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ABSTRACT

Recently developed seismic attributes such as volumetric
curvature and amplitude gradients enhance our ability to de-
tect lineaments. However, because these attributes are based
on derivatives of either dip and azimuth or the seismic data
themselves, they can also enhance high-frequency noise. Re-
cently published structure-oriented filtering algorithms show
that noise in seismic data can be removed along reflectors
while preserving major structural and stratigraphic disconti-
nuities. In one implementation, the smoothing process tries to
select the most homogenous window from a suite of candi-
date windows containing the analysis point. A second imple-
mentation damps the smoothing operation if a discontinuity
is detected. Unfortunately, neither of these algorithms pre-
serves thin or small lineaments that are only one voxel in
width. To overcome this defect, we evaluate a suite of nonlin-
ear feature-preserving filters developed in the image-pro-
cessing and synthetic aperture radar �SAR� world and apply
them to both synthetic and real 3D dip-and-azimuth volumes
of fractured geology from the Forth Worth Basin, USA. We
find that the multistage, median-based, modified trimmed-
mean algorithm preserves narrow geologically significant
features of interest, while suppressing random noise and ac-
quisition footprint.

INTRODUCTION

Lineaments are found in nearly every reservoir, rock type, and
epth. Petroleum explorationists relate these lineaments to fractures
n order to understand their reservoirs. Fractures can advance or
inder our efforts in producing a reservoir, and can be found in
ource rocks, reservoir rocks, and cap rocks. Locating these frac-
ures and identifying their orientations can help explorationists en-
ance production of hydrocarbons or avoid production of water.
eometric attributes are particularly effective in delineating linea-
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ents that may be related to fracture zones or subseismic faults �Al-
ossary and Marfurt, 2006; Blumentritt et al., 2006; Sullivan et al.,
006�. On seismic time slices, lineaments are often seen as small and
hin linear features. Possible causes for the seismic contrast that
auses fractures to be visible include gas charge, porosity preserva-
ion, stress release, diagenetic alteration, and crack fill.

Seismic attributes such as coherence �e.g., Bahorich and Farmer,
995�, reflector dip �Dalley et al., 1989�, amplitude gradients �Luo et
l., 1996�, and curvature �Al-Dossary and Marfurt, 2006� can all pro-
ide images of narrow fractures and other lineaments. Skirius et al.
1999� uses seismic coherence in carbonates in North America and
he Arabian Gulf, Luo et al. �2003� uses amplitude gradients on car-
onates from Saudi Arabia to delineate faults and other lineaments.
lthough coherence can often detect lineaments, reflector curvature

s more directly linked to fracture distribution �Lisle, 1994; Roberts,
001; Bergbauer et al., 2003�.

Al-Dossary and Marfurt �2006� implemented multiscale volume-
ased curvature computations and found the most positive and nega-
ive curvatures, kpos and kneg, to be the most useful for delineating
aults, lineaments, flexures, and folds. Blumentritt et al. �2006� used
olumetric curvature attributes to determine the stress regime and
he most likely direction of open fractures in a case study applied to
est Texas carbonates.
All of these attributes can be contaminated by seismic noise.

oise filtering can generally enhance the behavior of coherence, am-
litude gradients, curvature, and other edge-detection algorithms
pplied to seismic data. The quality of such edge detectors and the
eliability of the interpretation are directly related to the effective-
ess of the noise reduction filters applied prior to the calculation. The
urpose of this paper is to improve the appearance of the short-wave-
ength estimates of reflector curvature by improving the signal-to-
oise ratio while maintaining the narrow, short-wavelength geologic
eatures of interest.

Historically, linear mean and nonlinear median filters have been
idely used to improve the interpretability of the seismic data. Un-

ortunately, the mean filter can severely blur coherence and other
dge sensitive attributes. The edge-preserving and impulse-remov-
ng properties are the most desirable features of the median filter

ay 20, 2006; published online November 27, 2006.
nd Research Building 1, Cullen Road Entrance 14, Houston, Texas 77204.
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P2 Al-Dossary and Marfurt
Schulze and Pearce, 1991�.Although median and related alpha-trim
ean filters can preserve edges by separating fault blocks and strati-

raphic features that are several traces in width, they will, in general,
bliterate narrow curvilinear features associated with joints and
ractures that are only a single trace wide.

