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Summary 
 
Enhancement of seismic resolution for better reservoir 
characterization is one of the ultimate goals of seismic 
digital processing. Two of the major limitations to seismic 
resolution can be attributed to attenuation and dispersion – 
intrinsic attenuation and dispersion due to conversion of 
seismic to other forms of energy, and geometrical 
attenuation and dispersion due to scattering and 
transmission such as that associated with friendly multiples. 
We hypothesize that since time-frequency decomposition 
provides accurate amplitude and phase estimates of each 
spectral component that it can be a tool to not only 
spectrally balance the seismic data, but also help 
differentiate between intrinsic and geometrical attenuation. 
We find statistical time-frequency spectral balancing of the 
amplitude components which forms the basis of spectral-
ratio Q-estimation techniques to be straightforward. 
However, we find phase dispersion compensation to be 
more difficult yet more promising because phase 
measurements are intrinsically more accurate than 
amplitude measurements. We test our application on a 3D 
land survey acquired over the Central Basin Platform, west 
Texas and find we are able to both increase the bandwidth 
of the data and sharpen the unconformities. 
 
Introduction 
 
Seismic waves propagating through the subsurface undergo 
strong energy dissipation and velocity dispersion due to 
both anelasticity and heterogeneity within the earth. High 
frequency data components suffers more loss than low 
frequency components that traveled along the same ray 
path, resulting in a relatively narrow-band, low-frequency 
spectrum. In general, the high frequencies travel at different 
velocities than the low frequencies resulting in a significant 
change in waveform shape  Due to above two effects, the 
seismic wavelet become noticeably stretched, and display 
“ringing” characteristic as the travel-time increase. 
 
Spiking deconvolution and time-variant spectral flattening 
are commonly used and often very effective means to boost 
the high frequency energy of the seismic data. However, if 
a given spectral component is more than 90 degrees out of 
phase with the reference frequency, spectral flattening will 
not compress the wavelet.  
 
In contrast, inverse Q filtering (sometimes called Q-
deconvolution or Q-compensation) attempts to correct  for 
both the high frequency magnitude loss and phase 
dispersion through a process of backward wave 
propagation, typically using a frequency-independent Q 

model  (e.g. Futterman, 1962; Kjartansson, 1979; Robinson, 
1979). Significant improvement in spectral resolution is 
obtained when using Q amplitude and dispersion effects 
from either VSPs (Chopra and Alexseev, 2004) or well logs 
(Singleton et al., 2006). However, Irving (2003) and Wang 
(2002, 2006) show that the simultaneous estimation of 
amplitude compensation and phase correction from seismic 
alone poses significant instability problems that need to be 
carefully addressed.  
 
Our approach differs and compliments those described 
above in two ways. First, we will treat the spectral 
magnitude and phase compensations separately. Second, 
since we anticipate that significant dispersion is due to 
geometric in addition to intrinsic attenuation, we will not 
restrict ourselves to compensating for the phase using the 
classical Q models. Our approach is motivated by an 
interpretational bias that seismic acquisition and processing 
results in seismic phases (including travel times) that are 
quite accurate but seismic amplitudes that are only 
approximate. Furthermore, out goal is to improve the 
resolution of seismic data that are in the hands of the 
interpreter, and have thus already been processed, stacked 
and migrated. Routine seismic processing usually includes 
some form of spectral balancing, either through 
deconvolution or some time-variant approaches.  
 
We begin by decomposing the original seismic data into 
spectral magnitude and phase components using a matching 
pursuit algorithm described by Liu and Marfurt (2006). 
Next we statistically flatten the amplitude spectrum without 
touching the phase.  Since the computed phase ranges 
between -180 and +180 degrees, we need to first unwrap 
the phase before phase compensation. Once balanced and 
phase compensated, we reconstruct the data through simple 
Fourier synthesis at each time sample.  
 
