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Summary 
Spectral decomposition has proven to be a powerful means 
to identify strong amplitude anomalies at specific 
frequencies that are otherwise buried in broad-band 
response. We compute Teager-Kaiser Energy for each 
component of  a joint time-frequency representation to  
generated from a 3D survey acquired over a Brazilian deep 
water carbonate reservoir. This nonlinear energy tracking 
algorithm allows us to differentiate between high amplitude 
reservoir and other high amplitude reflections. We calibrate 
our algorithm against synthetic seismic traces generated 
from the well logs and and then apply to the real seismic 
data to reveal important geological features. 
 
Introduction 
Usually, we are not concerned with the total energy of a 
wave but rather with the energy in the vicinity of the point 
we observe it (Sheriff and Geldart, 1995). The most 
common means to estimate the energy of any kind of signal 
is by simply squaring their amplitude samples. A slightly 
more sophisticated means is to compute the envelope of the 
complex trace. Kaiser (1990) introduced a much more local 
energy estimate valid for monofrequency signals that takes 
into account the neighbourhood of each time sample. 
 
Matos and Johann (2007) applied Kaiser’s (1990)  idea to 
seismic signals through the use of the continuous wavelet 
transform and showed that the Teager-Kaiser energy is 
directly associated with the energy of the seismic 
wavefield. They applied this workflow to a clastic reservoir 
and used  the resulting time-frequency representation to 
detect and track anomolously strong seismic events that 
were otherwise buried in the broad spectral response. 
 
In this paper we apply the same workflow to seismic data 
acquired over a Brazilian carbonate reservoir seismic data.  
 
The Wavelet Transform Teager-Kaiser Energy  
 
It is well known that the seismic energy density, E, for a 
monofrequency signal can be expressed as 

22222 2
2
1 ΑfρπΑρωΕ ==  (1) 

and is proportional to the density of the medium, ρ, to the 
square of the frequency, ω (in radians) or f (in Hz), and 
amplitude, A, of the wave (Sheriff and Geldart, 1995, p. 
58). 
 

Using an analogue mass-spring physical model, Kaiser 
(1990) proved that the energy of a discrete time signal at 
time t = n∆t can be expressed as: 
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where m is the mass of  the object suspended by a spring, A 
is the amplitude of the oscilation and x(n) are the samples 
of the discrete time signal. If we consider the discrete mass, 
m, in equation 2 to be a lumped approximation of the 
continuous density, ρ, in equation 1, we note that these two 
equations are identical such that we can use equation 2 to 
estimate the instantaneous Teager-Kaiser (TK) energy of 
the seismic wavefield. Equation (2) is strictly true for a 
mono-frequency wavefield. Interpreting the wavelet 
transform as a joint time-frequency representation of the 
seismic wavefield that can be implemented through  band-
pass filter banks (Mallat, 1999). Matos and Johann (2007) 
estimated the joint time-frequency distribution using the 
continuous wavelet transform (CWT) and computed the TK 
energy for each scale (or band pass filter). 
 
Figure 1 illustrates how our wavelet transform Teager-
Kaiser energy (WaveTeKE) algorithm works. Figure 1a 
shows the acoustic impedance measured in an offshore 
Brazilian well through a producing carbonate reservoir. 
Figure 1b is the corresponding synthetic seismogram, 
Figure 1c is the time-frequency amplitude, A(f,t) and Figure 
1d is the time-frequency TK energy, E(f,t). Note the strong 
event at t=1.9 s in Figure 1e that corresponds to the 
carbonate reservoir oil field. 
 
