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Seismic geomorphology of Palaeozoic collapse features 
in the Fort Worth Basin (USA)

E. C. SULLIVAN1, K. J. MARFURT1, C. BLUMENTRITT1, & M. AMMERMAN2

1AGL, University of Houston, TX, USA (e-mail: esulliva@mail.uh.edu) & 2Devon Energy

Abstract: Modern multi-trace geometric attributes produce three-dimensional volumes that can
facilitate the recognition of karst geomorphology by avoiding the need to pre-interpret irregular
horizons and by enhancing subseismic lateral variations in reflectivity. These geometric attributes
include the well-established coherence technology, coupled with recent developments in spectrally
limited estimates of volumetric curvature. Coherence measures lateral changes in waveform, and
as such, is often sensitive to joints, small faults, sinkholes and collapse features. The many com-
ponents of reflector curvature, including the most negative, most positive, Gaussian curvature and
related shape indices (e.g. valleys, saddles, domes), are complimentary to coherence measures.
Short wavelength estimates of curvature will illuminate small-scale lineaments while longer wave-
length estimates of curvature illuminate more subtle flexures and compaction features. We show
the results of applying a variety of multi-trace geometric attributes to a three-dimensional seismic
volume from the Fort Worth Basin, where a collapse system extends vertically some 800m from
the Ordovician Ellenburger carbonates through the dominantly siliciclastic Mississippian–
Pennsylvanian interval. The collapse features in our data set appear as rounded, sinkhole-like
appearances on time and horizon slices in the Pennsylvanian Marble Falls Limestones and the
Ellenburger horizon displays features that can be interpreted as cockpit karst, dolines and frying
pan valleys. Although a variety of palaeocave breccia facies in core and image logs indicate that
the Ellenburger surface has been karsted, these breccias are not confined to the mega collapse fea-
tures visible in seismic. The large (up to 700 m diameter) collapse chimneys can be shown in
multi-spectral curvature attributes to have elongate rhombohedral shapes associated with intersec-
tions of Pennsylvanian age, field-scale to basin-scale, basement lineaments and faults. Isochores
indicate greatest tectonic growth on faults from Mississippian until early Pennsylvanian, coinci-
dent with thickest fill of collapse features. Thus we interpret the origin of the chimneys to be pri-
marily tectonic. The multi-trace geometric attributes permit better imaging of the three-dimen-
sional shapes of the collapse features, provide better constraints on timing of their formation,
allow us to begin to separate karst processes from tectonic processes and provide a means of pre-
dicting most likely locations of fluid movement along faults.

Collapse chimneys, visible in the Palaeozoic section
of 3-D seismic from the northern Fort Worth Basin
(Fig. 1), extend vertically some 800 m from the
Ordovician Ellenburger Formation to the middle
Pennsylvanian Caddo Limestone (Figs 2 and 3).
Vertical collapse features in carbonates commonly
compartmentalize reservoirs (Kerans 1990; Bagdan
& Pemberton 2004), and in parts of the Fort Worth
Basin, they have persisted as topographic features
(Fig. 4), influencing the distribution and reservoir
behaviour of Pennsylvanian sandstone reservoirs
(Hardage et al. 1996a). Because collapse features
can result from combinations of processes related to
subaerial karst, subsurface cavern collapse, tectonic
movement and hydrothermal brecciation and disso-
lution (Berger & Davies 1999; McClay & Boora
2001; Loucks et al. 2004; Sagan & Hart 2004), it is
important to determine the relative contribution and
sequence of each process. Multi-trace geometric
attributes facilitate the recognition of collapse geo-
morphology and the processes of collapse formation
by eliminating the need to accurately pick irregular
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horizons and by enhancing subseismic lateral varia-
tion in reflectivity. The objectives of this paper are to
demonstrate the use of multi-trace seismic attributes
to image collapse chimneys and geomorphologic
surfaces, and to unravel the processes of formation
of the vertically extensive collapse features in the
Palaeozoic section of the northern Fort Worth Basin.
We begin with a brief overview of the geometric
attributes used in this paper, and the geologic setting
of the study area. We then examine the geomorphol-
ogy of the karst and collapse chimneys in the three-
dimensional (3D) survey area by integrating our new
attributes with conventional seismic displays.
Finally, we use these new images to support our
hypothesis that the formation of the collapse features
is controlled more by tectonics than by subaerial
karst or hydrothermal processes.

