3D KUWAHARA FILTERING IN SEISMIC FACIES ANALYSIS – PROGRAM kuwahara3d Contents

Overview1	
Kuwahara filtering2	
The kuwahara3d computation flow chart3	L'SS A
Output file naming convention3	AND INT
The inverse of the coefficient of variation	
Invoking the kuwhara3d GUI	5
The Primary parameters tab	6
Overlapping windows	7
Examples	7
Example 1: A 2D Kuwahara filter applied to a digital photograph	
Example 2: Application to the Kora3d survey	
Example 3: Application to a Gulf of Mexico survey	
Example 4: Filtering of Gulf of Mexico attribute volumes for subsequent F	NN analysis\ 13
References	

Overview

The objective of seismic clustering algorithms is to generate a suite of seismic facies for large 3D volumes that exhibit similar attribute expressions. Determining which attributes best quantify a specific amplitude or morphology component seen by the human interpreter, is critical to successful clustering. Unfortunately, many patterns, such as coherence images of salt domes, result in "salt and pepper" classification. Application of 3D Kuwahara median filters smooths the interior attribute response and sharpens the boundary between adjacent facies, thereby preconditioning the attribute volumes for subsequent clustering. Although the figure below shows a GTM classification workflow, other classification workflows that use k-means, SOM, PNN, or RFDT are similar in that we need to do first choose candidate attributes and then filter the chosen attributes using a Kuwahara filter. The flow chart below shows the attribute analysis workflow developed by Qi et al. (2016) to differentiate salt from mass transport complexes from conformal sediments using a GTM algorithm:

In supervised or semisupervised classification, candidate attributes are evaluated by crosscorrelating their histograms for each facies, with low correlation implying good facies discrimination and high correlation implying poor facies discrimination. Qi et al. (2016) and Lubo et al. (2021) show that 3D Kuwahara filtering significantly increases such facies discrimination.

Kuwahara filtering

The Kuwahara (1976) filter is an edge-preserving filter that was first developed for medical imaging applications and now is widely used in image processing. Luo et al. (2002) applied the Kuwahara filter to suppress random noise. A variation of this algorithm is implemented in the AASPI structure-oriented filtering program **sof3d** and in the volumetric dip computation program **dip3d**. Applied to photographs, Kuwahara filters result in piecewise monochromatic features separated by sharp boundaries. By localizing the smoothing, the Kuwahara filter properly removes detail, even additive "salt and pepper" noise in high-contrast regions while preserving the shape of the boundaries in low-contrast regions. Kyprianidis et al. (2009) found that the Kuwahara filter "maintains a roughly uniform level of abstraction across the image while providing an overall painting-style look". Equally important, the Kuwahara filter will smooth rapidly varying attribute anomalies within salt and mass transport complexes to facilitate subsequent clustering.

The Kuwahara filter searches all *J*-voxel windows containing a target output voxel. In our workflow, the analysis windows are oblique cylinders or rectangular prisms aligned whose tops and bottoms are aligned with structural dip. There are *J* overlapping windows containing the target voxel. For a given attribute, we use program **stat3d** to precompute the mean, μ , the median (p_{50} percentile), *m*, and the inverse coefficient of variation, $V^{-1} = \mu/\sigma$ for every voxel in the

attribute volume. The filtered attribute will then be the value of the median (or optionally, the mean) associated with the window having the maximum value of inverse of the coefficient of variation. The smoothness and noise suppression of an image is controlled by the size of the analysis window. If the analysis window length is large, the image will be smoother, but somewhat blocky. If the analysis window is small, the image will be smoothed less, and the blocky pattern will be reduced. Numerical experiments show that cascading two or three small-window filters provided superior results to a single large-window filter at reduced computation cost.

The kuwahara3d computation flow chart

Program kuwahara3d requires first running program **stat3d**. Only two of the outputs of **stat3d** are used. You always need to input the inverse of the coefficient of variation. The maximum value of the inverse of the coefficient of variation determines the winning analysis window. In terms of smoothing, if you input the p_{50} percentile volume you will apply a median filter in the winning analysis window. Alternatively, if you input the mean volume you will apply a mean filter in the winning analysis window:

Output file naming convention

Program kuwahara3d will generate the following output files:

Output file description	File name syntax
Filtered attribute	
volume	kuwahara_filtered_unique_project_name_attribute_name_suffix.H
Program log	
information	kuwahara3d_unique_project_name_suffix.log

Program	
error/completion	
information	kuwahara3d_unique_project_name_suffix.err

where the values in red are defined by the program GUI. The output filtered data volume is written to the *kuwahara_filtered_.H* file. The errors we anticipated will be written to the **.err* file and be displayed in a pop-up window upon program termination. These errors, much of the input information, a description of intermediate variables, and any software trace-back errors will be contained in the **.log* file.

