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3-D broad-band estimates of reflector dip and amplitude

Kurt J. Marfurt∗ and R. Lynn Kirlin‡

ABSTRACT

Estimates of seismic coherence of 3-D data sets have
provided a radically new way of delineating detailed
structural and stratigraphic features. Covariance matri-
ces provide the natural formalism to extend the original
three-trace crosscorrelation algorithm to larger analy-
sis windows containing multiple traces, thus providing
greater fidelity in low signal-to-noise environments. By
use of 3-D phase compensation using Radon transforms,
we exploit advances made in the high-resolution multi-
ple signal classification (MUSIC) algorithms, originally
developed for the defense industry.

All three families of multitrace attributes (coherence,
amplitude, and phase) are coupled through the underly-
ing geology, such that we obtain three families of com-
plimentary images of geologic features that result in

lateral changes in wave form. The phase attributes of
dip/azimuth and curvature allow us to image areas that
have undergone folding or draping that can not be seen
on coherence or amplitude images. The amplitude at-
tributes allow us to image oil/water contacts or other
areas of amplitude variation that may not be seen on
coherence or dip/azimuth images.

Coupled with coherence and the conventional seismic
data, these new multitrace dip and amplitude data cubes
can greatly accelerate the interpretation of the major fea-
tures of large 3-D data volumes. At the reservoir scale,
they will be of significant help in delineation of subtle in-
ternal variations of lithology, porosity, and diagenesis. In
computer-assisted interpretation, we strongly feel these
new attributes will become the building blocks for the ap-
plication of modern texture analysis and segmentation
algorithms to the delineation of geologic features.

INTRODUCTION
The coherence cube developed by Bahorich and Farmer

(1995, 1996) provides a radically new way of extracting de-
tailed structural and stratigraphic features from 3-D seismic
data volumes. This original (C1) coherence algorithm, which
is based on the normalized crosscorrelation of three adjacent
traces, is computationally efficient and provides high spatial
resolution of lateral changes in geology when dealing with
high-quality seismic data. Unfortunately, this algorithm does
not readily generalize beyond three traces, such that the algo-
rithm in general gives poor estimates of coherence and highly
erratic estimates of reflector dip and azimuth when dealing
with noisy data. The most obvious means of ameliorating this
signal-to-noise problem is to increase the number of traces
in the analysis window beyond three. In the second genera-
tion, or C2, coherence algorithm, Marfurt et al. (1998) present
a brute force estimate of these 3-D attributes using a 3-D
semblance search over a discrete number of predetermined
dip/azimuth pairs. Gersztenkorn and Marfurt (1999) in their
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multitrace time-domain eigenstructure, or C3, coherence al-
gorithm, further improve coherence estimation by excluding
the noise component of the data in the calculation. Although
having higher resolution than the semblance algorithm, this
original eigenstructure analysis did not search explicitly over
reflector dip, so low-coherence artifacts were generated in ar-
eas of high structural dip. This problem recently has been cir-
cumvented by the generation of a hybrid algorithm that esti-
mates local reflector dip using the more economical, but lower
resolution semblance algorithm, smoothing these dips over
a large window, and finally calculating the coherence along
the smoothed dip direction in our C3.6 coherence algorithm
(Marfurt et al., 1999).

Finn (1986) developed perhaps the first 3-D volume-oriented
dip/azimuth algorithm and applied it to a grid of 2-D lines.
His method explicitly calculates phase lags between adjacent
in-line and cross-line traces and, as such, is quite sensitive to
noise. The difference algorithm developed by Luo et al. (1996)
falls somewhere between our C1 normalized crosscorrelation
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Table of symbols

d�(x, y) = d( f�, x, y) = the complex-valued Fourier
components of the seismic
data

dH� (x, y) = the complex conjugate
transpose of dH� (x, y)

f� = the �th radial frequency
measured in hertz

fR = a convenient reference
frequency

x j = the in-line trace location of
the jth trace, measured from
the center of the analysis
window in meters

y j = the cross-line trace location
of the jth trace, measured
from the center of the
analysis window in meters

a = the amplitude or modulus of
d( f, x j , y j )

ψ = the phase of d( f, x j , y j )
p = the in-line apparent dip

measured in milleseconds
per meter

q = the cross-line apparent dip
measured in milleseconds
per meter

C = E(ddH) = the data covariance matrix
λ j = the jth eigenvalue of C
vj = the eigenvector

corresponding to the jth
eigenvalue of C

αi = coefficients of a paraboloid
used to fit the amplitude of
the eigenvector v1

βi = coefficients of a paraboloid
used to fit the phase of
the eigenvector v1

A, B = coefficient matrices used
in the least-squares fitting of
αi and βi to v1

I = the identity matrix
ε = a small number introduced to

stabilize the normal
equations used to obtain B

xξ = an axis rotated ξ degrees
from the in-line (x) axis

pξ = the apparent dip measured
along an azimuth of ξ degrees
from the in-line (x) axis

th = time of a picked seismic
horizon

ψh = 2π fRth = the phase of the picked time
horizon corresponding to the
reference frequency fR

ρ = ∇2ψh = the reflector curvature
d̂ (mt ,mx ,my) = seismic data time samples

measured at =mt
t ,
x = mx
x, y=My


d� = (mx ,my) = the complex-valued Fourier
components of the seismic
data corresponding to
f = �
 f, x =mx
x
y=my
y

L� = the 3-D Radon transform
matrix corresponding to
f = �
 f

LH
� = the complex conjugate

transpose of L�

m�(np, nq) = the 3-D Radon transform
coefficients or model
parameters corresponding
to f = �
 f, p = np
p,
q = nq
q

d̄ �(mx ,my) = the complex-valued Fourier
components of the seismic
data, phase corrected from
f = �
 f to fR

DR� ≡ LR(L�L�+εI)−1L� = the phase compensation
matrix

rn ≡ r(mx ,my, pn, qn) = a plane-wave test function
cn = the coherence measured

along the dip of the test
function rn

Tr(C)= ∑J
j=1 C j j = the numerical trace of C

c= λ1/Tr(C) = the coherence calculated
using the eigenstructure of
the phase-compensated
covariance matrix

(kx , ky) = (2π f p, 2π f q) = wavenumbers in the x and y
directions

algorithm and the amplitude-variation attribute described in
this paper. In one implementation, Luo et al. (1996) calculate
the variance of the amplitude about the mean within an anal-
ysis window. Expansion of these terms includes an unnormal-
ized crosscorrelation of each trace with the mean trace as
well as some additional amplitude terms. They estimate dip
and azimuth using a slant stack search that is not unlike our
semblance search in our C2 coherence algorithm. Luo et al.’s
(1996) derivative algorithm is quite different from the coher-
ence family of algorithms, being based on analytic trace analysis
in the in-line and cross-line directions.

