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nstantaneous spectral attributes to detect channels
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ABSTRACT

Channels filled with porous rock and encased in a nonpo-
rous matrix constitute one of the more important stratigraphic
exploration plays. Although attributes such as coherence can
be used to map channel width, they are relatively insensitive
to channel thickness. In contrast, spectral decomposition can
be used to map subtle changes in channel thickness. The peak
spectral frequency derived by using the short-window, dis-
crete Fourier transform �SWDFT� is an excellent tool for
mapping such changes along an interpreted horizon. We
show that by use of instantaneous spectral attributes, we can
generate equivalent maps for complete seismic volumes. Be-
cause we are often interested in mapping high-reflectivity
channels encased in a lower-reflectivity matrix, we find that a
composite plot of the peak frequency and the above-average
peak amplitude accentuates highly tuned channels. Finally,
by generating a composite volume using peak frequency,
peak amplitude, and coherence, we can establish not only the
channel thickness, but also its width. We demonstrate the val-
ue of such 3D volumetric estimates through application to �1�
a marine survey acquired over Tertiary channels from the
Gulf of Mexico and �2� a land data survey acquired over Pale-
ozoic channels from the Central Basin Platform, west Texas,
United States. The channels in both marine and land surveys
can be highlighted through composite-volume analysis.

INTRODUCTION

Channels filled with porous rock and encased in a nonporous ma-
rix constitute one of the more important stratigraphic exploration
lays. However, detailed mapping of channels has a much broader
mpact. By using modern and paleoanalogues, mapping channels
elps us to understand the paleodepositional environment and there-
y permits us to interpret less obvious prospective areas such as fans
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nd levees. By mapping the width, tortuosity, and spatial relation-
hip of meandering channels, avulsions, and braided streams, among
ther features, geomorphologists are able to infer channel depth and
uid velocity during the time of formation and thus better determine
hether the fill is sand or shale prone.
Seismic coherence and other edge-sensitive attributes �Bahorich

nd Farmer, 1995; Luo et al., 2003� are among the most popular
eans of mapping channel boundaries. Although these attributes

an easily detect channel edges, they cannot indicate the channel’s
hickness. In addition, as channels become very thin �well below
ne-quarter wavelength�, their waveform becomes constant, such
hat coherence measures based on waveform shape cannot see the
hannel at all �Chopra and Marfurt, 2006�.

From its inception, spectral decomposition has also been used to
ighlight channels �Partyka et al., 1999; Peyton et al., 1998�. The
pectral-decomposition images are complementary to coherence
nd edge-detection attribute images in that they are sensitive to
hannel thickness rather than to lateral changes in seismic waveform
r amplitude. Initially, spectral-decomposition analysis was done
ithin a fixed-sized analysis window �by using a short-window, dis-

rete Fourier transform �SWDFT�� following a picked stratigraphic
orizon, thereby generating a suite of constant-frequency spectral-
mplitude maps. Most commonly, the interpreter animates through
he maps and chooses the ones whose spatial pattern corresponds to a
easonable geologic model. Specifically, there is a strong correlation
etween channel thickness and spectral amplitude �Laughlin et al.,
002�.

Widess �1973� shows that for thin beds below the tuning thick-
ess, the composite seismic amplitude decreases linearly with thick-
ess. Chuang and Lawton �1995� generalizes this work to a frequen-
y spectrum and observed that the peak frequency slightly increases
s the layer thickness decreases. Marfurt and Kirlin �2001� exploit
his observation and apply it to an SWDFT over the Pliocene-
leistocene deposits of the Mississippi River in the Gulf of Mexico.
hey found that the frequency corresponding to the peak spectral
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P24 Liu and Marfurt
mplitude is an excellent means of summarizing the information
ontent of the full spectrum: a low-peak frequency corresponds to
hick channels, and a high-peak frequency corresponds to thin chan-
els.

