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Computation flow chart 
 

This self-organizing map (SOM) 3D facies analysis program is a tool to generate a seismic facies 
map from multiple seismic attributes in an unsupervised fashion. Different exploration target or 
seismic facies may be sensitive to different seismic attributes, and often times interpreters 
need to use multiple attributes to delineate features within the area of interest. Taking multiple 
attribute inputs, SOM tries to generate a facies map that captures most, if not all variations in 
the input attributes. We consider the SOM process as a projection from multidimensional 
attribute space to a 2D space, and the som3d program will output two files of projections on 
two SOM axes, which can be directly crossplotted in crossplot or other modern interpretation 
packages using a 2D RGB colorbar, making visualization more convenient and interactive. Below 
is the flowchart showing the workflow of 3D seismic facies analysis (see next page). 
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Figure 1. 

 

Output file naming convention 
 
Program som3d will generate the following files that provide statistics on the input 
multiattribute data, where files ending in *.csv (comma-separated values) can be plotted using 
Microsoft Excel software:  
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Program som3d will also generate the following output files: 
 

Output file description File name syntax 

Program log information som3d_unique_project_name_suffix.log 

Program 
error/completion   
information 

som3d_ unique_project_name_suffix.err 

Classified data som3d_cluster_number_unique_project_name_suffix.H 

Classified data projected 
on SOM axis 1 

som3d_projection_axis1_ unique_project_name_suffix.H 

Classified data projected 
onto SOM axis 2 

som3d_projection_axis2_ unique_project_name_suffix.H 

Distance of each data 
vector to its cluster center 

som3d_distance_unique_project_name_suffix.H 

Prototype vectors som3d_prototype_vector_waveform_unique_project_name_suffix.H 

 
 

  

  

  

  

 
 
where the values in red are defined by the program GUI. The errors we anticipated will be 
written to the *.err file and be displayed in a pop-up window upon program termination. These 
errors, much of the input information, a description of intermediate variables, and any software 
trace-back errors will be contained in the *.log file. 
 
SOM classification is initialized using the first two eigenvalues and eigenvectors, and in this 
application are identical to those generated by program pca3d. This 2D plane (the simplest 
manifold in N-dimensional attribute space) is sampled by a suite of regularly spaced prototype 

Output file description File name syntax 

Attribute mean values som3d_mean_unique_project_name_suffix.csv 

Attribute standard deviations som3d_std unique_project_name_suffix.csv 

Multiattribute covariance matrix som3d_covariance_unique_project_name_suffix.csv 

Multiattribute eigenvectors som3d_eigenvectors_unique_project_name_suffix.csv 

Multiattribute eigenvalues som3d_eigenvalues_unique_project_name_suffix.csv 
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vectors which are then projected onto the SOM latent space. At each iteration, the location of 
each prototype vector moves in the N-dimensional space to better represent the training data. 
These prototype vectors (some workers call them “neurons”) are then projected onto the 2D 
latent space at each iteration. Each sample in the input data represents a time slice, phantom 
horizon slice, or stratal slice. In order to classify, the input data are scaled using the mean and 
standard deviation for each slice. For this reason, there are two versions of the prototype 
vectors – the one that is scaled and used internal to the program, and the one that is unscaled 
(in “world coordinates”) and may be more useful to an interpreter.  Both of these vectors can 
be plotted against a color map called the prototype vector color matrix. The classified results 
are provided in two formats – as a labeled data volume (consisting of integer values stored as 
floating point numbers) that can be plotted against a corresponding classification color bar, or 
as the classes projected against SOM latent space axes 1 and 2, which can be plotted using 
aaspi_crossplot or crossplot tools available in commercial software. Most commercial software 
packages allow an interpreter to define polygons in the crossplot space, thereby providing more 
control in constructing seismic facies. 
 