Multi-trace geometric attributes

Seismic attributes belong to three families: wave-
form, reflector shape, and amplitude (Marfurt 2006).



In this paper, we focus on waveform and reflector
shape. Multi-trace geometric attributes exploit the
mathematical relations between reflector events in
time and spatial domains. These attributes, which
include reflector curvature, coherence and reflector

rotation, provide improved technology for imaging
small-scale and subtle geologic features and for
tracking changes in these features through
time. Reflector curvature (Fig. 5) calculated from
discrete interpreted horizons is well correlated to
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Fig. 1. The Fort Worth Basin formed as a foredeep to the Ouachita fold and thrust belt. Collapse chimneys in the
Palaeozoic section are most pronounced in areas where erosion exposed the Ellenburger along peripheral bulges,
prior to the deposition of upper Mississippian deepwater shales. The basin underwent compression and wrench fault-
ing during the Pennsylvanian, followed by at least two periods of extension. Contours are structure on the
Ellenburger (after Hardage et al. 1996a).
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Fig. 2. North–south line AA� through the horizon extraction shown in Figure 3; (a) without and (b) with interpretation.
The cyan is the Pennsylvanian Caddo limestone; the green horizon is the Lower Ordovician Ellenburger limestone.
Orange faults penetrate the basement (white arrows); yellow faults are confined to strata above the basement.
Vertically extensive collapse features indicated by white arrows can be tracked from the basement to post Caddo
horizons, over some 800 m. Fault ‘F’ is well imaged in time slice and horizon extractions, and displays dip–slip and
possible strike–slip motion.
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fracture intensity (Lisle 1994; Roberts 2001). We
have expanded this curvature technology to volu-
metric applications and to prediction of azimuth of
open fractures (Blumentritt et al. 2006), and to
multi-spectral estimates of volumetric reflector 
curvature, which allow interpreters to view long
(800 m) and short (30 m) wavelength geologic fea-
tures (al-Dossary & Marfurt 2006). Coherence is a
well-established technology that measures lateral
changes in waveform and is sensitive to breaks in
reflectors that include joints systems, small/faults
and sinkholes. Components of reflector curvature,
including the most negative, most positive, Gaussian
curvature and related shape indices, are complimen-
tary to coherence measures. Reflector rotation and
combinations of coherence, curvature, dip and
azimuth, can be used to show subtle components of
wrenching along faults, which may localize fluid
flow.

Geologic setting

The Fort Worth Basin developed during the
Mississippian as a foreland basin westward of the
advancing Ouachita fold and thrust belt, which is

associated with oblique convergence of the
Laurentian and South American plates (Walper
1982). The shallow water carbonates of the lower
Ordovician Ellenburger Group were regionally
exposed and karsted prior to the deposition of 
upper Ordovician Viola limestones (Kerans 1990;
Franseen et al. 2003), and were subjected to a sec-
ond generation of erosion and deep karstification
during the Mississippian (Grayson & Merrill 1991;
Montgomery et al. 2005) along the peripheral bulge
of the developing Fort Worth Basin. Subsequent
subsidence placed upper Mississippian organic-
rich, deep-water shales in direct contact with the
karsted Ellenburger (Fig. 6) over large areas of the
Basin (Bowker 2003). The shallow water siliciclas-
tics and carbonates of the Marble Falls and Atoka
record accommodation-limited basin filling during
the early to middle Pennsylvanian (Walper 1982;
Grayson & Merrill 1991; Hardage et al. 1996b).