The inverse of the coefficient of variation

While the variance, standard deviation (Luo et al., 2002), and coherence (Marfurt, 2006) are good ways to choose the best analysis window for seismic amplitude data that exhibit a mean value of zero, seismic attributes have different statistics where the mean value can change significantly across different geologic features. For this reason, we find that the best choice of an overlapping window is the window with highest coefficient of variation, *V*, which is given by

$$V \equiv \frac{\sigma}{\mu}$$

where σ is the standard deviation, and μ is the mean value of the attribute values that fall within a given analysis window. In some cases, and for some attributes, the mean may be zero, so a more stable parameter to use is the inverse of the coefficient of variation.

$$V^{-1} \equiv \frac{\mu}{\sigma}$$

The example provided by quora.com shown in the following figure is particularly instructive.

Here the question is "which sample exhibits greater variability—that of the rabbits or of the mice?" They go on to say:

The standard deviation of the weights of rabbits of 0.4 ounces is five times greater than that of the mice of 0.08 ounces. However, the mean weight of the rabbits is 16 ounces whereas the mean weight of the mice is once. Using equation 10, the coefficient of variability of the rabbits is only 2.5% whereas the coefficient of the mice is 8%. With this metric, the mice exhibit more variability.

Invoking the kuwhara3d GUI

To begin, at the top far right of the **aaspi_util** or **aaspi_main** GUI, click the *Image Processing* tab, and drop down to find **kuwhara3d**:

🗙 aaspi_util GUI - Post Stack Util	ities (Release Date: 26 September 2	024)				– 🗆 ×	
<u>File</u> Single Trace Calcula Attribute Correlation Tools	tions Spectral Attributes Display Tools Machine Lea	Geometric Attributes Forma arning Toolbox Surface Utili	ation Attributes Volumetric ties Well Log Utilities Othe	Classification Data Condition Pr Utilities Set AASPI Defau	oning It Para	Image Processinc Help stat3d	
SEGY to AASPI format conversion	AASPI to SEGY format conversion (multiple files)	AASPI to SEGY format conversion (single file)	AASPI QC Plotting	AASPI Workflows	АА	3D volumetric Kuwahar fault_enhancement	a filtering
AASPI QC Plotting - A quick tool to display AASPI-fromat attribute volumes			skeletonize3d fault_connectivity				

The following GUI appears:

	tober 2024)	
Eile		1
kuwahara3d - computes kuwaharar filte	ring results within a user-defined 3D window along structural dip	
Attribute median (p50) or mean (*.H):	es6/marf2925/projects/kora3d/p50_kora3d_energy_ratio_coherence_class.H	Brows
Attribute inv_coeff_variation (*.H):	projects/kora3d/inv_coeff_variation_kora3d_energy_ratio_coherence_class.H	Brows
Inline dip (*.H):	/ouhomes6/marf2925/projects/kora3d/inline_dip_kora3d_0_broadband.H	Brows
Crossline dip(*.H):	/ouhomes6/marf2925/projects/kora3d/crossline_dip_kora3d_0_broadband.H	Brows
Average magnitude spectrum Filename (*.H):		Brows
Unique project name:	kora3d	
Suffix:	class	
Attribute Name:	energy_ratio_coherence	
Verbose:	-	
Use data-adaptive analysis windows? Percentile of the average magnitude s to define data-adaptive window Save kuwahara3d parameters for AAS Save parameters and return to work	Use a fixed-size window from stat3d 8 pectrum 80 rs: SPI iterative Kuwahara filtering workflow kflow GUT	

Begin by (1) selecting the attribute median (p_{50} percentile) or mean volume previously computed in program **stat3d**. The choise of the median will result in the median value of the winning analysis window whereas the mean will result in a mean value of the winning analysis window applied to the output. Next, select the (2) attribute inverse of the coefficient of variation also previously computed in program **stat3d**. In this example I have chosen an energy ratio similarity volume for the Kora3d survey previously processed using program **stat3d**. The analysis windows

are oriented along structural dip, so enter the (3) inline and (4) crossline components of volumetric dip as well. As with all AASPI programs we will want to add a (5) *Unique project name*, and a (6) *Suffix*. These two values as well as the (7) *Attribute name* are read from the input median or mean data volume and will be used in constructing the name of the output files.

