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ABSTRACT 

 

Most land seismic data volumes suffer from acquisition 

footprint which can often be confused with faults, fractures, 

and karst. Geometric attributes such as coherence and 

curvature enhance the appearance of subtle geologic 

features, but also exacerbate footprint artifacts. We use this 

‘negative’ feature of geometric attributes as a means of 

characterizing short-wavelength footprint components. 

Once characterized, we subtract the footprint from the 

migrated seismic data volume using an adaptive subtraction 

technique and recompute attributes from these filtered data 

volumes. We demonstrate the effectiveness and pitfalls of 

this approach on a data volume exhibiting karst from the 

Central Basin Platform of west Texas,  

  

INTRODUCTION 

 

Seismic data are plagued with various kinds of noise.  

While there are a wide array of preprocessing steps to 

suppress the noise before the data are stacked these steps 

are not perfect such that some noise will always 

contaminate our data.  One such type of noise is acquisition 

footprint.  Marfurt et al. (1998) define acquisition footprint 

as “any pattern of noise that is highly correlated to the 

geometric distribution of sources and receivers on the 

earth’s surface.”  Causes of acquisition footprint include 

inaccurate velocity models, inaccurate statics, migration 

operator aliasing, leakage of aliased coherent noise (i.e. 

surface waves), irregular patterns of varying fold and 

azimuthal distribution, and incomplete data due to 

obstacles. 

 

Acquisition footprint is vexing to interpreters since it can 

be confused on time slices with faults, fractures, and karst 

features of geologic interest.  Avoiding acquisition 

footprint is nearly impossible with 3D data due to 

suboptimal acquisition geometries arising from limited 

exploration budgets and limited field access.   

 

Seismic attributes allow interpreters to extract subtle 

geologic features in the seismic data that may otherwise be 

difficult to see. Unfortunately, some of these geologic 

features have forms that appear similar to acquisition 

footprint. As an example, the objective in Figure 1a is to 

map subtle karst features at the San Andres level that may 

form an updip seal for oil production to the east. If we look 

at a slightly shallower time slice in Figure 1b, we note that 

the ‘karst’ features at the San Andres level may actually be 

a footprint artifact. In general, small defects in the seismic 

data will be exacerbated by seismic attributes.  Attributes 

such as coherence are sensitive to lateral changes in wave 

form. Attributes such as the Sobel filter edge detector (Luo 

et al., 1996), the generalized Hilbert transform (Luo et al., 

2004), and coherent amplitude gradients (Marfurt, 2006) 

are sensitive to lateral changes in amplitude along a dipping 

reflector. Curvature (al Dossary and Marfurt, 2006) is 

sensitive to lateral changes in reflector dip.  

 

Different acquisition and processing errors can give rise to 

changes in waveform, amplitude, and dip (Hill, 1999). 

Migration and DMO artifacts due to data and/or operator 

aliasing give rise to organized ellipses that result in changes 

in both amplitude and apparent dip. Systematic errors in 

velocity analysis can also give rise to organized 

‘acquisition footprint’ (Hedke et al., 2007).  In general, 

attributes are sensitive to relatively short wavelength 

components of acquisition footprint, making attributes an 

excellent tool in footprint characterization.    

 
 

Figure 1. (a) Time slice at t = 0.6 s through a generalized 

Sobel filter edge detection algorithm that delineates 

‘karst’ in the San Andres formation. (b) The time slice 

at t = 0.5 s shows that these ‘karst’ features may 

actually be acquisition footprint. (Original seismic data 

courtesy of Burlington Resources). 

 

Several remedies used to suppress acquisition footprint 

have involved time slices.  Gulunay et al. (1994), Gulunay 

 (2000), and Soubaras (2002) both predicted the pattern of 

acquisition footprint from the surface recording geometry 
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assuming flat reflectors. Gulunay designed kx-ky 

wavenumber notch filters to suppress the predicted 

footprint and applied them to the kx-ky components of the 

seismic time slices.   Soubaras modified this approach by 

designing a spatial f(x,y) adaptive filter to subtract the 

predicted footprint pattern.  

 

Chopra and Larsen (2000) noted that volumetric coherence 

exacerbated acquisition footprint such that it can be used to 

better characterize its kx-ky spectrum.   kx-ky  notch filters 

designed on the attributes were then applied to the seismic 

amplitude time slices. Drummond et al. (2000) determined 

the footprint pattern by examining kx-ky  spectra of the 

seismic data time slices. After transforming the kx-ky noise 

components back to x-y space, they applied an adaptive 

filter to subtract the estimated noise from the original, 

unfiltered time slice. Unfortunately, they do not describe 

how they chose their kx-ky components, nor how they 

implemented their adaptive filter.  

 

Cvetkovic et al. (2007) attacked acquisition footprint using 

2D stationary wavelet transforms applied to time slices. 

The interpreter identifies and determines amplitude cutoffs 

for wavelet components (or scales) that represent the 

footprint on a coarse grid of time slices. Those components 

that exceed the amplitude threshold are suppressed. Jervis 

(2006) used complex wavelets to suppress acquisition 

footprint although details of his implementation are not 

presented. 

