
W

G

d
d
A
b
l
t

g
©

GEOPHYSICS, VOL. 73, NO. 2 �MARCH-APRIL 2008�; P. P1–P7, 9 FIGS.
10.1190/1.2829986
arping prestack imaged data to improve stack quality and resolution
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ABSTRACT

Accurate seismic imaging requires that a geologic feature
be located at the same lateral and vertical position in images
obtained by 3D prestack migration from different data bins,
such as common-offset or common-angle subvolumes. Mis-
alignment of those images degrades the quality of the stack.
For dipping reflectors and lateral discontinuities, imperfect
imaging causes both lateral and vertical misalignment. In
current practice, the vertical component of the misalignment
is used to estimate updates in velocity and other imaging pa-
rameters; the lateral component is largely ignored. We show
that recent developments in seismic-attribute analysis allow
us to examine the lateral misalignment of prestack volumes
with similar resolution to that achieved in examining vertical
moveout. To measure lateral moveout, we pick maxima from
local 2D crosscorrelations computed between slices from 3D
attribute volumes. We then use these measurements to correct
for the lateral misalignment by applying a warping procedure
to the corresponding slices in the prestack migrated seismic
data. We apply our technique to a 3D land survey acquired
over the Fort Worth basin in Texas, and obtain subtle, but po-
tentially important, improvements in the quality and resolu-
tion of the stack as well as in the attribute images computed
from the corrected data.

INTRODUCTION

The quality of a postmigration stack depends on two related but
istinct factors: the individual quality of each prestack trace and the
egree of compatibility or similarity between the summed traces.
fter prestack migration, we expect to see a high degree of similarity
etween the traces of a common image gather �CIG� because they re-
ate to the same location in the subsurface, although legitimate varia-
ions in the signal as a function of offset, angle, or azimuth form the
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asis of amplitude variation with offset �AVO� and amplitude varia-
ion with angle �AVA� analysis as well as a combinaton of both
AVOA�.

Errors in velocity are a common source of variations between
races, either through inaccurate picking or through incorrect param-
terization of the velocity model. The latter might arise from approx-
mating a piecewise constant interval velocity model by an rms ve-
ocity model or by approximating an anisotropic medium with an
sotropic medium. Whatever the cause, accurate imaging requires
hat the lateral and vertical �time or depth� location of a geologic fea-
ure be the same in every CIG trace, regardless of possible differenc-
s in signal character. Misalignment between the images results in a
meared stacked image.

If a reflector is dipping, an incorrect velocity causes not only verti-
al but also lateral misalignment. Although migration velocity up-
ates lead to lateral and vertical shifts in the position of imaged fea-
ures, current imaging workflows rely on picking vertical residual

oveout of reflectors and commonly do not use lateral misalign-
ent in the image to estimate those updates. This is likely because

eflectors in seismic data are less well defined in the lateral direction
han in the vertical direction. The development of multitrace volu-

etric seismic attributes has dramatically increased our ability to
mage lateral variations sharply in the seismic signal and visualize
ther geologic features that have lateral expression, such as faults
nd fracture zones, channel edges, pinch-outs, and unconformities
e.g., Chopra and Marfurt, 2006�.

Improving the alignment of imaged data by moveout corrections
pplied after imaging and before stacking is another way to enhance
he quality of the stack. Lateral misalignment of imaged data also
ontributes to degradation of stack quality. In this article, we present
warping method to correct for horizontal misalignment between
restack migrated images. We rely on the higher lateral resolution of
ttribute images obtained from the data to measure lateral misalign-
ent.
Lateral moveout corrections change for every image position, and

pplying those corrections deforms the seismic image. The concept
f image registration, or the detection and correction of spatial mis-
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P2 Perez and Marfurt
lignment between images, has had considerable attention in the
edical imaging and image processing fields, where the deforma-

ion process is known as warping �Wolberg, 1990�. In seismic imag-
ng, warping has been used for image registration in time-lapse res-
rvoir monitoring �Nickel and Sonneland, 1999; Druzhinin and
acBeth, 2001; Rickett and Lumley, 2001; Hall et al., 2005, 2006;
all, 2006� and in integrating multicomponent and conventional
-wave data �Fomel et al., 2005�. Grubb et al., �2001� assess AVO
ncertainties through warping and registering multiple images mi-
rated with different velocity fields. To support the joint registration
f P-wave and converted wave data, DeAngelo et al. �2003� identify
nd interpret geologic features with lateral expression, such as chan-
els and faults, in time slices from coherence attribute images by us-
ng an interpretation approach similar to that which we propose.