Continental collision and continued westward
advance of the Ouachita fold-trust belt resulted in
late Pennsylvania–early Permian structural inversion
and erosion of part of the Pennsylvanian basin fill
(Ball & Perry 1996; Pollastro et al. 2003). Structures
formed during this time indicate both compression
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Fig. 3. Coherence extraction along the Ellenburger horizon. Darker shades indicate less coherent or broken
reflectors. The dark elongate and circular features are collapse chimneys, many of which extend vertically from the
Precambrian crystalline basement to the Pennsylvanian interval. These collapse features tend to be aligned in conju-
gate NW–SE and SW–NE trends. A–A� is the seismic cross-section shown in Figure 2; line B–B� is shown
in Figure 14. A regional wrench fault (W) is visible in the southeast corner, and the east–west lineament in the 

centre is the fault ‘F’ in Figure 2. Ellenburger core from Well X contains a variety of karst fabrics.
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Fig. 4. Isochores between (a) the Ellenburger and Marble Falls horizons and (b) Marble Falls and Atoka horizons.
Hot colours indicate thins, cool colours indicate thicker time intervals. Arrows show collapse features. Note
differential thickness reflecting fault activation, and continued chimney collapse after Marble Falls deposition. 
Line AA� corresponds to the vertical section in Figure 2 (after Sullivan et al. 2006).
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and basin scale wrenching (Montgomery et al. 2005).
The Palaeozoic rocks of the Ft Worth Basin were
overprinted by late extensional tectonics related to
the Mesozoic opening of the Gulf of Mexico and to
Miocene uplift and formation of the down-to-the
coast Balcones and Mexia/Talco fault systems
(Hoskins 1982). Evidence for hydrothermal and basi-
nal scale fluid flow associated with these tectonic
events is recorded in cements in cores and outcrops

(Kupecz & Land 1991; Montgomery et al. 2005).
Ellenburger carbonate breccias exposed at the south-
ern margin of the Fort Worth Basin contain baroque
dolomite precipitated from high-temperature fluids
during the Pennsylvanian and from warm-water 
fluids during the Cretaceous (Loucks et al. 2004).

The geomorphology of karst terrains may contain
distinct features such as sinkholes, cockpit landforms
(Fig. 7) and round-ended ‘frying pan’ valleys
(Cansler & Carr 2001). Cave and potential collapse
systems most commonly develop at or above water
tables, generally within the upper 100 m of an
exposed carbonate surface (Kerans 1990). Most of
the buried Ellenburger cave systems of West Texas
collapsed prior to the end of the Ordovician, as evi-
denced by the age of their fill. The associated cave fill
deposits contain Ellenburger breccias and stratified
deposits of transgressive upper Ordovician sand-
stones that regionally overlie the Ellenburger in West
Texas (Fig. 8). Irregular Ellenburger topography is
often completely filled by the first 20–50 m of trans-
gressive deposition (Kerans 1990). In contrast, the
collapse chimneys in the Fort Worth Basin persist
through about 800 m of section (Hardage et al.
1996a, and this study).

The collapse chimneys in the Fort Worth Basin
may record a complex history, similar to the history
interpreted by Lucia (1996) for outcrops at the
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Fig. 5. Curvature of a two dimensional surface.
Curvature (K ) is the inverse of the radius (R) of a circle
that is tangent to the surface at any point. By conven-
tion, positive curvature is convex and negative
curvature is concave; flat surfaces and uniformly 
dipping surfaces have zero curvature (after Roberts
2001; Blumentritt et al. 2006).

Fig. 6. Schematic west–east cross section across the northern Fort Worth Basin, with relation of a migrating
peripheral bulge to erosion of the Ordovician carbonates. Mississippian erosion along the bulge stripped the upper
Ordovician Viola and exposed the Ellenburger to a second time of subaerial karst processes. Subsequent subsidence
and deposition placed upper Mississippian deepwater shales in direct contact with the karsted Ellenburger over large
parts of the basin (after Pollastro et al. 2003).
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McKelligon Sag outcrop, near El Paso, Texas (Fig. 9).
These outcrops record a vertical collapse system of
760 m that includes collapse of individual
Ordovician, Silurian and Devonian cave systems
over a period of 100 my. Here again, once collapse
ended, the surface topography quickly healed with
about 16 m of additional sediment deposition.
Outcrops of Ellenburger limestones immediately
south of the Fort Worth Basin in the Llano uplift
also record coalesced palaeocave systems (Loucks
et al. 2004). These collapse systems contain
Devonian and Mississippian conodonts but do not

contain evidence of extensive vertical chimneys.
Unlike the McKelligon outcrops, carbonates 
overlying the Ellenburger in the Llano uplift (the
Marble Falls) do not display pronounced
palaeokarst surfaces or vertically extensive collapse
chimneys (Kier 1980; Loucks et al. 2004).