The Primary parameters tab

For most data, and for target-oriented machine learning applications, you can (8) *Use a fixed-size windows from* **stat3d**. In this option, the range of the overlapping Kuwahara search windows will be defined to be the same as the analysis window used in program **stat3d**. After modifying the number of processors used, if necessary, simply (9) *Execute kuwahara3d*.

If we select the (8) Use a data-adaptive window option as shown below, the GUI changes slightly:

File File kuwahara3d - computes kuwaharar filtering results within a user-defined 3D window along structural dip Attribute median (p50) or mean (*.H): /ouhomes6/marf2925/projects/F3/percentile_F3_glcm_entropy_0_50.H Browse Attribute inv_coeff_variation (*.H): /ouhomes6/marf2925/projects/F3/inline_dip_F3_0_broadband.H Browse Inline dip (*.H): /ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H Browse Average magnitude spectrum /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Variage magnitude spectrum /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Suffix: 50x50x8ms Attribute Name: glcm_entropy Verbose: Image: spectrum Browse Browse Primary parameters Parallelization parameters Browse Browse Save kuwahara3d parameters for ASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI Save parameters and return to workflow GUI		🗙 aaspi_kuwahara3d GUI (Release Date: 31 O	Ictober 2024)	-		>
kuwahara3d - computes kuwaharar filtering results within a user-defined 3D window along structural dip Attribute median (p50) or mean (*.H): /ouhomes6/marf2925/projects/F3/percentile_F3_glcm_entropy_0_50.H Browse Attribute inv_coeff_variation (*.H): /ouhomes6/marf2925/projects/F3/inv_coeff_variation_F3_glcm_entropy_0.H Browse Inline dip (*.H): /ouhomes6/marf2925/projects/F3/inline_dip_F3_0_broadband.H Browse Crossline dip(*.H): /ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H Browse Average magnitude spectrum /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Unique project name: F3 Suffix: S0x50x8ms Attribute Name: glcm_entropy Verbose: Image: spectrum for the average magnitude spectrum for define data-adaptive window 8 Percentile of the average magnitude spectrum for define data-adaptive windows: Save barameters for AASPI iterative Kuwahara filtering workflow 8 Save parameters and return to workflow GUI Save parameters and return to workflow GUI Save parameters and return to workflow GUI		<u>F</u> ile				H
Attribute median (p50) or mean (*.H): /ouhomes6/marf2925/projects/F3/procentile_F3_glcm_entropy_0_50.H Browse Attribute inv_coeff_variation (*.H): /ouhomes6/marf2925/projects/F3/inv_coeff_variation_F3_glcm_entropy_0.H Browse Inline dip (*.H): /ouhomes6/marf2925/projects/F3/inv_coeff_variation_F3_glcm_entropy_0.H Browse Crossline dip(*.H): /ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H Browse Average magnitude spectrum Filename (*.H): /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Viriouse project name: F3 Suffix: \$0x\$50x8ms Suffix: \$0x\$50x8ms Attribute Name: glcm_entropy Verbose: 80 8 Percentile of the average magnitude spectrum to define data-adaptive windows: Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow \$sive parameters and return to workflow/GUI \$sive parameters and return to workflow/GUI		kuwahara3d - computes kuwaharar filt	tering results within a user-defined 3D window along structural dip			
Attribute inv_coeff_variation (*.H): /ouhomes6/marf2925/projects/F3/iniv_coeff_variation_F3_glcm_entropy_0.H Browse Inline dip (*.H): /ouhomes6/marf2925/projects/F3/inline_dip_F3_0_broadband.H Browse Crossline dip(*.H): /ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H Browse Average magnitude spectrum Filename (*.H): /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Unique project name: F3 Statistic Statistic Statistic Suffix: Statistic Statistic Statistic Statistic Verbose: C Primary parameters Parallelization parameters Use a data-adaptive window 8 Percentile of the average magnitude spectrum to workflow Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI		Attribute median (p50) or mean (*.H):	/ouhomes6/marf2925/projects/F3/percentile_F3_glcm_entropy_0_	50.H	Brows	e
Inline dip (*.H): /ouhomes6/marf2925/projects/F3/niline_dip_F3_0_broadband.H Browse Crossline dip(*.H): /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Average magnitude spectrum Filename (*.H): Unique project name: F3 Suffix: S0x50x8ms Attribute Name: glcm_entropy Verbose: Primary parameters Parallelization parameters Use a data-adaptive window Percentile of the average magnitude spectrum to define data-adaptive windows: Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GU		Attribute inv_coeff_variation (*.H):	/ouhomes6/marf2925/projects/F3/inv_coeff_variation_F3_glcm_entr	ropy_0.H	Brows	e
Crossline dip(*.H): /ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H Browse Average magnitude spectrum Filename (*.H): /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Unique project name: F3 Suffix: S0x50x8ms Attribute Name: glcm_entropy Verbose: F Primary parameters Parallelization parameters Use data-adaptive analysis windows? Use a data-adaptive window Percentile of the average magnitude spectrum to define data-adaptive windows: Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI Save parameters and return to workflow GUI		Inline dip (*.H):	/ouhomes6/marf2925/projects/F3/inline_dip_F3_0_broadband.H		Brows	e
Average magnitude spectrum Filename (*,H): /ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_cwt_F3_0.H Browse Unique project name: F3 Suffix: S0x50x8ms Attribute Name: glcm_entropy Verbose: Image: Source of the average magnitude spectrum suitable spe		Crossline dip(*.H):	/ouhomes6/marf2925/projects/F3/crossline_dip_F3_0_broadband.H	I	Brows	e
Unique project name: Suffix: 50x50x8ms Attribute Name: glcm_entropy Verbose: Primary parameters Parallelization parameters Use data-adaptive analysis windows? Use a data-adaptive window Percentile of the average magnitude spectrum to define data-adaptive windows: Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI		Average magnitude spectrum Filename (*.H):	/ouhomes6/marf2925/projects/F3/average_magnitude_spectrum_c	wt_F3_0.H	Brows	e
Suffix: \$0x\$0x8ms Attribute Name: glcm_entropy Verbose: Image: state in the state i		Unique project name:	F3			
Attribute Name: glcm_entropy Verbose: Primary parameters Parallelization parameters Use data-adaptive analysis windows? Use a data-adaptive window Percentile of the average magnitude spectrum 80 Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI	3	Suffix:	50x50x8ms			
Verbose: Primary parameters Parallelization parameters Use data-adaptive analysis windows? Use a data-adaptive window Percentile of the average magnitude spectrum 80 to define data-adaptive windows: Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI	"	Attribute Name:	glcm_entropy			
Primary parameters Parallelization parameters Use data-adaptive analysis windows? Use a data-adaptive window Percentile of the average magnitude spectrum to define data-adaptive windows: 80 Save kuwahara3d parameters for AASPI iterative Kuwahara filtering workflow Save parameters and return to workflow GUI		Verbose:				
1	7	Percentile of the average magnitude to define data-adaptive windo Save kuwahara3d parameters for AA Save parameters and return to we	spectrum 80 ws: SSPI iterative Kuwahara filtering workflow			
۹ <u>ــــــــــــــــــــــــــــــــــــ</u>						