We begin our discussion by reviewing the basic concepts of image
egistration and warping. Next, we apply these techniques to identi-
y and correct for lateral moveout in prestack migrated seismic data.

e demonstrate the application of prestack warping to improve the
uality of the stack by using a 3D seismic data set from the Fort
orth basin in Texas. We use volumetric seismic attributes to help

dentify and measure lateral moveout and to assess the improvement
n the quality of the stack image.

PRESTACK SEISMIC DATA WARPING

A warping operation is the transformation of an image following
patial mapping. Specifically, for 2D images such as time or depth
lices from a 3D seismic volume, if din�u,v� is the input and dout�x,y�
s the warped image, the mapping assigns a new position �x,y� in the
utput image to every position �u,v� in the input. Wolberg �1990� re-
ers to this point-to-point mapping as the warping function.

The warping process consists of two steps �Wolberg, 1990; Rick-
tt, 2000�. First, we must determine the warping function; then, we
eed to resample the image in the output coordinate system deter-
ined from this mapping. For our purposes, the warping function is

efined at every point in an input 2D seismic data slice from a mea-

Relative shift
(crosscorrelation)

igure 1. A2D crosscorrelation between small windows in data from
wo time slices estimates the local relative misalignment between
hem. The leftmost panel presents two time slices: input �bottom�
nd reference �top�. The corresponding panels in the center present
nlarged versions of the data in two small windows from those slic-
s. The two windows are coincident in size and position. Picking the
aximum lag of the 2D crosscorrelation between them provides a

hift or misalignment vector, illustrated by the gray arrow in the bot-
om center panel. Repeating this operation provides misalignment
stimates at other positions in the images. Modified from Rickett and
umley �2001�.
urement of the misalignment of the image at that point. The mis-
lignment will thus be corrected for by the warping process. If
dx�u,v�,dy�u,v�� is a measurement of the misalignment in each di-
ection, then the warping transformation is given by

dout�x,y� � din�u � dx�u,v�, v � dy�u,v�� . �1�

ereafter, we refer to �dx,dy� as the warping shifts; note that for ease
f notation, we drop the reference to dependency of those shifts on
he position coordinates �u,v�.

Computing the warping shifts requires a reference image, relative
o which we measure the misalignment of each individual image.
he large amount of data involved in seismic applications demands
n automated approach for that measurement. As in other works
Nickel and Sonneland, 1999; Grubb et al., 2001; Rickett and Lum-
ey, 2001; Hall et al., 2005; Hall, 2006�, we compute local crosscor-
elation functions between each image and the reference image and
hen pick the crosscorrelation maximum as an initial estimate of the

isalignment. Figure 1 illustrates the estimation of the warping
unction in two data slices by crosscorrelating corresponding win-
ows of data.

For time or depth slices, the crosscorrelation is a 2D function:

c�u,v,lx,ly� � �
u��mx

mx

�
v��my

my

din�u,v�dref�u � lx,v � ly� ,

�2�

here c�u,v,lx,ly� is a discrete crosscorrelation between the input
mage din and the reference image dref, computed over a window of
ata samples centered on the �u,v� position and for a discrete 2D lag
lx,ly�.

The number of samples in the window along each direction, 2mx

1 and 2my � 1, is small compared to the size of the image in the
orresponding direction. For every data sample in the input slice,
�u,v,lx,ly� becomes a 2D array indexed over integer lags lx and ly in
range of values that is also small compared to the size of the image.
e then pick the crosscorrelation maximum and estimate the warp-

ng function as the lag corresponding to that maximum.
Aconventional and straightforward implementation of equation 2

onsists of two loops: an outer loop over spatial positions �u,v� and
n inner loop over lags �lx,ly�. In the inner loop, cross products are
omputed and summed for all samples in the window. A closer ex-
mination of such an implementation reveals that when the correla-
ion windows overlap, many such cross products and sums are re-
eated for the same lag in computing the crosscorrelation at two spa-
ially close positions. Therefore, this implementation is computa-
ionally inefficient and costly.