Even with careful tapering, spectral decomposition using the
WDFT has window effects �Cohen, 1995�. For this reason, Casta-
na et al. �2003� looked at alternative methods for time-frequency
ecomposition based on wavelet transforms to compute what is
ommonly called instantaneous spectral attributes �ISA�. Much of
his work has been used to identify channels �e.g., Sinha et al., 2005;

atos et al., 2005�, but to our knowledge, little has been published
n the use of peak-frequency volumes based on these techniques, al-
hough Liu et al. �2004� showed how the ISApeak frequency signifi-
antly increases with decreasing layer thickness.

Precompute complex
seismic wavelets

Read seismic trace

Generate complex seismic trace

Set residual = original complex trace
Set spectrum = 0.0

Calculate envelope of residual

Pick the time position of strongest envelo

Least-squares fit complex wavelets to resi

Subtract complex wavelets from previous resid
compute new residual

Add complex spectrum of subtracted wavelets to pre

No

Yes

Residual energy <
threshold value?

More traces?

Output complex spectra
of all traces

igure 1. A flowchart for a wavelet-based spectral-decomposition
atching-pursuit technique. Typically we precompute a complex w

ntervals of 0.5 Hz.
In this paper, we show how spectral decomposition can be used to
enerate complete volumes of both peak spectral frequency and the
mplitude at that peak spectral frequency. We begin by reviewing
ow we compute ISAcomponents by using a matching-pursuit algo-
ithm. Because we are interested in lateral changes in tuning associ-
ted with channels, rather than absolute spectral amplitudes, we in-
roduce the peak spectral amplitude above the average spectral am-
litude at each analysis point. Next, we show how these algorithms
ehave on simple synthetics. We then show how the peak frequency
nd the amplitude of the peak frequency can be effectively coren-
ered through the use of a 2D color map �or palette�. By generating a
omposite of this 2D color map with a gray scale, we can also coren-
er coherence. Finally, we apply this workflow to two channels sys-
ems: the first seen in a marine survey over Tertiary channels ac-

quired in the Gulf of Mexico and the second seen
in a land survey over Paleozoic channels acquired
in the Central Basin Platform, west Texas, United
States.

ALGORITHM DESCRIPTION

We decompose the data by using a matching-
pursuit wavelet-based spectral-decomposition al-
gorithm shown in Figure 1 and presented by Liu
and Marfurt �2005�. The details of the algorithm
description can be found in Appendix A. We be-
gin by calculating the instantaneous envelope and
frequency for each input trace. We then identify
key seismic events by picking a suite of envelope
peaks that fall above a user-specified percent-
age of the largest peak in the current �residual�
trace. We have found that this implementation
converges faster and provides a more-balanced
spectrum of interfering thin beds than the alterna-
tive “greedy” matching-pursuit implementation
�Mallat and Zhang, 1993� that fits the wavelet
having the largest envelope, one at a time. The
peak frequency of the wavelet can be approxi-
mately calculated by the instantaneous frequency
of the residual trace at the envelope peak �Robert-
son and Nogami, 1984�. The amplitudes and
phases of each of the selected wavelets are com-
puted together by using a simple least-squares al-
gorithm. Each picked event has a corresponding
wavelet. We compute the complex spectrum of
the modeled trace by simply adding the complex
spectrum of each constituent wavelet. This pro-
cess is repeated until the residual falls below a de-
sired threshold. In spite of our original work using
the popular Morlet wavelets �Liu and Marfurt,
2005�, we have found that a Ricker wavelet basis
function proposed by Liu et al. �2004� better fits
seismic data that tend to be biased toward the
lower frequencies.

To better illustrate the flow shown in Figure 1,
we apply it to a seismic line extracted from a 3D
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Instantaneous spectral attributes P25
urvey acquired over the Central Basin Platform. The amplitude and
ime of the chosen waveletsare displayed in Figure 2d. At each itera-
ion, we generate the corresponding seismic
avelets and add them to the previously modeled
ata �Figure 2a�, compute a new data residual
unmodeled data� �Figure 2b�, and accumulate
he complex spectrum, of which we display the
0-Hz component in Figure 2c.