In SAR applications, simple mean and median filters have been
upplanted by more advanced Lee and Frost filters �Frost et al.,
982; Lee, 1986�. The more recently published speckle-reducing an-
sotropic-diffusion filters �Yu and Acton, 2002� also are effective in
educing speckle noise. Although these filters were developed to
mooth images with speckle noise, some of them have been modi-
ed to smooth images with additive noise. Others have been devel-
ped to take care of both kinds of noise.

Luo et al. �2002� generated an edge-preserving smoothing �EPS�
lgorithm based on Kuwahara et al.’s �1976� multiwindow analysis
echnique. A good review of the Kuwahara and several of the other
lters discussed in this paper can be found in Astola and Kuosmanen
1997�. EPS attempts to resolve the conflict between noise reduction
nd edge degradation via a simple modification of the running-aver-
ge smoothing method. In principle, EPS looks for the most homo-
eneous window around each sample in an input data set and assigns
he average value of the selected window to that sample �Luo et al.,
002�. EPS has been successfully applied to different data sets from
audiArabia and other parts of the world. However, Luo et al. �2002�
oted that EPS is inadequate in preserving small features that are less
han three voxels wide, and stated that genuine geologic features
e.g., channels� would be suppressed if their width were smaller than
he window size. If such small features are the desired output after
unning edge-detection, they recommend using an EPS window that
s smaller than the characteristic width of the expected features, or if
he features of interest are too small, simply dropping EPS from the
rocessing sequence. Marfurt �2006� generalizes Luo et al.’s �2002�
PS algorithm to include a multiwindow dip search, followed by a
rincipal component filter in the most coherent window. Principal
omponent filtering does an excellent job in preserving one-trace
ide lineaments in amplitude, but cannot be generalized readily to

nhance lineaments in dip, azimuth, or curvature attributes.

N

Dip (º)

2

0

-2

5 km

igure 1. A time slice at t = 0.8 s through a north-south dip volume
rom a survey in the Fort Worth Basin. Dotted arrows indicate a
road east-west strike-slip fault. Solid black arrows indicate thinner
orthwest-southeast lineaments. White arrows indicate a northeast-
outhwest channel. Solid rectangles indicate two older, smaller sur-
eys, incorporated into a larger, merged survey. All three surveys
ere reprocessed as a unit, so data quality differences result from ac-
uisition, rather than processing. �Data courtesy of Devon Energy�
Hoecker and Fehmers �2002� introduced a fourth means of ran-
om noise suppression based on the gradient structure tensor �GST�
iscussed by Bakker et al. �1999�. They begin by estimating the re-
ector dip and azimuth from the GST eigenvectors. If the coherence
or other measure of similarity� is high, they apply a mean filter to the
ata along the reflector dip and azimuth. If the reflector coherence is
ow, they apply proportionately less smoothing, with no smoothing
pplied for large discontinuities. The smoothing and coherence cal-
ulation is applied recursively along the reflector dip and azimuth,
hereby simulating an annealing process that can be represented by
n anisotropic diffusion equation. We have found the anisotropic dif-
usion algorithm to be quite robust in suppressing random noise
hile preserving faults, but it exhibits the same limitations as the
rst three methods when applied to lineaments only one trace in
idth.
Our work differs from the previous literature in two ways. First,

ur major focus will be on preserving small lineaments rather than
arge discontinuities. Second, we will apply lineament-preserving
moothing initially to volumetric components of the reflector dip
ector, rather than to the amplitude. Improvements in our vector dip
stimate will not only improve our estimates of reflector curvature
Al-Dossary and Marfurt, 2006� but also subsequent computation of
rincipal component filtering, coherent amplitude gradients, and co-
erence �Marfurt, 2006�. With this objective in mind, we have evalu-
ted a wide range of current techniques used in the image processing
nd synthetic aperture radar �SAR� world and adapted those filters
hat can reduce noise, preserve edges, and preserve thin lineaments
ften seen on seismic data.