As with programs rgb_cmy_plot, crossplot, and hlsplot, the user can request the following 
optional colorbars for the more common interpretation software packages: 
 

Output file description File name syntax 

Petrel classification color bars som_waveforms_colors_unique_project_name_suffix.iesx 

Landmark classification color bars som_waveforms_colors_unique_project_name_suffix.cl2 

Kingdom Suite classification color 
bars 

som_waveforms_colors_unique_project_name_suffix.CLM 

Seisware classification color bars som_waveforms_colors_unique_project_name_suffix.xml 

Voxelgeo classification color bars som_waveforms_colors_unique_project_name_suffix.color 

Geoprobe classification color bars som_waveforms_colors_unique_project_name_suffix.gpc 

Transform classification color bars som_waveforms_colors_unique_project_name_suffix.cmp 

Geomodeling classification color bars 
som_waveforms_colors_unique_project_name_suffix.geomodeling 

Seisware classification color bars som_waveforms_colors_unique_project_name_suffix.CLM 

 
 
Because the AASPI software uses the Petrel *.alut format files for its display; this file will always 
be generated.  
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Theory 
 

Self-organizing map (SOM) is closely related to vector quantization methods (Haykin, 1999). Initially 

we assume that the input are represented by J vectors in a N-dimensional vector space Rn, xj= [xj1, xj2, xj3 …. xjN] 

where N is the number of input attributes (or amplitude samples for “waveform” classification) and j=1,2,…,J is 

the number of  vectors analyzed. The objective of the algorithm is to organize the dataset of input seismic 

attributes into a geometric structure called the SOM. SOM consists of neurons or prototype vectors (PVs) 

organized by a lower-dimension grid, usually 2D, which are representative of the input data that lies in the 

same N-dimensional space as the input seismic attributes. PVs are also termed as SOM units and typically 

arranged in 2D hexagonal or rectangular structure maps that preserve the neighborhood relationship among 

the PVs. In this manner PVs close to each other are associated with input seismic attribute vectors that are 

similar to each other. The number of these PVs in the 2D map determines the effectiveness and generalization 

of the algorithm. Let’s consider a 2D SOM represented by P prototype vectors mi, mi= [mi1, mi2…. miN], where 

i=1, 2, …, P and N is the dimension of these vectors defined by the number of input attributes (or samples for 

waveform classification).  

During the SOM training process, an input vector is initialized and is compared with all N-dimensional 

PVs on the 2D grid, or latent space. The prototype vector with the best match (the winning PV) will be updated 

as a part of SOM neighborhood training. 

Given this background, Kohonen (2001) defines the SOM training algorithm using the following five 

steps: 

Step 1: Consider an input vector, which is randomly chosen from the set of input vectors. 

Step 2: Compute the Euclidean distance between this vector x and all PVs  𝐦i,i=1, 2,…p. The prototype 

vector  𝐦b, which has the minimum distance to the input vector  x, is defined to be the “winner” or the Best 

Matching Unit, 𝐦b : 

  ||𝐱 − 𝐦b|| =  MIN{||𝐱 − 𝐦𝐢||}    …………………………………. (1) 

Step 3: Update the “winner” prototype vector and its neighbors. The updating rule for the weight of the ith PV 

inside and outside the neighborhood radius σ(t) is given by: 

  𝐦i(t + 1) =  𝐦i(t) +  α(t)hbi(t)[𝐱 − 𝐦𝐢(t)]     if ||𝐫i − 𝐫b||  ≤ σ(t)  (2a) 

      =  𝐦i(t)                                                    if  ||𝐫i − 𝐫b|| > σ(t), (2b) 

where the neighborhood radius defined as σ(t) is predefined for a problem and decreases with each 

iteration t.    𝐫b  and  𝐫i are the position vectors of the winner PV  𝐦b and the ith PV  mi respectively. We also   
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define hbi(t) as the neighborhood function, α(t) as the exponential learning function and T as the length of 

training. hbi(t) and α(t) decrease with each iteration in the learning process and they are defined as  

                        hbi(t) = e−(||𝐫b−𝐫i||2/2σ2(t) , and …………………………………. (3) 

                        α(t) = α0(
0.005

α0
)t/T .  …………………………………. (4) 

Step 4: Iterate through each learning step (steps 1-3) until the convergence criterion (which depends on the 

predefined lowest neighborhood radius and the minimum distance between the PVs in the latent space) is 

reached. 

