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Eigenstructure-based coherence computations as an aid
to 3-D structural and stratigraphic mapping

Adam Gersztenkorn∗ and Kurt J. Marfurt‡

ABSTRACT

Coherence measures applied to 3-D seismic data vol-
umes have proven to be an effective method for imaging
geological discontinuities such as faults and stratigraphic
features. By removing the seismic wavelet from the data,
seismic coherence offers interpreters a different perspec-
tive, often exposing subtle features not readily apparent
in the seismic data. Several formulations exist for obtain-
ing coherence estimates. The first three generations of
coherence algorithms at Amoco are based, respectively,
on cross correlation, semblance, and an eigendecompo-
sition of the data covariance matrix. Application of these
three generations to data from the Gulf of Mexico indi-
cates that the implementation of the eigenstructure ap-
proach described in this paper produces the most robust
results. This paper first introduces the basic eigenstruc-
ture approach for computing coherence followed by a
comparison on data from the Gulf of Mexico. Next, Ap-
pendix A develops a theoretical connection between the
well-known semblance and the less well-known eigen-
structure measures of coherence in terms of the eigen-
values of the data covariance matrix. Appendix B further
extends the analysis by comparing the semblance- and
eigenstructure-based coherence measures in the pres-
ence of additive uncorrelated noise.

INTRODUCTION

Measures of coherence have been used in the past in a num-
ber of applications. In particular, Taner and Koehler (1969)
used semblance to compute velocity spectra by maximizing
the semblance along a suite of moveout curves. Kirlin (1992)
introduced an eigenstructure approach for the same applica-
tion, also comparing it with the semblance approach. More
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recently, various coherence measures have gained popularity
in 3-D structural and stratigraphic mapping. It is in this context
that the following discussion proceeds.

The first generation coherence algorithm (Bahorich and
Farmer, 1995, 1996), cross correlates each trace with its in-line
and cross-line neighbor and then combines the two results after
normalizing by the energy. Since this approach deals with only
three traces, it is computationally very efficient but may lack ro-
bustness, especially when dealing with noisy data. The second
generation coherence algorithm (Marfurt et al., 1998) uses a
multitrace semblance measure. Using more traces in the coher-
ence computations results in greater stability in the presence
of noise. The third generation algorithm, which is presented
in this paper, is also a multitrace coherence measure. How-
ever, it is based on the eigenstructure of the covariance matrix
formed from the traces in the analysis cube (Gersztenkorn,
1996; Gersztenkorn and Marfurt, 1996a,b; Gersztenkorn et al.,
1999). In addition, the eigenstructure algorithm incorporates
various filters and interpolation schemes to aid with problems
such as poor signal to noise and aliasing. These enhancements
can often significantly improve the results.

A theoretical comparison of the basic semblance- and eigen-
structure-based coherence estimates is discussed in the appen-
dices. In Appendix A, it is shown that the semblance and eigen-
structure coherence estimates may be compared in terms of the
eigenvalues of the covariance matrix. In terms of the eigen-
vectors of the data covariance matrix, the semblance measure
projects onto both the signal and noise subspaces, whereas the
eigenstructure measure, which is a subspace approach, projects
only onto the signal subspace. A subspace approach uses the
eigendecomposition of the data covariance matrix to partition
data in terms of signal and noise subspaces. Appendix B ex-
tends the analysis by comparing the two coherence estimates
in the presence of uncorrelated noise. In this simple situation,
the effect of the noise may be expressed analytically in the
resulting coherence estimates.
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THE EIGENSTRUCTURE COHERENCE ALGORITHM

Coherence is a mathematical measure of similarity. When
applied to seismic data, coherence gives an indication of the
continuity between two or more windowed seismic traces. Ide-
ally, the degree of seismic continuity is a direct indication of ge-
ological continuity. Assigning a coherence measure on a scale
of zero to one allows the seismic continuity to be quantified
and translated into a visual image that reveals subtle geolog-
ical features such as faults and channels. Coherence, when
used for the delineation of geological features, has been ap-
plied most successfully to 3-D (time or depth) migrated seis-
mic data. Typically, the input to the coherence algorithm is a
3-D seismic volume, resulting in the output of a corresponding
3-D coherence volume. If coherence is computed only along
a horizon of interest within the 3-D seismic volume, the out-
put coherence is one sample thick, giving rise to a coherence
map.