For efficiency, most of the authors cited earlier first crosscorrelate
nd pick maxima on a sparse grid of nodes locally and then compute
arping shifts at every point in the image by interpolation and op-

ional smoothing. This was also the case for earlier stages of our
ork �Perez and Marfurt, 2006a�, in which we used a conventional

mplementation of the crosscorrelation computation. In this article,
e apply a more efficient implementation that involves switching

he order of the loops. For a given lag in the outer loop, common
erms are preserved from one spatial position to the next in the inner
oop and the computation proceeds recursively. Though developed
ndependently, our implementation is similar to that of Hale �2006�,
ho discusses efficient computation of crosscorrelations in more de-

ail. This implementation allows us to compute a local crosscorrela-
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Warping prestack imaged data P3
ion and then find a warping function directly from the data for every
oint in the image. In this way, we improve resolution in our estimate
f the warping function and avoid interpolation issues.

Finally, picking the crosscorrelation maxima provides estimates
f the warping shifts, which are integer multiples of the spatial sam-
ling interval in the data. We can think of the crosscorrelation as a
ontinuous function that fits the values computed at the discrete lo-
ations given by the data sampling but whose absolute maximum
ies, in general, at an unsampled location. Finding the location of the
bsolute maximum provides noninteger estimates of the shifts. In a
ast step, we achieve such subsampling precision in estimating the
hifts, computing the location of the maximum by applying the
ewton-Raphson method using the integer-value pick as an initial

stimate. Hall �2006� and Hale �2006� use a similar approach.
To correct for lateral residual moveout, every time or depth slice

n a given seismic volume is warped independently and only in the
orizontal plane �i.e., no vertical shifts�, so the crosscorrelations are
wo-dimensional and the warping function consists of 2D shift vec-
ors. We can think of the warping function thus determined as a dis-
rete realization of an underlying continuous warping transforma-
ion that maps from the input to the warped coordinate system. Con-
eptually, the final warping step places the data in the warped system
nd then resamples them, typically in a grid with the same spacing as
he input image.

Figure 2 illustrates two approaches to implementing a warping
peration. In our implementation, we loop over every node on the
utput grid and find the corresponding position in the input coordi-
ate system. If, as before, we denote the output node position by
x,y�, the mapping implemented is thus

dout�x,y� � din�u�x,y�,v�x,y�� , �3�

here we can think of �u�x,y�,v�x,y�� � �x � dx��x,y�,y � dy�
x,y�� as the original location of the node, prior to the warping trans-
ormation. The mapping in equation 3 operates from the warped to
he input coordinate system �see Figure 2b�. The order is reversed
elative to the mapping defined in equation 1, so this is the inverse of
he warping transformation �Wolberg, 1990�. In our application, es-
ablishing this inverse mapping requires reversing the order of the
erms in the crosscorrelation and picking discussed above. Also, the
otation �dx��x,y�,dy��x,y�� highlights the conceptual difference
etween the warping shifts here and those in the previous discussion.

As described, warping is a computationally efficient collection of
oint-by-point operations. In general, the discrete realization of in-
erse mapping provides a position �u�x,y�,v�x,y�� in the input coor-
inate system that does not necessarily match a location in the input
ampling grid �see Figure 2b�. To implement the mapping in equa-
ion 3, we must use interpolation to estimate a data value din�u�x,y�,
�x,y�� at the unsampled position. Our preferred interpolation meth-
d is local and is limited to the four data values derived by inverse
apping that are closest to the interpolation location; we use simple

ilinear interpolation. Short, local interpolation operators conform
o the relatively rough character of the data �some volumetric seis-

ic attribute images are particularly rough� when examined in time
r depth slices and specifically avoid smearing the image across
aults and other discontinuities.

For application to 3D prestack imaged data, we independently
arp every one of the data subvolumes derived by sorting the data

typically binning by offset, angle, or azimuth�. For every subvol-
me, warping is implemented slice by slice, and the warped slices
re reassembled into a warped version of the volume. As a reference
or the crosscorrelation, we typically use the current version of the
tack; another possible choice for reference would be a short-offset
r short-angle partial stack. Figures 1 and 3 illustrate the process for
n individual slice, resulting in the warped slice at the bottom of Fig-
re 3. Finally, we merge all of the warped subvolumes, sort them into
IGs, and stack them.