Step 5: Color-code the trained PVs using 2D or 3D gradational colors (Matos et al. 2009). We will use an HSV 

model, for 2D spaces will be defined as hue, ℋ,  

  ℋ =  tan−1 (
v−1

2⁄

u− 1 2⁄
)       ……………………………………………. (5) 

and saturation, 𝒮, as 

                           𝒮 =  [(u − 1
2⁄ )

2
+  (v − 1

2⁄ )
2

]1/2         …………………………………………………. (6) 

where u and v are the projected components onto the 2D latent space defined by the eigenvectors 𝐯(1) and 

𝐯(2). The new sets of PVs are colored using the 2D HSV color palette with equations 5 and 6. 

In traditional Kohonen SOM, the position of an SOM node in the SOM latent space is only based on the 

distance between the corresponding prototype vector (the projection of an SOM node in the input data space) 

and the nearest data vector in the input space. In our implementation, we add a step of adjusting the position 

of all SOM nodes according to their distances from the current winning node (best matching unit) in both input 

data space and SOM latent space. The adjustment rule is (Shao and Yang, 2012): 

    𝐫𝑘(𝑡 + 1) = 𝐫𝑘(𝑡) + 𝛼(𝑡) ∙ (1 −
𝛿𝑣𝑘

𝑑𝑣𝑘
) ∙ (𝐫𝑣(𝑡) − 𝐫𝑘(𝑡)), ∀ 𝑘 ≠ 𝑣.      …………………………..(7) 

In Equation 7, 𝐫𝑘(𝑡) is the positon of an SOM node before adjustment; 𝐫𝑘(𝑡 + 1) is the position of an 

SOM node after adjustment; 𝐫𝑣(𝑡) is the position of the current winning node; 𝛿𝑣𝑘 and 𝑑𝑣𝑘  are the distances 

between an SOM node and the current winning node in input data space and in the SOM latent space, 

respectively. 𝛼(𝑡) is the learning rate which exponentially decays over iterations. 

The input of our SOM3D algorithm consists of several mathematically independent volumetric 

attributes where the number of input attributes determines the mathematical dimensionality of the data. Due 

to the limitation of our visualization software which provides only 256 colors, we have limited our over-defined 

prototype vectors to a maximum of J=256. In this application, we normalize our input data vectors using a Z-

score algorithm. Thus our input data has a vector assigned to each of the (x, y, z) locations in our volume (which  
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are actually the normalized input attribute values at that location).  

We name this new volume the normalized multi-attribute volume and project it onto a 2D latent 

space using Principal Component Analysis. The 2D latent space is defined as explained earlier. If there are six 

input attribute volumes, each of the PVs in the 2D latent space is 6-dimensional.  This 2D latent space is 

sampled uniformly by 256 PVs. The PVs are trained in the 2D latent space and their positions updated after 

each iteration, resulting in the new updated position of the PVs. When the updating slows down, the training 

process stops. With an increasing number of iterations, the PVs move closer to each other and to the data 

points within the latent space. The HSV colors are assigned to the PVs according to their distance from their 

center of mass and their azimuth (equations 5 and 6). Once trained, the distance is computed between each 

PV, mi′, and the multiattribute data vector, x, at each voxel using 

                                        ||𝐱 − 𝐦𝐛
′ || =  min{||𝐱 − 𝐦i

′||} …………………………………………. (8) 

where 𝐦b′ is the nearest PV to the input data sample vector 𝐱.  Each voxel is then assigned the color of  𝐦b
′ . In 

this manner, two dissimilar neighboring samples in the seismic volume will be far apart in the latent space and 

have different colors. Conversely, two similar samples in the seismic volume will have nearly the same color. 

Each color represents a seismic facies, most of which are geologic facies, but some which may be seismic 

‘noise’ facies.  

Users also have the option to weigh input attributes differently in a data-adaptive fashion. The weight 

matrix W is defined as a function of interpreter’s knowledge and attributes’ contribution to SOM. Inspired by 

Benabdeslem and Lebbah (2007), given N input attributes and P prototype vectors, we define 𝜔𝑖, the ith 

attribute’s contribution to an SOM model, as: 