For the computation of coherence, a 3-D analysis cube
enclosing a relatively small subvolume of traces is selected by
the interpreter. The analysis cube moves throughout the 3-D
seismic volume and outputs a measure of coherence at each
sample. The size and shape of the analysis cube defines the ge-
ometrical distribution of traces and samples to be used for the
coherence computation. For the following discussion, the as-
sumption is made that the analysis cube is a 3-D box, enclosing
J traces (e.g., 3 in-line traces by 3 cross-line traces for a total of
9 traces) and N samples. Ordering each amplitude in this suite
of traces by sample index n and trace index j results in the data
matrix D:

D =




d11 d12 · · · d1J

d21 d22 · · · d2J

...
...

. . .
...

dN1 dN2 · · · dN J




. (1)

The matrix D in equation (1), which represents a multichan-
nel time series, is a mathematical description of the data en-
closed by the analysis cube. In this representation of the data,
a single column of D represents the N samples of a single trace
j , whereas a single row of D denotes the same time sample n,
common to all J traces. The single entry dnj is therefore the
amplitude of the nth sample of the jth trace.

The number of samples per trace in the analysis cube is usu-
ally determined by the type of geological feature that is of in-
terest to the interpreter. Geological features of shorter vertical
duration are analyzed with smaller vertical windows; features
having a longer vertical duration are analyzed with larger ver-
tical windows. Structural features, such as faults, characterized
by reflector offset often require longer windows. Stratigraphic
features, such as channels, characterized by waveform tuning
are better resolved with shorter windows.

The nth row of the matrix D is dT
n = [dn1 dn2 · · · dn J ], and

represents the value of the nth sample of each seismic trace
within the analysis cube. Assuming each windowed trace has a
zero mean, the sample covariance matrix for sample n is formed

by the outer product:

dndT
n =




dn1

dn2
...

dn J


 [dn1 dn2 · · · dn J ]

=




d2
n1 dn1dn2 · · · dn1dn J

dn1dn2 d2
n2 · · · dn2dn J

...
...

. . .
...

dn1dn J dn2dn J · · · d2
n J


 . (2)

If the vector dn is not a zero vector, then each sample co-
variance matrix dndT

n (n = 1, 2, . . . , N) as represented by equa-
tion (2) is a symmetric positive semidefinite rank-one matrix. In
infinite precision arithmetic, dndT

n has only one nonzero pos-
itive eigenvalue. In contrast, the full data covariance matrix
DT D, which is a sum of N rank-one matrices (from N time
samples) is at most rank N or J , whichever is less, since DT D
is a J by J matrix:

C = DT D =
N∑

n=1

dndT
n

=




N∑
n=1

d2
n1

N∑
n=1

dn1dn2 · · ·
N∑

n=1

dn1dn J

N∑
n=1

dn1dn2

N∑
n=1

d2
n2 · · ·

N∑
n=1

dn2dn J

...
...

. . .
...

N∑
n=1

dn1dn J

N∑
n=1

dn2dn J · · ·
N∑

n=1

d2
n J




. (3)

The rank of the matrix C in equation (3) is also determined,
in exact arithmetic, by the number of positive eigenvalues. The
number and relative size of the eigenvalues from the covari-
ance matrix C determine how many degrees of freedom are
present in the seismic data enclosed by the analysis cube. The
eigenvalues thus give a quantitative indication of the variability
present in the data.

As an example, consider a flat reflection event where all
traces are identical, so that the amplitude at a given sample
number is constant across all traces. This implies that the am-
plitude at any sample for all traces may be expressed as a
scaled version of some selected single sample with amplitude
not equal to zero. Without loss of generality, assume that each
trace at various samples is represented in terms of the first sam-
ple. The first sample for all traces in the analysis cube is given
by the first row of the matrix D and is dT

1 = [a a · · · a]. Un-
der the assumption that the constant a �= 0, the nth row of the
matrix D, corresponding to the nth sample of all traces, is then
just a scaled version of the first sample. In this case, the nth row
of the matrix D is dT

n = αndT
1 = αn[a a · · · a], and the scalar

αn is just the ratio between the nth and first sample. Forming
the outer product from this newly formed vector dn also results
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in a rank-one matrix:

dndT
n = (αnd1)

(
αndT

1

) = α2
nd1dT

1 . (4)

From equation (4), a sequence of outer-product, rank-one
matrices is produced for all samples in terms of the first sample:

d1dT
1 = d1dT

1

d2dT
2 = α2

2d1dT
1

...

dN dT
N = α2

N d1dT
1 .