We have extended the narrow band multiple signal classi-
fication (MUSIC) algorithm, developed by Wax et al. (1984)
for use in tracking bearing of ships and aircraft from sonar or
ground-based antenna arrays, to broad band seismic data. This
fifth coherence algorithm, which has proven to be particularly
tedious to implement, performs an eigenstructure analysis of
the covariance matrix generated from the Fourier-transformed
or frequency-domain components of the seismic data within the
analysis window. Since the phase component of the complex
data array is a measure of time delay or moveout, it was hoped
that by calculating the covariance matrices in the frequency
domain we could avoid explicitly searching for reflector dip,
thereby resulting in a much more efficient algorithm. In this
paper, we evaluate the sensitivity of coherence measurements
generated by the broadband MUSIC algorithm to geologic
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faults as well as lateral variations in stratigraphy. More im-
portantly, we develop new 3-D seismic attributes that estimate
continuous (versus discrete) estimates of dip/azimuth and cur-
vature, as well as continuous estimates of the lateral variation
of reflector amplitude along these dip/azimuth estimates.

THE C5 COHERENCE ALGORITHM

The MUSIC algorithm developed by Wax et al. (1984) is a
maximum likelihood estimate of direction of arrival. Although
highly effective in tracking narrowband signals from submarine
propellers and other sources, this algorithm had not been suc-
cessfully or efficiently applied to broadband data until recent
advances made by Allam and Moghaddamjoo (1994). In Ap-
pendices A and B, we extend their treatment to 3-D (t, x, y)
or (z, x, y) seismic data cubes. For accurately migrated seismic
data, we can simplify their original assumptions by assuming
only one reflector lies in the analysis window. This assumption
will be valid except along a limited number of unconformities,
fault boundaries, and generally incoherent regions of the data.

Maximum coherence exists among all traces when they are
time-aligned to the plane of the reflector. Our generalized
MUSIC algorithm provides a means of testing all possible dips
and azimuths for maximum coherence while simultaneously
aligning the wavefronts.

We begin by transforming to the temporal frequency do-
main using a discrete Fourier transform at a selected number
of frequencies. A planar reflector d( f, x, y) in the temporal
frequency domain will have the form

d( f, x, y) = a ·exp[iψ( f, x, y)] = a ·exp[i2π f (px+qy)],

(1)

where f is the temporal frequency (measured in hertz), a is the
amplitude of the plane-wave event, ψ is the phase of the plane-
wave event, x and y are the spatial distances to the center of the
analysis window, and p andq are the apparent dips of the planar
reflector in the x and y directions (measured in milleseconds
per meter).

Each frequency component contains an exponential delay
factor ψ( f, x, y) which in turn indicates the apparent dips of the
assumed plane event. This delay factor ψ( f, x, y) will vary lin-
early not only with spatial distance from the center of the anal-
ysis window but also with frequency. The MUSIC algorithm al-
lows us to construct a covariance matrix from sample vectors,
one vector for each frequency, with each vector element ex-
tracted from each trace, thus generating a statistically robust
estimate of the covariance matrix. Clearly, a correction to the
phase delay ψ needs to be made such that all frequencies
will add constructively for consistent apparent dips (p, q). Al-
though the literature (Kirlin and Done, 1999) has given us sev-
eral means of transforming one frequency’s coefficient to an-
other’s, none of these have proven to be particularly efficient
or robust. We achieve this broad band phase compensation by
use of the discrete Radon transform, details of which can be
found in Appendix A.

The simplest, most accurate means of phase compensation
is to literally time shift all traces according to each trial dip
and azimuth before calculating the covariance matrix. This is
exactly what is done in the time domain semblance or C2 al-
gorithm developed by Marfurt et al. (1998) and the hybrid
time domain semblance–eigenstructure or C3.6 algorithm de-

veloped by Marfurt et al. (1999). These algorithms do not re-
quire Fourier transformation; rather, the covariance matrix can
be directly obtained using vectors extracted from time interpo-
lated analytic traces. In contrast, the MUSIC algorithm imple-
ments this time shift as a phase shift in the frequency domain
by simply multiplying the sample vector by exp[i
ψ(x, y, f )]
for each trial direction. By avoiding temporal interpolation
before creating the covariance matrix, we improve computa-
tional efficiency. MUSIC is both a high resolution and a sub-
space algorithm—subspace meaning that most noise dimen-
sions of the data (corresponding to the smaller eigenvalues)
are ideally excluded from the calculations of the parameters
of interest. According to theory, considerable gains in angular
resolution are made when the signal-to-noise ratio is above a
critical threshold.

EIGENVALUE ANALYSIS: CALCULATION OF COHERENCE

Figure A-1 in Appendix A shows a typical analysis window
incorporating J traces. Applying the minimum variance, dis-
tortionless response (MVDR) analysis of the corresponding J
by J covariance matrix, C, described in Appendix B, generated
from the broadband phase-compensated data extracted from
the trace analysis window, we obtain our estimate of coher-
ence c (equation B-8):

c = λ1

Tr(C)
, (2)

where λ1 denotes the largest of the J eigenvalues and Tr(C)
denotes the sum of diagonal elements of the matrix C.

As with our C1, C2, C3, and C3.6 coherence algorithms, the
value of coherence c for the C5 algorithm has been constructed
to always range between 0 and 1. In Figure 2, we compare all
five coherence algorithms for the time slice shown in Figure 1a,
centered about a salt dome in the Gulf of Mexico, offshore
Louisiana. With the exception of the 3-trace C1 algorithm, all
coherence estimates were calculated using the same 5-trace
(12.5 m × 25 m) operator and the same ±40-ms vertical window
centered about the time slice at 1200 ms. The C2 algorithm ex-
plicitly searched over some 32 (dip, azimuth) pairs. These dips
(Figure 3) were smoothed over a 100 m × 100 m window and
used to guide our C3.6 algorithm. The C5 algorithm used five
frequencies spaced equally between 12.5 and 62.5 Hz at 12.5 Hz
increments, phase compensated to 25 Hz. The relative compu-
tational effort of these four algorithms is displayed in Figure 4.