                              𝜔𝑖 = ∑ 𝑑𝑗

|𝑚𝑗𝑖|

∑ |𝑚𝑗𝑘|𝑁
𝑘=1

𝑃
𝑗=1 , …………………………………………. (9) 

and 

                                                      𝑑𝑗 =
ℎ𝑗

𝐽
, …………………………………………. (10) 

where hj is the number of multiattribute training samples that are nearest to the jth prototype vector, J is the 

total number of multiattribute training samples, dj represents the density of training samples assigned to the 

jth prototype vectors, and pjk is the value of the jth prototype vector along dimension k (the dimension of the kth 

attribute). Physically, if a prototype vector has a very large value in the dimension of the target attribute, and a 

large percentage of training samples are close to this prototype vector, then the target attribute’s contribution 

at this prototype vector is significant. Summing up over all the prototype vectors, we then arrive at the target 

attribute’s contribution to the whole SOM model. To ensure an overall optimal contribution measurement for 

a given group of attributes, we propose to use an exhaustive search over all combinations of three or more 

attributes,  

                                   𝑆 = ∑
𝑁!

𝑖!(𝑁−𝑖)!

𝑁
𝑖=3 , …………………………………………. (11) 

and then weight by the number of attributes in each combination and take the sum over all used  
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combinations: 

                                   𝜔𝑖 = ∑ 𝑁𝑙�̃�𝑖𝑙
𝑆
𝑙=1 , …………………………………………. (12) 

where ! denotes the factorial operation, S is the total number of SOM models to be searched, Nl is the number 

of attributes in the lth combination, �̃�𝑖𝑙  is the contribution of the ith attribute to the lth SOM model, and  𝜔𝑖  is 

the final contribution of the ith attribute to the SOM. Although the method involves running SOM multiple 

times with different input attribute combinations, it is an embarrassingly parallel problem so that the increase 

in computation time over the traditional SOM is negligible given sufficient amount of threads/processors. 

We use skewness and kurtosis to quantify the distribution of an attribute, and we weigh more on 

attributes that exhibit smaller absolute skewness and higher kurtosis. Skewness, which is the third moment of 

the standard score of a variable x, is defined as: 

                              𝑠(𝒙) = 𝔼 [(
𝐱−�̅�

𝜎𝑥
)

3

], …………………………………………. (13) 

where �̅� is the mean of variable x, 𝜎𝑥  is the standard deviation, and 𝔼 represents expectation. Similarly, 

kurtosis is the fourth moment of the standard score of a variable x and is defined as: 

                              𝑘(𝐱) = 𝔼 [(
𝐱−�̅�

𝜎𝑥
)

4

]. …………………………………………. (14) 

In practice, the skewness and kurtosis are precomputed before determining the attribute contribution 

𝛚. After the computation of 𝛚, we further normalize both skewness and kurtosis to range between zero and 

one. Weighting the previously defined 𝛚 using skewness and kurtosis, and normalize again using the z-score: 

𝑤𝑖 = (3 −
|𝑠𝑖|− min

𝑖=1,𝑁
|𝑠𝑖|

max
𝑖=1,𝑁

|𝑠𝑖|− min
𝑖=1,𝑁

|𝑠𝑖|
−

𝑘𝑖− min
𝑖=1,𝑁

𝑘𝑖

max
𝑖=1,𝑁

𝑘𝑖− min
𝑖=1,𝑁

𝑘𝑖
) 𝜔𝑖 , …………………………………………. (15) 

                                    �̂�𝑖 =
𝑤𝑖−�̅�

𝜎𝑤
. …………………………………………. (16) 

Here, 𝑤𝑖  is the weight of attribute i before z-score normalization, �̅� is the mean of 𝑤𝑖 , 𝜎𝑤 is the 

standard deviation, and �̂�𝑖  is the weight of attribute i after the z-score. In equation 15, because the skewness 

term and kurtosis term are both normalized to range between zero and one, we assume an equal impact of 

skewness and kurtosis. At the same time, the absolute value of 𝑤𝑖  is of less interest, as we further normalize it 

to be �̂�𝑖  using z-score. Finally, we constrain the weight to range from zero to two using a sigmoid function, and 

defining the elements of the diagonal weight matrix W to be: 

                               𝑊𝑖𝑖 =
2

1+𝑒−�̂�𝑖
. …………………………………………. (17) 
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This Program som3d is launched from the 3D facies classification in the main aaspi_util GUI  