Application 
 
Masaferro et al., (2004) state that the combined effects of 
variation in depositional facies and diagenetic alteration 
play a key role in controlling variations in sonic velocities 
and thus is acoustic impedance in carbonate systems. 
Chopra and Marfurt (2007) show how the shape or 
geomorphology of reflection patterns,  coupled with 
appropriate models  deposition and diagenesis, further aid 
the mapping of carbonate facies. Thus, both geometric (that 
measure lateral changes) and trace shape (that measure the 
vertical seismic waveform) seismic attributes can be a 
grade aid in the characterization of carbonate reservoirs. 
Figure 2b-d shows horizon slices through several popular  
geometric attribute volumes along the top of the horizon 
displayed in Figure 2a. The two white circles represent 
producer wells while the two white crosses represent non-
producer wells. Figure 3a shows a horizon slice along the 
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top of the reservoir while Figures 3b and 3c two vertical 
slicess close to the wells through the original amplitude 
volume.  
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Figure 1: The WaveTeKE algorithm applied to a Brazilian 
carbonate well log: (a) Acoustic impedance; (b) Synthetic 
seismic trace; (c) The wavelet transform scalogram 
obtained squaring the real-valued Morlet wavelet CWT 
coefficients ; (d) The wavelet transform diusplayed as a a 
filter bank followed by the Teager-Kaiser Energy estimator; 
and (e) The WaveTeKE result  indicates an energy peak at 
t=1.87 s and f=28 Hz. 
 
The seismic trace spectrum is directly related to the shape 
of the seismic trace. Pearson and Hart (2004) showed that 
spectral components can used in carbonate reservoir 
characterization. Specifically, they predicted the porosity of 
a carbonate reservoir from a linear combination of the slope 
from peak to maximum spectral frequency and the ratio of 
the number of positive samples over the number of negative 
samples within a time interval. 
 

Previous work by Matos and Osório (2005), Matos et al. 
(2005), and Liu and Marfurt (2007)  showed how the 
maximum (or ‘peak’) spectral frequency and its associated 
amplitude can be related to important geologic features.  
Here, we will apply  the WaveTeKE measurement to time-
frequency attributes and show how they are directly 
correlated to trace shape. 
 
Following Matos et al. (2005), we extract the peak energy 
using the WaveTeKE algorithm given by equation 2 for the 
whole 3D volume.. Figures 4b and 4c display the peak 
energy and peak frequency, while Figure 4a illustrates a 
formation attribute obtained by picking the maximum 
amplitude within an 80 ms time interval attribute below the 
reservoir. We note that the reservoir area is delineated.. As 
a reference, in both Figures 4b and 4c the upper yellow 
picks represent the top of the reservoir while the vertical 
black dashed lines represent the wells. These lines confirm 
the value of the proposed algorithm, where producers are 
correlated to high, high frequency reflectors while  non 
producers are related to small energy reflections.. 
 
Figure 5a shows the 80 ms time interval attribute that 
displays the minimum amplitude (strongest negative value) 
attribute below the reservoir top that is well-established in 
this field to be  a good indicator of  reservoir quality. Figure 
5b shows the time interval maximum WaveTeKE 
frequency and its associated amplitude plotted together 
using a 2D colour bar.  
 
Conclusions 
We show that the Teager-Kaiser energy can be computed 
for seismic data through the joint time-frequency 
representation. The TK energy appears to be quite effective 
in delineating strong amplitude, high frequency events 
associated with a producing areas of a carbonate reservoir. 
The results obtained with real seismic data show the 
WaveTeKE potential use as an exploratory tool to detect 
energy associated with important geological marks and 
potential exploratory leads. 
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Figure 2: (a) Time-structure map of the the top of the reservoir. Horizon slices along the top horizon  map through (b)most-
positive curvature, c) semblance coherence, and (d)inline amplitude gradient.Notice the strong inline and crossline acquisition 
footprint in the curvature map. 
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Figure 3: (a) Horizon slice along the top reservoir and (b) vertical slices AA’, and (c) BB’ through the seismic amplitude volume. 
Upper black pick denotes the top of the reservoir.  
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Figure 4: (a) Horizon slice through the TE energy volume.(b) Formation attribute map of the TE absolute sum value between the 
top Horizon and 80 ms below WaveTeKE instantaneous amplitude along (c) line AA’ and (d) line BB’. 

(b)(a)
Minimum amplitude

Max

Min

10 80
Peak frequency (Hz)

high

low

Pe
ak

 e
ne

rg
y

++
++

 
Figure 5: 80-ms time interval seismic attributes: (a) Minimum amplitude and b) ),(max

,
tfE

tf
given by equation 2. White 

circles represent producer well locations. Crosses represent non-producer well locations. 