WarpedInput

a)

b)

igure 2. Two possible warping implementations: �a� looping over
ositions in the input image and �b� looping over positions in the out-
ut or warped image. Solid black lines show a corresponding feature
n the input image and the warped image. In �a�, the white dot marks
position in the discrete grid of the input image as well as the corre-

ponding position in the warped image determined by mapping from
he input to the warped image, as indicated by the gray dotted arrow.
he warped position does not in general map onto a sampling grid
oint. Construction of the warped image proceeds by estimating the
nknown values at grid points �gray dots� by interpolating from the
nown but irregularly sampled values at the warped positions. This
an be a computationally complex operation. In �b�, the white dot
arks a position in the grid in the output image, and the gray dotted

rrow shows the corresponding location in the input grid. Note that
he direction of the arrow is reversed, indicating the mapping in �a�
nd �b� are inverse to each other. The white dot in �b� does not in gen-
ral fall on a grid point, but simple point-by-point interpolation from
he known and regularly sampled input values �gray dots� provides
n image value at the desired output position.

Original Reference

2D

Crosscorrelation

Warping Better
match

Warped

igure 3. Shifts computed from the 2D crosscorrelation can be used
o distort the slice data in a space-variant way so that the alignment of
ndividual features of the warped image better matches those of the
eference.
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P4 Perez and Marfurt
We prefer to estimate our warp function from selected attribute
mages obtained from individual seismic volumes rather than from
he conventional seismic data. We choose volumetric seismic at-
ributes that enhance the appearance of discrete lateral discontinui-
ies and flexures and eliminate detailed sensitivity to the seismic
avelet. We also choose the attribute volume computed from the

tack as a reference in the crosscorrelation and shift estimation pro-
ess. We compare images from the warped stack volume to corre-
ponding images in the input stack as a means to assess the perfor-
ance of the warping process. To assist in this assessment, we also

ompute attributes from the warped data and compare them to the at-
ributes computed from the input data. Figure 4 summarizes the pro-
essing flow.

APPLICATION TO FIELD DATA

We applied the processing flow of Figure 4 to a land data set from
he Fort Worth basin. The data available to us consisted of prepro-
essed �i.e., with statics and noise attenuation applied� common-
idpoint �CMP� gathers. We migrated the data with a prestack time-
igration process that outputs the imaged data into common-angle

ins; in this case, we binned the output in the 0°–65° range, with 1°
pacing between bins.

Angle binning allows for a simple and very effective correction
or wavelet stretch that increases the effective fold and quality of the
tack and the resolution of large-angle imaged data �see Perez and

arfurt, 2006b, 2007�. The correction for stretch involves applying
spectral shaping operator that balances the spectral content of the
igrated data across angles, relative to a partial stack in a narrow

ange of near-zero angles. If present, differences in spectral charac-
er in the data can negatively influence the accuracy in estimating
arping shifts, as discussed by Fomel et al. �2005�. For this reason,

Data

Sort

Volume
bin 1

Compute
attributes

Slice and
crosscorrelate
to reference

Warp
seismic

Stack
seismic

Volume
bin 2

Compute
attributes

Warp
seismic

Volume
bin n - 1

Compute
attributes

Warp
seismic

Volume
bin n

Compute
attributes

Warp
seismic

Compute
attributes

. . . . .

. . . . .

. . . . .

. . . . .

Warping

Slice and
crosscorrelate
to reference

Slice and
crosscorrelate
to reference

Slice and
crosscorrelate
to reference

igure 4. Processing flow to warp and then stack data from individu
he warping function can be computed by crosscorrelation between s
r between slices of attribute data. For the former, the reference is t
olume; for the latter, the reference is taken from an attribute volum
tack. In all cases, the warping function is applied to the original seism
orrection for stretch also suitably conditions the data for the warp-
ng process. Applying spectral matching operators is also a prepro-
essing step in time-lapse applications. Although the main purpose
s to compute meaningful differences, spectral shaping also helps to
mprove the warping process �Druzhinin and MacBeth, 2001; Rick-
tt and Lumley, 2001; Hall et al., 2005, 2006; Hall, 2006�. Our mi-
ration process also included a data-dependent vertical residual
oveout correction, so that little or no vertical �i.e., time� misalign-
ent was present across angles in the migrated CIGs before warping
as applied.
We computed coherence and curvature attributes �e.g., Chopra