(5)

Summation of the N rank-one, outer-product matrices in
equation (5) results in the data covariance matrix C:

C = DT D =
N∑

n=1

dndT
n = (

1 + α2
2 + · · · + α2

N

)
d1dT

1 . (6)

Since the matrix formed from the outer product d1dT
1 in equa-

tion (6) is a rank-one matrix and the sum (1 + α2
2 + · · · + α2

N )
is a scalar, then C must also be a rank-one matrix with a single
positive eigenvalue. Shortly, we will demonstrate that when the
traces are identical, a maximum coherence of one is achieved.
In this simple situation, the high coherence value reflects the
seismic continuity. As the seismic traces within the analysis
cube depart from being identical, the seismic continuity and
associated coherence are reduced. In general, the close prox-
imity of the traces within the analysis cube often results in a
high degree of continuity and a high associated coherence.

The covariance matrix C = DT D in equation (3) is a sym-
metric positive semidefinite matrix with all eigenvalues greater
than or equal to zero. A definition of the eigenstructure-based
coherence estimate makes use of the numerical trace of the
covariance matrix C, denoted by Tr(C) (Golub and Van Loan,
1989). The numerical trace of C may be expressed in terms of
either the matrix D, the matrix C, or the eigenvalues of C:

Tr(C) =
J∑

j=1

N∑
n=1

d2
nj =

J∑
j=1

c j j =
J∑

j=1

λ j . (7)

Equation (7) demonstrates that the total energy for the
traces enclosed by the analysis cube is Tr(C) ≥ 0, and is equal
to the sum of the eigenvalues. The two different expressions for
Tr(C) in equation (7) may now be used for alternate definitions
of the eigenstructure coherence estimate (Ec):

Ec = λ1

Tr(C)
= λ1

J∑
j=1

c j j

= λ1

J∑
j=1

λ j

, (8)

where λ1 is the largest eigenvalue of λ j .
Equation (8) defines the eigenstructure coherence as a ratio

of the dominant eigenvalue λ1 to the total energy within the
analysis cube. The difference in the two expressions for Tr(C)
in equation (8) can have a significant impact on the computa-
tional efficiency of the coherence calculations for 3-D seismic
volumes. Summing the diagonal entries of the covariance ma-
trix C is much more efficient than computing all the eigenvalues
and then summing.

From equation (8), it now becomes apparent why the coher-
ence is unity when the covariance matrix C is a rank-one matrix
as in equation (6). Since C has a single nonzero eigenvalue λ1,
the expression for Ec is simply

Ec = λ1

J∑
j=1

λ j

= λ1

λ1
= 1. (9)

As the redundancy of the seismic data within the analysis cube
is reduced, the energy becomes distributed among the other
eigenvalues. Consequently, the denominator in equation (9)
becomes larger than the numerator, and the coherence is di-
minished to a value of less than one.

Although the appendices compare the basic semblance- and
eigenstructure-based coherence estimates, the eigenstructure
algorithm used for the following data examples was an en-
hanced algorithm that was later simplified for ease of use.
This enhanced algorithm has several features that produced
better results, as observed in the data examples. First, within
the moving analysis cube, a frequency domain filter was ap-
plied in the time/depth direction. This filter allowed the ex-
ploitation of select frequencies for their information content,
as well as the avoidance of frequencies with an undesirable
noise component. In addition, an alpha-trimmed mean filter
(Gersztenkorn and Scales, 1988) was used between traces in
the spatial direction to improve the signal-to-noise ratio. Spa-
tial interpolation was also included to accommodate data with
different record and trace spacing as well as to deal with spatial
aliasing.