If the seismic data have not been previously
pectrally balanced, it is common practice to do
o within the spectral-decomposition algorithm.
ollowing Partyka et al. �1999�, we assume the
eology to be random over a suite of neighboring
ime slices, giving rise to an underlying “white”
eflectivity spectrum. We then balance the spec-
rum within a user-defined bandwidth as shown in
igure 3. Spectral balancing accounts for changes

n the source wavelet with depth. The average
pectrum over the entire survey at a given time
efore balancing is shown in Figure 3a. The bal-
nced average spectrum is demonstrated in Fig-
re 3b. If we define the average spectrum as
�� f��, which is a function of frequency f , and its
aximum as �max, we estimate a noise level as a

raction � of the peak spectral amplitude. Then we
escale each spectral component by 1/���� f��

� ·�max� thereby obtaining a “balanced” aver-
ge spectrum. Some workers find that balancing
he median rather than the mean spectrum pro-
ides better results in the presence of bright spots
G. A. Partyka, personal communication, 2005�.
or our two examples, the mean and median spec-

ra are nearly identical. Such spectral balancing is
mportant in extracting tuning effects �such as the
eak spectral frequency� of the geology, in order
ot to be biased toward the spectral behavior of
he seismic wavelet.

Once balanced, we can animate through time
r horizon slices of discrete spectral components,
nterpret selected volumes of discrete spectral
omponents, or generate composite volumes of
eak frequency, peak amplitude, and coherence
ttributes. Peak amplitude is the maximum mag-
itude of the amplitude spectrum. And peak fre-
uency is the frequency at the peak amplitude.

SYNTHETIC MODEL

A simple 1D synthetic seismic trace is shown
n Figure 4a. The source wavelets are Morlet
avelets with peak frequency at 10 Hz, 30 Hz,

nd 50 Hz. The Morlet wavelets with 10-Hz peak
requency have 0° phase. The Morlet wavelets
ith 50-Hz peak frequency have 90° phase. The
hases of Morlet wavelets with 30-Hz peak fre-
uency are 0° and 45°. Figure 4b demonstrates
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P26 Liu and Marfurt
elope of matched wavelets. We can easily see that the low-frequen-
y wavelet has a longer time spreading, whereas the high-frequency
avelet has a shorter time extension, but has greater bandwidth.

2D COLOR CHART

Many seismic attributes are only meaningful when put in the con-
ext of a second, independent, attribute. For example, a measure-

ent of reflector azimuth is meaningless if the dip magnitude of the
eflector is flat. Similarly, a measure of wavelet phase is meaningless
f its amplitude falls below the signal-to-noise level. In this paper, the
alue of the peak spectral frequency has meaning only if that peak
ies significantly above the average spectrum. We use a 2D color

ap that combines hue and lightness to represent peak frequency
nd above-average peak amplitude, respectively �Figure 5a�, and
wo idealized spectra �Figure 5b and c�, one that is high amplitude,
ighly peaked at a high frequency, and one that is lower amplitude,
atter, and peaked at a lower frequency. Because the spectrum
hown in Figure 5b has a relatively higher peak frequency and
bove-average peak amplitude, it is represented by the bright orange
olor shown in Figure 5a. In contrast, the spectrum shown in Figure
c has a lower peak frequency and only an average peak amplitude
nd is represented by the dark green color shown in Figure 5a.

To display coherence, we turn to the concept of composite dis-
lays discussed by Chopra �2001� and Lin et al. �2003�. In this paper,
f the coherence is above a threshold, we display the peak frequency
nd amplitude through the use of the 2D color table displayed in Fig-
re 5a. If the coherence falls below a threshold, we display the coher-
nce against a 1D gray scale. In this manner, coherence defines the
dges �and thus width� of the channels, and the peak frequency de-
nes the relative thickness.