Methodology

The conventional P-wave seismic surveys used in
this study were acquired and processed by a petro-
leum company through a standard commercial
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Fig. 7. Mature ‘cockpit’ karst geomorphology results from a combination of dissolution and preburial collapse
of cave systems. In this process, well cemented, low porosity inter-cave areas persist as rounded knolls and hills
(after Cansler & Carr 2001).

Fig. 8. Karst features associated with subaerial weathering and erosion of West Texas Ellenburger carbonates. These
palaeocave systems most commonly fill with collapse breccias and sediments associated with subsequent marine
transgressions (after Kerans 1990).



workflow. We applied edge-preserving principal
component filtering (al Dossary et al. 2002; al
Dossary & Marfurt 2003) to the post stack data
volume (Fig. 2). This filtering, which suppresses
random noise and sharpens event terminations, has
minimal impact on waveform and amplitude. Next
we generated a coherence volume and a suite of
geometric seismic attribute volumes, along with
more conventional single trace attributes. For these
multi-trace coherence and dip/azimuth attribute 
volumes, we used nine overlapping 9-traces, and a
vertical analysis window of �10 ms. To calculate
the multispectral curvature and rotation volumes,
we used circular analysis windows between 13
traces (for short wavelength calculations) and 78
traces (for long wavelength calculations). We found
the long wavelength most positive and most 
negative curvatures, and the principal component
estimate of coherence to be especially useful in our
interpretation of faults fractures and karst features.

Data analysis

In Figure 2 we observe that collapse features extend
from within the Precambrian metamorphic base-
ment (yellow) through the Ordovician Ellenburger
(green), early Pennsylvanian Marble Falls (magenta)
and middle Pennsylvanian Caddo limestone (cyan).
Productive sandstones within the Atoka and lower

Caddo are localized and compartmentalized by
these features. We indicate faults that penetrate the
deeper part of the section in orange and those that
are limited to the shallower section in yellow, and
note that most of the faulting does not continue
higher than the top of the Caddo. The magenta fault
(F) is a persistent feature that displays minor dip
slip and possibly strike–slip motion.

The geomorphology of the Ellenburger surface,
displayed in Figure 3 as a horizon extraction through
the coherence volume, is dominated by elongate and
circular depressions, but it is not obvious which fea-
tures are due to subaerial karst processes and which
ones are caused by tectonic collapse. Curvilinear
features in the northeast quadrant may be remnants
of palaeodrainage. The collapse features tend to be
aligned in conjugate NW–SE and SW–NE trends. A
regional wrench fault crosses the southeast corner of
the map, and the east–west magenta lineament is the
fault ‘F’ in Figure 2.

The time isochore map between the Ellenburger
and Marble Falls (Fig. 4a) indicates a gentle increase
in thickness to the north and pronounced local thick-
ening in some of the collapse features. In contrast,
the time isochore for the Marble Falls–Atoka inter-
val (Fig. 4b) shows dramatic thickening to the north
of the magenta fault and along the fault in the south-
east corner of the map, and thickening along NW
and SE lineaments, indicating increased tectonic
activity and growth of faults.
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Fig. 9. Diagrammatic view of the complex lower Palaeozoic collapse structure at McKelligon Sag, near El Paso in
West Texas. Fossils and field evidence indicate this feature formed from the collapse of individual Ordovician,
Silurian and Devonian cave systems over some 100 million years (after Hardage et al. 1996, based on Lucia 1996).
Kupecz and Land (1991) state that isotopes in the associated baroque dolomite cements indicate a minor
Pennsylvanian hydrothermal overprint.
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The mean curvature attribute, extracted along the
top of the Caddo Limestone (Fig. 10) presents a
detailed view of a surface affected by minor erosion
and by compaction. The most striking feature is the
hummocky topography related to compaction over
the collapse features; only a few sinkhole shapes
appear to actually break the Caddo surface (white
arrow). Post Caddo movement along the east–west
fault is obvious, overprinted by even later conjugate
NW–SE lineaments. A very linear channel incises
the Caddo surface in the northwest quadrant, and
highly sinuous channels are present in the south-
east. The wrinkled surface appearance in the south-
east is due to compaction over slump features in the
underlying Atoka siliciclastics.