Computing som3d module 
 
Setting the primary parameters is the first step of the analysis. Use the browser on the first 
eight lines to choose the input seismic data file (Arrow 1). It is not mandatory to take in eight 
inputs. The number of inputs can vary from two – eight. The input attributes that one considers 
for facies analysis will vary according to the requirements. For identifying the depositional 
facies variation the volumetric attributes such as dip magnitude, coherency, GLCM attributes, 
spectral magnitude, coherent energy can be considered as input. For characterizing geo-
mechanical variation in shale plays, one should consider different volumes that helps in 
identifying the rock physics such as inversion volumes, lambda-rho, mu-rho, intercept or 
gradient AVO volumes, etc. Specify the number of input attributes in the field labeled “Number 
of attributes to use” (Arrow 2).  This value will be updated automatically when a file is selected. 
Do not forget to give a “Unique Project Name”. A Z-score algorithm is used to normalize the 
input files. 
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The maximum number of classes can be any large number (Arrow 3). In using SOM, we always 
start with an over-defined number of classes and allow the algorithm to automatically form 
fewer classes.  Most of the commercial visualization software can only display 256 colors thus 
generally is <= 256. However, with a more uniform sampling of the latent space, we generally 
have more confidence in clustering. The eigenvectors and the eigenvalues are now calculated 
internally. They serve as the first approximation to the latent space forming the initial set of 
untrained vectors.   The standard deviation value scales the 2D Latent space (Arrow 4). A value 
of 3σ makes the latent space represent 97% of the data. Set the initial value of the SOM 
neighborhood radius within which all neighbor prototype vectors are updated (Arrow 5). Put 
the maximum number of iterations (Arrow 6). Select the decimation rate of input data used for 
training (Arrow 7). The operation window options are defined in the Operation Window tab 
shown below. In a 2017 update, we add in the option to use a user-defined mask file in defining 
the otherwise uniformly generated training samples (Arrow 10 and 11). We demonstrate this 
function in a later section named “use non-uniform training data”. Another unique option is to 
use data-adaptively derived weights to emphasize (and deemphasize) each input attribute 
(Arrow 13). If selected, input attributes will be weighted using weights internally computed 
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from the som3d program. The mathematical details on weight calculation are provided in the 
Theory section earlier in this documentation. During this input attribute weight evaluation 
process, the program builds multiple SOM models in a parallel fashion. If a user is using a 
computer with limited memory, the program provides an option for sequential mode in weight 
calculation by unchecking the box at Arrow 14. 
 

Use non-uniform training data 
 
By default, the SOM program decimates input attribute volumes uniformly along line, cdp, and 
time (depth) to extract training data that best represent the whole input data. This is the best 
way to explore the dominant natural clusters within the whole survey. If the user prefers to 
limit the SOM analysis to a smaller region within the seismic survey, or opts to emphasize more 
on variations found in a smaller region versus the general trend within the survey, he/she has 
the option to use non-uniformly decimated data to build the SOM model. Click Arrow 10 button 
to toggle between uniformly sampled and non-uniformly sampled training data. If using non-
uniformly sampled training data, the user needs to provide an AASPI .H format mask file to 
define the training sample locations. Such mask file can be generated using the utility Mask 
Generator (Arrow 11), which can also be invoked form the AASPI main window as Volumetric 
Classification/define_training_data. A separate documentation is provided for this module.  
 
Depending on how much emphasis an interpreter wants to put on a particular region of 
interest, a mask file may contain 1. Uniformly sampled background only, 2. Equally weighted 
background and picked region(s), 3. Background and picked region(s) with varied weights, and 
4. Picked region(s) only. Users are encouraged to experiment with different mask files to see 
how facies change with alternative training sample extraction schemes. 
 

Define the operation window 
 
A user has the option to use either a constant time window or a window defined by top and 
bottom horizons. The functionalities in defining the operation window are discussed below. 
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Horizon definition 
 
The horizon definition panel will look the same for almost all AASPI GUIs: 
 

1. Start time (upper boundary) of the analysis window.  
2. End time (lower boundary of the analysis window.  
3. Toggle that allows one to do the analysis between the top and bottom time slices described in 1 and 2 

above, or alternatively between two imported horizons. If USE HORIZON is selected, all horizon 
related options will be enabled. If the horizons extend beyond the window limits defined in 1 and 2, 
the analysis window will be clipped. 

