
In the last ten years, geoscientists developed
many methods to interpret layered, 3D data.
This article will describe some of the solutions,
and a good place to begin is with a review of
the challenges of 3D seismic interpretation.

Seismic interpreters describe the interior of
a solid. That is a difficult goal
for even an ordinary rock
(Figure 1) that we can hold in
our hands even though we
can rotate it to gain an appre-
ciation for its interior. We are
even allowed to fracture the
rock to investigate its inte-
rior. However, even with
such advantages, we are
challenged to recreate its
detailed 3D structure in our
minds.

A sedimentary rock
paperweight (Figure 2) presents less of a
challenge because it exhibits layering. This
layering is critical for the application of our
methods. We will use standard seismic
terminology (inline, crossline, and depth)
for its coordinates.

Figure 3 shows a depth slice (perpen-
dicular to the depth axis) through this
rock. In fact, Figure 3 is simply a photo-
graph of the bottom of this rock paper-
weight. For this slice, the layering
symmetry is not evident.

Figure 4 shows an inline slice of the
rock. It is delightful that this
inline slice of the paperweight
looks so much like an inline
slice through seismic data.
The crossline slice reveals sim-
ilar layering (Figure 5).  

During most of the history
of seismic profiling, inter-
preters worked with 2D data
that, at best, revealed discrete
slices through the earth, such as
shown in Figure 4 and Figure
5. From those views, seismic
interpreters inferred the struc-
ture within the rock volume. Our paperweight shows faults,

fractures, and changes of dip.
But, when limited to these 2D
views of the paperweight, the
3D picture of the actual loca-
tions of these geologic features
exists only in our imagination.

The advent of 3D seismic
put the entire cube at our dis-

posal. We can use a workstation to slice and dice
it to extract any view that tickles our fancy. For
example, we can create horizontal slices, such as
Figure 3, that, of course, we could not have
obtained with 2D data. But, although the data and
tools are better, the challenge to the interpreters
remains: How do we visualize, capture, and commu-
nicate a description of the interior of our rock paper-
weight, or of our seismic volume? Surprisingly, real
life in our 3D world does not give us many clues.
Even though we occupy a 3D world, we see only

2D surfaces.
The first method of

visualizing our 3D data
extrapolates the proce-
dures we used with 2D.
We slice and dice the
data, noting the depth (or
traveltime) to a given
horizon and, from that,
produce a horizon map
that represents a surface
in the 3D volume. The
arrow in Figure 6 points
to just such a picked

(green) horizon.

Capitalizing on lateral similarity.
In Figure 6 we observe the paper-
weight’s pervasive lateral similar-
ity, the nearly horizontal layering.
Nevertheless, our eyes and our
interest are drawn to the departures
from that lateral similarity. Even
though this is just a paperweight,
we start to ask: Is that a fault? Is this
a channel? The departures from per-
fect lateral similarity tell us about
the geology of this paperweight.

That will be our motivation—to view changes in lateral sim-
ilarity. Before presenting how that is done, we will focus
more on “similarity.”

We can map horizons because of the pervasive lateral
similarity of the rocks and of the resultant seismic data.
Figure 6 shows the direction of that similarity, with the ver-
tical direction as the direction of dissimilarity. For layers close
to the green (picked) horizon, the maximum direction of sim-
ilarity is not along the horizontal inline direction but rather
along the irregular green horizon. Therefore, we could first
flatten to that green horizon in order to increase the degree
of similarity in the inline direction to highlight departures
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Editor’s note: This article is related to the 2006 Distinguished
Instructor Short Course “Seismic Attribute Mapping of Structure and
Stratigraphy” which will be taught by Kurt Marfurt. SEG will also
publish a reference book on this subject by Chopra and Marfurt, edited
by Hill, later in the year. Both the book and the DISC present a variety
of methods and numerous examples of their application. These tech-
niques are highly mathematical. This TLE paper is devoid of both
examples and equations and presents the methods in a compact fashion.
It is designed to give DISC attendees, prior to the course, a better
grounding in the methods and to facilitate comparing those methods
with each other.