DATA EXAMPLES

The examples that follow (seismic data courtesy of Geco
Prakla) are from the South Marsh Island area of the Gulf of
Mexico, located on the continental shelf, west of and adjacent
to the modern Mississippi Delta. The stacked data were time
migrated, and then decimated in both time and space. The re-
sulting volume has a sample interval of 8 ms and a trace spacing
of 25 m in the in-line direction and 50 m in cross-line directions.
A small subvolume with an in-line distance of 21.875 km and
a cross-line distance of 14.5 km (total area of 317.1875 km2)
is displayed in the following examples. The vertical cross sec-
tions in the figures are 400 ms in duration. For the coherence
computations, all three generations used a time window of ap-
proximately 64 ms.

Figures 1a and 1b show two time slices at 952 ms and 1072 ms,
respectively. The white lines in the two time slices indicate lo-
cations where four vertical cross-sections are extracted from
both the seismic data (displayed in Figure 2) and the com-
puted eigenstructure coherence data (displayed in Figure 3).
The three coherence algorithms are displayed for comparison
in Figures 4–6. Figures 4a and 4b display the eigenstructure-
based coherence slices at 952 ms and 1072 ms, respectively.
The cross correlation–based coherence estimate for the same
two time slices is shown in Figures 5a and 5b. Figures 6a and 6b
show the results of the semblance-based coherence algorithm.
The coherence values are mapped to shades of gray; the darker
shades indicate a lower coherence and lighter shades a higher
coherence. With this convention, discontinuities such as faults
appear as dark linear features.
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A comparison of coherence images in cross-section with
those in plan view indicates that the plan view images are more
useful for detecting and interpreting geology. Visual inspection
of these two views suggests a greater diversity of quality in
the cross-section coherence. The subvolume under considera-
tion contains both structural and stratigraphic features such as
faults and channels. Some of the more obvious features, such
as major faults, may be observed directly on the seismic cross-
section (labeled as A-A′ in Figure 2a). These faults are also
easily identified on the coherence slice at a time of 1072 ms in
Figure 4b. In the upper portion (above 1072 ms) of the cross-
section in Figure 2a, a random pattern is also present, inter-
preted to be the western portion of a submarine canyon. The
location of this pattern may also be observed in plan view on
the coherence slice in Figure 4a, where it appears as part of a
large lobe of low coherence. This lobe of low coherence has
been interpreted to be part of a submarine canyon.

FIG. 1. Two time slices through 3-D amplitude subvolume at (a) 952 ms and (b) 1072 ms. The
white lines indicate cross-sections displayed in Figures 2 and 3.

The vertical cross section B-B′ in Figure 2b runs along the
western part of the salt dome and through the center of the
submarine canyon, which is seen to extend deeper within
the seismic section. The random pattern filling the canyon is
once more observed. Although the lobed shape of the subma-
rine canyon is easily distinguished on the coherence slice in
Figure 4a, it is not as apparent on the time slice in Figure 1a.

In Figure 4a are seen several small oblong shapes of high
coherence surrounded by vast areas of lower coherence. These
blocks are also identified on the vertical cross section B-B′ and
the time slice in Figure 1a. Interpretation has determined that
these blocks have broken away from the canyon edge while
keeping their structural integrity, and through the ages have
migrated toward the center of the canyon.

The vertical cross-section C-C′ in Figure 2c is located on the
eastern part of the salt dome and the canyon. This cross-section
contains a difficult to interpret channel that is easily identified
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FIG. 2. Four vertical cross-sections extracted from 3-D subvolume; (a) A-A′ displaying major
faults, (b) B-B′ through the center of the canyon, (c) C-C′ with channels, and (d) D-D′ through
radial faults.