A time slice through the same Mean Curvature
attribute volume near the top of the Ellenburger
shows the striking vertical extent and shape reten-
tion of the three collapse chimneys (white arrow).
Features in the extreme western and southern part
of the survey resemble cockpit topography of
mature karst landscape. Although the composite
feature at C is similar to a ‘frying pan’ karst valley,
these features align, in fact, with a lineament that
cuts the Caddo surface.

While coherence horizon extractions are particu-
larly valuable for mapping smooth stratigraphic fea-
tures, we find time slices often provide a less biased
view of irregular or rugose surfaces. A time slice
through the coherence volume near the top of the
Marble Falls (Fig. 11) shows a complex system of
lineaments and collapse features. There is no record
of extensive subaerial karst of the Marble Falls,
either in outcrop or subsurface, and many of the col-
lapse chimneys align with those in the Ellenburger
in Figure 10(b). A time slice at the same level
through a multi-attribute volume that combines
coherence, dip and azimuth provides insight into
rotation along lineaments and faults that might be
conduits for fluids. Here we see evidence of north
dip along the central fault, possible rotation along
the active wrench fault in the southeast, and two
directions (NW–SE and NE–SW) of long wave-
length, subtle folds.

We use the criteria of Loucks et al. (2004) to
identify palaeocave facies (Fig. 12) in core and
image log from an Ellenburger well, located on the
seismic line in Figure 13. Note that the well is not
located in one of the large collapse features. The
image log (Fig. 15) reveals over 50 m of fabric and
textures indicative of palaeocave facies related to
subaerial karst processes, and reveals no indications
of pervasive hydrothermal overprint.

To better understand the collapse patterns and
their expression in the curvature attributes, we dis-
play a folded multi-attribute display (Fig. 16)
through the filtered vertical seismic cube correspon-
ding to line AA� in Figure 12, coupled with a time

slice at t � 1.2 s, through the most negative (Fig. 16a)
and most positive curvature (Fig. 16b) attribute vol-
umes. It is important to remember that while the value
of the most negative curvature is always less than the
value of the (orthogonal) most positive curvature at
any analysis point, both attributes can have negative
values (describing a bowl shape) and both attributes
can have positive values (describing a dome).
Careful examination of Figure 16 confirms this rela-
tion. Features that are domes will have a positive
value of negative curvature and will show up as red
in Figure 16(a). Collapse features have a negative
value of positive curvature and show up as green in
Figure 16(b). We note in Figure 16 that our collapse
features are often linked together, suggestive of
cockpit karst and karst collapse features described
in Figures 7 and 8. While we expect there is a
subaerial karst component to the polygonal 
features observed in the seismic data, some of the
collapse features extend into the Precambrian meta-
morphic basement, where karst processes cannot
operate.

Finally, in Figure 17, we compare the most nega-
tive curvature time slices for the Caddo, Marble
Falls, Ellenburger and Basement. We clearly image
the central fault and a complex system of NW–SE
and NE–SW conjugate faults and joints. Many of
the collapse features have elongate rhombohedral
shapes, some of which are associated with intersec-
tions of lineaments that cut the Pennsylvanian inter-
val. Lineaments in curvature volumes are amenable
to quantitative analysis, and we note a marked
change in the distribution of these lineaments with
age, which we show as rose diagrams. While the
collapse features are pronounced from basement to
just below the Caddo horizon, the tectonic stresses
have changed direction over geologic time.