We begin the next section with a summary of alternative filtering
echniques that have been used to smooth seismic data before apply-
ng edge detection or coherence computations. Next, we describe
ome of the more relevant image processing and SAR algorithms.
inally, we apply the three most effective algorithms — the aniso-

ropic diffusion, lower-upper-middle median �LUM�, and the multi-
tage median modified-trimmed-mean �MSMTM� filters — to both
synthetic example and a real survey over a fractured karst terrain

rom the Fort Worth Basin, U.S.A.

REVIEW OF SMOOTHING FILTERS

he mean filter

The mean filter is the simplest and most familiar random-noise-
uppression filter. The mean filter is a low-pass filter, which is typi-
ally implemented as a running window that outputs the average of
ll the samples that fall within an analysis window at its center. The
indow size is usually an odd number, such as 3�3 or 5�5, and
ay be either rectangular or elliptical. The definition of the mean fil-

er is

dmean =
1

J
�
j=1

J

dj , �1�

here d denotes the jth of J traces falling within the analysis window
t time t.

In Figure 1, we show a time slice at 0.8 s through the north-south
omponent of the vector-dip volume calculated using the technique
escribed by Marfurt �2006� over a survey from the Fort Worth Ba-
in, Texas. We note an east-west strike slip fault and a suite of anti-
hetic northwest-southeast narrow lineaments, as well as a northeast-
outhwest trending channel that was probably also controlled by a
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Lineament-preserving filtering P3
ault or fracture. Two small, previously acquired surveys were
erged into a newer survey with a more robust acquisition program.
e applied four passes of a running �3�3� window mean filter in an

ttempt to improve the signal-to-noise ratio �Figure 2�. Although
ignificantly improving the geologically interesting long-wave-
ength characteristics of the data, the short-wavelength fracture pat-
erns are smeared, making them difficult to see. In an earlier paper
Al-Dossary and Marfurt; 2006�, we discuss the value of multispec-
ral estimates of reflector curvature and find these long-wavelength
stimates to be especially revealing of the underlying geology in the
ort Worth Basin. Our goal in this paper is to improve the appearance
f the short-wavelength estimates of reflector curvature through
onlinear noise suppression.

To better illustrate our evaluation of alternative-filtering schemes,
e extract a small part of the northwest corner of Figure 1 and redis-
lay it as Figure 3a. Then we generate an idealized synthetic in Fig-
re 3b, where we represent the east-west strike-slip fault as three
races wide, the narrow northwest-southeast lineaments as either one
r two traces wide, and a meandering northeast-southwest channel
s one trace wide. In Figure 3c, we show the same synthetic contami-
ated with three different noise patterns.

In Figure 4a, we show the effect of applying a 3�3 running aver-
ge mean filter to the image shown in Figure 3c. The overall signal-
o-noise ratio is improved, but the fault edge is blurred and the frac-
ures diminished.

he median and �-trimmed filters
The median filter is one of the most widely used nonlinear tech-

iques in signal and image processing �Schulze and Pearce, 1991�.
n the seismic world, the median filter is routinely used in velocity
ltering of VSP data to distinguish between downgoing and upgoing
vents using the differences in their apparent velocities. The median
lter works by replacing each sample in a window of a seismic trace
y the median of the samples falling within the analysis window. The
indow size is typically an odd number �e.g., 3�3 or 5�5�. One
ay to calculate the median is simply to order all of the J samples in

he analysis window using an ordering index k:

dj�1� � dj�2� � ¯ � dj�k� � dj�k+1� ¯ � dj�J�. �2�

he median is then given by

Dip (º)

2

0

-2

N

5 km

igure 2. The result of applying four passes of 3�3 running-win-
ow mean filter on the data shown in Figure 1. Note that although a
ood deal of “random noise” has been rejected, the northwest-south-
ast lineaments and northeast-southwest channel are blurred.
dmedian = dj�k = �J + 1�/2�. �3�

he �-trimmed mean is given by:

d� =
1

�1 − 2��J �
k = �J+1

�1−��J

dj�k�, �4�

here 0���0.5. If � = 0.5, we replace equation 4 with the median
lter. If � = 0.0, we obtain the conventional mean filter.
The median filter is well known for preserving sharp discontinui-

ies and removing impulse noise in the signal. The median and
-trimmed mean filters performs better than the mean filter in sup-
ressing noise and preserving details, as seen by the improved fault
dge shown in Figure 4b and c. However, neither of these two filters
s capable of preserving the thin lineaments.