Arrows indicate subtle variations in coherence between
these four algorithms. First, we note that the frequency do-
main C5 algorithm implicitly takes into account variations of
dip that are not honored by our time domain eigenstructure C3
algorithm, so we can interpret faults that cut the steeply dipping
flanks of the salt dome. Nevertheless, the C5 algorithm appears
to be inferior to the hybrid C3.6 algorithm in this same zone,
with the C5 algorithms estimate of coherence having consider-
ably reduced lateral resolution and continuity of fault traces.
Thus, we have developed an algorithm that is somewhat infe-
rior in quality, but computationally more expensive than the
hybrid C3.6 algorithm. In addition, since the Fourier trans-
form of the various frequency components requires a vertical
analysis window whose length is equal to the reciprocal of the
lowest frequency to be used, this algorithm will by necessity
have less vertical resolution than our time domain semblance



3-D Broad-Band Attributes 307

algorithm, which can operate on as few as one sample in the
analysis window.

EIGENVECTOR ANALYSIS: CALCULATION OF LATERAL
VARIATION OF REFLECTOR DIP AND AMPLITUDE

In this section, we examine the usefulness of the first eigen-
vector v1 or principal component of the frequency domain co-
variance matrix C described in Appendix B. This unit length
eigenvector v1 is a necessary by-product in the calculation of
the largest eigenvalue λ1 using the efficient Rayleigh product
method (Golub and van Loan, 1983). By definition, the prin-
cipal component represents that complex-valued lateral vari-
ability across J traces that best represents the lateral variability
in the complex (phase-compensated) data vectors for each fre-
quency that contributed to the covariance matrix C. If we were
to subtract the principal component from the phase compen-
sated data vectors d̄ �, thereby forming a residual vector for

FIG. 1. Data through a salt done from the Gulf of Mexico: (a)
a time slice through a seismic data volume at t = 1200 ms and
(b) a vertical slice along AA′. Arrows indicate a small flexural
feature at t = 1200 ms. Data courtesy of Geco-Prakla.

each frequency, the second principal component would be that
complex waveform that best represents these residual vectors,
yet is orthogonal to the first principal component.

Although our discussion in Appendices A and B postulated
a simple plane-wave reflector across the analysis window hav-
ing the form of equation (1), this by no means requires that
the principal component eigenvector calculated from the ac-
tual data will be planar in form. We therefore find it useful
to decompose the complex-valued principal component eigen-
vector λ1v1 into two real vectors of amplitude a and phase ψ ,
using

λ1v1(x j , y j ) = a(x j , y j ) exp[iψ(x j , y j )], (3)

where (x j , y j ) are the coordinates of the jth trace within the
analysis window.

We then parameterize the variation in amplitude and phase
to be parabolic in (x, y):

a(x, y) = α0 + α1x + α2y + α3x
2 + α4xy + α5y

2, (4)

and

ψ(x, y) = β0 + β1x + β2y + β3x
2 + β4xy + β5y

2. (5)

The phase coefficients have ready physical interpretations:
β1 and β2 correspond to a broadband estimate of p and q, the
apparent dips in the x and y directions given in equation (1),
whereas coefficients β3 and β5 are estimates of the reflector
curvature in the x and y directions. Calculation of the eigen-
vector v1 is indeterminate with respect to a constant phase
factor (Kirlin and Done, 1999), so the value of β0 is useless for
interpretation.

To our knowledge, the amplitude coefficients α j are some-
what new to seismic analysis, but are nevertheless easy to un-
derstand. Coefficient α0 is simply a multitrace estimate of the
broadband reflectivity at the center of the analysis window. Co-
efficients α1 and α2 are the change in variation of the reflectivity
in the in-line (x) and cross-line (or y) directions. Similarly, α3

and α5 are the rate of change, or second derivative, of these
amplitudes in the x and y directions.

If we rewrite equations (4) and (5) as a J by 5 matrix equation
for each of the J or more traces in the analysis window in the
form

a = Aα, (6)

and

ψ = Aβ, (7)

we can solve for α and β using conventional least squares:

α = (ATA + εI)−1ATa, (8)

and

β = (ATA + εI)−1ATψ, (9)

where I is the identity matrix, ε is a small positive number in-
troduced for numerical stability, and the superscript T denotes
the transposed matrix.

Since the analysis window does not change with spatial or
temporal position, we simply precompute the matrix B:

B = (ATA + εI)−1AT, (10)
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FIG. 2. Time slices at t = 1200 ms through coherence cubes produced using six different algorithms: (a) C1—cross correlation,
(b) C2—time domain semblance, (c) C3—time domain eigenstructure with no dip search, (d) C3.6—hybrid time domain sem-
blance–eigenstructure with a dip search, (e) MUSIC without phase compensation, and (f) C5—MUSIC with phase compensation.
Arrows indicate faults that are difficult to follow through the steep areas using the C3 algorithm. Even so, the C5-generated
coherence has less resolution than either C3 or C3.6.
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and apply it to all eigenvectors v1 estimated in the seismic vol-
ume, providing us with several useful attributes at only a small
additional cost to our C5 algorithm estimate of coherence c.

DISCUSSION

In Figure 5, we show the apparent dip in the in-line and cross-
line directions, as well as intermediate apparent dips pξ along
the xξ -axis, rotated by an angle ξ from the x-axis given by

∂ψ

∂xξ

= pξ = p cos ξ + q sin ξ, (11)

for the same time slice at 1200 ms shown in Figures 1–3. (We
could just as easily have displayed dip and azimuth as discussed
in Marfurt et al., 1998.) Several aspects of the data are immedi-
ately apparent that are not obvious from the coherence slices
alone. First, one is easily able to envision the structural dip from
the apparent shadows generated by this eigenvector decompo-
sition. This continuous estimate of reflector dip is consistent

FIG. 3. Apparent dips, pξ , estimated for (a) ξ = 0◦, and (b)
ξ = 90◦, using the discrete dip search used in C2 or semblance
algorithm at time slice t = 1200 ms.

with, but has significantly greater resolution than, the discrete
dip estimates generated by our C2 algorithm in Figure 3.