Spectral balancing 
 
Because those surface-consistent amplitude corrections, 
geometric spreading corrections, deconvolution, and time-
variant spectral balancing may have been applied to the 
data before we receive the migrated, stacked volume, we do 
not anticipate that model-driven spectral balancing 
approaches such as those used by Wang (2006) will be 
effective. Since we are beginning with post-stack, migrated 
data, Instead, we make a simple assumption that the  
reflectivity character of the subsurface geology is white 
when averaged over a finite time window of thickness T 
over the entire survey, which is in general a good 
approximation other than for  very small surveys over flat 
reflectors. The average spectral magnitudes are thus 
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To spectrally balance the data, we simply compute 
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Where, ]),(max[ >< tfaε  denotes a user-defined noise 
threshold, which prevents low amplitude noise from being 
overly amplified.  
 
Figure 1 shows the comparison of two spectra before and 
after spectral balancing. This normalization retains the 
originally strong low frequency and enhances the originally 
weak high frequency magnitudes, which, as a result, 
flattens the spectra of the data (Figure 1). Since every time 
slice is flattened in exactly the same way, lateral changes in 
continuity are preserved.  

 
Phase correction 
 
In general, seismic acquisition and processing does an 
excellent job in retaining accurate signal phase.  Although 
less frequently used in the interpretation of spectral 
decomposition volumes, every time-frequency component 
has both a magnitude and a phase. Because of causality 
(Futterman, 1962), phase dispersion is always coupled with 
amplitude attenuation during the seismic wave propagation 
through the subsurface of the earth. As a consequence, the 
seismic wavelet becomes noticeably broader with 
traveltime, especially for low values of Q.  
 
Aki and Richards (2002)，and Wang (2002) provide good 
summaries of the analytical solution of the scalar wave 
equation for anelastic media in the frequency domain. For a 

constant Q model, we relate a signal at t=0 to one that has 
undergone attenuation and dispersion at time t as: 
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Where, f0 is a reference frequency, and γ is a constant given 
by: 
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The phase part of equation 3 can be rewritten as 
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Equation 5 shows the phase including two parts: the phase 
shift (2πft) caused by time delay and the phase dispersions 
resulting from finite values of Q. For the case of no 
attenuation and dispersion, Q is infinity and γ is zero, this 
case corresponds with a homogenous model in which φ is 
equal to 2πft. 
 
Inverse Q filtering is a backward wave propagation process. 
In principle, we simply need to subtract the dispersion term 
in equation 5 from the time-frequency phase calculation. 
φ(f,t) has three general components: 
1. φL(f,t)=2πft which is the linear phase part caused by the 
time delay, 
2. φQ(f,t) which is a nonlinear phase delay  that depends on 
both intrinsic and geometric Q dispersion, and  
3. φG(f,t) which is directly related to the underlying geology 
and impedance of the layers, including 1800 phase changes 
associated with negative reflection coefficients,  ±900 phase 
changes associated with thin bed tuning and upward 
fining/coarsening, as well as more complicated phase 
changes due to stratigraphic layering.  
 
Our objective is to retain φL(f,t) and φG(f,t) and remove the 
effects of φQ(f,t) to compensate for dispersion to obtain 
φcomp(f,t). The sum of the all complex frequency 
components will then give the spectrally balanced, phase-
compensated reconstructed data:  
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In Figure 2a we show a seismic line extracted from a 3D 
survey acquired over the Central Basin Platform, west 
Texas. In Figure 2b we show the impact of spectral 
balancing (equation 2) followed by waveform 
reconstruction (equation 6) but without any change in phase. 
The average magnitude of 2a and 2b are shown in 3a and 
3b respectively. Obviously, the spectrum of 3b is much 
broader than that of 3a. We have evaluated two means of 
phase compensation. For the first one, we again assume 
that reflectivity character of the subsurface geology is white  