he edge-preserving smoothing (EPS) filter

Luo et al. �2002� applied Kuwahara et al.’s �1976� multiwindow
lter to seismic data, resulting in an edge-preserving smoothing al-
orithm, which avoids smearing major discontinuities by using mul-
iple overlapping windows. A statistic, such as the variance of the
ata, is evaluated in each of the overlapping windows. Then, the
indow with the best statistic �e.g., the minimum variance� is sub-

ected to smoothing by using a mean, median, �-trimmed mean, or
ther filter. For widely spaced fault and channel edges, the chosen

a) 

b)

c)

igure 3. �a� A subsection of the northwest portion of the image
hown in Figure 1. Idealized synthetics of the broad east-west strike-
lip fault, northwest-southeast trending tension gashes, and a north-
ast-southwest trending meandering channel �b� without and �c�
ith additive noise.
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P4 Al-Dossary and Marfurt
indow will not span a major discontinuity and therefore will not
mooth across it. We show the effect of EPS using five overlapping
�3 windows on the synthetic example shown in Figure 3c, applied

o the window with the lowest variance �Figure 4d�. Although the
ain fault is enhanced, the narrow lineaments are only partially illu-
inated.

he anisotropic diffusion filter

Hoeker and Fehmers’ �2002� implementation of the anisotropic
iffusion equation in their structure-oriented filter application is
ontrolled by an estimate of the presence of discontinuities comput-
d from the eigenvalues of a gradient structure tensor. Although we
ould use data-driven statistics based on the standard deviation, or
lternatively, the range of the sample amplitudes that fall within each

igure 4. The image in Figure 3c after applying 3�3 running win-
ow filters: �a� mean, �b� median, �c� �-trimmed mean �� = 0.2�, �d�
PS �Kuwahara� �e� anisotropic diffusion, �f� LUM, �g� MSMTM
ith a moderate value of q, and �h� MSMTM with a small value of q.
ote that although the mean, median, and �-trimmed filters preserve

he wide east-west fault, the thinner lineaments are either unaccept-
bly blurred or attenuated. In contrast, the anisotropic diffusion and
SMTM filters preserve these smaller features. The more aggres-

ive LUM filter results in some holes in our lineaments.
nalysis window, as described by Perona and Malik �1990�, we
hose a much simpler interpreter-driven criterion of � = 1 degree
or the entire volume.

The filtered data is then given by the following formula:

dfilt = dC +
1

2

1

J − 1 �
j = 1

J

�dj − dC�exp�− ��dj − dC�/��2� ,

�5�

here dC indicates the value at the center of the analysis window.
quation 5 shows that if � is very large, we update the value of the
enter point by simply adding one-half the average difference be-
ween the value of the center point and the value of each of the other
amples. For smaller values of �, we weight our average to favor
hose values that are closer to the value of the center point. We apply
quation 5 to the synthetic shown in Figure 3c, and obtain the result
hown in Figure 4e. The lineaments are well preserved and the
peckled noise is either rejected or smoothed.

he lower-upper-middle (LUM) filter

Boncelet et al. �1991� designed the LUM filter for smoothing and
harpening. Typically, they use a running 3�3 and 5�5 square
indow centered about each analysis point. The LUM filter calcu-

ates the median by the following two steps:
1� Sort the samples in the window as given by equation 2. As with

the �-trimmed mean, the user defines lower and upper order
statistics; only these values will be used in subsequent analysis.
For our 3�3 window, we choose the lower and upper statistics
to be the third and seventh ordered of the nine samples, or
k = 3.

2� Compare the value of the center sample of the window dC with
these two order statistics. For smoothing, take the output to be
the median of the lower order d�k�, the upper order d�N−k+1� statis-
tics and the center sample dC:

dLUM�k� = med�dk,dC,dN−k+1� . �6�

hus, the output will be dC if the center value falls within the range of
he “normal” values �dk, dN−k+1�. If this is not the case, the output will
e the value of the two order-statistics dk, dN−k+1 that is closer to
C. Thus, “extreme” center values are brought in toward the normal
alues.