Second, due to this increased resolution, we are able to de-
lineate subtle flexural features that are less obvious on the co-
herence data. As an example, we notice a flexural feature on
line AA′ at 1200 ms in Figure 1b that lies just above a major
fault. This fault-associated flexure or drape appears quite dif-
fuse on our coherence slices (Figure 2), but is clearly visible on
the dip slices in Figure 5. In map view, we see a relationship
between the west end of this flexural feature and the north end
of a clearly defined radial fault. Care must be taken in the inter-
pretation of these apparent dip images. They are “apparent”
not only in the traditional geologic sense of being the true dip
projected onto the transept, but also in the literal sense, in that
they may only “appear” to be dips, but are rather finite offsets
across a fault.

The coefficient of xy (β4) is underdetermined for the J = 5
trace analysis window used in this example. To our knowledge,
this estimate is not commonly used in structural interpretation,
but is equivalent to the skewness coefficient used in texture and
segmentation analyses (Wu and Doerschuk, 1994).

For the sake of simplicity, we combine the vector curvature
components β3 and β5 (the coefficients of x2 and y2, respec-
tively) into a single attribute which we will simply call the re-
flector curvature, ρ:

ρ = ∇2ψ = ∂2ψ

∂x2
+ ∂2ψ

∂y2
= β3 + β5, (12)

and display the result in Figure 6. This reflector curvature map
is analogous to the edge-detected dip azimuth maps along an
interpreted horizon, presented by Mondt (1990). It is dissim-
ilar in that the horizon-edge detection algorithms require an
interpreter (or an interpreter guided algorithm) to explicitly
pick a geologic horizon, whereas our method [and those of
Dalley et al. (1989), Luo et al. (1996) and Marfurt et al. (1998)]
can work along either an interpreted horizon, or alternatively
along any vertical section, time slice, or depth slice through
the seismic data cube prior to interpretation. Like coherence,

FIG. 4. Relative computational effort on an Ultra Sparc work-
station of the coherence algorithms discussed in this paper.
With the exception of the 3-trace C1 algorithm, all times cor-
respond to a 5-trace, ±40-ms analysis window.
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FIG. 5. Apparent dips pξ estimated for (a) ξ = 0◦, (b) ξ = 30◦, (c) ξ = 60◦, (d) ξ = 90◦, (e) ξ = 120◦, and (f) ξ = 150◦, using the C5
or phase-compensated MUSIC algorithm at time slice t = 1200 ms. White corresponds to positive dip downwards in the direction
of ξ . Images generated at 180◦, 210◦, 240◦, 270◦, 300◦, and 330◦ would appear as photographic negatives of images (a)–(f). Arrows
indicate a small flexural feature denoted on Figure 1b and discussed in the text.
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being able to calculate and display reflector dips and curvature
prior to interpretation allows us to quickly visualize and gen-
erate a structural framework of the earth’s subsurface, thereby
greatly accelerating the traditional interpretation process.

In Figure 7a, we display the α0 coefficient of our amplitude
expansion, that is, a least-squares J -trace estimate of phase
compensated reflectivity at the center of the analysis window.
Since the amplitude term in equation (3) is always positive or
rectified, it may be somewhat difficult to compare to the tra-
ditional data extraction amplitude displayed in Figure 1a. We
therefore display the single trace response envelope (Bodine,
1984) in Figure 7b. We note that due to the J -trace versus single
trace estimate, the α0 coefficient is less noisy than the wavelet
envelope. We also note that the we have greater lateral res-
olution of the fault plane discontinuities, complementing our
coherence images in Figure 2 and apparent dip and curvature
images in Figures 5 and 6.

Of considerably greater interest is the enhanced detail pro-
vided by the amplitude gradient images along the xξ axis shown
in Figure 8, given by

∂a

∂xξ

= α1 cos ξ + α2 sin ξ. (13)

These images show the lateral change in amplitude with dis-
tance along the azimuth ξ , and is algorithmically independent
of the phase variations or apparent dip shown in Figure 5. We
note that the amplitude of the incoherent energy at the center
of the salt dome is nearly zero. We explain this phenomenon
as being due to three processes. First, the original data internal
to the salt dome (Figure 1a) were low in amplitude. Second,
since our phase compensation was only applied to dipping re-
flectors up to the spatial Nyquist criterion, more steeply dip-
ping, aliased events are partially attenuated during the forward
Radon transform given by equation (A-3). Third, the data in-
side the salt dome are largely incoherent, so we do not expect
our phase compensation algorithm that was defined for co-
herent, albeit dipping reflectors to produce consistent phase
consistent corrected data dI given by equation (A-7). The ad-
dition of these randomly phased data vectors in our covariance

FIG. 6. ∇2ψ = ∂p/∂x+∂q/∂y, generated at time slice t = 1200
ms. Compare this phase-based edge-detection image to the co-
herence-based edge-detection images shown in Figure 2.

matrix calculation (equation B-1) will result in a principal com-
ponent λ1v1, whose magnitude tends towards zero. For com-
pleteness, we display the Laplacian of the amplitude coefficient
in Figure 9, given by

∇2a = ∂2a

∂x2
+ ∂2a

∂y2
= α3 + α5. (14)

This image provides a third means of edge detection that is
numerically independent of coherence and reflector curvature.

Since there are no bright spot amplitude events of interest
in Figure 1, we examine a volume of data from a different part
of this survey that was flattened along an irregular geologic
horizon (Figure 10) containing some of the major distributary
features of the paleo–Mississippi River (Figure 11). We have
chosen these data since the geologic features are interpreta-
tionally easy to visualize, and since we have strong reflectiv-
ity contrasts between the sand prone channels and the shale

FIG. 7. (a) Modulus of complex amplitude, estimated at the
center of the analysis window, a(x = 0, y = 0), estimated using
the C5 MUSIC algorithm. (b) Modulus of conventional com-
plex trace analysis, or response envelope, described by Bodine
(1984). White implies high amplitude, black implies low am-
plitude. Compare both figures to the conventional amplitude
extraction shown in Figure 1a.
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FIG. 8. Gradient of modulus of complex amplitude, ∂a/∂ξ , estimated for (a) ξ = 0◦, (b) ξ = 30◦, (c) ξ = 60◦, (d) ξ = 90◦, (e)
ξ = 120◦, and (f) ξ = 150◦. White corresponds to increasing amplitude in the direction of ξ . Arrows indicate a fault which is much
more continuous (though the polarity reverses!) than on any of the coherence images shown in Figure 2. Note that the north-south
acquisition footprint affects the east-west amplitude gradient in (d) more than the east-west apparent dip in Figure 5d.
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prone matrix. The C3 coherence image (Figure 12) run on this
data volume after flattening is consistent with this depositional
model. The coherence nicely outlines the edges of the channel,
though providing little additional detail within.

