 70 filter Bank 5 70<	Primary par	ameters	Analysis w	indow parameters	Filter	bank definition	Parallelization par	rameters 1		
Ormsby Filter Bank Definition Parameters Compute multi-spectral attribute volumes Compute multispectral and broadband attributes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1 Ormsby broadband filter begin low frequency taper (cycles/s): 0 f2 Ormsby broadband filter begin high frequency taper (cycles/s): 10 f3 Ormsby broadband filter end high frequency taper (cycles/s): 10 f4 Ormsby broadband filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? innearly spaced filter banks Update the filter banks 10 30 Filter Bank 1 0 10 30 Filter Bank 3 30 50 50 Filter Bank 4 50 70 70 90 Filter Bank 4 50 70 70 90 Filter Bank 4 50 70 70 90 110 Broad Band Fill 0 10 90 110 90 110	,									
Compute multi-spectral attribute volumes Compute multi-spectral attribute volumes Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1_Ormsby broadband filter begin low frequency taper (cycles/s): 0 f2_Ormsby broadband filter begin high frequency taper (cycles/s): 10 f3_Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4_Ormsby broadband filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 0 f1 f2 f3 f2 f3 f4 f2 f1 f2 f3 f3 f4 f3 f3 f4 f4 f1 f1 f2 f3 f4 f1 f1 f4 f1 f3 f4 <tr< td=""><td>Ormsby Filter E</td><td>Bank Definitio</td><td>n Paramete</td><td>rs</td><td></td><td></td><td></td><td>,</td><td></td><td></td></tr<>	Ormsby Filter E	Bank Definitio	n Paramete	rs				,		
Output attribute volumes for each filter bank Do NOT output attributes for each filter bank f1:Ormsby broadband filter begin low frequency taper (cycles/s): 0 f2 Ormsby broadband filter end low frequency taper (cycles/s): 10 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4:Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4:Ormsby broadband filter begin high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 10 f1:ter Bank 1 0 10 30 filter Bank 2 10 30 50 filter Bank 3 30 50 70 filter Bank 4 50 70 70 90 filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Compute mult	i-spectral att	ribute volun	nes		Compute multispe	ctral and broadband	attributes		
f1 Ormsby broadband filter begin low frequency taper (cycles/s): 0 f2 Ormsby broadband filter end low frequency taper (cycles/s): 10 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4 Ormsby broadband filter begin high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 10 filter Bank 1 0 10 30 Filter Bank 1 0 10 30 Filter Bank 3 30 50 50 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110	Output attritb	ute volumes f	for each filt	er bank		Do NOT output at	tributes for each filte	er bank		
f2 Ormsby broadband filter end low frequency taper (cycles/s): 10 f3 Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4 Ormsby broadband filter end high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 10 f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110	f1 Ormsby bro	adband filter	begin low f	frequency taper (cy	cles/s):	0				
f3 Ormsby broadband filter begin high frequency taper (cycles/s): 90 f4 Ormsby broadband filter end high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 5 Vipdate the filter banks 5 Filter Bank 1 0 10 30 Filter Bank 2 10 30 50 Filter Bank 3 30 50 50 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110	f2 Ormsby bro	adband filter	end low fre	equency taper (cyc	es/s):	10				
f4 Ormsby broadband filter end high frequency taper (cycles/s): 110 Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks Filter Bank 1 0 10 30 Filter Bank 2 10 30 50 Filter Bank 3 30 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110	f3 Ormsby bro	adband filter	begin high	frequency taper (o	ycles/s):	90				
Taper applied to filter banks (0-50%)): 50 Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks 1 f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 50 70 Filter Bank 3 30 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	f4 Ormsby bro	adband filter	end high fi	requency taper (cy		110				
Number of filter banks applied to the data: 5 Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks Image: Spaced filter banks Image: Spaced filter banks Image: Spaced filter banks	Taper applied	to filter bank	s (0-50%))			50				
Construct linearly or exponentially spaced filter banks? Linearly spaced filter banks Update the filter banks Image: Construct linearly spaced filter banks? Image: Construct linearly or exponentially spaced filter banks Image: Construct linearly spaced filter banks? Update the filter banks Image: Construct linearly spaced filter banks Image: Construct linearly or exponentially spaced filter banks Image: Construct linearly spaced filter banks Image: Construct linearly or exponentially spaced filter banks Image: Construct linearly spaced filter banks Filter Bank 1 0 10 30 Filter Bank 2 10 30 50 Filter Bank 3 30 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Number of filt	er banks appl	lied to the o	data:		5				
Image: bit with the filter banks f1 f2 f3 f4 Filter Bank 1 0 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Construct line	arly or expon	entially spa	ced filter banks?		Linearly spaced fi	lter banks			
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Update the fil	ter banks								
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110										
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110										
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110										
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110										
f1 f2 f3 f4 Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110										
Filter Bank 1 0 10 10 30 Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110		f1	f2	f3	f4					
Filter Bank 2 10 30 30 50 Filter Bank 3 30 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Filter Bank 1		0	10	10	30				
Filter Bank 3 50 50 50 70 Filter Bank 4 50 70 70 90 Filter Bank 5 70 90 90 110 Broad Band Filt 0 10 90 110	Filter Bank 2		10	30	30	50				
Filter Bank 5 70 70 90 90 110 Broad Band Filt 0 10 90 110	Filter Bank 3		50	50	50	70				
Broad Band Filt 0 10 90 110	Filter Bank 5		70	90	90	110				
	Broad Band Fill		0	10	90	110				
			-							
	(-) 2000 2021	AASPI for Linu	v - authors	at Univ Oklahoma	Univ A	abama, Univ Texas	Permian Racin and	SISMO	Execute sim	11.0