If k = 1, the output is always the same center value dC. If k = �N
1�/2, the output is always d�N+1�/2, the median of the window.

herefore, the parameter k adjusts smoothing from none �k = 1�, to
hat of a median �k = �N + 1�/2�. We illustrate this process through
n example of 3�3 analysis in Figure 5.

Figure 4f shows the effect of LUM using a 3�3 window on the
ynthetic example in Figure 3c. Although the noise has been sup-
ressed, the narrow lineaments, particularly the curvilinear channel,
ave been partially filtered out. They appear now to have holes in
hem.

he modified trimmed mean (MTM) filter

The modified trimmed-mean �MTM� filter — an enhancement of
he �-trimmed mean filter — was designed by Lee and Kassam in
985 to lessen the edge blurring typical of the standard mean filter.
he modified trimmed-mean filter is also known as the range

rimmed-mean filter. The MTM filter works sufficiently for some
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Lineament-preserving filtering P5
mages; however, it cannot retain fine details of the image, such as
oint, lines, and curves. As a remedy, the MSMTM filter was devel-
ped and can be used equally as a noise filter.

Like the �-trimmed mean filter, the modified trimmed-mean filter
s a running window estimator that selects only a subset of the sam-
les inside the window to calculate an average. In this section, we
implify our notation by omitting the argument t �the indication of
he time sample�, with the understanding that the analysis window is
ither along a time or a horizon �interpreted reflector� slice including
he analysis point. The samples dj within the analysis window are se-
ected if they fall within the following range:

dmedian − q � dj � dmedian + q , �7�

here dmedian is given by equation 3, and q is a preselected threshold
alue between edge preservation and smoothing efficiency. Whereas
he �-trimmed mean adds an equal number of ordered samples fall-
ng on either side of the median, the modified trimmed mean will, in
eneral, add an unequal number of ordered samples on either side of
he median, as defined by the value of the range q.

The result of the filter is the average of the selected samples:

dMTM =
1

L
�
j=1

J

b�dmedian,q,dj�dj , �8�

here b�dmedain,q,dj� is the boxcar function defined as

b�dmedian,q,dj� = �1 dmedian − q � dj � dmedian + q

0 otherwise,
	
�9�

here L is the number of samples selected by the value q. If q has a
alue of zero, the resulting filter reduces to the median filter.As q in-
reases, all of the samples of the window will eventually be includ-
d, such that the filter becomes the mean filter. Unfortunately, al-
hough the MTM filter is good for edge preservation, it is still based
n the median and mean filters, and thus it cannot preserve internal
etails such as lineaments.

he multistage median (MSM) filter

The MSM filter was designed to enhance lineaments intersecting
he center of the analysis window. By itself, it does a poor job of re-
ecting random noise on attribute images. However, we will use the

SM as the basis for a subsequent cascaded MSMTM filter dis-
ussed later. We calculate the multistage median dMSM using the fol-
owing four steps:

1� Define four 1D linear �2N + 1��1 subwindows Wp aligned in
the north-south, east-west, northeast-southwest, and north-
west-southeast of the larger 2D area �2N + 1�� �2N + 1� cen-
tered about the trace at �m,n�:

W1 = �d�m + i,n�,− N � i � N� ,

W2 = �d�m + i,n + i�,− N � i � N� ,

W3 = �d�m,n + i�,− N � i � N� ,

and

W = �d�m + i,n − i�,− N � i � N� . �10�
4
2� Calculate the median, Z�Wp� of each of the four subwindows:

Z�Wp� = median�d jk�Wp�� , �11�

where the subscript jk�Wp� denotes that sample djk falls within
window Wp.