Figure 2.
Rock paper-
weight.

Figure 3. Depth
slice through paper-
weight.

Figure 4. View of
rock paperweight
in inline direction.

Figure 1. A
Colorado rock.
A U.S. penny
is shown for
scale.



from that similarity that our eye so
easily notes along that horizon.

If we observe a depth slice of the
data, such as Figure 3, we lose the
sense of the lateral similarity. That
depth slice does not represent
enough data. For this reason, we will
consider a slab of the rock, not just
an interface, for our similarity analy-
sis. What is a slab? As an example,
Figure 7 shows a slab of petrified
wood. In our seismic data, the slab
will have a thickness of 5–40 ms.

We wish to determine the lateral
similarity in a slab of seis-
mic data. But, just what do
we mean by similarity?

A classification example.
Figure 8 is a photograph
of a collection of house-
hold items. Based on their
shapes, which items are
most similar to each
other? Which items are
most dissimilar? This is a
pretty trivial assignment.
Your mind instantly notes
the similarity of these
items not only to each other, but also to standard objects that
are in your mind. That is the reason that you can identify
object C as a nut, even though you have never seen this par-
ticular nut before. You used your mind’s standard nut
as your classification (naming) tool because the
photograph of this nut had greater simi-
larity to your standard nut than any
other item that resides in your
mind’s naming catalog. 

The four bolts in Figure
8 (A, D, F and G) are suffi-
ciently similar to each other
to all fall in the “bolt” cate-
gory. Items D and F are the most
similar, even though they cannot be
absolutely identical to each other.
(After all, there will be slight variations
in the manufacturing process.) When we
see these items, we also think of their appli-
cations or, in other words, how they would be used.
If asked, based on our experience and knowledge, we
could also provide an explanation
about their manufacturing history,
starting with the extraction of the iron
ore. Our visual classification assists us
in placing together items related to
similar processes. That is also the goal
of the classification of the individual
traces in seismic data. We will hope
that traces that we classify in similar
categories will have been created
through a similar manufacturing (or
for geoscientists, deposition, defor-
mation, or diagenetic) process. 

What have we learned from this
foolish exercise with these household objects? We have learned
that our mind automatically classifies these household items
against each other and also against external criteria that we

keep in our mind. Even
without knowing the
names of these objects, we
can determine which are
most similar to each other,
and in what regards. For
example, we may classify
them as being similar in
length, similar in color,
rusty or shiny, or similar in
apparent age. These mea-
sures are “attributes” of
these simple household
items. We also can apply an
external standard, such as a

ruler, to estimate the actual lengths.
We can apply an external standard
to conclude that we have a nail, a
few nuts, and a loose screw. The
point is that we can judge similar-
ity in a relative fashion, one object
to the next, or we can judge simi-
larity against an external standard.

Crosscorrelation as a similarity
measure. Now we turn to seismic
data. We wish to classify windows
of our seismic traces based on their
similarity. (Later sections will

answer the question “Similarity to what?”) Because of the
overwhelming number of traces in a 3D sur-

vey, we require a computer-based, numer-
ical method. Since our seismic traces are

time series, mathematicians inform
us that the appropriate method is

crosscorrelation which takes
advantage of the power of
addition and multiplica-
tion.

We can use the mathe-
matical recipe of crosscorre-

lation to determine how much
trace 1 looks like trace 2 in Figure 9.

In this example, trace 1 is identical to
trace 2. The crosscorrelation recipe states that

we should first pairwise multiply each of the
amplitude time samples of trace 1 with trace 2, pro-

ducing a new, intermediate trace labeled “prod-
uct.” Because traces 1 and 2 are identical, the
product trace contains the square of the amplitude

values in either
trace 1 or trace 2.
All values in the
product trace will
be positive or zero.
(Note that the mul-
tiplication of the
negative values in
trace 1 by the neg-
ative values in
trace 2 produces a
positive product.)
The next step is to
sum all values in

the product trace. This produces a single number that is pro-
portional to the crosscorrelation. Because all of the values in
the product trace are positive, the sum is a large, positive
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Figure 5. View of
rock paperweight
in crossline direc-
tion.