To invoke a multispectral computation, toggle (1) *Compute multi-spectral attribute volumes.* If you wish to examine the attributes computed from each of the filter banks, toggle (2) Output attribute volumes for each filter bank. The variables (3) f^2 and (4) f^3 define the range of the filter banks, while (6) the number of filter banks defines how many band-limited versions of the input data will be analyzed. The filter banks will have the form of an Ormsby filter defined by corner frequencies f_1 , f_2 , f_3 , and f_4 . The tapers between f_1 and f_2 and between f_3 and f_4 are defined as half of raised cosines that are (5) a percentage of the width of each filter bank. If this taper is 0%, no taper is applied; if the taper is 50%, $f_2=f_3$ for each filter bank and the filter will have the form a raised cosine (the default). In June 2019 we added more flexibility in the design of the filter banks, which can now be:

- Linearly spaced, constant size filter banks,
- Exponentially spaced, exponentially increasing size filter banks (where the spectrum is sampled by octaves), and
- Arbitrarily defined, where you the interpreter, can simply type in a suite of four-point Ormsby filters.

In the example above, we choose five linearly spaced filter banks ranging between 0 and 90 Hz each with a 50% taper. Note that now the previous default broadband filter is now redefined to encompass the 5 smaller filter banks. Using the *Wiggle* option in program **aaspi_plot** provides the following image of the file *filter_banks_similarity3d_GSB_AAPG_0.H*, where the last filter bank (number 6) is the broad band response:

Figure 20.

Setting the *Taper* applied to the filter banks to be 25% provides the following numerical table of filter banks:

Primary par	ameters A	nalysis window p	parameters	Filter bank defin	ition	Parallelization parameters	
- Ormshy Eilter F	ank Definition F	arameters					
Offisby Filter E		arameters					
Compute mult	i-spectral attrib	ute volumes		Compute	nultispe	ctral and broadband attributes] [
Output attritb	ute volumes for	each filter bank	:	Do NOT o	utput at	tributes for each filter bank	
f1 Ormsby bro	adband filter be	egin low frequer	cy taper (cycles	5/5): 0			
f2 Ormsby bro	adband filter er	nd low frequency	y taper (cycles/s	s): 5			
f3 Ormsby bro	adband filter be	egin high freque	ncy taper (cycle	s/s): 95			
f4 Ormsby bro	adband filter er	nd high frequend	cy taper (cycles/	(s): 105			
Taper applied	to filter banks (0-50%)):		25			
Number of filt	er banks applied	d to the data:		5			
Construct line	arly or exponen	tially spaced filt	er banks?	Linearly s	aced fi	ter banks	1
Undate the fi	ter hanks						
	f1	f2	f3	f4			
Filter Bank 1	0	5	15	25			
Filter Bank 2	15	25	35	45			
Filter Bank 3	35	45	55	65			
Filter Bank 4	55	65	75	85			
Filter Bank 5	75	85	95	105			
Broad Band Fill	0	5	95	105			

and a corresponding plot, where we note the band-pass filters flatten out between the tapers:

Figure 21.