3� Calculate the second-stage medians defined as

M13 = median�Z�W1�,Z�W3�,dmn� ,

M24 = median�Z�W2�,Z�W4�,dmn� , �12�

where dmn is the data value at the center of the analysis window.
4� Finally, calculate the final multistage median, dMSM:

dMSM = median�M13,M24,dmn� . �13�

he multistage median-based modified trimmed-mean
MSMTM) filter

Wu and Kundu �1991� combined the MTM filter with a detail-pre-
erving filter, the multistage median filter, and dubbed the new filter
he multistage median-based modified trimmed-mean �MSMTM�.
he MSMTM filter is an MTM filter based on a multistage median

MSM� filter.Adata sample is selected if its value falls into the range
f �m − q, m + q�, where m is a value calculated using the multistage
edian filter. Because the MSM filter is a detail-preserving filter, the
SMTM filter can preserve lineaments. The MSMTM filter is effi-

ient, smooths noise, and preserves both edges and lineaments. Like
ll of the filters discussed in this paper, the MSMTM filter is imple-
ented as a running window estimator. Like the �-trimmed mean

nd MTM filters, the MSMTM filter selects a subset of samples in-
ide a window and calculates an average �Figure 6�. Like the MTM
lgorithm, the samples are selected if they are in the range

dMSM − q � dj � dMSM + q . �14�

ote that we define our range with reference to the result of applying
he multistage median �MSM� filter, dMSM, rather than with reference
o the median, dmedian, as in equation 7.

The result of the filter is the average of the selected samples:

dMSMTM =
1

L
�
j = 1

J

b�dMSM,q,dj�dj . �15�

e illustrate this process with an example of 3�3 analysis in Figure
.

We show the effect of the MSMTM filter using a 3�3 window on
he synthetic example shown in Figure 3c, using a moderate value of
in Figure 4g, and a small value of q in Figure 4h. For the moderate

-Sort the samples: d  , d  , d  , d  , d  , d  , d  , d  , d  

I

1 2 8 39 7 5 6 4

{ 1 2 4 7 8 10 11 14 15 }=

-For parameters   = 4:k [ d ( k ) , d(         N k- + 1)       ] = [ d     , d    ] = [ 7, 10 ]

dLUM
(k = 4) = median (d4 , dC , d6 ) = median ( 7, 11, 10) = 10

(4)     (6) 

igure 5. Example of the LUM filter; d is the center sample.
5
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P6 Al-Dossary and Marfurt
alue of q, there is some small smearing of the lineaments through
he higher amplitude “noise” area. For the smaller value of q, the nar-
ow lineaments are well preserved.

APPLICATION TO REAL DATA

In this section, we apply three of the more promising filters to a
ata set from the Fort Worth Basin that is faulted, fractured, and di-
genetically altered. We find that, although the synthetic example
hown in Figure 3c is helpful, the actual performance of these non-
inear filters is strongly dependent on the amplitude and spatial sta-
istics of the noise to be suppressed as well as of the signal to be pre-
erved. The faults and fractures �or lineaments� have little or no dis-
lacement or rotation about them. We speculate that their illumina-
ion by curvature attributes is related to velocity changes resulting
rom lateral changes in porosity, diagenetic alteration, gas charge, or
rack cementation.

In our earlier work �Al-Dossary and Marfurt, 2006�, we found that
hort-wavelength curvature estimates based on such dip volumes are
articularly sensitive to short-wavelength noise. Therefore, we take
ur three best filters, anisotropic diffusion, LUM, and MSMTM, and
pply them �four passes each� to the north-south and east-west com-
onent dip volumes. We display the north-south component of dip in
igure 7. Of the three filters, the MSMTM filter rejects high-energy
alt and pepper noise but does not significantly alter the lineaments
f interest.

Let us define a 3 x 3 window centered about the fifth sample      :d5

d

d

d

d

d

d

d

d

d

d d d d d d d d

After sorting the nine samples, we obtain the following:

1 2 3

4 5 6

7 8 9

= 8= 4= 2

= 15 = 11 = 14

= 10 = 7 = 1

1 29 8 3 7 5 d6 4

1 2 4 7 8 10 11 14 15

Then :

