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Overview 
 
Independent Component Analysis (ICA) uses higher order statistics to separate a multivariate 
data into independent components, finding a linear representation of non-Gaussian data 
(Hyvärinen and Oja, 2000). This representation allows the extraction of more valuable 
information than Principal Component Analysis in which the data is decomposed in linear 
uncorrelated components (Lubo-Robles, 2018).   
 
To illustrate ICA, the popular cocktail-party problem is commonly used. If two people are 
speaking at the same time in a room where two microphones are recording their voices, the 
recorded signals are a weighted linear combination of the individual signals spoken by the two 
people. Although the goal is to estimate the original individual signals using the recorded 
signals, this cannot be accomplished because the relationship between the recorded and the 
individual signals is unknown. However, following Hyvärinen and Oja, (2000), it is possible to 
compute the individual signals under the assumption in which they are statistically 
independent. 
 
The goal is to obtain an unmixing matrix W, which multiplied with the recorded signals, 
computes the individual signals or independent components. The ica3d algorithm is based on 
the FastICA algorithm developed by Hyvärinen and Oja, (2000), but with modifications in order 
to apply it using volumetric seismic attributes. Also, some preprocessing steps are applied to 
the input data in order to make the estimation of the independent components better 
conditioned  (Hyvärinen and Oja, 2000). 
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Data preparation 
 
Computing the Mean, Standard Deviation and the Correlation Matrix 
 
The mean of any attribute aj is simply the sum of its values at M voxels divided by M: 
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The standard deviation of each attribute aj is computed as: 
 

𝜎𝑗 = √E[ (𝑎𝑗 − 𝜇𝑗)2]          (2) 

 
where, E is the average or expected value operator. 
 
Contrary to human voices and other ICA applications, each seismic attribute may have a different unit of 
measurement and range of values. The seismic envelope may range between 0  and +10000, while curvature 

may have value that range between -1 and +1 km-1. Therefore, Z-score normalization is applied to the data:  
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=(aj - 𝜇𝑗)/𝜎𝑗.                                                               (3) 

 
The correlation matrix, C, is constructed by comparing each sample vector to itself and all its neighbors and can 
be computed from K attribute volumes as: 
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where M is number of voxels in the volume to be analyzed. 
 
Eigenvectors and Eigenvalues 
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or in matrix form 
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where C  is a J by J square matrix, λk is the kth eigenvalue and v(k) is its corresponding eigenvector. In general, 

there are J eigenvalue-eigenvector pairs, though not all of them need to be different, and where some of the 
eigenvalues λk may equal 0, indicating a rank-deficient matrix. By convention, the eigenvectors are normalized 
to be unit vectors 
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while the eigenvalue-eigenvector pairs are sorted from largest to smallest 
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Principal components and whitening 
 
The kth principal component, p(k), at the mth voxel (tm,,xm,ymn)  is a scalar value that represents the projection of 
an J-dimensional sample vector, a, against the kth unit length, J-dimensional eigenvector, v(k),:  
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To whiten the data, one simply normalizes by the inverse of the square root of the corresponding eigenvalues: 
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where �̂�𝑗 are the Z-normalized whitened seismic attributes and  is a fraction of the largest eigenvalue, λ1 to 

avoid division by zero. 
 
PCA whitening is used not only to reduce the dimensionality of the data but also to reduce noise. In addition, it 
guarantees that the data is uncorrelated, i.e., there is no a linear relationship between the input properties, 
thus simplifying the estimation of the independent component because reduces the number of free 
parameters to be computed (Hyvärinen and Oja, 2000).  
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In the ica3d algorithm, to decide how many components are preserved, the percentage of variance retained is 
analyzed (Stanford, 2018). If there are n principal components whose eigenvalues are 𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑛 where 
𝜆𝑗 ≥ 𝜆𝑗+1. For n attributes, the algorithm keeps those components whose sum just exceeds a defined 

percentage 𝛿, of the variability of the data, while the remaining variability is considered to be noise:  
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≥ 𝛿,                                                                                                                                                      (11) 

 
where in the algorithm a value 𝛿 = 0.9 is used to distinguish between data and noise. 
 