FIG. 3. Four vertical cross sections extracted from 3-D coherence subvolume corresponding
to cross-sections in Figure 2.
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FIG. 4. Two time slices through the eigenstructure-based coherence volume at (a) 952 ms and (b) 1072 ms. Note the difference
between these coherence slices and the conventional amplitude slices in Figure 1.
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FIG. 5. Two time slices through the cross correlation–based coherence volume at (a) 952 ms and (b) 1072 ms.
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FIG. 6. Two time slices through the semblance-based coherence volume at (a) 952 ms and(b) 1072 ms.
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on the coherence slice in Figure 4b. Finally, Figure 2d displays
cross section D-D′ on the northern part of the salt dome. The
radial faults in close proximity to the salt dome are not eas-
ily distinguished on the cross-section in Figure 2c or the time
slice in Figure 1b (both at 1072 ms). The coherence slice, on
the other hand, clearly reveals the two radial faults protruding
from the salt dome. For more details on the interpretation of
this data, see Nissen et al. (1995).

CONCLUSION

Three-dimensional seismology is becoming an increasingly
important exploration tool by providing a detailed structural
and stratigraphic image of the subsurface. Seismic coherence
techniques have further contributed to the use of 3-D seis-
mic by allowing interpreters to visualize geology from a data-
oriented perspective which is not directly dependent on the
seismic data. This can often produce a more natural setting for
interpreters to visualize geological processes.

In this paper, the eigenstructure-based coherence algorithm
has been formulated and applied to the detection and imaging
of geological discontinuities. In Appendix A, the semblance-
based coherence algorithm is analyzed in terms of the eigen-
decomposition of the covariance matrix, and a relationship is
established with the eigenstructure coherence estimate. Ap-
pendix B describes the behavior of the semblance and eigen-
structure coherence estimates in the presence of additive noise.

The data examples compare three generations of coherence
algorithms on a small 3-D seismic subvolume from the Gulf
of Mexico. The results indicate that the described implementa-
tion of the eigenstructure-based coherence estimate provides
a more robust measure of coherence that lends itself to the
detection of discontinuities in seismic data. A brief discussion
also indicates how the coherence images are used to interpret
the geological phenomena recorded in seismic data.
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APPENDIX A

COMPARISON OF SEMBLANCE AND EIGENSTRUCTURE COHERENCE

For a comparison of the basic semblance and eigenstructure
based coherence estimates, the data covariance matrix C from
equation (3) is expressed in terms of its eigendecomposition:

C = V�VT . (A-1)

The eigenvalues of C in equation (A-1) are arranged in de-
scending order in the diagonal matrix Λ. The matrix V =
[v1 v2 · · · vJ ] is a J by J matrix whose columns are the eigen-
vectors of C. By construction, the eigenvectors of C form an
orthonormal set (Golub and Van Loan, 1989). The orthonor-
mal property of the eigenvectors is next used to show that the
numerator of the eigenstructure coherence estimate is express-
ible in terms of either the dominant eigenvalue λ1 or the associ-
ated eigenvector v1. This produces two equivalent expressions
for the eigenstructure-based coherence estimate:

Ec = λ1

Tr(C)
= vT

1 Cv1

Tr(C)
. (A-2)

Equivalence of the numerators for Ec in equation (A-2) is
established by using the eigendecomposition of the matrix C
from equation (A-1). To extract the dominant eigenvalue (λ1),
the associated eigenvector v1 is first distributed to the other
eigenvectors. Subsequently, applying the orthonormal prop-
erty of the eigenvectors achieves the desired result (Golub and
Van Loan, 1989):

vT
1 Cv1 = vT

1 V�VT v1 = λ1 (A-3)

Since vT
1 Cv1 is equal to λ1, the equivalence of the two expres-

sions for Ec in equation (A-2) is established. This equivalence
will be used later in this appendix.

To facilitate comparison between the semblance and eigen-
structure coherence estimates, an expression for the semblance
must be established in terms of the covariance matrix C. A well-
known definition for the semblance (Sc), in terms of the data
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matrix D is defined by the summation (Sheriff, 1984):

Sc =

N∑
n=1

[
J∑

j=1

dnj

]2

J
N∑

n=1

J∑
j=1

(dnj )2

. (A-4)

An alternate but equivalent expression for Sc, which is bet-
ter suited for the analysis to follow, is obtained from the data
covariance matrix C = DT D:

Sc = uT Cu
Tr(C)

. (A-5)

The normalized vector u (i.e., ‖u‖2 = 1) in equation (A-5) is
used to sum the entries in the matrix C and is defined as

u = 1√
J




1

1
...

