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Computation flow chart 
 
Interpreters face two main challenges in seismic facies analysis. The first challenge is for a human 
interpreter to define, or “label”, the facies of interest. Accurately defining the 3D extent of a 
given seismic facies takes an understanding of geologic processes and the limits of seismic 
acquisition, processing, and imaging. Machine learning is based on accurate training data, in 
which this application is provided by a skilled interpreter defining polygons about facies of 
interest.  The second challenge is to select a suite of attributes that can differentiate a target 
facies from the background reflectivity. Unfortunately, there are relatively few interpreters who 
possess both a deep understanding of the geology of a given exploration play and a deep 
understanding of the sensitivity of an ever-expanding collection of seismic attributes to geology.  
 
This GMM-based attribute selection program is a tool to select the best attribute combinations 
from input candidate attributes. The GMMs use PDFs to represent rather than to discriminate 
between facies. Gaussian mixture models are based on probability theory, and by construction, 
provides a posterior probability that any particular voxel belongs to a given mixture model.   
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The Workflow illustrates the steps used in our GMM-based attribute selection. The workflow 
starts with the facies of interest picking and extraction of training voxels from the N candidate 
attributes. The GMM clusters are computed for each facies attribute combination. Then, the 
Bhattacharyya distance is computed for each cluster pair that is in the same attribute dimension. 
The winning attribute combination in each attribute dimension needs to calculate the average 
cumulative distance for the comparison of attribute combinations that are in different attribute 
dimensions. The best attribute combination is the one has the highest average cumulative 
distance. 
 

Output file naming convention 
 

Program attribute_selection will always generate the following output files: 
 

Output file description File name syntax 

program log information attribute_selection_unique_project_name_suffix.log 

program error/completion  
information attribute_selection_unique_project_name_suffix.err 

 
where the values in red are defined by the program GUI. The errors we anticipated will be written 
to the *.err file and be displayed in a pop-up window upon program termination. These errors, 
much of the input information, a description of intermediate variables, and any software trace-
back errors will be contained in the *.log file. 
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Theory 
 
The GMMs use PDFs to represent rather than to discriminate between facies. Gaussian mixture models are based 
on probability theory, and by construction provide a posterior probability that any particular voxel belongs to a 
given mixture model. In statistics, a multivariate distribution of data vector 𝐱𝑖 on the parameters 𝜓 modeled by 
Gaussian mixture models is, 

𝑝(𝐱𝑖|𝜓) = ∑ 𝜑𝑘𝑓𝐾
𝑘=1 (𝐱𝑖 | 𝛍𝑘, 𝚺𝑘),                                                           (1) 

where 𝛍𝑘 is the mean and 𝚺𝑘 is the covariance matrix for the multivariate case. 𝜑𝑘  is the weight, which is that 
  ∑ 𝜑𝑘

𝐾
𝑘=1 = 1.                                                                 (2) 

The multi-dimensional Gaussian mixture probability function is, 

𝑓(𝐱𝑖 | 𝜇𝑘, 𝚺𝑘) =
1

|𝚺𝑘|
1
2(2𝜋)

𝑁
2

𝑒𝑥𝑝 (−
1

2
(𝐱 − 𝛍𝑘)𝚺−1(𝐱 − 𝛍𝑘)T),                               (3) 

where the symbol T indicates the transpose of a matrix. N is the number of candidate attribute, where i=1 … N. 
In n-dimensional attribute space, the kth PDF is defined by its mean 𝛍𝑘 and its covariance matrix, 𝚺𝑘. Hardisty 
(2017) showed how to compute the optimum number of GMMs to represent multiattribute data in a seismic 
survey, where the objective is to determine if different seismic facies naturally clump into different areas of n-
dimensional space, allowing them to be color-coded and displayed. 

 
Similar to Hardisty (2017), in our application, we will use the k-means clustering to generate initial 

clustering models. We apply 300 iterations of a refinement technique to cluster attribute vectors into an attribute 
space defined by the first two eigenvectors of N-by-N covariance matrix. Thus, k-means technique results the 