Figure 6. View
of rock paper-
weight in inline
direction. Same
view as in
Figure 4. Arrow
points to green
line which is a
picked horizon.

Figure 7. A slab
of petrified wood.

Figure 8. Selected collection of household objects.



number.
We now investigate the situation for which trace 2 is as

different from trace 1 as possible; i.e., the data in trace 2 are
the negatives of the data trace 1 (Figure 10). In this situa-
tion, the product trace contains only negative values because
each pair-wise multiplication produces a negative value or
zero. So, the summation of the product trace produces a
large, negative number. This negative number is the cross-
correlation coefficient between traces 1 and 2.

We now consider the middle road. In Figure 11, trace 2
is randomly different from trace 1 and pairwise multiplica-

tion produces both positive and negative values in the prod-
uct trace. In this particular case, the summation of all val-
ues in the product trace produces a small, positive value for
the crosscorrelation coefficient. With a randomly different
trace 2, the crosscorrelation coefficient could have been a
small negative number.

While it may not be apparent, crosscorrelation is not as
smart as our eye. If we have two identical traces, but one is
time-shifted with respect to the other, then the crosscorre-
lation coefficient will be smaller than if they had not been
time-shifted. Crosscorrelation is a bit dumb, in that regard.
While our eyes would have no problem discerning that
these traces were time-shifted, identical traces, crosscorre-
lation is fooled. This is the reason that it is advisable to
remove the local dip from our data in advance of crosscor-
relation.

In order to keep things tidy, mathematicians sometimes
add an additional step to this crosscorrelation recipe. After
summing the product time series, they normalize that sum-
mation by dividing by individual summations of the two
input traces. This means that the crosscorrelation coefficient
is one for identical traces, minus one for traces that are the
negative of each other, and small values, close to zero, for
traces that are randomly dissimilar. These are termed “nor-
malized” crosscorrelation values and the extra step in the
recipe is termed a “normalization” step. The normalized
crosscorrelation will be insensitive to changes in the scal-
ing of the amplitudes of either input traces, as long as the
amplitude scaling factor is a positive number.

Semblance as a similarity measure. Another measure of
trace-to-trace similarity is semblance (Figure 12). Take a
minute to compare the operation in Figure 12 with the oper-
ation in Figure 11. Both compare trace 1 to trace 2 and both
have a step that produces a new, intermediate trace. In cross-
correlation, trace 1 and trace 2 were multiplied together. In
semblance, trace 1 and trace 2 are simply added to each other.
In addition to replacing a multiplication with a summation,
there is an additional difference. In the semblance calcula-
tion, the intermediate trace is squared before the summa-
tion step. As was the case with crosscorrelation, if the two
traces are identical, then their summation is large. However,
if the two traces are of opposite sign, then their summation
produces an intermediate trace with all zeros. Unlike cross-
correlation, the squaring operation in the semblance calcu-
lation ensures that the semblance is never negative.

There are two additional items to consider in under-
standing the semblance calculation. First, the semblance out-
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Figure 9.
Crosscorrelation:
pairwise multiplica-
tion of trace 1 and 2
produces an interme-
diate trace “Product”
that sums to a big
positive number.

Figure 10.
Crosscorrelation: this
pairwise multiplica-
tion of trace 1 and 2
produces an interme-
diate trace “Product”
that sums to a big
negative number.

Figure 11.
Crosscorrelation: this
pairwise multiplication
of trace 1 and 2 pro-
duces an intermediate
trace “Product” that
sums to a small positive
number.

Figure 12.
Semblance
between
traces 1 and
2 produces a
moderate,
positive
number.



put is generally normalized by dividing by
the summation of the squares of the indi-
vidual traces. In spite of this, mathematicians
inform us that the semblance remains sensi-
tive to changes in the overall amplitude scale
factor of the traces. Second, this semblance
definition is easily generalized for the case
of additional input traces. For 3D data with
a central trace and eight adjacent, surround-
ing traces, the first step in the semblance cal-
culation sums (stacks) all nine traces.