nd Marfurt, 2006� for the postmigration stack and for each of the
ommon-angle subvolumes before performing several warping pro-
edures. To find the warping shifts, in each of those procedures we
rosscorrelated data from each of the attribute subvolumes �i.e., the
ndividual angle bins� with the corresponding attribute volume from
he stack. We also computed the warping function by crosscorrelat-
ng the migrated data rather than an attribute volume. Best results
ame from using the most negative curvature attribute to estimate
he warping function. As opposed to coherence attributes, computa-
ion of curvature attributes involves long operators and provides an
mage of long-wavelength structural features �Chopra and Marfurt,
006�. For this data set, the curvature operator length was roughly 30
imes the trace spacing, or about 1 km. In other work in this area, cur-
ature has been very useful in picking fracture systems, faults, and
oints with little or no displacement �Hakami et al., 2004; Blumen-
ritt et al., 2006�.

Figure 5 illustrates the estimation of the warping shifts for the
lice at t � 1.36 s. Even after prestack migration, the image from
eismic data in the individual bins is noisy and poorly resolved com-
ared to the stack. A similar comparison between the stack and each
ndividual bin for the attribute data reveals the attribute image from

the stack is still better quality, but the differences
with the attribute images from individual bins are
not as marked as with the regular seismic data.
The most negative curvature images in Figure 5c
and d highlight major geologic features, such as
the two southwest-northeast-trending faults and a
system of less pronounced lineaments that run
parallel and perpendicular to them. In a time slice
from the regular seismic data, we also have lateral
variations that reflect geologic structure cutting
the time slice; at some places, the slice cuts a peak
and at others it cuts a trough, even though there is
no discontinuity. Because the effect of the seismic
wavelet has been removed in the curvature com-
putation, the lineaments we see are geological or
they represent noise. The long-wavelength opera-
tor in the curvature computation removes noise.
Therefore, it is more fruitful to measure local mis-
alignment by crosscorrelation between the rela-
tively isolated and distinct features in the curva-
ture images than between the smoother and noisi-
er images from the regular seismic data.

We computed crosscorrelations on local win-
dows for all points in the images, such as those in
Figure 5c and d. We used a square crosscorrela-
tion window with 21 traces �2200 ft, 670 m� on
each side and allowed a maximum crosscorrela-
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Warping prestack imaged data P5
ion shift of eight traces �880 ft, 270 m� both inline and crossline.
hifts from crosscorrelations in Figure 5e and f are rough in charac-

er and are presumably biased by noise. Even though significant
hifts follow many of the features from the curvature images, large
hift values are also present in some areas where noise dominates
nd there are no significant features.

The seismic data slices to which warping is applied are generally
mooth. Therefore, the warping shifts should also be smooth; large
r abrupt local variations in the warping shifts result in undesirably
agged or locally distorted warped images �Wolberg, 1990; Rickett
nd Lumley, 2001�. On the other hand, the maximum crosscorrela-
ion values are good indicators of the signal content of the data �Fig-
re 5g�; large crosscorrelation values align along the location of the
ajor and most significant geologic features, and low values high-

ight zones with poor or no signal. We suggest that besides being
mooth, the magnitude of the warping shifts should also be governed
y the most significant geologic features. Specifically, in an area
ith low values of the maximum crosscorrelation coefficient, that
agnitude should be similar to the values of raw crosscorrelation

hifts computed for nearby areas with high values of the maximum
rosscorrelation, regardless of the local value of those raw shifts. If
e visualize the warping as a motion in the image, shifts from the ar-

as of high crosscorrelation pull the image, and areas with little or no
ignal are passively dragged. A similar concept is presented by Hall
2006� and implemented by modeling the warping as the deforma-
ion of a mesh of particles connected by springs.

Our implementation is much simpler. As suggested, we used the
agnitude of the maximum crosscorrelation as an indicator of the

elative significance of the raw shift values. Thus, we produced final
stimates of the warping shifts �Figure 5h and i� as weighted averag-
s of the raw crosscorrelation shifts, using as weights the corre-
ponding maximum crosscorrelation values, on square windows
ith 21 traces on each side. To preserve vector fidelity, we average

he magnitude and direction of shift vectors computed at every posi-
ion from the �dx,dy� components and then compute new values of
hose components from the average magnitude and direction. The
ize of the window matches our rough estimate of the average sepa-
ation between major geologic features in the slices from the curva-
ure attribute data. As desired, the final shift values are smooth. Be-
ause of the weighting choice, they also honor those features with
he largest crosscorrelation coefficients.