We display amplitude gradient maps along this horizon at
0◦ and 90◦ in Figure 13. Careful comparison shows that there
is nothing in Figure 13 that is not in the original time slice of
Figure 11. Nevertheless, since we are looking at changes in am-
plitude, subtle features like the narrow sand channels indicated
by arrows leap out at the interpreter in these gradient maps,
allowing us to easily visualize and quantify small lateral vari-
ations in amplitude. We display the divergence of amplitude
∇2a in Figure 14.

For this example, ψ , the phase of the principal component
λ1v1 given by equation (3) is calculated with respect to the

FIG. 9. ∇2a = ∂2a/∂x2 + ∂2a/∂z2, the divergence of the modu-
lus of the complex amplitude estimated using our C5 MUSIC
algorithm. Compare this amplitude-based edge-detecting at-
tribute with the phase and coherence edge-detection attributes
shown in Figures 6 and 2.

FIG. 10. A smoothed stratigraphic horizon corresponding to
the paleo–Mississippi River distributory system.

flattened horizon. Mondt (1990) shows how faults and strati-
graphic features can be enhanced by calculating the apparent
dips (or alternatively, the dip and azimuth) and curvature of the
picks themselves. One major difference between such a “hori-
zon” dip map and the time slices through apparent dip cubes
such as shown in Figure 6 is that, like the coherence cube, the
apparent dip cube is performed on the data before rather than
after interpretation.

While we could calculate apparent dip cubes and extract
the apparent dip along the picked horizon, there are situations
where we may only wish to calculate attributes along a flattened
horizon and nowhere else. In this case, equation (3) gives us an
estimate of the reflector phase difference 
ψh with respect to
the flattened horizon. Since the phase ψh of the picked horizon

FIG. 11. Conventional amplitude extraction made along the
horizon shown in Figure 10. Seismic data courtesy of Geco-
Prakla.

FIG. 12. Seismic coherence estimated using the C3 algorithm
corresponding to the amplitude extraction shown in Figure 11,
using an 11-trace, ±32-ms analysis window.
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at time th at the reference frequency fR is simply

ψh = 2π fRth, (15)

the phase of the principal component analysis with respect to
time, t = 0, would be given by

ψ = 2π fRth + 
ψh . (16)

If we use this estimate of ψ in equation (9), without including
the smooth dip of the interpreted horizon shown in Figure 10,
we obtain the apparent dip images shown in Figure 15. The
amplitude gradients and divergence displayed in Figures 13
and 14 are calculated along these apparent dips and not along
the apparent dip of the picked horizon.

FIG. 13. Gradient of the modulus of the complex amplitude
∂a/∂ξ along the horizon shown in Figure 10 estimated for (a)
ξ = 0◦, and (b) ξ = 90◦. White corresponds to increasing am-
plitude in the direction of ξ . Arrows indicate subtle channel
features not readily evident on the amplitude extraction or co-
herence images in Figures 11 and 12.

FIG. 14. ∇2a, the divergence of the modulus of the complex
amplitude along the horizon shown in Figure 10.

FIG. 15. Apparent dips (a) p0 to the north and (b) p90 to the
east relative to the horizon shown in Figure 10.
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CONCLUSIONS

In an effort to develop a more efficient eigenstructure-
based coherence estimate in the frequency domain using the
MUSIC algorithm, we have generated a family of new seis-
mic attributes that quantify subtle variations in reflector dip
and amplitude. Although this new C5 estimate of coherence
is inferior to our C2 time domain semblance and hybrid C3.6
time domain eigenstructure coherence estimates, our new
reflector dip and amplitude attributes hold significant inter-
pretational promise. By calculating the eigenvectors in the
complex frequency domain, we obtain an efficient, continu-
ous estimate of apparent dip (or alternatively dip/azimuth)
that provides higher resolution than that obtained by our
discrete search C2 time domain algorithm. Although these
attributes are numerically independent from each other and
from coherence, they are often coupled through the causative
geology, such that changes in dip, amplitude, and coherence
provide complementary images of faults and stratigraphic
discontinuities.

More important, these new enhanced estimates of reflec-
tor dip and azimuth variation allow us to easily map fea-
tures that have heretofore required much greater interpre-
tational effort, and where coherence has been of only lim-
ited value. Curving reflectors will be mapped as coherent
events, yet quantitatively mapping reflector curvature is one
of the more effective means of predicting fold deformation-
induced fractures. Coherence also fails to provide us neces-
sary detail when the reflected signal is too coherent, such as
occurs in large gas-charged bright spots. Being able to map
subtle changes in reflector dip and amplitude may allow us
to differentiate underlying changes in lithology, such as indi-
vidual sand lobes in a deltaic sequence, crosscutting channels
in a fluvial sequence, or diagenetic barriers that are key to
effective reservoir production management.

Our new estimates of apparent dip and amplitude gradi-
ent bear a superficial resemblance to the shaded relief maps
commonly used in image processing. They differ from shaded
relief maps in that they are calculations of phase and ampli-
tude changes within a 3-D volume, rather than amplitude
changes along a 2-D surface.

In summary, we have generated more versatile means of
analyzing the same data. Apparent dip images allow us to
quickly envision 3-D structural relationships from time or
depth slices. The amplitude gradient maps allow us to quickly
visualize subtle lateral variations in reflectivity. From these
we have generated two new edge detector attributes, one
sensitive to changes in dip (curvature), the other sensitive
to changes in amplitude (such as may occur at a gas/water
contact). Coupled with coherence and the conventional seis-
mic data, these additional images will directly translate into
greatly accelerated interpretations of the major features of
large 3-D data volumes. In contrast, on the reservoir scale,

these multiple views of the same small piece of data provide
the interpreter more quantitative measures of internal reser-
voir inhomogeneity. In computer-assisted interpretation, we
feel strongly that these new attributes will become the build-
ing blocks for the application of modern texture analysis and
segmentation algorithms in the delineation of geologic fea-
tures.