In this option, the window size will be determined by the three parameters: (9) the Average magnitude spectrum previously computed using program **spec_cwt** or **spec_cmp**, (10) the Percentile of average magnitude spectrum which gives a value f_{ref} The adaptive window size is then defined by the period defined by $1/f_{ref}$ at each time or depth. Using the value of the velocity

used in computing the structural dip volumes provides an adaptive analysis window length and height. In this case, the window size will typically become larger as we lose higher frequencies and vertical resolution with increasing time.

Overlapping windows

The following cartoon from Qi et al. (2016) shows the mechanics of Kuwahara filter analysis for a 2D example.

The input data include 25 samples centered about the red square. Gray squares indicate voxels used in the nine laterally shifted nine-sample analysis windows, each of which contains the output location indicated by the red square. The output is the mean or the median of that gray window that has the largest inverse of coefficient of variation. In 3D, we evaluate 125 neighboring voxels and compute the mean, the median, and standard deviation in 27 overlapping 3×3×3 analysis windows.

Examples

The documentation for AASPI program **dip3d** showed how we used a 3D Kuwahara filter to choose the best of multiple 3D overlapping windows to improve the lateral and vertical resolution of volumetric dip. The documentation for AASPI program **sof3d** showed how we used a 2D Kuwahara filter to choose the best of multiple 3D overlapping windows to apply structure-oriented filtering. In both of these examples we used the value of coherence in each window to choose the winning window.