Independent components estimation 
 
Following Hyvärinen and Oja (2000) and based on the central limit theorem, is known that the distribution of 
two independent variables is less Gaussian than the distribution of the sum of the two variables. Thus, if the 
non-Gaussian behavior of the preprocessed data is maximize, it is possible to compute the unmixing matrix, W, 
in order to obtain the independent components. Also, to measure the non-Gaussianity of the data, a modified 
version of entropy called negentropy is used (Hyvärinen, 1999; Hyvärinen and Oja, 2000) and it is always 
nonnegative and equal to zero for a Gaussian distribution.    

 
Assuming a random variable y=𝑊𝑇�̂� with zero mean and unit variance, negentropy J (Hyvärinen, 1999) 
approximates as: 
 
𝐽(𝑦) = {𝐸[𝐺(𝑦)] − 𝐸[𝐺(𝑣)]}2,                                                                                                                         (12)                                                     
 
where v is a centered and whitened Gaussian variable, E is the expected value operator which in practice is 
replaced by the sample means (Hyvärinen and Oja, 2000) and G is a non-quadratic function: 
 

𝐺(𝑦) = −𝑒
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2
⁄ )

,                                                                                                                                             (13) 
 
which according to Zanardo Honorio, et al., 2014 provides good resolution and delineation of geological 
features. 
 
Following the FastICA algorithm developed by Hyvärinen and Oja (2000), to compute the independent 
components the contrast function, G is maximized. Also, the independent components are computed 
simultaneously and to avoid convergence to the same maxima, the outputs are decorrelated after each 
iteration (Hyvärinen and Oja, 2000).  
 
In each iteration of the algorithm, each row of the the unmixing matrix, W, is updated by 
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and normalized by:             

W𝑗
+ =

W𝑗
+

||W𝑗
+||

⁄ ,                                                                                                                                             (15)                                           

 
where, W+ is the updated unmixing matrix, and is decorrelated using Eigenvalue Decomposition (EVD) by 
 

 Wdecorr
+ = (WWT)

−1
2⁄ W.                                                                                                                                 (16)                                  

 
Finally, convergence is reached when the dot-product of the old and new values of W is close to 1 indicating 
that they are parallel and unchanged.   
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Workflow of the ica3d volumetric classification algorithm (Lubo-Robles, 2018). In order to 
decrease the computational cost of processing multiple seismic attributes, the data is 
decimated to construct a smaller training data volume from which the unmixing matrix W is 
computed. The algorithm is based on the FastICA algorithm developed by Hyvärinen and Oja 
(2000),but with modifications to implement it using seismic attributes.  
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The program ica3d is launched from the Volumetric Classification in the main aaspi_util GUI  
 
 
 

Computing ica3d module 
 
Setting the parameters defining independent components is the first step of analysis. Use the 
browser to choose the input seismic volumetric attributes file (Arrow 1). The minimum number 
of inputs attributes to apply ica3d is three. The selection of the input attributes depends on the 
geological feature of interest. For analyzing facies variations, volumetric attributes such as 
coherency, GLCM attributes, dip magnitude, spectral magnitude components, coherent energy 
can be considered as input. In order to characterize geo-mechanical variation in shale plays 
volumes such as inversion volumes, lambda-rho, mu-rho, intercept or gradient AVO volumes 
are useful because they help to identify and characterize the rock physics. Put the maximum 
number of iterations (Arrow 2). Select the decimation rate of input data used to generate the 
training data (Arrow 3). The decimation rate will depend on the size and number of seismic 
attributes used by the user. If few and small seismic volumes are used, a lower decimation rate 
that the one shown in this documentation in recommended in order to guarantee convergence 
of the algorithm. Finally, select the percentage of variability retained used in PCA whitening 
(Arrow 4). The algorithm automatically outputs the number of independent components based 
on the percentage selected by the user.  
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Then a user need to define the operation window in the Operation Window tab shown below. 
A user can either use a fixed time window, or a window defined by two horizons. 
 