ACKNOWLEDGMENTS

We thank the Amoco Business Units for their support and
Jeff Johnson for his strong leadership of Amoco Geoscience
Technology throughout the life of our seismic coherence
R&D effort.

We also thank Julie Youngblood in Amoco’s Tulsa Tech-
nology Center’s Document Services for her tenacity and ex-
actitude in helping to produce this manuscript. Finally, we
thank Frédéric Verhelst for his careful review, leading to im-
provement of our final paper.

This technology is protected by US Patent 5 940 778.

REFERENCES

Allam, M., and Moghaddamjoo, A., 1994, Two-dimensional DFT pro-
jection for wideband direction of arrival estimation: IEEE Signal
Processing Letters, 1, 35–37.

Bahorich, M. S., and Farmer, S. L., 1995, 3-D Seismic discontinuity for
faults and stratigraphic features: The coherence cube: The Leading
Edge, 14, 1053–1058.

——— 1996, Methods of seismic signal processing and exploration:
U.S. Patent 563 949.

Bodine, J. H., 1984, Waveform analysis with seismic attributes: Geo-
physics, 50, 327.

Dalley, R. M., Gevers, E. E. A., Stampli, G. M., Davies, D. J., Gastaldi,
C. N., Ruijtenberg, P. R., and Vermeer, G. J. D., 1989, Dip and az-
imuth displays for 3-D seismic interpretation: First Break, 7, 86–95.

Finn, C. J., 1986, Estimation of three dimensional dip and curvature
from reflection seismic data: M.S thesis, Univ. of Texas at Austin.

Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructure-based co-
herence computations as an aid to 3-D structural and stratigraphic
mapping: Geophysics, 64, 1468–1479.

Golub, G. H., and van Loan, C. F., 1983, Matrix computations: Johns
Hopkins Univ. Press.

Kirlin, R. L., and Done, W. E., 1999, Applications of covariance ma-
trices to seismic signal processing: Soc. Expl. Geoph.

Luo, L., Higgs, W. G., and Kowalik, W. S., 1996: Edge detection and
stratigraphic analysis using 3-D seismic data: 66th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, 324–327.

Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M.S., 1998,
3-D seismic attributes using a running window semblance-based co-
herency algorithm: Geophysics, 63, 1150–1165.

Marfurt, K. J., Sudhakar, V., Gersztenkorn, A., Crawford, K. D., and
Nissen, S. E., 1999, Coherency calculation in the presence of struc-
tural dip: Geophysics, 64, 104–111.

Mondt, J. C., 1990, The use of dip and azimuth horizon attributes in
3-D seismic interpretation: SPE 20943, 71–77.

Owsley, N., 1985, The MVDR algorithm, in Haykin, S., Ed., Array
signal processing: Prentice Hall, Inc., 115–193.

Parlett, B. N., 1980, The symmetric eigenvalue problem: Prentice-Hall,
Inc.

Wax, M., Shan, T.-J., and Kailath, T., 1984, Spatio-temporal spectral
analysis by eigenstructure methods: IEEE Trans. ASSP, 32, 817–827.

Wu, C., and Doerschuk, P., 1994, Texture based segmentation using
Markov random field models and approximate estimators based on
trees: J. Math. Imaging and Vision, 5, 721–741.

APPENDIX A

THE 3-D BROADBAND ALGORITHM

In this appendix, we extend the classical MUSIC scheme to
broadband signals by generalizing Allam and Moghaddamjoo’s
(1994) method to 3-D data volumes, thereby developing a
method of spatial sampling such that the phase of each con-
stant frequency gather is consistent for all other frequencies

along the reflector dip and azimuth direction. Plane wave de-
composition (or 3-D Radon transform techniques) provides a
natural way to achieve this broadband phase compensation.

Our analysis operates on an elliptical or rectangular spatial
analysis window encompassing J traces, d̂ [mt ,mx( j),my( j)],
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extracted from a volume of time or depth migrated data (Fig-
ure A-1);mt ,mx , andmy denote discrete samples along the t, x ,
and y axes whose origin is at the center of the analysis window.
Subsequent estimates of coherence are achieved by sliding the
analysis window to the next time sample in t , or to the next
adjacent trace in x or y.

To construct our covariance matrix, we need multiple sam-
ple vectors of Fourier coefficients, one vector for each fre-
quency (Kirlin and Done, 1999). We begin by taking the dis-
crete Fourier transform (DFT) at a select number of frequen-
cies, f�, in a temporal analysis window (−Mt ≤ mt ≤ +Mt)
centered about mt = 0:

d�(mx ,my) =
+Mt∑

mt=−Mt
d̂(mt ,mx ,my) exp

(−i2π f�mt
t
)
.

(A-1)
Let us assume a zero-phase planar reflector of amplitude

a and apparent dips p and q , centered about the origin of
the analysis window (mx = 0,my = 0,mt = 0) (Figure A-2). At
a reference frequency f� = fR :

dR(mx ,my) = a exp[−i2π fR(pmx
x + qmy
y)].

(A-2)
We note in Figure A-3 that while the phase at an arbitrary

frequency component f� will match the phase of the component
at fR at the origin (x = 0, y= 0) for a zero-phase wavelet, the
phases will not match the phases of the reference frequency for
nonzero values of x and y. Instead, we note that each frequency
coefficient’s phase changes with different slopes as we move
away from the origin.

While we may perform this phase compensation in the
Fourier, ( f, kx , ky) domain (Allam and Moghaddamjoo, 1994),
we feel it is more natural for our problem to phase compen-
sate plane wave events in the ( f, p, q) domain obtained by 3-D
plane wave decomposition using discrete Radon transforms.

FIG.A-1. An elliptical analysis window centered about an anal-
ysis point defined by length of major axis a, length of minor axis
b, and azimuth of major axis φa . The larger unshaded window
is used in the phase compensation discussed in Appendix A.