W

W

W

W

M

M

Z

Z

Z

Z

1

2

3

4

13

24
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For q = 3, the selected samples are:

dMSMTM = mean (                       ) = 10.75d3
, d 7

,d5 d, 6

igure 6. Example of the MSMTM filter.
Curvature calculations are based on changes in dip and azimuth,
nd hence, exacerbate any noise present in the volumetric dip and az-
muth estimates. Al-Dossary and Marfurt �2006� show that the short-
avelength estimates of curvature �using only nine–25 traces� are
ore sensitive to noise than the long-wavelength estimates �using

etween 100 and 400 traces�. Therefore, we compute short-wave-
ength most-negative curvature using first derivatives of the original
ip volume, as well as dip volumes that have undergone four passes
f anisotropic diffusion, LUM, and MSMTM filtering. We display
he results in Figure 8. The most-negative curvature image shown in
igure 8a is highly contaminated by random noise and acquisition
ootprint. Filtering the input data with anisotropic diffusion and
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b)

c)
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igure 7. Filtered images of the data displayed in Figure 1 after four
asses of a 3�3 window �a� anisotropic diffusion, �b� LUM, and �c�
SMTM filtering. Compare these to the image of the median-fil-

ered data shown in Figure 2. Although the anisotropic diffusion and
UM filters behaved well on the synthetic images discussed in Fig-
res 3 and 4, they did not reject a good deal of random noise. In con-
rast, the MSMTM image suppresses an amount of random noise
imilar to that seen in Figure 2, yet preserves the major lineaments
ithout smearing them.
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Lineament-preserving filtering P7
UM filters suppresses some of this noise �Figure 8b and c�, but nei-
her is as strong an improvement as the most negative curvature
omputed from the MSMTM-filtered data shown in Figure 8d. The
orth-south acquisition footprint is suppressed, as are many of the
ore random features, allowing us to see clearly the pattern of north-
est-southeast and northeast-southwest faults and flexures.

CONCLUSIONS

Seismic attributes are sensitive to subtle changes in signal and
oise, resulting in images that exacerbate the impact of backscat-
ered noise and acquisition footprint. Popular random-noise-sup-
ression algorithms, including mean, alpha-trim mean, and median
lters, suppress random noise but may smear fault boundaries. Re-
ently published structure-oriented filtering algorithms such as the
ultiwindow Kuwahara �or edge-preserving filtering� algorithm
ork well when the data are blocky, such as occurs between fault
oundaries. Unfortunately, this algorithm blurs small linear features
arrower than the analysis window that may be associated with
oints and fractures. For this reason, we have evaluated a suite of
oise-reduction algorithms used in image processing and SAR, in-
luding anisotropic diffusion, speckle-reducing, phase-preserving
enoising, LUM, and MSMTM filters. Through testing �including
he examples shown in this paper�, we have found the multistage me-
ian-based modified trim-mean MSMTM filter to be superior in fil-
ering volumetric dip estimates that form the basis of much of at-
ribute analysis, including coherence, curvature, and lateral changes
n reflectivity. The multistage median component of the MSMTM
lter searches for and preserves constant value lineaments running

hrough the analysis window. The range trimmed-mean component
f the MSMTM filter improves signal-to-noise by smoothing data

5 km 5 km

Curv

N

0.02

0

-0.02

aniso

a)

)

c)

d)

igure 8. Time slices at t = 0.8 s through moderate wavelength �� =
urvature volumes calculated from volumetric estimates of dip and
ltering �b� after four passes of anisotropic diffusion filtering, �c� a
3 window LUM filtering, and �d� after four passes of 3�3 window

he value of q for the MSMTM calculation was 1°, providing a m
moothing. Note that the spectral content after MSMTM filtering is b
nd random noise and acquisition footprint are reduced, although lin
nterest are well preserved. White arrows indicate a fault associate
rogeny that can now be seen clearly. Gray arrows indicate subtle fa
ult to see in the original data.
values that fall within a user-defined acceptable
range. Because this algorithm requires sorting the
sample values falling within each analysis win-
dow, the cost is about twice that of the simpler
median filter, but much less than the cost of the
original attribute computation. When applied to
data from the Fort Worth Basin, Texas, we are
able to identify faults and fractures on short-
wavelength curvature images that are otherwise
difficult to see.

Our experience shows that the MSMTM filter
works well on attributes that have Gaussian sta-
tistics, such as dip, unnormalized amplitude gra-
dients, and many of the curvature attributes.
However, application of these filters to enhance
lineations in attributes with non-Gaussian statis-
tics, such as coherence, requires more research.
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