initial multivariate means 𝝁𝑘
𝑖  and the covariance matrices 𝜮𝑘

𝑖 , and the weights 𝜑𝑘
𝑖  is defined by the fraction of 

attribute vectors assigned to each k-means cluster. Because the number of component K is known, expectation 
maximization (EM) is able to be used to determine the best model’s parameters. Classification Expectation-
Maximization (CEM) as an alternative EM algorithm is better to classify data vectors, when data vectors are 
assumed to be generalized into a single Gaussian mixture model (Celeux and Govaert, 1992; Hardisty, 2017). K-
means clustering is a popular cluster analysis for data mining, which is able to find clusters of comparable spatial 
extent. In general, Expectation-maximization algorithm for mixture Gaussian distributions involves both K-means 
and Gaussian mixture models. The conjunction of the Classification Expectation-Maximization (CEM) and the 
Stochastic Expectation-Maximization (SEM) is employed to learn mixture parameters in this paper. Like the 
conventional EM algorithm, both two algorithms require to define a partition of the input data, then compute 
the posterior probability according to the responsibility matrix. Each element 𝑤𝑖𝑘  (the posterior probability) of 
the N×M responsibility matrix is given by 

𝑤𝑖𝑘 =
𝜑𝑘𝑓(𝐱𝑖 | 𝜇𝑘,𝚺𝑘)

𝑝(𝐱𝑖|𝜓)
.                                                                    (4) 

Accumulating the responsibility matrix, the CEM creates K-Partitions by assigning each data component to the 
cluster that provides the highest posterior probability according to the responsibility matrix. For each cluster, the 
mixture parameters are updated by the respective partition that associating with the maximum log-likelihood 
estimates, which is defined as 

𝐿(𝜓) = ∑ ∑ ziklog{𝜑𝑘𝑓(𝐱𝑖 | 𝜇𝑘, 𝚺𝑘)}𝑁
𝑖=1

𝐾
𝑘=1 ,                                               (5) 

where zik is an indicator that is equal to 1 only if the data vector 𝐱𝑖 belongs to cluster k (Hardisty, 2017). The SEM 
algorithms randomly assigns partitions to a cluster associated with the posterior probabilities in the responsibility 
matrix, which will help avoid sub-optimal solutions provided by the CEM. Thus, we use 200 iterations of the SEM 
to initialize the CEM algorithm that gives a final partition and GMM. The parameterizations of each covariance 
matrix associated with each Gaussian mixture models can be controlled so that resulting in reduction of the 
number of parameters. We consider nine modules of covariance matrices that introduced by Celeux and Govaert 
(1993) and Hardisty (2017), and use the Bayesian Information Criterion (BIC) proposed by Schwarz (1978) to 
compare models of differing complexity. The BIC is defined as: 

𝐵𝐼𝐶 = log(𝐿(𝜓)) −
1

2
𝜀 log(𝛼),                                                          (6) 

where  𝜀 is the number of estimated parameters and 𝛼 is the number of training voxels. The higher BIC value 
indicates more confidence on covariance parameterizations. 
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As before, some insight into the attribute expression of a given facies or “what works” reduces the 

number of combinations to be evaluated. For each collection of attributes (n=2, n=3, n=4, …) we generate n-
dimensional GMMs of each user-defined seismic facies. We then multiply the Gaussian mixture model for each 
facies against the others, summing the results. The attribute selection that provides the largest summed distance 
(or least overlap) is the best combination for that value of n. We then validate this combination in predicting 
facies not used in constructing the original GMMs. Next, we increase n to determine if we can significantly 
increase the amount of overlap distances (or confidence) by increasing the dimensionality of the problem. 

In the workflow, interpreters only need to define M facies of interests and N candidate attributes for 
those facies. We pick M facies by drawing a suite of polygons on time slices and vertical slices of the seismic 
amplitude images, and each facies can be represented by multiple polygons. Therefore, there are N*M individual 
volumes that represent the N candidate attributes and the M facies, which will be inputted into our workflow. 
The workflow iteratively selects different number of attributes from the N candidate attributes. When only 
considering 1 selected attribute, there are N probabilities of attribute combinations. For 2 selected attributes, 
there are N!/(N-2)!/2! attribute combinations. The total combination number of different selected attributes 
from the N candidate attributes will be 2𝑁 − 1. We compute GMMs [𝜑𝑘 , 𝜇𝑘, 𝚺𝑘] of picked voxels to represent 
supervised voxels of each attribute combination and each facies. Although interpreters can accurately draw one 
facies by one or multiple polygons, the facies like MTDs and channels may contain multiple GMMs. For this case, 
we need to setup a maximum cluster number, which is equal to 2 in our two applications. 