 

1 

2 

3 

1 

2 
3 

4 

6 

7 
9 

10 

11 

12 

13 

14 
15 

16 

17 

18 

5 

8 

4 



Volumetric_Classification: Program ica3d 
 

Attribute-Assisted Seismic Processing and Interpretation     4 November 2019 Page 8 
 

 

Horizon definition 
 
The horizon definition panel will look the same for almost all AASPI GUIs: 
 

1. Start time (upper boundary) of the analysis window.  
2. End time (lower boundary of the analysis window.  
3. Toggle that allows one to do the analysis between the top and bottom time slices described in 1 and 2 

above, or alternatively between two imported horizons. If USE HORIZON is selected, all horizon 
related options will be enabled. If the horizons extend beyond the window limits defined in 1 and 2, 
the analysis window will be clipped. 

4. Browse button to select the name of the upper (shallower) horizon. 
5. Button that displays the horizon contents (see Figure 1). 
6. Button to convert horizons from Windows to Linux format. If the files are generated from Windows 

based software (e.g. Petrel), they will have the annoying carriage return (^M) at the end of each line 
(Shown in Figure 1). Use these two buttons to delete those carriage returns. Note: This function 
depends on your Linux environment. If you do not have the program dos2unix it may not work. In 
these situations, the files may have been automatically converted to Linux and thus be properly read 
in.  

7. Browse button to select the name of the lower (deeper) horizon. 
8. Button that displays the horizon contents (see Figure 1). 
9. Button to convert horizons from Windows to Linux format. (see 6 above). 
10. Toggle that selects the horizon format. Currently gridded (e.g. EarthVision in Petrel) and interpolated 

(ASCII free format, e.g. SeisX) formats are supported. The gridded horizon are nodes of B-splines used 
in mapping and have no direct correlation to the seismic data survey. For example, gridded horizons 
may be computed simply from well tops. The x and y locations are aligned along north and east axes. 
In contrast interpolated horizons have are defined by line_no, cdp_no (crossline_no) and time triplets 
for each trace location. Examples of both format are shown in Figure 1. If interpolated is selected, the 
user needs to manually define each column in the file. 

11. Number of header lines to skip in the interpolated horizon files. 
12. Total number of columns in the interpolated horizon files. 
13. Enter the column number containing the line_no (inline_no) of the interpolated data triplet. 
14. Enter the column number containing the cdp_no (crossline_no) of the interpolated data triplet. 
15. Enter the column number containing the time or depth value of the interpolated data triplet. 
16. Znull value (indicate missing picks) in the horizon files. 
17. Toggle to choose between positive down and negative down for the horizon files (e.g. Petrel uses 

negative down). 
18. Choose the vertical units used to define the horizon files (either s, ms, kft, ft, km, or m). 
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Figure 1. (left) A gridded horizon file (EarthVision format). (right) An interpolated horizon file 
with five columns (ASCII free format). 
 
 
After defining the operation window parameters, press the Execute ica3d. 
 

 
 
The generated principle component files are named as: 
ica_${unique project name}_${suffix}_j_temp.H 
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Visualization of the result 
 
To view the resulted independent components, a user can either use aaspi_plot to display each 
component individually, use aaspi_crossplot to crossplot two components or use rgb_cmy_plot 
to plot three components using a RGB color scheme. One can also use visualization tools in 
commercial interpretation packages. It is important to highlight that the order of independent 
components is undefined, thus they should be sorted by visual inspection based on their 
geological insight. The figure below corresponds to three independent components plotted 
against a RGB color scheme using Petrel, along a phantom horizon  in a channel complex 
present in the Moki A Formation, Taranaki Basin, New Zealand. We interpret the green arrows 
as meandering channels with moderate sinuosity and a tabular shape channel with highly 
variable internal architecture, orange arrows as oxbows, and the blue arrow as a small 
abandoned meandering channel. 
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