Discussion

The horizontal expression of the vertical collapse
features in the Fort Worth data is readily seen on
conventional seismic and on isochore maps (Fig. 4),
but the relation to faulting is more clearly presented
in time slices and horizon extractions through
coherence and curvature attribute volumes. We note
that the collapse features are intense in the Marble
Falls and Ellenburger intervals and cut into the
Precambrian crystalline basement in some areas,
but are greatly subdued at the Caddo Limestone
level. The Caddo horizon (Fig. 10a) shows few
active collapse features and only minor erosive
features, implying that the hummocky Caddo
topography is due to compaction over the collapse
features, or due to dissolution from below, rather
than to top-down, subaerial karst of the Caddo lime-
stone. Isochrons between the Ellenburger and
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Fig. 10. Mean curvature extracted along the Caddo Horizon (a), and on a time slice (b) at 1.180 s, near the top
of the Ellenburger. Note persistence of collapse chimneys (black arrows) from the Ellenburger to the middle
Pennsylvanian Caddo. The hummocky geomorphology (H) of the Caddo is due to compaction over these collapse
features. Features in the western part of the Ellenburger time slice resemble cockpit topography of mature karst
landscape. The arrow at C indicates a composite feature similar to a ‘frying pan’ karst valley. Cross Section A–A� is
shown in Figure 2; cross-section B–B� is shown in Figure 14. A section of the resistivity-based image log from the
Ellenburger at Well X (black dot) is shown in Figure 15.
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Fig. 11. Time slice through the coherence volume at 1.1 s, near the top of the Marble Falls, using a �10 ms,
nine-trace analysis window. Arrows indicate collapse features, organized along NW–SE and SW–NE trends.
The Magenta colour is the top of Marble Falls horizon, red is the top of the underlying Mississippian shale. 
Note the east–west lineament in the centre of figure, marking a down-to-the-north fault (F) and lineaments in 
the SE that mark the regional wrench fault (W). Line A–A� corresponds to the vertical section in Figure 2.
Dark areas indicate lack of coherence.

Color

Color

Fig. 12. Multi-attribute time slice combining coherence, dip and azimuth at 1.0 s, near the top of the Marble Falls. This
combination of attributes clearly delineates the low coherence of the collapse features in the SW, the North dip along
the fault crossing the centre of view, and broad wavelength folds and compaction features that have southeast and
southwest dip. Cross section A–A� is shown in Figure 2.
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Fig. 13. Textures, sediments and cave facies associated with collapse and fill of palaeocave systems (after Loucks
et al. 2004). Examples of these cave facies are present in core and image log (Fig. 15) from well ‘X’ shown in
Figure 14.

Color

Fig. 14. East–West line B–B� through the time slice shown in Figure 10(b). Core and image logs (Fig. 15) from the
Ellenburger interval of well ‘X’ display over 50 m of breccias that we interpret as palaeocave facies.
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Fig. 15. Image log from the upper part of the Ellenburger interval in Well X, with rotated and rounded clasts (a) in a
polymictic carbonate breccia, and (b) stratified sediment infill. We interpret these breccias, which extend over about
50 m, to be palaeocave deposits.

Color

Marble Falls (Fig. 4a) and between the Marble Falls
and Atoka (Fig. 4b) show greatest development of
collapse features and fault growth between deposi-
tion of the Marble Falls and Atoka, although the
wrench fault continued to be active until early
Caddo deposition.

Inspection of other 3D surveys from the Fort
Worth Basin indicates that regionally, collapse
chimneys are larger and more common where the
Ellenburger subcrops below the Mississippian than
where it subcrops below the Upper Ordovician
Viola Limestone. The Mississippian erosion of the
Viola and Ellenburger is coincident with the forma-
tion of a foreland peripheral bulge, prior to the dep-
osition of Mississippian marine shales. Textures and
fabrics diagnostic of palaeocave facies are present
in Ellenburger cores within the 3D survey, but the 
age of the karst is unknown at this time. The large
(up to 700 m horizontal and 800 m vertical) collapse
structures we observe do not appear to be com-
pound coalescing cave systems that result from

multiple subaerial karst episodes. Outcrop data
indicate no prolonged subaerial exposure on the
Marble Falls, and regional seismic data show no
large-scale karst features on the Caddo limestone.

The role of hydrothermal brecciation and dissolu-
tion in the formation of the collapse chimneys is
unquantified. Ellenburger breccias exposed at the
southern margin of the basin contain baroque
dolomites precipitated by high-temperature fluids
during the Pennsylvanian and by warm-water fluids
during the Cretaceous (Kupecz & Land 1991;
Loucks et al. 2004). Native copper, dolomite and
calcite are present in hairline fractures in cores of
subsurface Mississippian shales but have not been
dated (Montgomery et al. 2005). No large-scale
hydrothermal fabrics have yet been reported from
cores, and hydrothermal minerals are known only
from fracture filling cements.