EXAMPLES FROM FIELD DATA

marine survey over Tertiary channels:
outh Marsh Island, Gulf of Mexico

Conventional analysis through animation of spectral components
s described by Partyka et al. �1999� works very well when applied
o a horizon. This methodology breaks down, however, when ana-
yzing volumes of seismic data. Generation of 80 output volumes at
-Hz increments between 10 and 90 Hz quickly fills all the disk
pace available. The computational effort of spectral decomposition
s greatly outweighed by the shear amount of output data. Even
hough we can reduce the output volumes by sampling every 10 Hz,
t is still awkward to simultaneously deal with nine common-fre-
uency volumes. For this reason, we propose initially generating
nly the peak frequency and peak amplitude volumes by time-fre-
uency decomposition, and combining them with coherence, there-
y providing an image that can be used to rapidly identify features of
tratigraphic interest. If appropriate, the individual spectral compo-
ents can be regenerated and examined either along constrained
ones of interest or for a constrained range of frequencies �such as
one for reservoir illumination by Fahmy et al., 2005�. A composite
olume of peak frequency, peak amplitude, and coherence is created
n the following examples.
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Instantaneous spectral attributes P27
Figure 6a shows the time slice of the coherence volume at t
1.416 s. White arrows indicate a wide main channel, and yellow

rrows indicate a narrow branch channel. In the time slice through
he 20-Hz spectral component �Figure 6b�, only the main channel
hows up. In contrast, in the time slice through the 60-Hz spectral
omponent �Figure 6c�, only the branch channel shows up. This phe-
omenon implies that the main channel is thicker than its branch.

Figure 7a shows the time slice of the coherence volume at t
1.230 s. The meandering channels are easily interpreted in the co-

Wide channel

High

LowNarrow channel

2 km

Wide channel
High

Low

Narrow channel Low

High

a)

b)

c)

igure 6. Time slices at t = 1.416 s through a survey acquired over
ertiary channels, South Marsh Island, Gulf of Mexico, showing �a�
oherence, �b� the 20-Hz spectral component, and �c� the 60-Hz
pectral component. �Horizontal and vertical scales are the same.�
erence volume �white arrows�. Figure 7b demonstrates the com-
osite volume of peak frequency, peak amplitude, and coherence of
he same time. In Figure 7b, white arrows point to the meandering
hannels. Compared to the gray image in Figure 7a, the composite
lot �including hue, lightness, and gray� in Figure 7b better distin-
uishes the channels from the background. For instance, most of the
hannels appear as green. The coherence can detect the discontinuity
f seismic events �which means the coherence volume can detect the
dge of the channel�, whereas the peak frequency and peak ampli-
ude allow the channel to be highlighted in a distinctive color.

land survey over Paleozoic channels: Central Basin
latform, west Texas, United States

We now apply this same technique to older indurated rocks im-
ged in a field-data example from west Texas to illustrate the spec-
ral-decomposition technique in Figure 2. Figure 8 shows the time
lice of seismic volume at t = 1.060 s. The arrows point to Pennsyl-
anian channel deposits. Figures 9 and 10 show two time slices at t
1.060 s and 1.096 s of peak frequency and above-average peak

mplitude �peak amplitude minus average amplitude value� through
he use of the 2D color chart shown in Figure 5a. The channels are

High

Low

2 km

a)

b)

igure 7. Time slices at t = 1.230 s through a survey acquired over
ertiary channels, South Marsh Island, Gulf of Mexico, showing �a�
oherence volume and �b� composite volume of peak frequency,
eak amplitude, and coherence. �Horizontal and vertical scales are
he same.�
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P28 Liu and Marfurt
learly shown in these two time slices. We note that the channel has a
reen color whereas the background has blue color, implying that the
hannel has a higher peak frequency than the background response.
n these images, we did not use coherence to identify the edges of the

Pos.

Neg.