After computing GMMs for each facies each attribute combination, we employ the Bhattacharyya 
Distance (Mak and Barnard, 1996) to measure the similarity between each cluster. For two GMMs j and k residing 
in n-dimensional attribute space, the distance 𝐷𝑗𝑘

𝑛  between them is:  

𝐷𝑗𝑘
𝑛 =

1

8
(𝝁𝒌 − 𝝁𝒋)

𝑇
[

𝜮𝒌+𝜮𝒋

2
]

−1

(𝝁𝒌 − 𝝁𝒋) +
1

2
ln

|
𝜮𝒌+𝜮𝒋

2
|

√|𝜮𝒌||𝜮𝒋|
,                                        (7) 

where 𝝁𝒌, 𝝁𝒋 and 𝜮𝒌, 𝜮𝒋 are the mean and covariances of the GMM cluster k and j. The measured distance overall 

expresses the properties that include the difference of size, shape, distance in the GMM space, and the larger 
the value, the more dissimilarity between two clusters. The similarity of all cluster pairs is measured by the 
Bhattacharyya Distance. Because the Bhattacharyya Distance can only work for the cluster pairs that are in the 
identical dimensional space (n-dimensional attribute space), other GMM clusters (in n-2, n-1, n+1, n+2, … 
dimensional attribute space) will be unavailable to be compared with the GMM clusters in n-dimensional or each 
other. Therefore, we define a new distance that measures average cumulative distance of each attribute 
combination, 

𝑂𝑎𝑛
𝑛 = max

𝐴𝑛

{
1

𝐴𝑛𝑀2𝐽𝐾
∑ ∑ ∑ ∑ ∑ [𝐷𝑚𝑙𝑗𝑘

𝑛 ]𝐽
𝑘=1

𝐽
𝑗=1

𝑀
𝑙=1

𝑀
𝑚=1

𝐴𝑛
𝑎=1 | 𝑛 = 1, 2, … , 𝑁},                       (8) 

where M is the number of the picked facies, and 𝐴𝑛 is the number of probable numbers of attribute combinations 
within n selected attributes (in n-dimension). J is the number of GMM clusters about 𝐴𝑛 attribute combinations 
in all facies, respectively. The index n is from 1 to N, where N is the number of input candidate attributes. Next, 
we will find the optimum attribute combinations in each n selected attribute combination by comparing the value 
of the average cumulative distance. The optimum attribute combinations associated with 1, 2, …, N selected 
attribute space are as 𝑂1, 𝑂2, …, 𝑂𝑁. Then, we will find the most optimum attribute combination 𝜺 for the picked 
M facies by: 

𝜺 ≡ arg {max
𝑁

(𝑂𝑎𝑛
𝑛 )},                                                                   (9) 

Which means that the average cumulative distance of the most optimum attribute combination 𝜺 will be the 
highest among all attribute combinations. 
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Application of attribute_selection module for seismic facies analysis 
 
We first picked facies of interest by drawing multiple polygons on a seismic amplitude volume. 
The candidate seismic attributes are selected based on the interpreter’s experience. The training 
voxels are then extracted on the picked polygons from all candidate seismic attributes. Next, we 
compute GMM clusters for each picked facies for each possible attribute combination, then 
compute the Bhattacharyya distance to measure the similarity between each cluster under the 
attribute combinations that are in the same dimension of attribute space. The higher 
Bhattacharyya distance between each facies cluster indicates the more easily the pair of clusters 
are separable. To evaluate attribute combinations between different dimension space, we define 
the average cumulative distance. In different numbers of attribute spaces, there is one optimum 
attribute combination, and the attribute combination that has the highest average cumulative 
distance is the best combination among all possible attribute combinations. Next, we filter the 
selected seismic attributes through the proposed 3D adaptive Kuwahara filter to suppress the 
effects of seismic noise, smoothen interior textures, and sharpen the edges of seismic facies. The 
filtered attributes are then mapped onto the GTM latent space to generate unsupervised PDFs 
of all voxels. The picked voxels of each facies associated with the selected attributes are then 
mapped onto the latent space to generate supervised PDFs of training voxels. Then, we compute 
the likelihood between training and all voxels, which results in probability volume of training 
facies. 
 