The alignment of Ellenburger collapse features
with post-Caddo lineaments and joints, as revealed
by our multi-trace attributes, suggests a relatively
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Fig. 16. Fold away multi-attribute images along line A–A� shown in Figure 12. Seismic data is displayed on the
vertical face. Long wavelength (a) most negative curvature and (b) most positive curvature are shown on the time
slices at 1.2 s. Positive values (red) on the most negative curvature slice correspond to domes, while negative values
(green) on the most positive curvature slice correspond to bowl shapes. The red horizon present in map view is the
Mississippian shale. The white arrows mark places where the collapse extends through the non-carbonate,
Precambrian crystalline basement (yellow). We interpret these collapse features to be tectonically controlled,
linked by a complex system of faults and joints (after Sullivan et al. 2006).
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late reactivation of these features. Current maximum
horizontal stress in the subsurface Mississippian
strata near the study area is N40E (Siebrits et al.
2000). Within the study area, open joint systems in
surface outcrops of Upper Pennsylvanian rocks 
are dominated by NNE and NNW sets, which
Hoskins (1982) interprets as related to extension
along the trans Texas Miocene-age, down-to-the-
coast, Balcones fault system (although we speculate
there is Mesozoic extension as well). Fractures

formed or re-opened during these extensional
events may have allowed hot or warm burial fluids
to migrate along the collapse chimneys.

Conclusions

Multitrace geometric attributes provide improved
imaging of the seismic geomorphology of collapse
chimneys in Palaeozoic strata of the Ft Worth Basin,
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Color
Fig. 17. Slices through the Most Negative Curvature volume at (a) near the top of the Caddo limestone, (b) within
the upper Marble Falls limestone, (c) within the upper Ellenburger limestone, and (d) within the upper part of the
Precambrian metamorphic basement. We used a long wavelength calculation with an analysis window of �10 ms
and 75 traces. The colour bar is identical to that used in Figure 16. Domes are red. Bowls and valleys are green.
Time slices from the Marble Falls and Ellenburger show the formation of the collapse chimneys at the junction of
intersecting lineaments. Lineament azimuths change between the Ellenburger and Caddo levels.



through better horizontal detection of subtle features
and by eliminating the need to prepick irregular and
rugose surfaces that are prone to operator error.
Coherence based attributes detect lateral disconti-
nuities down to one/tenth of a wavelength, and
spectral curvature attributes permit separate analy-
sis of short (30 m) to long wavelength (300 m) 
geomorphologic features. The combination of volu-
metric rotation attributes and coherence, curvature,
and dip azimuth through the use of hue, light, and
saturation highlights changes in dip along subtle
faults and lineaments. This detection of stratal rota-
tion along faults, combined with estimations of
temporal change in stress/strain regime through
attribute-based lineament analysis, hold the poten-
tial to predict probability of fluid migration path-
ways. The presence of subaerial karst in the
Ellenburger is suggested by seismic geomorphology
and supported by features in core and resistivity-
based image logs of the upper Ellenburger over at
least 50 m. However, we conclude that the largest col-
lapse features are tectonically controlled for the fol-
lowing reasons: (1) many of the chimneys coincide
with deep basement faults and with Pennsylvanian
and younger lineaments; (2) no regional unconformi-
ty is associated with the observed collapse features in
the lower Pennsylvanian Marble Falls limestone; and
(3) horizon slices on the Middle Pennsylvanian
Caddo Limestone lack exposure features of signifi-
cant magnitude to produce top-down karst through
800 m of mostly siliciclastic section. Finally, the
geometries of the collapse features suggest that they
may be small tectonic pull-apart features at inter-
sections of regional fault and fracture systems,
perhaps similar to restraining stepovers described
by McClay & Borora (2001).

The application of our new seismic attributes to
3D seismic volumes allows detection of normally
subseismic features and demonstrates great poten-
tial for determining timing and nature of features
that may be related to karst, tectonic or hydro-
thermal collapse and for improved mapping of
reservoir bodies, permeability fairways and various
surfaces associated with weathered and fractured
carbonates.

Funding for this research was provided through the State
of Texas Advanced Technology Project 003652-0321-
2003 and the sponsors of the Allied Geophysical
Laboratories, University of Houston. We thank Devon
Energy for use of their data.
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