1.060 s

2 km

igure 8. Time slice of the seismic volume at t = 1.060 s through a
urvey acquired over the Central Basin Platform. The survey is also
sed in Figure 2. White arrows point to two different channel
ranches. �Seismic data courtesy of Burlington Resources.�
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igure 9. Time slice of the composite volume of peak frequency and
bove-average peak amplitude at t = 1.060 s. �Magenta arrows
oint to channel.� Colors are as in the 2D color chart in Figure 5a.
hannel, so the color green itself highlights the channels. To view all
he channels in one slice, we flatten the volume along the unconfor-

ity horizon �the blue pick shown in Figure 12a�. Figure 11a shows
he phantom-horizon slice 44 ms above the unconformity. The ac-
ompanying amplitude spectra �Figure 11b-d� correspond to the
oints indicated by the magenta arrows. Figure 11b shows a peak
requency at about 62 Hz and high above-average peak amplitude;
he plot points to an area that is thus mapped as bright yellow in Fig-
re 11a. Figure 11c shows a peak frequency at about 50 Hz and mod-
rate above-average peak amplitude; the plot points to the chan-
elthat is mapped as light green in Figure 11a. Figure 11d shows a
eak frequency at about 16 Hz and moderate above-average peak
mplitude; these characteristics indicate a background response, and
he area is mapped as a light blue in Figure 11a.

Figure 12a shows the seismic section of line AB from Figure 11a,
nd the same amplitude spectra as in Figure 11 are shown in Figure
2b-d. In the seismic section, we see that the notches in Figure 12b
re cause by bed interferences. Figure 12c corresponds to the ampli-
ude spectrum of a channel’s response, which shows a relatively
igher peak frequency compared to the background response of Fig-
re 12d. Bed interferences can cause frequency notches �which de-
end on bed thickness and geometry�; some of these can be individu-
lly resolved �as in Figure 12b� but others cannot �Figure 12c�.
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igure 10. Time slice of the composite volume of peak frequency
nd above-average peak amplitude at t = 1.096 s. �Magenta and yel-
ow arrows point to channels.� Colors are as in the 2D color chart in
igure 5a.
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At present, we interpret these images in three
steps. First we use principles of geomorphology,
together with modern and paleoanalogues, to
identify stratigraphic features of interest. Second,
we calibrate these patterns through conventional
interpretation of the vertical seismic section, cou-
pled with our understanding of the physics of
thin-bed interference phenomena. Finally, we use
the colors to provide a quantitative estimate of
relative channel thickness, and we use coherence
to provide a qualitative estimate of channel
width. These tools allow us to unravel strati-
graphic features of interest preserved in the geo-
logic record.

CONCLUSIONS

We propose a new spectral-decomposition
method that combines the concept of matching-
pursuit and least-squares solution. Through the
use of instantaneous spectral analysis derived
from wavelet-based spectral decomposition, we
have extended the concept of using peak spectral
frequency of mapped horizons to full 3D vol-
umes. We find that these peak spectral frequen-
cies are most useful if modulated by some mea-
sure of the corresponding spectral amplitude. For
channels where we expect lateral changes in thin-
bed tuning, we find that the peak spectral ampli-
tude above the average spectral amplitude is par-
ticularly useful by deemphasizing the appearance
of strong-amplitude flat spectral responses.

Although spectral decomposition is a good in-
dicator of channel thickness, coherence and other
edge detectors are good indicators of channel
width. For this reason, we advocate displaying
both attributes in a composite image. We have
shown the effectiveness of this technique in map-
ping Tertiary channels in a marine survey. We find
this technique to be an excellent tool for rapidly
mapping channels that may be of importance both
for prospect evaluation and for quantifying reser-
voir heterogeneity. We are encouraged to think
that by using these three measures together, we
can develop improved geostatistics or neural net-
work flows that, with well control, can help us
quantitatively estimate reservoir thickness.
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APPENDIX A

MATCHING-PURSUIT SPECTRAL ANALYSIS

We begin our analysis by assuming that each seismic time trace,
�t�, is band limited and can be represented by a linear combination
f either Ricker or Morlet wavelets:

u�t� = �
j

aj · w�t − tj, f j,� j� + Noise, �A-1�

here aj, tj, f j, and � j represent the amplitude, center time, peak fre-
uency, and phase of the jth wavelet. We exploit complex attribute
nalysis and estimate the center time of each candidate wavelet by
eaks in the instantaneous envelope. We estimate the average fre-
uency favg of the wavelet by the instantaneous frequency at the en-
elope peak �called response frequency by Bodine �1984� and wave-
et frequency by Taner �2000��. The peak frequency f j shown in
quation A-1 can be computed for the Ricker wavelet by