4. Browse button to select the name of the upper (shallower) horizon. 
5. Button that displays the horizon contents (see Figure 1). 
6. Button to convert horizons from Windows to Linux format. If the files are generated from Windows 

based software (e.g. Petrel), they will have the annoying carriage return (^M) at the end of each line 
(Shown in Figure 1). Use these two buttons to delete those carriage returns. Note: This function 
depends on your Linux environment. If you do not have the program dos2unix it may not work. In 
these situations, the files may have been automatically converted to Linux and thus be properly read 
in.  

7. Browse button to select the name of the lower (deeper) horizon. 
8. Button that displays the horizon contents (see Figure 1). 
9. Button to convert horizons from Windows to Linux format (see 6 above). 
10. Toggle that selects the horizon format. Currently gridded (e.g. EarthVision in Petrel) and interpolated 

(ASCII free format, e.g. SeisX) formats are supported. The gridded horizon are nodes of B-splines used 
in mapping and have no direct correlation to the seismic data survey. For example, gridded horizons 
may be computed simply from well tops. The x and y locations are aligned along north and east axes. 
In contrast interpolated horizons are defined by line_no, cdp_no (crossline_no) and time triplets for 
each trace location. Examples of both formats are shown in Figure 1. If interpolated is selected, the 
user needs to manually define each column in the file. 

11. Number of header lines to skip in the interpolated horizon files. 
12. Total number of columns in the interpolated horizon files. 
13. Enter the column number containing the line_no (inline_no) of the interpolated data triplet. 
14. Enter the column number containing the cdp_no (crossline_no) of the interpolated data triplet. 
15. Enter the column number containing the time or depth value of the interpolated data triplet. 
16. Znull value (indicate missing picks) in the horizon files. 
17. Toggle to choose between Positive Down and Negative Down for the horizon files (e.g. Petrel uses 

negative down). 
18. Choose the vertical units used to define the horizon files (either s, ms, kft, ft, km, or m). 
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Figure 2. (left) A gridded horizon file (EarthVision format). (right) An interpolated horizon file 

with five columns (ASCII free format). 

Displaying the results 
 

Plotting the SOM facies using aaspi_crossplot 
 
The user can use crossplot module in the aaspi_util to crossplot two SOM axes in order to 
generate the SOM facies map with a 2D color map. The crossplot module can be found under 
Display Tools in the aaspi_util GUI: 
 

 
 

 
The crossplot GUI is shown on the following page: 
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SOM axes 1 and 2 are taken as inputs for x and y axes in the crossplot. To ensure a smooth color 
transition, 4096 colors are used for the 2D colorbar to be generated (64 by 64 colors). The 
result is shown below (from a different survey in Canterbury basin, New Zealand): 
 



Volumetric Classification: Program som3d 

Attribute-Assisted Seismic Processing and Interpretation     25 August 2020 Page 15 
 

 

  
Figure 3. 

 
From crossplotting the two SOM axes, we generate a crossplotted volume, a 2D color map, and 
a 2D histogram of the cross-plotted volume (Figure 3). The 2D histogram shows clusters of 
facies, and these clusters are color-coded by the color at the corresponding position in the 2D 
color map. In this example, we observe that the channels at cdp range 5000 to 5400 are in 
different facies, and are well separated from the surrounding sediments. Another output 
directly from the som3d module is the end member index volume as shown below (see next 
page):  
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Figure 4. 

 
This image shows the Mahalanobis distance from a multiattribute data vector to the center of 
all prototype vectors, providing an estimate of the likelihood of a data vector being an end 
member (uncommon facies). In this example, the red-colored facies has a large distance value, 
therefore it is considered to be a rare facies. 
 

Visualization by crossplotting two SOM axes in Petrel 
 
In the previous section, we described how to use AASPI crossplot module to generate a SOM 
facies volume. However, most commercial interpretation software can only display a finite 
number of colors if using a discrete colorbar, therefore interpreters may not be able to import 
and properly display the AASPI generated crossplot volume into a commercial interpretation 
package. To overcome this issue, instead of generating a SOM facies volume with its 
corresponding colorbar in AASPI, we can crossplot (corender) the two SOM axes directly in an 
interpretation package. In this way, we are able to generate a facies volume with much more 
smooth transition in color, and we also use Petrel as an example to show this trick. 
 