So, where are we? We now have a cou-
ple of methods that we can use in a com-
puter to create numerical scores which
measure the degree of similarity between
two traces. If we have many traces, the sem-
blance calculation simply adds them
together as the first step in the calculation.
By contrast, because crosscorrelation is
defined for only two traces, the inclusion
of more traces implies that the different
crosscorrelation values obtained between
pairs of traces must be combined.

Now we are getting somewhere. We
have a couple of tools, crosscorrelation and
semblance, to quantify trace similarity and
are now halfway to the end of the story.
With a crosscorrelation coefficient for every
data trace, we have replaced our finite-thickness slab of
seismic wiggle traces with a horizon of crosscorrelation coef-
ficients displayed at the X, Y locations of the original traces.
The crosscorrelation can be between seismic traces that
reside in the data or between the traces and a selected exter-
nal standard. Just as in classifying the objects in Figure 8,
we have the freedom to select internal similarity compar-
isons or comparisons to an external standard. The next sec-
tions review both approaches.

Internal similarity. We will first consider crosscorrelations
between traces that reside within the seismic data. This case
has two subdivisions. The first determines the similarity to
nearby traces. The second determines similarity to more
distant traces.

Similarity to immediate neighbor traces. Figure 13 shows
the lateral location of three traces, A, B, and C. We obtain
the normalized crosscorrelation coefficients between traces
A and B and also between traces A and C. These normal-
ized crosscorrelation coefficients are then combined (the
square root of the product) to provide a representative cross-
correlation between trace A and a pair of its neighbors. The
inventors termed this measure of similarity coherence. In
order to remove the effect of local dip, the crosscorrelations
are performed with a variety of relative time shifts between
A and C and A and B and the maximum value of the respec-
tive crosscorrelations is used in the recipe. With this modi-
fication the procedure can track changes in the dip. (This
modification is applicable if you had forgotten to flatten to
your horizon of interest before the coherence determination.)
Because this method uses a normalized crosscorrelation,
the crosscorrelation can range only between -1 and +1, and
is independent of the actual amplitude scaling of the trace.
(The squaring operation in the recipe converts negative
crosscorrelation coefficients to positive numbers.) Thus, this
coherence method is blind to amplitude scaling differences,
trace-to-trace. Of course, in comparison to trace A, if one
wiggle in trace B in the analysis slab interval has a change
in amplitude and another wiggle on the same trace does not,

then traces A and B have different shapes
and the crosscorrelation coefficient will also
change.

Dip determination. For this purpose, the
crosscorrelation calculates the similarity
along different dips in the data and selects
the dip that has the greatest similarity. From
the extracted dips, we can then calculate the
reflector curvature. For 3D data, the algo-
rithm supplies curvature in two perpen-
dicular directions to reveal a local bowl,
dome, saddle, plane, etc.

Semblance-based similarity. You may well
ask, when viewing Figure 13, “Why not
include more traces in the calculation?”
And, yes, that can be done. Figure 14 illus-
trates just such an increase in the number
of traces. It would be possible to obtain the
crosscorrelations between traces A and all
other illustrated traces, B through Y. There
are innumerable ways to combine these
crosscorrelation values. The values could
be averaged, or a distance-weighted aver-
age could be used. Or, the algorithm could
take the square root of the sum of the
squares. However, this is not common prac-
tice. Instead, it is customary to use sem-
blance, and not crosscorrelation, to reveal

the degree of trace-to-trace similarity. If signal-to-noise is a
problem, then increasing the number of input traces might
be the solution.

In contrast with the crosscorrelation-based similarity
measure, the semblance-based measure is sensitive to rela-
tive changes of the scale of the trace amplitudes in addition
to differences in the shapes of the collection of traces.

Dissimilarity measure. A variation of the semblance-based
algorithm determines how dissimilar the traces are by sub-
tracting each trace from the average of all traces. This recipe
produces what the mathematicians call the variance.
Appearances to the contrary, the variance does not provide
any new information because mathematicians inform us
that the variance is simply equal to one minus the semblance. 