If we choose to define the filter banks to be exponentially (rather than linearly) spaced, the table appears like this:

Geometric Attributes: Program similarity3

Primary par	ameters A	nalysis window p	arameters	Filte	r bank definition		Parallelization parameters		
Ormsby Filter Bank Definition Parameters									
Compute mult	ute volumes			Compute multispectral and broadband attributes					
Output attritb	each filter bank			Do NOT output attributes for each filter bank					
f1 Ormsby bro	egin low frequen	cy taper (cycle	es/s):	1.05736					
f2 Ormsby bro	nd low frequency	/ taper (cycles	/s):	1.42541	1.42541				
f3 Ormsby broadband filter begin high frequency taper (cycles/s): 4.7379									
f4 Ormsby broadband filter end high frequency taper (cycles/s): 5.						5.10596			
Taper applied	0-50%)):			25	25				
Number of filter banks applied to the data: 5									
Construct linearly or exponentially spaced filter banks?					Exponentially spaced filter banks				
Update the filter banks									
	f1	f2	f3	f4	11				
Filter Bank 1	2.87875	4.15956	6.0102	4	8.68433				
Filter Bank 2	6.01024	8.68433	12.548	2	18.1311				
Filter Bank 3	12.5482	18.1311	26.19	8	37.8541				
Filter Bank 4	26.198	37.8541	54.696	2	79.0317				
Filter Bank 5	54.6962	79.0317	114.19	5	125				
Broad Band Filt	2.87875	4.15956	114.19	5	125				

The separation between filter banks as well as their width and the length of the tapers are all computed in the log(f) domain, such that filter banks centered around higher frequencies appear wider in the linear f domain. When summed, the response of the tapered filter banks equals that of the requested broad band filtered data. The resulting image looks like this (see following page):

Figure 22.

<u>Filter Design Tip #1</u>: When manually entering changes to the values of *f2_broadband*, *f3_broadband*, the *Taper applied to the filter banks*, and the *Number of filter banks applied to the data*, you will need to click the *Update the filter banks button*.

<u>Filter Design Tip #2</u>: To manually define a suite of filter banks, first select the *Number of filter banks applied to the data* then click the *Update the filter banks button* to obtain the desired number of rows to define the filter banks. Then simply overtype the filter bank corner points directly in the table. Do not click the *Update the filter banks* button or they will revert to the default linearly or exponentially spaced filter banks.

Theory: Multispectral Coherence, Amplitude Gradients, and Laplacians

Dewett and Hensa (2015) combined multiple coherence attribute images using self-organizing maps. Each energy ratio coherence volume was computed along structure from spectral voices, **u(f)**:

$$u(f_{l}, t_{k}, x_{m}, y_{m}) = a(f_{l}, t_{k}, x_{m}, y_{m}) \exp[i\varphi(f_{l}, t_{k}, x_{m}, y_{m})]$$
(23)

constructed using the AASPI spectral decomposition algorithm, **spec_cwt**, where **a** is the spectral magnitude and **\phi** the spectral phase of each component, *l*. These images were subsequently skeletonized using a commercial swarm intelligence algorithm to provide significantly improved fault images in an Eagle Ford Shale survey.

Sui et al. (2015) also noted the value of multispectral coherence and 3-component limitations of RGB display, and computed coherence based on spectral magnitudes, $a(f_l, t_k, x_m, y_m)$, using the covariance matrix

$$C_{mn} = \sum_{l=1}^{L} \sum_{k=-K}^{K} [a(t_k, f_l, x_m, y_m) a(t_k, f_l, x_n, y_n)],$$
(24)

where *L* is the number of spectral components. By not using the phase component, the covariance matrix is less sensitive to dip, allowing the use of a simpler, non-structure-oriented computation.

Program **similarity3d** builds on the above work but rather than using the spectral magnitude computed along time slices used in equation 24, it uses the spectral voices, **u**, and their Hilbert transforms, **u**^H, computed along structure described above to construct the covariance matrix:

$$C_{mn} = \sum_{l=1}^{L} \sum_{k=-K}^{K} \left[u(t_k, f_l, x_m, y_m) u(t_k, f_l, x_n, y_n) + u^H(t_k, f_l, x_m, y_m) u^H(t_k, f_l, x_n, y_n) \right].$$
(25)

This new covariance matrix is then used to compute "multispectral" energy ratio similarity, outer-product similarity, energy-weighted or RMS amplitude weighted gradient and energy-weighted or RMS amplitude weighted Laplacian.

Figure 23.

Examples

Using the GSB data volume with eight filter banks and f_width=10 Hz, one obtains the following images through energy ratio coherence:

Figure 24.