We therefore take the least-squares discrete Radon transform
of the windowed input data d�:

m� = (
LH

� L� + εI)−1LH
� d�, (A-3)

where d�(mx ,my) is the �th Fourier transformed data com-
ponent at frequency f� at position (x =mx
x, y=my
y);
m�(np, nq) are the ( f, p, q) plane wave decomposition coeffi-
cients corresponding to ray parameters (p= np
p, q = nq
q),
where −Np ≤ np ≤ + Np and −Nq ≤ nq ≤ Nq ; L�(np, nq ,mx ,my)
= exp[−i2π f�(np
pmx
x + nq
qmx
y)] are the elements of
the discrete Radon transform matrix; LH

� denotes the com-
plex conjugate transpose of L�; I is the (2Np + 1)(2Nq + 1) by
(2Np + 1)(2Nq + 1) identity matrix; and ε is a small “prewhiten-
ing factor” used to stabilize the matrix inversion.

By choosing our 3-D analysis window to be a rectangu-
lar grid aligned with the in-line and cross-line seismic axes
(Figure A-1), we achieve 3-D phase compensation results by
cascading two efficient 2-D by 2-D Radon transforms. Such
phase compensation in the plane wave domain is directly anal-
ogous to spatial data interpolation in the plane wave domain.
Specifically, we take the plane wave coefficients generated from
the data at f� and inverse discrete Radon transform back to the

FIG. A-2. A planar reflector having an in-line dip of p= 0.25
ms/m, and a cross-line dip of q = 0 ms/m. Trace spacing is (a)
12.5 m and (b) 25 m.
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(x, y) domain using the reference frequency fR :

d̄ � = LRm�, (A-4)

where d̄ �(mx ,my) is the data at frequency f�, phase compen-
sated to frequency fR , and

LR(np, nq ,mx ,my) = exp[−i2π fR(np
pmx
x

+ nq
qmy
y)]. (A-5)

We therefore define our phase compensation matrix DR� to
be

DR� ≡ LR
(
LH

� L� + εI
)−1L�. (A-6)

By applying DR� to each frequency component f� of a
nonzero phase planar reflector centered at the origin, we min-
imize the phase difference, ψ( fR, x, y) − ψ( f�, x, y), at all
nonzero values of mx and my :

d̄ � = DR�d�. (A-7)

We illustrate the effectiveness of the phase compensation oper-
ator DR� applied to the data in Figure A-2a in Figure A-4, where
we have chosen a reference frequency fR = 50 Hz. It appears
that we are not able to correctly compensate the low-frequency
component of the data at f� = 10 Hz until our compensation
window used in the discrete Radon transform exceeds a half
analysis window size of 50 m (Figure A-4a). In contrast, if we
choose a reference frequency of fR = 25 Hz, we are able to
accurately compensate the phase with a half analysis window
size of 25 m (Figure A-5). If we draw an analogy between trace
interpolation and phase compensation using discrete Radon
transforms and look at the argument of equation (1) for a fixed
value of apparent dips (p, q), we see that phase compensation
of a frequency component that lies above the reference fre-
quency fR for a fixed (x, y) grid could alternatively be viewed
as being interpolated to a finer (x, y) grid for the original fre-
quency f�. Likewise, phase compensation of a frequency com-
ponent that lies below the reference frequency fR for a fixed
(x, y) grid could alternatively be viewed as being extrapolated
to a coarser (x, y) grid for the original frequency f�. Clearly, we

FIG. A-3. Phase as a function of frequency and distance from
the center of the analysis window for the data shown in Figure
A-2.

know it is an unstable process to extrapolate data beyond the
extent of the discrete Radon transform phase compensation
window (Figure A-1), thereby explaining the poor results seen
at 10 and 20 Hz in Figure A-4a. In contrast, the more stable

FIG. A-4. Phase compensation of the data shown in Figure
A-2a with 
x = 12.5 m, using equation (A-7) and a reference
frequency fR = 50 Hz. Compensation windows used are (a)
±25 m, (b) ±37.5 m, and (c) ±50 m.
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process of interpolating the data grid towards the center of the
analysis window makes the surrounding traces look more and
more like the center trace, such that the compensated data will
look more coherent as we lower the reference frequency. It
appears that a reasonable compromise is to choose a reference

FIG. A-5. Phase compensation of the data shown in Figure
A-2a with 
x = 12.5 m, using equation (A-7) and a reference
frequency fR = 25 Hz. Compensation windows used are (a)
±25 m, (b) ±37.5 m, and (c) ±50 m.

FIG. A-6. Phase compensation of the data shown in Figure
A-2b with 
x = 25 m, using equation (A-7) and a reference
frequency fR = 25 Hz. Compensation windows used are (a)
±25 m and (b) ±50 m.

frequency that is near the center of the seismic spectrum, such
as shown in Figure A-5, for a value of fR = 25 Hz, where a phase
compensation half window size equal to the analysis window
of 25 m produces accurate results.

While the apparent dip of p= 0.25 ms/m is oversampled in
Figure A-2a with a trace spacing of 12.5 m, it is only critically
sampled at f� = 70 Hz in Figure A-2b with a trace spacing of
25 m, a distance commonly used in 3-D seismic acquisition
and processing. In Figure A-6, we note that the phase com-
pensation algorithm breaks down if we use a phase compen-
sation window equal to the coherence analysis half window of
25 m, even for frequencies higher than the reference frequency
fR = 25 Hz. We do achieve accurate phase compensation up to
60 Hz if we increase our analysis window by one additional
trace in each direction, such that our phase compensation half
window becomes 50 m. Although it is unclear exactly why the
phase compensation breaks down for small windows, it is clear
that increasing the phase compensation window to be larger
than the coherence analysis window will mix in some amount
of information from the larger window, thereby decreasing
the lateral resolution of the coherence algorithm described in
Appendix B.
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APPENDIX B

FREQUENCY DOMAIN ESTIMATION OF COHERENCE

We can now use each of these phase compensated sample
vectors at frequencies f� to create a broadband covariance ma-
trix from which we will calculate coherence:

C(p, q) =
∑

�

d̄ �(mx ,my) d̄ H
� (mx ,my), (B-1)

where the superscript H denotes the Hermitian or complex
conjugate transpose of the phase compensated data vector d̄ �

calculated using equation (A-7).
The phase compensation described in Appendix A will en-

sure that plane wave events passing through the origin will add
constructively for each frequency f�. Since the data are either
time or depth migrated, we may assume that in the absence
of coherent noise there is a single locally planar event having
unknown apparent dips p and q . We can therefore construct
test functions r having elements r(mx ,my, p, q) associated with
positions (mx ,my):

r(mx ,my, p, q) = exp[i2π fR(pmx
x + qmy
y)].