1


 . (A-6)

Looking back, it is observed that Ec in equation (A-2)
is expressed in terms of the eigenvector v1, whereas equa-

Sc = uT Cu
Tr(C)

= (β1v1 + β2v2 + · · · + βJ vJ )T C(β1v1 + β2v2 + · · · + βJ vJ )
Tr(C)

. (A-11)

tion (A-5) expresses Sc by use of the normalized vector u. To
establish a connection between Sc and Ec, the normalized vec-
tor u is first defined in terms of the eigenvectors of the ma-
trix C. This is possible, since the J orthonormal eigenvectors
V = [v1 v2 · · · vJ ] are linearly independent and span the real
J -dimensional space RJ . Each of the individual eigenvectors
v j ∈ V ( j = 1, 2, . . . , J ), spans a subspace of RJ . The vector
u ∈ RJ , used in the computation of Sc, is a J -dimensional vector
and may therefore be reconstructed from a linear combination
of the eigenvectors of the matrix C:

u = β1v1 + β2v2 + · · · + βJ vJ . (A-7)

Taking the inner product between u and each eigenvector
v j , determines the scalar weights β j ( j = 1, 2, . . . , J ) that need
to be assigned to each eigenvector for a reconstruction of u in
equation (A-7). Since both u and v j are normalized, a simple
expression exists for the inner products:

β j = uT v j = ‖u‖2 ‖v j‖2 cos θ j = cos θ j . (A-8)

The weights in equation (A-8) denote the amount by which
the normalized vector u projects onto each of the eigenvectors
v j ( j = 1, 2, . . . , J ), which in turn depends on the angle be-
tween the two vectors. Using the weights from equation (A-8)
allows the vector u to be expressed as a linear combination of
the eigenvectors:

u = v1 cos θ1 + v2 cos θ2 + · · · + vJ cos θJ . (A-9)

It is useful for the discussion in Appendix B to establish
the fact that the sum of the squared weights is one (i.e.,∑J

j=1 β2
j = ∑J

j=1 cos2 θ j = 1). This is accomplished by using
the orthonormal property of the eigenvectors and the normal-
ization of the vector u from equation (A-6):

‖u‖2
2 = uT u

= (β1v1 + β2v2 + · · · + βJ vJ )T

× (β1v1 + β2v2 + · · · + βJ vJ ) (A-10)

=
J∑

j=1

β2
j =

J∑
j=1

cos2 θ j = 1.

From equation (A-9), the difference between Sc and Ec is
now starting to become more apparent. Whereas Sc uses the
vector u, which is a linear combination of all the eigenvectors,
Ec uses only v1, the eigenvector associated with the largest
eigenvalue. In other words, Sc and Ec use different subspaces
for computing coherence.

The expression for u in equation (A-9) is now substituted
directly into the expression for the semblance coherence Sc in
equation (A-5):

Multiplying all the terms, and again making use of the or-
thonormal property of the eigenvectors leads to a somewhat
simpler expression:

Sc = β2
1 vT

1 Cv1 + β2
2 vT

2 Cv2 + · · · + β2
J vT

J CvJ

Tr(C)
. (A-12)

To establish equivalence of the two expressions in equa-
tion (A-2), it was shown in equation (A-3) that vT

1 Cv1 = λ1. A
similar procedure is used for each eigenvector v j to establish
that vT

j Cv j = λ j ( j = 2, 3, . . . , J ). Replacing each term in the
numerator of equation (A-12) with its eigenvalue equivalent
allows the numerator of Sc to be written as a weighted sum of
eigenvalues. Finally, using the relation established from equa-
tion (A-8) that β j = cos θ j produces the desired expression for
Sc:

Sc = λ1 cos2 θ1 + λ2 cos2 θ2 + · · · + λJ cos2 θJ

Tr(C)
. (A-13)

It is now apparent from equation (A-13) that each weight in
the numerator of Sc depends on the angle between the subspace
spanned by the vector u and the subspace spanned by each of
the eigenvectors v j . Each weight thus determines the contribu-
tion of the corresponding eigenvalue. In the special case where
u = v1, the angles in equation (A-13) are