Figures 6 and 7 illustrate the impact of warping on the quality of
he stack and show that warping results in an overall improvement in
he signal-to-noise ratio �S/N� of the stack and a
harper image of the southwest-northeast faults.
here are subtle, but potentially very important,

mprovements in the definition and alignment of
hese faults in the warped stack. Faults are sharp-
ned without exception by warping �Figures 6
nd 7�. Warping attenuates most of the steeply
ipping noise leaking through the shallower
imes in the original stack �Figure 7�. On the other
and, minor deterioration in quality is visible at
he edges of the warped image. Warping also re-
ults in improved imaging of the large curvature
eatures in the most negative curvature images
Figure 8�. Finally, after warping, the overall co-
erence of the stack increases as a result of im-
roving the quality and S/N of the stack �Figure
�.

a)

A

Figure 6. Com
stack, �b� stac
the southwest
proved by wa
Figure 7.
DISCUSSION

Moveout is at least a 3D vector with lateral and vertical compo-
ents; however, the lateral and vertical components cannot be mea-
ured with similar precision in a single data set. Compared to vertical
oveout, conventional seismic data provide relatively poor defini-

a) b)

c) d)

e) f)

g)

h) i)

Amplitude

Positive

Negative

0

Curvature (s/m2)

1.2

-1.2

0

Shift (m)

250

-250

0

Shift (m)

150

-150

0

Crosscorrelation

0.9

0.0

1 km

N

igure 5. Estimation of warping shifts for a time slice at t � 1.36 s.
ime slices from �a� the stack volume, �b� the 20° bin subvolume, �c�

he most negative curvature volume computed from the stack, and
d� the most negative curvature for the 20° bin. Raw shifts �e� in the
nline �east-west� direction, computed by crosscorrelating between
c� and �d�, and �f� in the crossline �north-south� direction. �g� Maxi-
um value of the crosscorrelation. Final shifts �h� in the inline direc-

ion, computed by crosscorrelation-weighted averaging, and �i� in
he crossline direction.

b)

A'

Amplitude

Positive

Negative

0

1 km

n of time slices at t � 1.36 s before and after warping. �a� Original
warping. The warped image is less noisy and more sharply resolves
ast faults. Arrows point to specific locations where the image is im-

The dotted line in the left image shows the location of the inline of
pariso
k after
-northe
rping.
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P6 Perez and Marfurt
ion of lateral moveout. This is probably why lateral moveout is not
ncluded in current imaging workflows. We use volumetric seismic
ttributes as a source of lateral moveout measurements because of
he increased lateral resolution and definition they provide.

As an alternative to the cascaded vertical residual moveout cor-
ection followed by lateral warping presented in this article, we
ould consider implementing a 3D correction for the full residual
oveout vector. However, independent estimation of vertical and

orizontal moveout on different data sets will result in quantities that
re, in principle, decoupled. In other words, the ideal 3D vector will
iffer from the vector assembled from those independent measure-
ents. Our cascaded approach provides a robust way to avoid these

ssues; it should work as long as vertical moveout is dominant and
ateral moveout is relatively small.Although further quantification is
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igure 7. Comparison images for inline AA�. �a� Original stack, �b�
rrows point to specific locations where the image is improved by w
f inline AA� is shown in Figure 6.
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igure 8. Comparison before and after warping time slices at t � 1
egative curvature volumes. �a� Original stack, �b� stack after warp
pecific locations where the image is improved by warping.
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igure 9. Comparison before and after warping time slices at t � 1.3
olumes. �a� Original stack, �b� stack after warping. Coherence is in
ng, indicating a better stack.
eeded, it seems reasonable to expect that this is true where dip is
ow to moderate. If lateral moveout is large, then the order of the
teps can be switched in the cascade application.