Eigenstructure-based similarity. This is a doozy of a recipe.
All possible crosscorrelations between all traces provide the
only input to the method. To be explicit, following the label-
ing in Figure 14, we first crosscorrelate trace M with itself,
then M with L, then M with K, and so on. Then we cross-
correlate N with itself, N with F, etc. We end up with every
possible two-trace crosscorrelation. Proceeding through a
series of steps that almost belie belief, we obtain a single
number that is a measure of the similarity of all traces with
each other. So, what’s the good news about this? There is
theoretical evidence that the output number is more robust
against the presence of random noise in the input traces in
comparison to the multitrace, semblance-based measure. In
addition, the eigenstructure-based similarity value is inde-
pendent of the application of positive or negative amplitude
scale factors.

Unfortunately, we cannot think of a simple cartoon that
illustrates determination of the eigenvalue similarity from
the collection of the input crosscorrelations. However, the
next three illustrations might atone for that deficiency.
Consider the simplest case, two traces. The left side of Figure
15 shows a red trace and a blue trace. Visual inspection
indicates that the traces have a high degree of similarity. The
large value of their crosscorrelation (0.99) is noted. The right
side of the illustration shows a crossplot between the ampli-
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Figure 14. View of X, Y locations 
of 25 seismic traces.

Figure 13. View of X, Y locations 
of three seismic traces.



tudes of the red and the blue traces. If the traces were iden-
tical, then the amplitude values would be a straight line. The
traces are not exactly identical, so there is a slight scatter of
amplitude values from a straight line. Also shown in this
graph is a coordinate system rotated for maximum align-
ment of one of the two perpendicular axes with the trend
of points. The calculation of an “eigenvector” from the cross-
correlations provides just this rotation. The associated,
largest value of the eigenvalue is a measure of the scatter
of the points to this rotated coordinate system. This eigen-
value, divided by the sum of all output eigenvalues, gives
the eigenvalue similarity. The eigenvalue similarity in this
case is also large, 0.99.

Figure 16 has the same format as in the previous figure
but with a decreased similarity between the red and the blue
traces which produced increased scatter perpendicular to
the “longer” rotated coordinate. Notice that the eigenvalue
similarity has decreased.

Figure 17 shows an even more extreme case and an even
smaller value of the eigenvalue similarity.

With an increased number of traces, the story is the
same, simply more difficult to visualize. With nine traces,
for example, we would have a nine-dimensional coordinate
system replacing the two-dimensional coordinate systems
shown on the preceding series of figures. Imagine a nine-
dimensional coordinate system filled with points repre-
senting the amplitude values at a given time along each of
those nine traces. For example, if the points are scattered
about in that nine-dimensional super-volume, then their
eigenvalue-based similarity will be low. If they are along a
straight line in this nine-dimensional space, then the eigen-
value-based similarity will be large. With the additional
traces, we would have the same story as the illustrated two-
trace case, just a bit more difficult to visualize.

Nearby dissimilarity. Instead of highlighting trace-to-trace
similarity, we could have started with just the opposite goal,
that of highlighting trace-to-trace dissimilarity. Look again
at Figure 12, the figure that illustrates a recipe for empha-
sizing trace-to-trace similarity through semblance. Now
consider Figure 18. It is almost identical to Figure 12 with
one significant difference in the first step. In this case, one
trace is subtracted from the other. Then, their difference is
accentuated by squaring. The output is the sum of that
squared trace. Mathematicians term this a Sobel filter. The
output of this operation will depend upon scaling differ-
ences in the adjacent traces, in addition to waveform dif-
ferences.

Distant similarity. We have now considered many of the
similarity measures (and a dissimilarity measure) between
and among a nearby neighborhood of traces. Now we turn
to the similarity to other traces from the volume.