To define seismic facies, we need to use the module define_training_data module, which is in 

 
 
Click define_training_data and the program will be displayed (see next page). 
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In using define_training_data, we can use seismic amplitude or attribute volume to draw 
polygon. (1) select seismic amplitude or attribute volume; (2) we can either plot a time slice or a 
vertical slice to draw a polygon; if we want to change plot direction, click (3) execute, then a plot 
will display. 
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We plot the inline slice. (4) after figure plotting, we can draw polygons on the facies we wish to 
pick; (5) after the first polygon drawn on a slice, we need to click save_polygon_to_new_file to 
save this polygon to a new file; for other polygons drawn on the same slice or other slice, we only 
need to click (6) add_polygon_to_current_file to save picked voxels. After picking the first facies 
through slices, we need to (7) change the polygon name in the project folder, figure shows the 
case in Linux system, and we change the default name “polygon” to be “polygon_salt”. Before 
picking another facies, we need to click (8) clear_polygon, then we draw polygons on other facies. 
By clicking (9) at the define_training_data module, the window will be changed to the following 
image (see next page). 
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(10) Input picked facies (salt, mtd, background sediment); (11) input candidate attributes; please 
remember the input orders of facies and attributes, this information will be used in attribute 
selection. After inputing, click (12) execute. 
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Then, supervised 1D volumes within picked facies associated with different candidate attributes 
are generated as shown in the figure above. We have 3 facies and 9 attributes, so the total inputs 
are 27 volumes. The first number in the name indicates facies, and the second number indicates 
attributes. 
 
 

 
 
Go back to aaspi_util GUI and click (13) attribute_selection: 
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 Using (14) browse_and_add_to_current_list to select 1D volumes generated from 
define_training_data; (15) write number of attributes; (16) write number of seismic facies; (15) 
and (16) should be identical to define_training_data; (17) define how many GMM clusters are 
generated through expectation maximization algorithms. For chaotic facies, there are in general 
more than one cluster. (18) Use stochastic expectation maximization or not; this is the same 
parameter as in GMM3d; after click (19) Execute, the process will start and show as (see next 
page): 
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After the entire process, the best attribute combination will be shown as: 
 

 
(20) indicates the highest cumulative Bhattacharyya distance of each attribute number of 
attribute combinations; (21) indicates the attribute index associated with those highest 
cumulative distance, attribute No. 1 is the first input attribute in define_training_data that is 
energy_ratio_similarity attribute, and attribute No. 4 is the fourth input attribute in 
define_training_data that is bandwidth_spectral attribute; (22) indicates the index of the best 
attribute combination; (23) indicates the attribute number of the best attribute combination. 
 

Displaying the results 
 

We first validate our attribute selection workflow by applying to the deep-water dataset, 
acquired from the Gulf of Mexico (GOM). The seismic data is located offshore Louisiana shelf 
edge and cover approximately 8000 km2 with 37.5 m by 25 m bins. Salt domes rise from the 
deepest sections of the basin, where complex masses of shale and mud slides migrate toward 
and deposits at a minibasin. Multiple facies can be observed in the dataset which include 
undeformed shale, interbedded sand and siltstone, salt domes, and mass transport complexes.  
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Figure 1. (a) Time slice at t = 1.22 s, and (b) vertical slice along line AA’ through the seismic 
amplitude volume. Red polygons indicate salt diapirs voxels that will be used to define the 
location of this facies in multiattribute space. Green polygons indicate MTD facies, and blue 
polygons indicate conformal reflectors. Salt facies exhibit weak envelope, low frequency, and 
deviating boundaries of the reflector dip. When defining training data, interpreters only pick 
those voxels in which they have the greater confidence. 
 
Seismic amplitude played as the initial attribute in seismic interpretation is able to identify most 
of large geologic features by the spatial variation of seismic amplitude and phase. Other seismic 
attributes derived from seismic amplitude provide quantitative measure of statistical and 
geometric patterns of geologic features. Figure 1a shows the time slice at t = 1.22 s through the 
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seismic amplitude volume. Figure 1b shows the line AA’ through the seismic amplitude volume. 
Note the polygons indicate the three picked facies of interest (M=3), which are salt diapirs, 
conformal reflectors, and MTD. Seismic expression of salt in the GOM data is vertically and 
laterally chaotic, and incoherent. Because the data is prestack time migrated, parts of reflectors 
such as the boundaries of salt are mis-migrated and also able to be observed on salt diapirs. 
Seismic expression of mass transport complexes is incoherent and chaotic as well, however mass 
transport complexes exhibit mixed energy and frequency rather than low energy and frequency 
in seismic expression of salt. In the picked salt facies (Figure 2a), it contains mixtures of seismic 
noise that are incoherent subsequent facies, and migration artifacts that are coherent 
subsequent facies. MTD facies can also be seen as coherent, rotated reflectors (Figure 2b), which 
are depositions of mudstone or siltstone blocks, or sliding gravity flows of shale formation. The 
zoomed conformal background is shown in Figure 2c, and consists of coherent sediment and 
shale layers. Figure 3 indicates GMMs of the MTD within two subsequent facies on the 2D 
attribute space. 
 