We import the two SOM axes into Petrel, and use the volumetric corendering probes to 
corender these two volumes. In this case, we use horizon probe as we want to display the facies 
along a horizon of interest. As shown in the screenshots below, we select the two SOM axes as 
the input volumes, and make the horizon probe aligned along the top of the horizon (in order 
to actually see facies on that horizon). 
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In order to fake a 2D colorbar, we then need to change the colorbars of the two SOM axis 
volumes as follows, and make the max and min value of the colorbar to best fit the data range: 
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In this way, we are actually faking a 2D color map like this: 
 

 
 

And if we see the horizon probe from top (display in a 2D window in Petrel), the cross-plotting 
(co-rendering) result will look like the following image (see next page): 
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Figure 5. 

 
In this image we are also co-rendering Sobel filter similarity to highlight the edges. To do so we 
extracted the Sobel filter similarity along the horizon that we used in the horizon probe, and 
display in the same window with the horizon probe, using an opacity curve shown in the figure. 
The case study in which we generated the facies map above can be found in Zhao et al. (2016). 
 

Geobodies extraction on the facies volume in Petrel (old) 
 
The following is a simple workflow to show the geobodies extraction in Petrel. The example is 
taken from a deep water Gulf of Mexico dataset (Roy et al, 2011, GCSSEPM 2011 talk).  Figure 6 
shows the horizon probe extracted around one of the horizons of interest. We apply 
transparency to the colorbar to highlight the continuous high amplitude seismic facies, which 
are interpreted as basin floor deposits in the survey (the blue colored seismic facies in Figure 7). 
Figure 8 shows the output after running automatic geobody extraction in Petrel. These 
geobodies gives a more quantitative estimation of the seismic facies. 
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Figure 6. 

 

 
Figure 7. 
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Figure 8. 

 

Exploring advanced options 
 

Using a mask file to extract training samples 
 
As previously introduced, users have the option to use an externally generated mask file to 
define training sample locations. The following example shows how different training sample 
extraction leads to different SOM facies map. A mask file named as random_mask_xxx.H is 
loaded as (see next page):  
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For the Canterbury Basin seismic data, below is a vertical section from a mask file containing 
only user picked channel regions (as polygons): 
 

 
Figure 9. 

 
The magenta dots are training samples to be used in SOM. In this particular example, we opt to 
randomly select 50 percent of the points within a picked (2D) polygon as training samples. 
Alternatively, if an interpreter prefers to include training samples representing the background, 
he/she can combine the picked regions with a uniformly decimated background, and assign 
different weights to each region and background separately: 
 

 
Figure 10. 

 
In this example, magenta dots are from a user picked polygon with weight value of 2, and the 
regular gridded green dots form a uniform background with weight value of 1. In this way, the 
SOM model approximates the general trend while still emphasizes on the variations in the 
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channel area. We compare the SOM facies maps from these two different training sample 
extraction schemes along the same Horizon A which has been shown in previous figures: 
 

 

 
Figure 11. Left figure shows the SOM facies along Horizon A using training samples from picked 
polygons only. We pick training samples specifically around the two channels marked by the 
orange and red arrows, and by doing so, we are able to identify the subtle changes marked by 
the white, yellow, and blue arrows. On the other hand, because the training samples are 
selected around the two channels, the colors at regions outside this relatively small area do not 
necessary represent the real facies. Instead, they only represent the similarity between a facies 
and facies within the dual-channel region. The Right figure shows the SOM facies along Horizon 
A, using training samples from both picked polygons and the background.  We take samples 
from uniform sampling and assign weight value of 1, and assign weight of 2 for user-picked 
points. We are able to observe some of the subtle changes within the dual-channel system (e.g. 
the edge between two channel stories marked by the blue arrow). At the same time, we still 
preserve the meaning of the facies outside the dual-channel region, because the majority of 
training samples are extracted outside the dual-channel region. 
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Figure 12. As a comparison, Figure 12 on the left is 
a SOM facies solely from uniformly sampled 
training data. As we expected, uniform sampling 
preserves the main features, such as the channel 
in orange (orange arrow) that is cut through by a 
younger channel (red arrow), and the sinuous 
channel complex in the north. However, there is 
little to no evidence for the subtle features that 
are marked by arrows, including a channel 
boundary (yellow arrow), an edge between two 
channel stories (blue arrow), and changes in 
reflection characteristic (white arrows). These 
features are readily visible in the previous SOM 
facies maps. 
 