 

Acquisition footprint is often characterized by periodic 

artifacts correlated with the (periodic) acquisition 

geometry. Acquisition footprint in seismic and attribute 

time slices are generally worse in the shallow sections 

where we have the lowest fold, greatest variation in 

moveout, and thus most sensitivity to inaccurate velocities; 

footprint generally heal with depth. Geometric attributes 

are particularly sensitive to the short wavelength 

component of acquisition footprint and thus serve as a tool 

for its detection.  Key to any kx-ky noise removal workflow 

is characterization of its spectrum. 

 

Acquisition footprint enhancement 

  

In order to suppress footprint we need to first recognize and 

characterize its behavior. Counter-intuitively, the first step 

in the suppression of acquisition footprint is to enhance it.  

Not only are seismic ‘geometric’ attributes such as 

coherence and curvature particularly sensitive to 

acquisition footprint, they are also computed along 

structural dip, and are thus relatively insensitive to changes 

in the waveform normally seen on horizontal time slices 

through amplitude data.  For the artifacts in this survey, we 

find that the fractional derivative modification of the well-

known Sobel filter used in photographic edge enhancement 

provides an excellent image of the footprint pattern . 

Seismic attributes show more than faults, footprint, and 

channel edges. Chopra and Marfurt (2007) describe a rich 

suite of depositional and diagenetic features that can be 

delineated including mass transport complexes, levee-

overbank complexes, bars, karst, and angular 

unconformities. Such features are often stratigraphically 

controlled and do not continue vertically above or below a 

temporally-delineated geologic formation. Following 

workflows developed for fault enhancement (e.g. Barnes, 

2007) we apply a simple vertical running-window median 

filter to our attribute volumes to eliminate stratigraphic 

features and enhance vertical footprint. Attribute anomalies 

associated with stratigraphically-limited geological features 

will be suppressed while vertical footprint (and faults) will 

be preserved. We also use tapers to minimize kx-ky artifacts 

associated with the survey edges and no-permit areas. 

 

Since common acquisition geometry programs use a 

regular and or staggered grid of shot lines and receiver 

lines, we anticipate that acquisition footprint will be 

spatially periodic. Figure 2 shows the periodicity of the 

footprint (yellow arrows). 

 
Figure 2. (a) kx-ky transform of the attribute slice shown 

in Figure 1b at t = 0.5 s. Yellow arrows indicate 

acquisition footprint with a periodicity of 

approximately 1.2 cycles/km in x and 1.5 cycles/km in y. 

The red center arrow indicates diffuse signal which lies 

within a circle of radius kmax= 0.2 cycles/km.  The green 

arrows point to the survey boundaries on the kx and ky 

axis.  (b) The mask generated from (a) using a threshold 

of 10 times the L1 norm of the amplitude spectrum. 

 

 Most of the geologic features (or signal) appears as an 

unorganized cloud centered about (kx=0, ky=0). The 

spectrum of discrete geologic discontinuities such as 

meandering channels, karst, and curvilinear faults, will be 

spread throughout the entire kx-ky spectrum. If we attempt 

to suppress footprint by muting values of (kx
2+ky

2)>kmax
2, 

we would smear, or perhaps even eliminate features of 

geologic interest .  Once the nature of the footprint noise is 

determined, a mask is generated to pass the high-amplitude 

kx-ky components, with no mask filters applied within a 

circular exclusion region (kx
2+ky

2) < kmax
2. We find that 

semi-automatic detection of this mask can be achieved by 

setting an amplitude threshold value above  the L1-norm of 

the kx-ky data. Quality control of  the mute is perhaps the 

most important step in the whole process. To do so, we 
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pass rather than reject those kx-ky components of the 

original seismic amplitude time slice described by the mask 

and transform back to x-y space.  Ideally, only the 

acquisition footprint and no geologic signal should show up 

on the reverse transformed slice.  Experimenting with 

different values for the exclusion circle and threshold is the 

key to designing the optimal notch mute.  

  

Once the masks are generated and quality controlled, the 

filter is ready to be applied to the original seismic data.  

The entire seismic data volume is sliced and  kx-ky 

transformed into the wavenumber domain. The masks are 

applied and the result transformed back to x-y to generate 

slices of the modeled footprint (Figure 4a). In the ideal 

situation, the modeled footprint can be directly subtracted 

from the original seismic data.  However, we expect there 

to be lateral changes in the acquisition geometry due to 

limited access or operational convenience. Equally 

common, we may wish to attack acquisition footprint seen 

on a merged survey where the acquisition geometry 

changes significantly from one part of the merged survey to 

another part. In the wavenumber domain, lateral shifts in a 

portion of the acquisition geometry will modulate the 

notches and smear them out. We therefore anticipate that 

we will need to do more than simple subtraction of any 

modeled noise from the original seismic amplitude data, 

but rather to adaptively subtract the noise from the signal. 