(B-2)
In this case the noise-free covariance matrix C(p, q) has only

one nonzero eigenvalue λ1. Its associated eigenvector v1 has a
vector exponential delay factor or phase ψ( fR, x, y), and ele-
ments identical to those of r(mx ,my, p, q).

The Complex Semblance Algorithm

Once we have compensated for phase as a function of fre-
quency, there are a number of means of estimating coherence
in the frequency domain. The simplest means is to construct
multiple test functions rn for discrete values of (pn, qn) and
compute an estimate of coherence, c(pn, qn) using the inner
product

c(pn, qn) = rH
n C(pn, qn)rn

JTr(C)
, (B-3)

where J is the length of the vector rn and is equal to the number
of seismic traces in the analysis window, and Tr(C) denotes the
numerical trace of the matrix C, that is, the sum of its diagonal
elements:

Tr(C) =
J∑

j=1

C j j .

Our estimate of reflector coherence corresponds to that ap-
parent dip pair ( p̂, q̂) for which the unnormalized coherence ĉ
is maximum. This is equivalent to the beam former or what we
call the complex semblance algorithm, which is closely related
to the time domain semblance algorithm presented by Marfurt
et al. (1998).

The MUSIC Algorithm

A second, more precise method of estimating coherence uses
the eigenvector outer product v1vH

1 instead of C(p, q), where
v1 is the eigenvector of C associated with the largest normal-
ized eigenvalue λ1. When there is no noise and only one plane

FIG. B-1. A planar reflector having an in-line dip of p= 0.25
ms/m and cross-line dip of 0.0 ms/m. Trace spacing 
x = 12.5 m.
Offset of fault between trace 24 and 25 is 
t = 10 ms: (a) noise
free, and (b) with a signal-to-noise ratio of 1:1.

FIG. B-2. Coherence calculated using a ±50 ms temporal and
3-trace spatial analysis window, corresponding to (a) the syn-
thetic window noise shown in Figure B-1a, and (b) the synthetic
with noise, shown in Figure B-1b.
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wavefront,

v1vH
1 = C

Tr(C)
, (B-4)

where, in this case (Parlett, 1980),

Tr(C) =
J∑

j=1

λ j = λ1,

because all eigenvalues other than λ1 are identically zero. The
MUSIC algorithm (Wax et al., 1984) looks for a null or mini-
mum in

c(pn, qn) = rH
n

(
I − v1vH

1

)
rn, (B-5)

usually by finding a peak in the inverse of this expression. For
our work, we prefer the estimate

ĉ = rH (p̂ ,q̂ )v1vH1 r(p̂ ,q̂ )
J

(B-6)

because it contains the same information and varies between
0 and 1 as the complex semblance does.

The MVDR Algorithm

The minimum variance, distortionless response (MVDR) al-
gorithm, developed by Owsley (1985), finds a peak in the in-
verse of

c = rn
HC−1rn. (B-7)

At high signal-to-noise ratios, this algorithm is equivalent to
MUSIC. Both MUSIC and MVDR have greater angular reso-
lution and insensitivity to aliasing than the complex sembelnce
algorithm. MVDR is more sensitive to noise than MUSIC, but
less likely to give aliased solutions.

If there is only one reflector, the maximum coherence in the
data can be given by

ĉ = λ1∑J
j=1 λ j

.

Parlett (1980) and Golub and van Loan (1983) show this can
be more efficiently calculated by noting that the sum of the
eigenvalues is equal to numerical trace of the covariance ma-
trix, while the largest eigenvalue can be efficiently calculated

using the product method:

c = λ1

Tr(C)
. (B-8)

We will denote this MVDR estimate of coherence as our
C5 coherence algorithm and compare it to our time domain
eigenstructure (C3.6) algorithm using the simple test synthet-
ics of a dipping (p= 0.25 ms/m, q = 0.0 ms/m), faulted reflec-
tor (Figure B-1) used in Marfurt et al. (1999). We evaluate the
effect of phase compensation on the noise-free synthetic dis-
played in Figure B-1b in Figure B-2a. We note that, as intended,
the phase compensation brings the value of coherence up to
c= 1.0 for the nonfaulted part of the reflector. For the C3.6
algorithm, the discontinuity associated with the fault between
traces 24 and 25 gives rise to a drop in coherence localized to
the bounding traces, thereby providing maximum resolution
for a three-trace algorithm. Though the contrast in coherence
is less, the MVDR algorithm without phase compensation is
likewise optimally localized. The MVDR algorithm with phase
compensation (i.e., our C5 algorithm) has values of coherence
along the reflector and at the fault that mimic that of the C3.6
algorithm. Unfortunately, the effect of the phase compensa-
tion is to smooth the variation in coherence near the fault over
the five-trace phase compensation window, thereby providing
us with reduced lateral resolution. Decreasing the value of the
reference frequency fR from 50 Hz through 25 Hz to 10 Hz, we
find that whereas the lateral resolution of the fault discontinu-
ity increases with decreasing reference frequency, the overall
coherence measured at the fault also increases such that the
fault is difficult to recognize. As described in Appendix A, this
increase in coherence for a low reference frequency can be
explained by viewing the phase compensation operation as a
trace interpolation operation, with the higher frequencies be-
ing interpolated closer and closer to, and therefore approaching
the value of, the center of the analysis window.

In Figure B-2b, we make the same analysis for data having a
signal-to-noise ratio of 1:1 within the bandwidth of the signal
shown in Figure B-1b. Here, we note that our new frequency
domain MVDR algorithm is less robust than the C3.6 time do-
main algorithm. To summarize Appendices A and B, it appears
that while we are able to accurately compensate for the phase
changes as a function of frequency and offset associated with
dipping reflectors, in so doing we smooth out the very discon-
tinuities we would like to map!