 

 
Figure 2. Zoomed vertical slices from Figure 5b of picked (a) salt, (b) MTD, and (c) conformal 
background facies. Note salt and MTD may contain coherent and incoherent subsequent facies. 
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Figure 3. A cartoon of two GMMs represents chaotic components and coherent, rotated blocks 
in an MTD. 
 
 
To avoid redundant use of attributes, we identify salt features of dip, amplitude, and frequency 
variation, using the coherence, grey-level co-occurrence matrix (GLCM), nonparallelism 
attributes, and statistic measures of frequency, totaling nine candidate attributes (N=9). The 
candidate attributes selected for the GTM should successfully measure different seismic 
responses of salt, conformal reflectors, and MTD’s. Figure 4 shows the list of the input candidate 
attributes. Note that the deviation of vector dip, the deviation of energy gradient attributes, and 
the covariance of vector dip and energy gradient highlight chaotic salt areas, high energy salt 
boundaries, and nonparallelism and randomness of seismic reflectors, respectively. The 
spectrum bandwidth attribute, and the spectrum roughness attributes belong to statistic 
measures of spectrum that are used to detect frequency variation between salt and other facies. 
Additionally, the spectrum bandwidth of salt rapidly changes and exhibits chaotic anomalies. The 
roughness of spectrum salt is much lower than other facies. These two statistic measures of 
spectrum describe the frequency variation of salt diapirs in two different ways. 
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Figure 4. List of the candidate attributes and the picked facies of interest. Coherence measures 
the similarity between traces, which is also sensitive to strong random noise. Spectral bandwidth 
and spectral roughness are statistical measures of spectrum. GLCM entropy and GLCM variance 
are texture attributes and measure texture variations of seismic amplitude images. Dip deviation, 
energy deviation, and covariance of dip and energy measure lateral changes of reflector dip, 
lateral changes of reflector energy, and lateral changes of covariance of dip and energy. Reflector 
convergence measures vertical changes of reflector dip. 
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Figure 5. List of each n (n=1,2,…,9) selected attributes associated with the number of 
combinations, the number of clusters, and the number of the comparisons in each sub-group 
combinations. 
 
Extracting the training voxels of the three picked facies from the nine candidate attributes is the 
first step of the attribute selection workflow. The total number of combinations for a nine-
attribute combination is 511. For each combination An n of n selected attribute each facies m, we 
compute J GMM clusters. Different attribute combinations can have different numbers of GMM 
clusters. While a “homogeneous” seismic facies like salt may be well represented by a single 
GMM, more heterogeneous seismic facies like MTD’s may require two or more GMMs. To 
decrease computation cost and the influence of seismic random noise, the maximum cluster 
number of each attribute combination of each facies is set to two. The training voxels is 
generated to multiple GMMs. The subsequent combination number of each n combination An 
and the number of GMM clusters that associate with the subsequent combination number are 
shown on Figure 5. The Bhattacharyya Distance between each GMM cluster in each n selected 
attribute combination is computed to compare the similarity of each two-cluster pair of GMM. 
The number of the Bhattacharyya Distance computed about each n selected attribute 
combination is J!/(J-2)!/2!. Next, we compute the commutative distance to evaluate attribute 
combinations, then average the distance by the number of the sub-group possible combination, 
the number of picked facies, and the number of the computed GMM clusters in the identical 
number of the attribute space. Figure 6 shows the average cumulative distance of each possible 
number of selected attributes from the total nine attribute. The maximum distance is within the 
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seven selected attributes and those attributes are coherence, spectral bandwidth, GLCM 
entropy, GLCM variance, energy deviation, spectral roughness, and dip deviation (Figure 7). We 
examine histograms of the seven selected attributes (Figure 8). The red masks indicate most of 
the salt voxels located on the histograms of the selected attributes. Note that histograms of 
selected attributes can be approximately separated salt voxels from other facies using simple 
thresholds. 
 

 
Figure 6. List of the average cumulative distance of each n selected attributes. Note that the 
attribute combination associated with the highest distance is 1, 3, 4, 5, 8, 9 (attribute index in 
define_training_data). 
 
 

 
Figure 7. List of the attributes in the selected attribute combination. 
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Figure 8. Histograms of the seven selected attributes. The red masks indicate most of the salt 
voxels located on the histograms of different attributes. Note the histograms of salt voxels can 
be approximately separated from other facies by thresholds. 
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