θ1 = 0, θ2 = θ3 = · · · = θJ = π

2
. (A-14)
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The corresponding weights β j = cos θ j associated with each
angle are

cos θ1 = 1, cos θ2 = cos θ3 = · · · = cos θJ = 0. (A-15)

As one would imagine, in this case Sc and Ec are identical:

Sc = λ1

Tr(C)
= Ec. (A-16)

In general, the vector u is not equal to the eigenvector v1.
As the analysis cube moves throughout the 3-D volume, the
covariance matrix C and associated eigenvector v1, which are
dynamic quantities, adjust and change with each different lo-
cation. In contrast, the vector u is static and remains constant
as the analysis cube progresses through the seismic volume.

Bounds for the semblance and eigenstructure coherence es-
timates may be derived by the Rayleigh quotient (Golub and
Van Loan, 1989). The Rayleigh quotient states that for any nor-
malized vector u (i.e., ‖u‖2 = 1) and a positive, semidefinite, J
by J matrix C, the Rayleigh quotient, defined as uT Cu, satisfies
the inequality

λ1 ≥ uT Cu ≥ λJ , (A-17)

where the eigenvalues λ1 and λJ in equation (A-17) are, respec-
tively, the largest and smallest eigenvalues of C. Dividing each

term in equation (A-17) by Tr(C) produces the desired inequal-
ity relationship between the semblance- and eigenstructure-
based coherence estimates:

λ1

Tr(C)
≥ uT Cu

Tr(C)
≥ λJ

Tr(C)
. (A-18)

Using previously defined notation, the inequality in equation
(A-18) is

Ec ≥ Sc ≥ λJ

Tr(C)
. (A-19)

Writing out the inequality of equation (A-19) in full detail re-
veals the interaction of the eigenvalues for the different coher-
ence estimates:

λ1

Tr(C)
≥ λ1 cos2 θ1 + λ2 cos2 θ2 + · · · + λJ cos2 θJ

Tr(C)

≥ λJ

Tr(C)
. (A-20)

In equation (A-20), the comparison between Sc and Ec is
complete. Each eigenvalue is used according to the projection
of the normalized vector u onto the corresponding eigenvector.
It is worth noting that often the relative size of the small eigen-
values is such that they don’t contribute much to the semblance-
based coherence estimate.

APPENDIX B

COHERENCE FOR SIGNALS WITH ADDITIVE UNCORRELATED NOISE

The eigenvector v1 defines Ec by extracting the signal sub-
space, which in turn is dependent on the redundancy present
in seismic data. In this formalism, the subspace associated with
some of the other eigenvectors is considered part of the noise
subspace. In contrast, note that the vector u in equation (A-9)
can include components from all the eigenvectors. In principle,
as u departs from the signal subspace, the semblance coherence
estimate Sc becomes increasingly more corrupted by the noise
component in the data. The presence of large eigenvalues asso-
ciated with the noise subspace can therefore have a detrimental
effect. It is instructive to consider the effect of noise in a simple
situation.

Consider the situation where the data enclosed by the analy-
sis cube, as represented by the matrix D, contains both a signal
and a noise component. This is expressed as D = S + N, where
D is the composite matrix, and S and N are, respectively, the
signal and noise matrices. As previously demonstrated in equa-
tion (3), the data covariance matrix C is formed by

C = DT D = (S + N)T (S + N)

= ST S + ST N + NT S + NT N. (B-1)

The first assumption made is that the noise is random and
uncorrelated with the signal and with itself. This establishes the
following relationships for particular terms in equation (B-1):

ST N = NT S = 0 and NT N = σ 2I = CN . (B-2)

In equation (B-2), 0 denotes the zero matrix and indicates
orthogonality between signal and noise. The covariance of the
noise is σ 2I, where I is the diagonal identity matrix and σ 2

is the variance of the noise component. Using the notation
CD = DT D and CS = ST S as the covariance of the data and
signal, respectively, produces a compact representation of the
data covariance matrix:

CD = CS + σ 2I. (B-3)

Assuming the signal covariance matrix CS has the eigenpairs
(µ j , v j ), then basic eigenvalue theory indicates that CSv j =
µ j v j . The eigendecomposition of the signal covariance matrix
CS may now be related to the eigendecomposition of the data
covariance matrix CD . This is accomplished by adding σ 2Iv j to
both sides of the eigendecomposition CSv j = µ j v j :

CSv j = µ j v j ,

CSv j + σ 2Iv j = µ j v j + σ 2Iv j ,(
CS + σ 2I

)
v j = (

µ j + σ 2
)
v j , and

CDv j = λ j v j .