Known calibration. Imagine that we already have well con-
trol in the seismic volume and have found a horizon that
contains our desired pay. We know the horizon of this dis-
covery and the location of unsuccessful, dry wells in the
same horizon. We notice that the waveform at the discov-
ery horizon appears somewhat different from the wave-
form at our dry hole. Of course, we want to find more
discoveries. So, we can use crosscorrelation as our tool to
determine the similarity of all traces to the trace at the dis-
covery well. From that, we produce a correlation, i.e. “drill-
here,” map.

Unknown calibration. By contrast, assume that we do not
yet have a discovery well; we have not yet unlocked the key
to this region. We do observe that the waveform does change
laterally along our prospective horizon. We could use a sim-

ple amplitude map at that horizon, but it does not fully rep-
resent the lateral changes in the time-dependent waveform.
In the absence of a well, all is not lost, however. We can use
the data themselves to provide us with a collection of rep-
resentative waveforms (let’s say ten waveforms) at the
prospective horizon and then crosscorrelate each waveform
against our extracted slab of seismic data. Having arbitrar-
ily numbered each reference waveform (1-10), we can cre-
ate a map that shows, as a function of X, Y which particular
numbered waveform is most like the numbered, reference
waveform at all X, Y locations. How do we determine this
best-match waveform? We will use crosscorrelation, for
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Figure 15. Two almost identical traces and their amplitude crossplots.

Figure 16. Two somewhat identical traces and their amplitude crossplots.

Figure 17. Two dissimilar traces and their amplitude crossplots.

Figure 18. Sobel filter.
The sum of the trace
difference squared.



example, to score the competing reference waveforms
against each other. When we are done, instead of produc-
ing an X, Y map of the winning numbers, we can represent
each of the waveform numbers by a distinct color. This will
provide a visual display of the similarity of the traces in the
selected slab to this set of data-extracted, idealized traces.
If we are lucky, we may observe that this colored map might
reveal geologic shapes among the different colors.

External similarity. The previous section explained the use
of the data itself to create its own set of waveform standard.
By contrast, we could use an external standard, a “ruler,”
in our trace similarity calculation. Thinking back to the col-
lection of household items in Figure 8, remember that you
instantly named each item. Assigning the names of nail,
screw, and bolt was an illustration of the application of an
external similarity test.

At present, there are two popular sets of external, stan-
dard waveforms used as “rulers.” These standard wave-
forms are very similar because both are sinusoidal in nature.
The use of these sinusoidal waveforms is termed spectral
decomposition.

Tapered, windowed wavelets. Because the traces in our data
slab are oscillatory, a set of sinusoidal functions provides
an excellent candidate for our set of standard traces. We cre-
ate a series of sinusoidal functions at different frequencies,
and then determine the crosscorrelation coefficients between
these sinusoidal functions and the traces in the slab of seis-
mic data. The crosscorrelation coefficient between each stan-
dard trace and the seismic trace is in proportion to the
amount of that selected frequency that resides in each trace.
(This is something that M. Fourier determined quite a few
years ago.)

Why would we want to crosscorrelate against a series of
cosine waves? If the series of reflectors within our slab move
closer to each other, the reflectors start to look more like a high-
frequency sinusoid instead of a lower-frequency sinusoid.
Thus, the crosscorrelation coefficient will increase for the high-
frequency sinusoids and, relatively speaking, decrease for the
low-frequency sinusoids. From this we might be able to see
subtle thickness changes such as in Figure 4.

There is, however, one fly in our ointment. Our slab is
not infinitely thick. It is a finite-thickness slab. In fact, to
improve vertical resolution of our analysis, we use a thin
slab so we can determine the characteristics of a small num-
ber of interfaces or a thin formation. The short-length slab
traces will produce almost identical crosscorrelation values
when correlated with the collection of sinusoidal-frequency
standard traces of neighboring frequencies. To consider a
concrete case, pretend a trace from our seismic slab is a 
30-Hz sinusoidal function. Because the slab trace is truncated