Co-rendering three coherence images against RGB is somewhat counterintuitive, since high coherence for each component will result in R=1.0, G=1.0, and B=1.0, or white. However, if the highest frequency component is lower, we subtract a little blue from white and end up with yellow. I summarize this arithmetic in the following image on the next page:

Figure 25.

Co-rendering three of the spectral components using AASPI program **corender** against RGB, one obtains the following image:

Figure 26.

Areas that appear to be yellow indicate that the higher frequencies are less coherent. Areas that that appear to be red indicate that both the mid and the high frequencies are less coherent (leaving the red component). Areas that appear to be green indicate that both the low and the high frequencies are less coherent (leaving the green component). Finally, areas that appear to be black are less coherent for all three frequency filter banks. Next, compare the previous image to multispectral coherence:

Figure 27.

At this point, I see a few more (smaller?) faults in the combined RGB image, but the channels show up better here. This appearance may be due to scaling, so I have changed my color bar range to be from 0.80 to 1.00. Let us compare this image to the previously computed broadband (conventional) coherence image, but now also scaled to range between 0.80 and 1.00:

Figure 28.

In general, background noise has been reduced and many of the channel features appear sharper.

Next, let us examine the Laplacian at different frequency components:

Corendering these three images using RGB gives

The broadband Laplacian looks like this:

Finally, the multispectral Laplacian gives:

where we next plot the multispectral coherence image for comparison:

Pitfalls and Limitations

Stair Step Artifacts

The stair step artifacts seen on vertical slices through coherence are "annoying", resulting in fault anomalies picked on coherence time slices being laterally shifted from those picked on vertical slices through the seismic amplitude volume. The following images show a suite of vertical slices through a seismic amplitude volume co-rendered with coherence computing from the GSB survey using a 5-trace by ± 40 ms. The sample increment = 4 ms, and the bin size =12.5 m x 25 m. Note the stair-step artifacts indicated by the red circles. Folk wisdom attributes the stair step anomalies to the size of the vertical analysis window, which while oriented along structural dip, typically consists of vertical trace segments forming oblique cylinders. We have attempted to address this problem by rotating windows, designing data-adaptive windows, and other programming-intensive endeavors, all to no avail. Closer analysis shows that the hypothesis of the stair steps is an effect of the vertical analysis window size and orientation to be incorrect, with even windows of height 0.0 s (one sample thick) exhibiting the artifact. Instead, stair steps turn out to be due to the way the seismic wavelet is imaged (see the subsequent theory box). If the reflectors are perpendicular to the fault plane, there are no stair step artifacts. In contrast, if the faults cut at angle to the reflectors, the stair steps orient themselves perpendicular to the reflector, wavelet by wavelet.

Figure 30.

Geometric Attributes: Program similarity3d

Figure 32.

Theory: Seismic Imaging of Reflectors

The image bellow shows the geometry of seismic migration, using the notation of the diffraction imaging community. **n** defines the normal to the hypothesized reflector at the image point. If no hypothesis is made, most algorithms assume **n** to be vertical, while some eliminate the obliquity factor completely. **p**_s and **p**_g define ray parameter unit vectors between the source and the geophone group to the image point. The obliquity factor is the cosine of the angle between the yellow vector and the average of the blue and red vectors.

Diffraction imaging tells us that the seismic wavelet will be oriented perpendicular to the reflector. Thus, if a fault is not perpendicular to an interface, the wavelet will give rise to a stair-step response at each reflector event! Nothing can change this except to increase vertical resolution.

Redundant Attributes

The examples show here, that in general, energy ratio similarity, outer product similarity, and Sobel filter similarity provide very similar results. Barnes (2007) inspired discussion through his paper on redundant and useless attributes. The problem of "useless" attributes arises with improvements in technology, with early attempts to map seismic features having been supplanted by more quantitative and higher resolution with further development, such as the progression from three-trace cross-correlation to multi-trace semblance and eigenstructure coherence. A cursory inspection of the three major coherence attributes described here – outer product similarity, energy ratio similarity, and Sobel filter similarity, shows that they are somewhat redundant. All provide good images of faults, channel edges, and syneresis (shale dewatering) features. Mathematically, these three attributes are slightly different; however, they are closely coupled through the underlying geology. Energy ratio similarity measures lateral changes in waveform but is independent of amplitude. Semblance and Sobel filter

similarity measure are sensitive to changes in amplitude. However, a change in the waveform gives rise to changes in amplitude as well.