(B-4)

Equation (B-4) relates the eigenpairs (µ j , v j ) of the noise-
free covariance matrix CS , to the eigenpairs (λ j , v j ) = (µ j +
σ 2, v j ) belonging to the composite matrix CD . It is interesting
to note that although the eigenvalues of CS and CD differ by
the variance of the noise, the eigenvectors remain the same.

The next step is to assume that the signal is correlated
with itself, which occurs when the covariance matrix CS is
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formed from identical seismic traces. This implies that the ma-
trix CS is a rank-one matrix and, as was shown earlier, has a
single positive eigenvalue. The composite matrix CD , which
contains both signal and noise components, has eigenvalues
λ j ( j = 1, 2, . . . , J ) defined by

λ1 = µ1 + σ 2, and

λ j = σ 2, j = 2, 3, . . . , J.
(B-5)

For this greatly simplified situation, equation (B-5) indicates
that the composite matrix CD includes both signal and noise
in the first eigenvalue, while only the variance of the noise is
present in the last J − 1 eigenvalues. This suggests an obvious
procedure for estimating noise in a more general setting: simply
average a predetermined number of the smallest eigenvalues.
When the traces are identical except for noise, averaging the
last J − 1 eigenvalues results in a simple expression:

σ 2 =

J∑
j=2

λ j

J − 1
= Tr(C) − λ1

J − 1
. (B-6)

The approximation of the noise in equation (B-6) is an ideal-
ization and is statistically dependent on the number of mea-
surements used.

The eigenvalues in equation (B-5) may now be used to form
the two coherence estimates. Using the definition in equa-
tion (A-2) for Ec, results in

Ec = λ1

Tr(CD)
= µ1 + σ 2

µ1 + Jσ 2
. (B-7)

As equation (B-7) illustrates, Ec is corrupted by the variance of
the noise resulting in a coherence of less than one. In contrast,
an expression for Sc is attained by substituting the eigenval-
ues of equation (B-5) into equation (A-13). Using cos θ j = β j

expresses Sc as a weighted sum of the eigenvalues:

Sc

J∑
j=1

β2
j λ j

Tr(CD)
=

β2
1

(
µ1 + σ 2

) +
J∑

j=2

β2
j σ

2

µ1 + Jσ 2

=
β2

1µ1 + σ 2
J∑

j=1

β2
j

µ1 + Jσ 2
. (B-8)

Applying the results that
∑J

j=1 β2
j = 1 from equation (A-10)

and β2
1 = cos2 θ1 from equation (A-8) simplifies the expression

for Sc in equation (B-8):

Sc = µ1 cos2 θ1 + σ 2

µ1 + Jσ 2
. (B-9)

Equation (B-9) again illustrates the dependence of Sc on the
angle between the signal subspace spanned by the eigenvector
v1 and the subspace spanned by the vector u. Since Ec uses
the subspace spanned by the eigenvector v1, there is no such
dependence. In the pathological case when the angle θ1 goes
to π/2, the weight cos2 θ1 goes to zero, and the eigenvalue µ1,
associated with the signal is left out of the Sc estimate entirely.
In this case, the vector u becomes orthogonal to the signal sub-
space, and the numerator of Sc only picks up information from
the noise subspace:

Sc = σ 2

µ1 + Jσ 2
. (B-10)

With only uncorrelated noise in the signal, the eigenvalues
of the composite matrix CD = NT N = σ 2I are equal to the
variance of the noise (λ j = σ 2, j = 1, 2, . . . , J ). Substitution
of these eigenvalues into the appropriate expressions demon-
strates that both the coherence estimates Sc and Ec are equal
to the inverse of the number of traces in the analysis cube:

Sc = Ec = σ 2

Jσ 2
= 1

J
. (B-11)