Example 1: A 2D Kuwahara filter applied to a digital photograph

The figure below shows the application of a 2D Kuwahara filter to a photograph of Jie Qi. On the top left is the original photograph. On the top right is the same photograph with additive noise:

Qi et al. (2016) applied a 2D Kuwahara filter to both images to each of R, G, and B components of the photos. The Kuwahara filter smoothes the noise and signal when they are smaller than the window size (such as the wood grain on the bookshelves) but preserves the major edges. Some of the edges, such as those on his cheeks and forehead, capture changes in lighting, but otherwise are not real, giving rise to a "paint-by-numbers" appearance.

Example 2: Application to the Kora3d survey

The results of executing the kuwahara3d GUI above gives a file named kuwahara_filtered_kora3d_energy_ration_similarity_class.H and looks like this:

which we compare to the median (p50) and mean filtered attribute previously computed using program **stat3d**:

All three filters "smear" the salt-and-pepper discontinuity pattern seen in the original attribute volume of chaotic facies indicated by the orange arrow. Note also how the boundaries of the chaotic facies are sharper after Kuwahara filtering than when using the simpler median and mean filters of the same size.

Example 3: Application to a Gulf of Mexico survey

The following example comes from Qi et al. (2016) who cascaded three iterations of Kuwahara filtering using a small 3×3×3 analysis window in both programs **stat3d** and **kuwahara3d** for a Gulf of Mexico survey exhibiting conformal sediments, mass transport complexes and salt diapirs among other features. He found such cascading was not only more effective, but also computational more efficient than using a single 7×7×7 analysis window. The first image shows a vertical slice through the original coherence volume:

The next image shows the results of cascading three iterations of a 3×3×3 median filter using program **stat3d**, where you will note the salt-and-pepper pattern has been smoothed, but also the facies edges:

The final image shows the results of cascading three iterations of a 3×3×3 Kuwahara filter using programs **stat3d** and **kuwahara3d** together. Note that the smoothing is similar internal to the different facies, but the facies edges are sharper, facilitating subsequent machine learning seismic facies classification:

Qi et al. (2016) also examine time slices. The first time slice is through the original coherence volume:

The next image shows the same time slice after cascading three iterations of a 3×3×3 Kuwahara filter using programs **stat3d** and **kuwahara3d** together where we see the boundaries between the salt, mass transport complexes, and conformal sediments are preconditioned for facies classification using machine learning.

Example 4: Filtering of Gulf of Mexico attribute volumes for subsequent PNN analysis

The next sample shows Kuwahara filtering applied to eight different data volumes from Lubo-Robles et al. (2021) or a survey acquired offshore Louisiana, Gulf of Mexico, U.S.A. where we see salt domes, mass transport deposits, and conformal sediments.

In this work, the Kuwahara filter was performed as a single pass using a larger 5x5x5 voxel filter. The resulting attribute volumes shown below are piecewise smoother, preconditioning then for subsequent machine learning driven seismic facies classification. Note the reduction in "speckles" particularly within the salt and the preservation of sharp edges between different facies.

References

- Kuwahara, M., K. Hachimura, S. Eiho, and M. Kinoshita, 1976, Digital processing of biomedical images: Plenum Press, 187–203.
- Kyprianidis, J. E., H. Kang, and J. Döllner, 2009, Image and Video Abstraction by Anisotropic Kuwahara Filtering: Computer Graphics Forum 28, 7, 1955–1963.
- Luo, Y., S. al-Dossary, and M. Marhoon, 2002, Edge-preserving smoothing and applications: The Leading Edge, 21, 136–158.
- Lubo-Robles, D., T. Ha, S. Lakshmivarahan, K. J. Marfurt, and M. J. Pranter, 2021, Exhaustive probabilistic neural network for attribute selection and supervised seismic facies classification: Interpretation, **9**, no. 2, T421–T441, doi: <u>10.1190/INT-2020-0102.1</u>.
- Qi, J., T. Lin, T. Zhao, F. Li, and K. J. Marfurt, 2016, Semisupervised multiattribute seismic facies analysis: Interpretation, **4**, no. 1, SB91–SB106, doi: <u>10.1190/INT-2015-0098.1</u>.
- Qi, J., B. Zhang, B. Lyu, and K. Marfurt, 2020, Seismic attribute selection for machine-learningbased facies analysis: Geophysics, **85**, 017-035.