It is also important to note that seismic images binned by subsur-
ace parameters such as reflection angle are coupled across bins be-
ause those parameters are estimated as part of the migration. For in-
tance, velocity errors translate as errors in the angle estimation, so
he image is shifted across angles. Thus, residual moveout becomes
4D vector — even 5D if subsurface azimuth is included in the bin-
ing. Our cascaded and simplified approach is all the more justified
n our case study because dip is low and vertical moveout is domi-
ant. If residual moveout is large in both horizontal and vertical di-
ections or if there are conflicting dips, a simple point-to-point warp

will likely not properly correct for the residual
moveout. A residual convolutional migration op-
erator will be needed.

Computing crosscorrelations and picking
maxima at every data point, instead of on a sparse
grid, provides strength and robustness to our
warping implementation. Besides avoiding inter-
polation issues, the fine sampling allowed by effi-
cient computation of crosscorrelations provides
good resolution in all stages of the shift estima-
tion and analysis process. However, there is a
trade-off in resolution versus stability and robust-
ness of the computation, and it is related to the
size of the crosscorrelation window. The larger
that size, the more stable and less resolved the raw
shifts will be. A further limitation in resolution
arises from the estimation of a smooth set of
warping shifts, in turn related to the size of the
window in the crosscorrelation weighted averag-
ing. As noted above, in the application presented
here, the size of those windows is consistent with
a rough estimate of the expected dominant wave-
length of the warping shifts.

In relation to his work with poststack data,
Rickett �2000� singles out the presence of noise
and the related occurrence of cycle skipping in
the crosscorrelation as a major issue for the robust
and accurate estimate of shifts in the warping
function. It is even more problematic in our appli-
cation dealing with prestack data. In the first
place, we relied on applying common noise-at-
tenuation procedures �e.g., f-k filtering, f-x de-
convolution, or other multichannel filtering� to
the prestack migrated data. As noted earlier �see
“Application to field data”�, relative to the stack,
prestack attribute images are less noisy than the
corresponding prestack images from convention-
al seismic data. The reduction in noise content is a
convenient side benefit of using attribute data for
warping estimates. Finally, the crosscorrelation
weighted average provides an additional reduc-
tion of noise in the raw shifts.

To further constrain and stabilize the shift com-
putation, we could invoke consistency in the vari-
ation of shifts across different bins to support fil-
tering and smoothing the raw shifts in that do-
main. We could also enforce consistency across

fter warping.
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ins by crosscorrelation between data from neighboring bins. This
rocedure computes bin-to-bin incremental shifts; summation of the
ncremental shifts in an integration computation provides cumula-
ive shifts to the reference.As an added benefit, this alternative helps
ddress the presence of large differences in spectral character and
ontent in the data across bins and relative to the stack, as suggested
y Perez and Marfurt �2006a�.

As discussed, the correction for stretch in angle-binned migrated
ata provides our preferred way of dealing with the issue of spectral
ifferences in the data. For other binning, we note that major fac-
ors influencing spectral differences, such as attenuation, spherical
preading, and migration stretch, are predominantly time variant.
herefore, if lateral variation in spectral character �i.e., at constant

ime or depth� is small, we would expect that the spectral differences
ould be treated approximately by balancing operators that are con-
tant over a given time or depth slice.

Other suggested applications for our work include the use of
arping shifts as input to tomographic estimation of velocity up-
ates or as a diagnostic of quality and associated risk in an imaging
roject.

CONCLUSIONS

The development of volumetric seismic attributes and associated
nterpretation workflows currently allows us to measure lateral mis-
lignment in 3D-imaged data prior to stack. We have introduced an
utomated warping procedure to measure and correct lateral mis-
lignments and thus improve the quality and resolution of the
tacked image. Our method is applied to uninterpreted time slices
nd, because it does not rely on the presence or definition of reflec-
ors, it is applicable in areas of complex geology or in other situa-
ions where interpretation of reflectors is difficult. On the other hand,
he method performs better in the presence of geologic features with
lateral expression, such as faults and fracture zones, channel edges,
inch-outs, and unconformities. Preprocessing the data to mitigate
ossible spectral differences between data bins is a prerequisite for
pplying the warping process. As a side benefit, the spectral balanc-
ng might also attenuate some of the noise commonly present in
restack data.

We envision that a new generation of tomography algorithms can
ake advantage of full-vector moveout information to determine bet-
er constrained and more accurate velocity models.At the very least,
nterpretation of 3D residual moveout information can provide in-
ight into the quality and risk associated with particular imaging
rojects and can also help determine whether factors such as lateral
elocity variation or anisotropy are treated properly.
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