 

 

Adaptive attribute weighting 
 
Note: This function is memory intensive by default. If memory related errors occur as a result of 
using adaptive attribute weighting, please try to uncheck the Use MPI for weight calculation 
box to run the weighting step in sequential mode. However, opting to run in sequential mode 
will increase the time cost considerably. 
 

 
 
Typically, interpreters qualitatively choose input attributes for multiattribute facies analysis 
based on their experience and geologic target of interest. In this SOM facies analysis module, 
we augment this qualitative attribute selection process with quantitative measures of which 
candidate attributes best differentiate features of interest, by weighting input attributes based 
on their response from the unsupervised learning algorithm that used to generate the facies 
map, as well as their statistical behaviors. 
 
We use an example from the Barnett Shale to demonstrate the effect of input attribute 
weighting, and compare with SOM facies map from equally weighted input attributes. In our 
example, the Barnett Shale lies directly on top of the dolomitic Ellenburger formation in the 
western region of the Fort Worth Basin. The Ellenburger formation is highly deformed, with 
extensive development of karst and joints that extend upwards from the water-saturated 
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Ellenburger into the Barnett Shale, posing drilling and completion hazards (Pollastro et al., 
2007). Our objective is to use spectral decomposition, geometric, and texture attributes, which 
are sensitive to strata thickness, lithology, and structural deformation, to illuminate the 
architectural elements presented in the shallow part of Ellenburger formation. The figures 
below provide co-rendered attributes along a phantom horizon (Horizon A) 25 ms below the 
top of Ellenburger, on which we observe karst features either in isolated circular to oval shape, 
or in a cellular network of polygonal karst. Structural curvature defines the extension of karst 
regions (top left), while amplitude curvature highlights the small scale collapse (top right). We 
observe that highly karsted regions exhibit lower frequency compared to the surrounding area, 
possibly due to the non-specular scattering from the chaotic reflectors. These regions are also 
low in peak spectral magnitude as a substantial amount of the reflected energy is not properly 
received by the receivers within the migration aperture. 
 

 

 
Figure 13. 
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When executing the program, the program will build multiple SOM models with different 
subgroups of input attributes to estimate the attribute weights, and the attribute weights are 
calculated once all attribute combinations have been tested: 
 

 
 
Figure 13 below are the SOM facies maps from adaptively weighted attributes (left) and (by 
default) equally weighted attributes (right): 
 

 
Figure 13. 

 
Comparing the two figures above (Figure 13), we observe that both SOM facies maps are able 
to delineate the karst, faults, and fractures equally well. This observation verifies an assumption 
that adding a penalty weight does not significantly alter the curvature and similarity anomaly 
contributions. The polygonal karst regions are characterized by purple and cyan facies, where 
purple corresponds to anticlinal components and cyan synclinal components. Compared to the 
co-rendered structural curvatures, both SOM facies maps provide details about smaller scaled 
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karst caves that are not identifiable on structural curvatures, most of which correspond to 
fracture joints (blue arrows). We are also able to identify the major faults (red arrows) close to 
the polygonal karst regions, suggesting a tectonic control of the karst development (Qi at al., 
2014). The main difference between adaptively weighted and equally weighted SOM comes 
from regions marked with yellow and orange arrows. In the left figure, the yellow arrow regions 
are in a lime green facies, where the orange arrow regions are in an orange facies. In contrast, 
these regions look nearly identical in the right figure, all being brownish cellular textures that 
somehow follow the trend on the curvature attributes. The lime green versus orange facies 
change in the left figure reflects the frequency variation found in the previous peak frequency 
attribute, where low peak frequency regions are in lime green facies (yellow arrows), and high 
frequency regions are in orange facies (orange arrows). The peak frequency provides 
information on tuning thickness, which adds another dimension besides surface morphology. 
The SOM facies map from equally weighted attributes, on the other hand, does not distinct 
such frequency variation clearly. 
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