f j = ���/2�favg, �A-2�

nd for the Morlet wavelet by

f j = favg. �A-3�

he temporal behavior of the Ricker wavelet is given by

wR�t, f j� = �1 − 2�2f j
2t2�exp�− �2t2f j

2� , �A-4�

nd its spectrum is given by

w̄R�f , f j� =
2

��

f2

f j
3 exp	−

f2

f j
2
 . �A-5�

he temporal behavior of the Morlet wavelet is given by

wM�t, f j� = exp�− t2f j
2 · ln 2/k� · exp�i2�f jt� , �A-6�

nd its spectrum is given by

w̄M�f , f j� =
��/ln 2

f j
· exp�− k ·

�2�f − f j�2

ln 2 · f j
2 � ,

�A-7�

here f j is the peak frequency, and k is a constant value that controls
he wavelet breadth. If we use smaller values of k, we will include

ore cycles in the Morlet wavelet. In our process, we choose k
0.5.
To efficiently solve for both the amplitude and phase of each

avelet, we use the Hilbert transform to form both an analytic data
race

U�t� = u�t� + iuH�t� �A-8�

nd a table of analytic complex Ricker wavelets

W�t, f j� = w�t, f j� + iwH�t, f j� , �A-9�

here w indicates symmetric cosine wavelets and wH indicates anti-
ymmetric sine wavelets. For the table of analytic complex Morlet
avelets, we use equation A-6 to generate Morlet wavelets.
The analytic analogue of equation A-1 then becomes

U�t� = �
j

Aj · Wj�t − tj, f j� + Noise, �A-10�

here the amplitude aj in equation A-1 is represented by the magni-
ude of the complex amplitude Aj, and the phase � j is represented by
he phase of Aj.

Our objective is to minimize the energy of the residual trace R�t�,
efined as the difference between the seismic trace and the matched
avelets

R�t� = 
U�t� − �
j

J

�Aj · Wj�t − tj, f j���2

, �A-11�

here we recall that tj and f j are known and Aj is unknown. To esti-
ate all wavelet coefficients in one iteration, we write equation A-11

n matrix form and simply solve the normal equations

A = �WHW + �I�−1WHU , �A-12�

here W = �W�t − t1, f1�,W�t − t2, f2�, . . . ,W�t − tm, fm�� is a vector
f wavelets centered at each envelope peak, A = �A1,A2, . . .Am�T is a
ector of complex wavelet amplitudes, I is the identity matrix, and �
s a small number that makes the solution stable.

In the matching-pursuit approach, we begin by fitting those wave-
ets corresponding to the largest wavelets’ envelope first. In our ap-
lication, we have chosen to fit those wavelets whose envelopes are
reater than 50 % of the value of the largest event of the current trace
the original trace for the first iteration; the current residual for all
ubsequent residuals�. We then follow the flow chart described in
igure 1 until the residual energy is acceptable.
Using equation A-5 or A-7 we compute the complex spectrum by

umming the complex spectra of the constituent wavelets

ū�t, f� = �
j=1

J

Aj · w̄j�f , f j�env�w�t − tj, f j��ei2�f�t−tj�,

�A-13�

here

env�w�t − tj, f j�� = ��w2�t − tj, f j�� + �wH�t − tj, f j��2�1/2

�A-14�

s the envelope of the complex wavelets. The amplitude spectrum is
hus simply the magnitude of equation A-13, and the phase is the an-
le between its real and imaginary parts. We assume the wavelet
pectra to be mathematically supported by the time duration of the
eismic wavelets. If we wish to accurately reconstruct the amplitude
f the original data from these complex spectra, we weight them by a
oxcar function, giving rise to a rather blocky vertical section. We
nd that for interpretation purposes, it is more useful to weight the
omplex spectra by the envelope of the wavelets. Within this weight-
ng window, the spectra must be phase shifted according to the sam-
le time delay or advance from the envelope peak �equation A-14�.
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