

MACHINE LEARNING TOOLBOX: CONVERTING VOXELS INSIDE POLYGONS TO POINTS – PROGRAM polygon_to_points

Contents

Running aaspi_polygon_to_points	1
Output file naming convention	3
Results	4

Running aaspi_polygon_to_points

In supervised machine learning workflow, after you defined different polygons for different facies of interest in **aaspi_plot**, the next step is to convert those polygons to point sets. Each point in a point set is defined by inline, crossline, and time/depth. To convert polygons to point sets, go to *Machine Learning Toolbox* menu \rightarrow *convert polygons to point sets* (1).

aaspi_util GUI - Post Stack Utilities (Release Date: 1 March 2019)						
<u>F</u> ile Geometric	Attributes Spectral	Attr	ibutes Single Trace Attribut	es Formation Att	ributes \	/olumetric Cla
Attribute Correlatio	n Tools Display To	ols	Machine Learning Toolbox	Well Log Utilities	Other Ut	ilities Set AA
1	AACDUS CECV		plot and define polygons		_	
SEGY to AASPI	format conversion	foi	convert polygons to poin	nt sets	kflows	AASPI Drestack Uti
Torriac conversion	(multiple files)		generate trainin <mark>o data</mark>			Prestack Uti
SEGY to AASPI - Convert Poststack seismic		machine-learnir Extract a	Il voxels inside poly	gons to po	int data sets	
		CNN 2D image processin	a			
				.5		

Machine Learning Toolbox: Program polygon_to_points

Click "*Browse and add to current list*" (2) to select which polygons you want to convert to points (3) and hit OK. The list of input polygon files (4) will be updated, and associated facies names (5) will be automatically loaded from input polygon files. If for some reason, you need to change facies name, double click on the facies name table and start typing. The changes of facies names will be automatically saved when you execute this program. However if you want to save the polygon's facies name right away, you can click on "*Save modified facies names to polygon files*" (6).

Machine Learning Toolbox: Program polygon_to_points

Input AASPI volume:	nd_Seismic_AASPI_Cropped_NN.H Browse					
Unique Project Name:	Eugene					
Suffix:	0					
Verbose output?						
Decimation parameters:						
Time interval:	0.02					
Crossline interval:	5 9					
Inline interval:	5					
		1				
Hover mouse over the label of the list for more info						

Next, browse to the AASPI volume that you used for picking the polygons (7). The geometric information of this volume (sampling rate, number of samples, crosslines, inlines, etc...) are critical for polygon-to-points conversion. Specify Unique project name and suffix (8). By default, the point set converted from a polygon will be decimated at 5 inlines x 5 crosslines x 5 vertical samples (9). You can change them to different values. This decimation will be beneficial if the machine learning algorithm of choice is computationally intensive (such as Probabilistic Neural Network - PNN). The computational cost increases exponentially with the number of points in a point set.

After all parameters are set, click *Execute* (10).

Output file naming convention

Program **polygon_to_points** will always generate the following output files:

Output file description	File name syntax
program log information	polygon_to_points_unique_project_name_suffix.log
Program error/completion	
information	polygon_to_points_ <i>unique_project_name_suffix</i> .err

where the values in red are defined by the program GUI. The errors we anticipated will be written to the **.err* file and be displayed in a pop-up window upon program termination. These errors, much of the input information, a description of intermediate variables, and any software traceback errors will be contained in the **.log* file.

Machine Learning Toolbox: Program polygon_to_points

Results

The converted point set file name will have the following syntax: <polygon_file_name>_<unique_project_name>_<suffix>.pnt
Delawing a second of what a second a sint set file locks like in a text a ditter.

Below is a sample of what a converted point set file looks like in a text editor:

1	Salt		
2	Time	11	
3	CDP no.		
4	Line no.		
5	2.112000	651.0000	451.0000
6	2.132000	651.0000	451.0000
7	2.152000	651.0000	451.0000
8	2.172000	651.0000	451.0000
9	2.192000	651.0000	451.0000
10	2.212000	651.0000	451.0000
11	2.232000	651.0000	451.0000
12	2.252000	651.0000	451.0000
13	2.272000	651.0000	451.0000
14	2.292000	651.0000	451.0000
15	2.312000	651.0000	451.0000 🖌 12
16	2.332000	651.0000	451.0000
17	2.352000	651.0000	451.0000
18	2.372000	651.0000	451.0000
19	2.392000	651.0000	451.0000
20	2.412000	651.0000	451.0000
21	2.432000	651.0000	451.0000
22	2.452000	651.0000	451.0000
23	2.472000	651.0000	451.0000
24	2 492000	651 0000	451 0000

The first 4 lines (11) of a converted point set file is: Facies name, Time/Depth (1st column), crossline number (2nd column), inline number (3rd column). Each subsequent line consists of 3 values defining the geometric coordinate of a point within a seismic volume: time/depth, crossline, and inline (12).

Since AASPI can only define a polygon in either inline, crossline, or time slice display, AASPI point set is 2D. However, if you can define a 3D point set from external program, you can mimic the structure of AASPI point set file to create a 3D AASPI point set.

These geometric coordinates will be used to extract data value from seismic attribute in the next step of AASPI machine learning workflow: generate training data.