in time, its crosscorrelations with the 27-, 28-, 29-, 30-, 31-,
32-, and 33-Hz sinusoidal-frequency standard traces produce
almost equivalent crosscorrelation coefficients. In fact, cross-
correlations with even low- and higher-frequency standard
traces reveals a smoothly varying, frequency-dependent
change in the values of the crosscorrelation coefficient. The
thinner the slab in time, the greater fuzz in our determina-
tion of the frequencies that reside in that slab. (Yes, we geo-
physicists have our own uncertainty principle.)
Mathematicians tell us that we can minimize that fuzziness
if we taper the sinusoidal standard traces. Figure 19 cartoons
the tapering. The trace on the left is a single frequency sinu-
soidal function. The middle trace is the tapering operator.
The zero–to-zero width of the taper is the time thickness of
our slab. (Note, we could, equivalently, taper the value of
the amplitudes toward the bottom and top of the slab of seis-
mic traces.)

The right trace is the resultant tapered wavelet. Figure
20 is a cartoon of three different windowed/tapered sinu-
soidal functions that we will use as our external standards.
It is these windowed/tapered traces that are crosscorre-
lated against the traces in the slab. As a result of these cross-
correlations, we obtain one set of crosscorrelation coefficients
for each sinusoidal frequency. As before, we can display these
crosscorrelation values in an X, Y sheet for our selected fre-
quency. Because of the large number of sinusoidal fre-
quencies we can select for the external standard, it is possible
to produce more crosscorrelation sheets than input time
samples from the original slab. Of course, this extra infor-
mation comes at a price. The output crosscorrelation sheets,
one frequency to the next, will be quite similar and, hence,
do not supply us with independent, new information.

As a review of your comprehension of these concepts,
we invite you to think through the following conclusion: the
unnormalized crosscorrelation of the slab traces with a very
low-frequency standard trace is, within a scale factor, the
numerical average of the amplitudes within the seismic
slab.

Wavelet-transform wavelets. Knowing that it is desirable
to use tapered wavelets, such as in Figure 20, other practi-
tioners choose to use the set of external-standard wavelets
that come from what mathematicians term the wavelet trans-
form method. Wavelet-transform wavelets are manufactured
in a fashion similar to the tapered sinusoids (Figure 19), with
one critical difference—the tapered window does not have
a constant length but, instead, the length depends upon the
sinusoidal frequency of Figure 19’s first trace. Through the
appropriate mathematics for the tapering function, each
series of wavelet-transform wavelets appears to be a time-
stretched version of each other. Figure 21 shows three such
wavelet-transform wavelets.
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Figure 19. Tapering a sinusoidal function. Figure 20. Tapered wavelets at three different
frequencies.

Figure 21. Wavelet transform wavelets.



Summary and conclusion. The transition from 2D to 3D seis-
mic data brings the challenge of 3D visualization. Because we
are investigating layered media, our geophysical community
has been able to respond with a series of trace-to-trace, hori-
zon-tracking, similarity measures. These similarity measures
quantify the degree to which a given trace looks like (or dif-
fers from) a second trace. For the most part, the similarity mea-

sure is a crosscorrelation coefficient, or a near relative of that
recipe. For an internally derived reference, the second trace
in the crosscorrelation can be a near-neighbor trace or a stan-
dard trace created from the data itself. For an externally derived
reference, the second trace can be created from sinusoidal
functions of a series of neighboring frequencies.

Through the use of these similarity measures, we con-
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vert a 3D slab into a 2D sheet that hopefully contains rele-
vant information from the 3D slab.

This review highlights the common elements of the dif-
ferent slab-based similarity analysis tools. Many algorithms
condense the seismic slab to a sheet of numbers, formed by
a weighted average of the trace amplitudes. In some cases,
an internal standard, such as a neighboring trace, determines
the weighting function. In other cases, sinusoidal functions
serve as the weighting function. This similarity of many of

the processes accounts for the approximate visual similar-
ity in the output of the application of some of these tools.

So, finally, we come to the bottom line: How do inter-
preters actually use these tools? Table 1, derived from exam-
ples in the upcoming book by Chopra and Marfurt, lists the
most common (at the moment) applications. TLE
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