Figure 1:  Comparison of spectra (a), (b) before  and (c), (d) 
after spectrum balancing. 
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when averaged phase over a finite time window of 
thickness T over the entire survey, which means that 
<φG(x,y,f,t)>=0. Hence the subtraction of 2πft from the 
average phase obtained from spectral decomposition gives 
the dispersion trend, which is then used in phase 
compensation. This approach, like that used in spectral 
flattening, is purely statistical. Because of wrap-around, we 
cannot simply average φ (f,t,x,y) over a window as we did 
with the magnitude. Rather, first we must unwrap it. Stark 
(2006) has shown phase-unwrapping of the instantaneous 
phase to be a very powerful interpretation tool. We used a 
crude, frequency-by-frequency component phase 
unwrapping for each trace and display the result in Figure 
3c. Note that there are some vertical stripes that remain in 
the data probably due to errors in the unwrapping. These 
errors may explain the artifacts seen in the statistical phase 
compensation result displayed in Figure 2c. 

 
An alternative approach is model-based Q-compensation 
with the value of Q being estimated by either the interpreter 
or through some optimization scheme. Zhang et al (2002) 
calculated Q through peak frequency and dominant 
frequency using a least square scheme, while Bachrach et al 
(2006) presented a layer-based Q inversion approach. We 
chose a simple scanning method which ran a suite of Q 
panels that changed only the phase (and not the magnitude) 
and computed the L2 norm of the dephased results. 
Theoretically, a good Q model produces more spiked 
results, thereby resulting in a stronger L2 norm.  
 
We used the above simple scanning method to obtain a 
value of Q=50, with the predicted phase changes displayed 
in Figure 3d, Applying this model-based Q-phase 
correction to our previous spectrally-balanced data shown 
in Figure 2b, provides good wavelet compression at our 
target level (Figure 2d). 

Figure 2:  The original seismic (a), spectral balancing (b), phase 
compensation results (c) and (d) using statistical approach and 
constant Q=50 respectively. Yellow arrows show the areas on 
(b) that have high resolution than (a), while maganta arrows 
show the events  become sharpening from (b) to (c) or (d).  

Figure 3:  The average spectral magnitude before balancing (a), 
and after balancing (b), the average phase (c) (2πft part is 
subtracted) , and phase (d) for Q=50 (2πft is subtracted). 
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Discussions 
 
We have chosen the line shown in Figure 2 because it 
provides a very clear image of the Wolfcamp Unconformity. 
If our spectral balancing and phase compensation is poor, 
we might expect to see ringing events that interfere with 
each other. In contrast, a good spectral balancing and phase 
compensation will provide not only higher frequency 
events between the previously seen lower frequency 
reflectors, but further sharpen the Wolfcamp Unconformity.    
 
It is important to remember that any kind of spectral 
balancing (including that provided by predictive 
deconvolution) rescales the data, such that we cannot create 
meaningful difference plots. However, Figures 2b-d are all 
plotted at the same scale. Yellow arrows indicate the 
Wolfcamp unconformity. We note that the simple spectral 
balancing provides improved resolution over the original 
data. The additional phase compensation displayed in 
Figures 2c and 2d provide further improvements on spectral 
balancing alone (magenta arrows). However, phase 
unwrapping as we currently implement it introduces 
undesireable artifacts.  
 
Conclusions 
 
We have shown how time-frequency decomposition can be 
used to spectrally balance and phase compensate 3D 
migrated data volumes. We find that statistically balancing 
the magnitude components almost always provides 
improved resolution (though if previously balanced these 
changes can be small) regardless of the preprocessing of 
the seismic data.  Explicit phase compensation further 
enhances the shape of the seismic wavelet. We find 
statistical phase compensation after phase unwrapping to be 
promising, but prone to unwrapping errors. In contrast, a 
model-based Q approach is smoother and therefore more 
robust. We remain optimistic that in the future that the 
phase component of the time-frequency data can be utilized 
to differentiate intrinsic vs geometric dispersion effects, or 
perhaps to even estimate frequency-dependent values of Q.  
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