To determine which attribute works "best", one needs to think of end members. Common end members are thin channel systems that fall below the tuning thickness. Internal to the channel, the waveform will be identical with only the amplitude changing. In this case, edges of architectural elements internal to the channel will be mapped by semblance and Sobel filter similarity, but not by energy ratio similarity. Other end members are faults where the amplitude fades in and out, perhaps associated with the Fresnel zone. Here, the energy ratio similarity will show sharper edges while the semblance and Sobel filter similarity appear somewhat blurred.

References

- Bahorich, M. S., and S. L. Farmer, 1995, 3D seismic coherency for faults and stratigraphic features: The Leading Edge, **14**, 1053-1058.
- Barnes, 2007, Redundant and useless attributes: Geophysics, 72, P33-P38.
- Barnes, A. E., 2011, Displaying Seismic Data to Look Like Geology: GCSSEPM 31st Annual Bob. F.
 Perkins Research Conference on Seismic attributes New views on seismic imaging: Their use in exploration and production, 100-119.
- Chopra, S., and K. J. Marfurt, 2019, Multispectral, multiazimuth, and multioffset coherence attribute applications: Interpretation, **7**,
- Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization: SEG Geophysical Development Series, 11.
- Davogustto, O., and K. J. Marfurt, 2011, Footprint suppression applied to legacy seismic data volumes: to appear in the GCSSEPM 31st Annual Bob. F. Perkins Research Conference on Seismic attributes – New views on seismic imaging: Their use in exploration and production, 1-34.
- Gao, D. [2013] Wavelet spectral probe for seismic structure interpretation and fracture characterization: A workflow with case studies. Geophysics, 78, O56-O67.
- Gersztenkorn, A., and K. J. Marfurt, 1999, Eigenstructure-based coherence computation as an aid to 3-D structural and stratigraphic mapping, Geophysics, 64, no. 5, 1468-1479.
- Gersztenkorn, A., and Marfurt, K. J., 1995, Eigenstructure-based coherence computation as an aid to 3-D structural and stratigraphic mapping. Geophysics, 64, 1468-1479.
- Hardage, B., 2009, Frequencies are fault finding factors: Looking low aids data interpretation: AAPG Explorer, **30**, no 9, 34.
- Hemon, C. H., and D. Mace, 1978, use of the Karhunen-Loeve transformation in seismic data processing: Geophysical Prospecting, **26**, 600-626.
- Kirlin, R. L., and W. J. Done, 1999, Covariance analysis for seismic signal processing: Geophysical Developments Series, SEG, 355p.
- Li, F., and W. Lu, 2014. Coherence attribute at different spectral scales: Interpretation, 2, 1-8.

Li, F., J. Qi, B. Lyu, and K. J. Marfurt, 2018, Multispectral coherence: Interpretation, **6**, T61-T69.

- Lin, T., 2016, Seismic attribute analysis of depth-migrated data: Ph.D. dissertation, The University of Oklahoma.
- Lin, T., B. Zhang, and K. J. Marfurt, 2019, Geometric seismic attribute estimation using dataadaptive windows: Interpretation, **7**, <u>https://library.seg.org/doi/abs/10.1190/int-2018-0114.1</u>
- Lin, T., T. Ha, K. J. Marfurt, and K. L. Deal, 2016, Quantifying the significance of coherence anomalies, Interpretation, **4**, T205-T213.
- Luo, Y., S. al-Dossary, M. Marhoon, and M. Alfaraj, 2003, Generalized Hilbert transform and its application in geophysics: The Leading Edge, 22, 198-202.
- Luo, Y., W. G. Higgs, and W. S. Kowalik, 1996, Edge detection and stratigraphic analysis using 3-D seismic data: 66th Annual International Meeting, SEG, Expanded Abstracts, 324–327.
- Lyu, B., J. Qi, F. Li, Y. Hu, T. Zhao, S. Verma, and K. J. Marfurt, 2020, Multispectral coherence Which decomposition should we use?: Interpretation, 8, T115-T129.
- Lyu, B., J. Qi, S. Sinha, J. Li, and K. J. Marfurt, 2020, Improving fault delineation using maximum entropy multispectral coherence, Interpretation, **8**, T835-T850.
- Marfurt, K. J., 2006: Robust estimates of reflector dip and azimuth: Geophysics, **71**, P29-P40.
- Marfurt, K. J., R. L. Kirlin, S. L. Farmer, and M. S. Bahorich, 1998, 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, **63**, 1150-1165.
- Sui, J.-K., X. D. Zheng, and Y.-D. Li, 2015, A seismic coherency method using spectral attributes: Applied Geophysics, **12**, no. 3, 353-361.