 

ADAPTIVE SUBTRACTION 

 

Adaptive subtraction is a technique that has gained 

significant popularity in long-period multiple suppression 

(Abma et al., 2005) and for our application requires only 

the sliced original seismic data, dij, and the noise volume, 

nij estimated using a kx-ky , SVD, or other appropriate filter. 

The goal of the algorithm is to minimize the error between 

the original data, and a weighted version of the noise: 
2
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where ε is the error,  

dl(k)+i,m(k)+j  is the kth windowed version of the original 

seismic data, 

nl(k)+i,m(k)+j is the kth windowed version of the noise,  

wij(x,y)  is a 2D weighting function described in Figure 3, 

and   

αk is the amplitude of the kth control point. 

Minimizing equation 1 with respect to αk, we obtain (in 

matrix form):  

( ) ( ) ( )  = dwnαwnwn
TT ,     (2) 

where wn is the windowed noise, and α are the control 

point amplitudes. Solving for the vector α, we obtain 

( ) ( )[ ] ( )  +=
−

dwnIwnwnα
T1T β ,         (3) 

where the small prewhitening factor , β, together with the 

identity matrix, I, prevents division by zero in dead-trace 

areas. 

 

RESULTS 

 

Figure 4c shows the weights computed using equation 3. 

These weights multiply the noise in Figure 4a to produce 

the noise in Figure 4b that better fits the original data. 

Finally the adaptive noise in Figure 4b is subtracted from 

the original seismic time slice shown in Figure 5a.  Note 

that the generated weights may vary beyond 0 and 1 and 

are zero outside the survey boundaries. Ideally the weight 

values should be somewhere near one and not subtract the 

geologic signal. Negative weight values will add portions 

of the estimated noise to the data rather than subtract it.   

  

 
Figure 3. Representation of a 1D continuous function 

(dashed line) in the interval AA’ using a suite of 

overlapping squared cosine basis functions. Each basis 

function has numerical support over a distance L. The 

3rd basis function is shaded in blue. By fitting the 

amplitude of the control points αk to least-squares fit the 

continuous curve, we obtain the smooth approximation 

shown above (solid line). 

 

Blue arrows denote acquisition footprint on the original 

time slice at t = 0.5 s shown in Figure 5a.  We show the  kx-

ky filtered seismic data without adaptive subtraction in 

Figure 5b.  Note that noise is subtracted even in the dead 

trace areas. Figure 5c is the adaptive subtraction filtered 

time slice.   

 

To quality control this process we recompute the footprint-

sensitive seismic attributes from the adaptive-subtraction-

filtered seismic data volume.   Figure 6a shows a 

generalized Sobel filter time slice at the San Andres level  

at t = 0.6 s.  Blue arrows indicate acquisition footprint.  

Figure 6b shows the attribute volume calculated by 

subtracting the kx-ky predicted noise from the original 

seismic data .  While the erroneous noise in the dead trace 

zone is small, it makes us question whether the raw  kx-ky 

predicted noise is an overall good fit to the data.  Figure 6c 

shows the Sobel filter derived from the adaptive subtraction 

filtered seismic data. .  We note that many of the footprint 

artifacts are now eliminated. 
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Figure 4.  Time slices through volumes at  t = 0.5 s:  (a) 

noise corresponding to the kx-ky mask applied to the 

transformed seismic data, (b) weights computed using 

equations 1-3, and (c)  weighted noise using the adaptive 

subtraction algorithm. Notice that the generated 

weights outline the survey area and the area of dead 

traces denoted by the blue arrows is properly assigned 

weight values of zero.  If the values of all the weights 

were 1.0 then (a) and (c) would be identical. 

  

 

 

 
 

Figure 5. (a) Seismic time slice at t = 0.5 s through the 

migrated data volume. Blue arrows indicate acquisition 

footprint.  (b) kx-ky filtered time slice where the 

predicted noise shown in Figure 4a is simply subtracted 

from (a).  Magenta arrows indicate artifacts introduced 

outside the survey boundary.  (c) The filtered data after 

adaptive subtraction. 

 

 

CONCLUSIONS 

 

We present a post-migration footprint suppression 

workflow that is ideally implemented by the seismic 

interpreter. The seismic interpreter chooses seismic 

attributes that are sensitive to a footprint component of 

interest and then designs footprint-suppression filters. 

 

 
 

Figure 6.  Time slices at t =0 .6 s at the San Andres level 

through the generalized Sobel filter volumes computed 

from (a) the original data, and from kx-ky filtered data 

(b) without and (c) with adaptive subtraction.  Blue 

arrows indicate acquisition footprint. Magenta arrows 

indicate artifacts in the dead trace zone.  We now feel 

confident in identifying the anomaly indicated by the 

green arrow as karst. 

 

We find kx-ky noise prediction designed from attribute time 

slices followed by an adaptive subtraction filter suppresses 

footprint and removes a minimal amount of signal.  Lack of 

care in selecting the kx-ky results in removing signal. 

Vertical slices through the rejected seismic noise show both 

incoherent noise and organized reflections, with the latter 

predicted by Hill (1999).  By construction, this workflow 

does not reject long-wavelength components of footprint 

which could adversely impact impedance inversion and 

subsequent processes.  
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