
URTeC Control ID 1619856         1 

 

URTeC Control ID Number: 1619856 
 

Distance Metric Based Multi-Attribute Seismic Facies Classification to 
Identify Sweet Spots within the Barnett shale: A Case Study from the 
Fort Worth Basin, TX 
Atish Roy, University of Oklahoma 
Vikram Jayaram, Oklahoma Geological Survey 
Kurt Marfurt, University of Oklahoma 
 
Copyright 2013, Unconventional Resources Technology Conference (URTeC) 

This paper was prepared for presentation at the Unconventional Resources Technology Conference held in Denver, Colorado, USA, 12-14 August 2013. 

The URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract submitted by the author(s).   The contents of this paper 

have not been reviewed by URTeC and URTeC does not warrant the accuracy, reliability, or timeliness of any information herein.  All information is the responsibility of, and, is 

subject to corrections by the author(s).  Any person or entity that relies on any information obtained from this paper does so at their own risk.  The information herein does not 

necessarily reflect any position of URTeC.  Any reproduction, distribution, or storage of any part of this paper without the written consent of URTeC is prohibited.   

 

 
Summary 
 

Conventional reservoirs benefit from a long scientific history that correlates successful plays to seismic 

measurements through depositional, tectonic, and digenetic models. Unconventional reservoirs are less well 

understood, however benefit from significantly denser well control. Thus, allowing us to establish statistical rather 

than model-based correlations between seismic data, geology, and successful completion strategies. One of the more 

commonly encountered correlation techniques is based on computer assisted pattern recognition.  The pattern 

recognition techniques have found their niche in a plethora of applications ranging from flagging suspicious credit 

card purchase patterns to rewarding repeating online buying patterns. Classification of a given seismic response as 

having a “good” or “bad” pattern requires a “distance metric”. Distance metric “learning” uses past experiences 

(well performance) as training data to develop a distance metric.  Alternative distance metrics have demonstrated 

significant value in the identification and classification of repeated or anomalous behaviors in public health, 

security, and marketing. In this paper we examine the value of three of these alternative distance metrics of 3D 

seismic attributes to the identification of sweet spots in a Barnett Shale play.  

 
 

Introduction  
 

Similarity of waveforms or attribute patterns along a horizon to those about good and bad wells is a well-established 

practice in seismic data interpretation. In such studies, typically, the interpreter compares a vector of samples (e.g. 

Johnson, 2000) or attributes (e.g. Michelena et al., 1998) extracted from productive or non-productive wells to every 

trace along the horizon. Poupon et al. (1999) correlated wells to seismic waveforms, where the supervision was not 

only the actual seismic about the well but also a suite of synthetic seismic traces generated through petrophysical 

modeling and fluid substitution. The performance of these algorithms can depend delicately on the manner in which 

distances are measured. Distance metrics are a vital component in many applications ranging from supervised 

learning and clustering to product recommendations and document browsing. Since, designing such metrics by hand 

is difficult, we look at the problem of learning a metric from exemplars. In particular, we consider relative and 

qualitative exemplars of the form “P is closer to Q than P is to R”. In essence, a distance metric is a mathematical 

operator that conveys how similar two (possibly vector-valued) members of a set compared with a single, scalar 

value, based on a notion of similarity. The most common and most easily understood waveform similarity metric is 

based on Euclidian distance. 
 

In this paper, we discuss three different schemes of distance measures to classify 3D seismic facies:  the minimum 

Euclidean distance (MED), spectral angle mapper (SAM) and the Bhattacharya distance, to quantify similarity to a 

given suite of wells. The use of such well control makes this a “supervised” learning task, with each seismic voxel 
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being clustered with the most similar well. Depending on our distance scalar, we may choose to leave some voxels 

as “unclassified”.   

 

We begin our analysis by providing brief formulations of the three distance metric methods utilized in the paper. We 

then summarize the training step and the generation of seismic facies volumes. Lastly, we discuss how each distance 

metric uniquely identifies and maps facies for sweet spot detection within the Barnett shale. 
 

 

Minimum Euclidean Distance  

 
Throughout this paper we have compared two types of vectors. One is the attribute data-vector Pn, which are the 

normalized attribute values at each voxel location n. The other is the well data-vector Qw, which is the average of 

the attribute data-vector around each well location w. In a Cartesian coordinate system, the Euclidean distance 

between vectors Pn and Qw is described as the length of the distance connecting the two vectors. This distance metric 

is valid and can be extended to an N-dimensional space, where n is the number of seismic attributes at any voxel. 

The formulation of the distance between Pn and Qw for a single well location w is given by  

                                     √∑ |     |  
   ,……………………. (1) 

where,    is the vector at     voxel and    is the vector at w
th

 well.  

Also, to be noted that the distances such as the Euclidean distance, have some well-known properties such as  

 d(P, Q)  0 for all p and q and d(P, Q) = 0 only if  P=Q (Positive definiteness) 

 d(P, Q) = d(Q, P) for all p and q (Symmetry) 

 d(P, R)  d(P, Q) + d(Q, R)   for all points P, Q, and R (Triangle Inequality),  

 

where, d(P, Q) is the distance (dissimilarity) between points (data objects), P and Q are vectors. A distance that 

satisfies these properties is a metric, and such a space is called a metric space. 

The Euclidean distance is a special case of Mahalanobis distance measure, which is formulated as
T

sMahalanobid )()(),( 1
QPQPQP   . When the covariance matrix, Σ, is identity matrix, the Mahalanobis distance 

is the same as the Euclidean distance. 

Spectral Angle Mapper  

 

The mathematical formulation of SAM attempts to obtain the angles formed between the reference well data-vector 

Qw, and the attribute data-vector Pn, treating them as vectors in a space with dimensionality equal to the number of 

attributes (Kruse et al., 1992; Boardman, 1992). SAM presents the following formulation:  

                                                 ∑   

√∑       √∑    
……………………. (2) 

where, α is the angle formed between the well data vector and the attribute data vector. The expression is simply the 

dot product of vectors P and Q. The SAM value is expressed in degrees where α is the angle subtended by the two 

vectors P and Q, higher the angle means better the separation between the two vectors. The angle α, determined by 

     , presents a variation anywhere between 0 degree and 90 degree. Equation 2 can also be expressed as  

                                                  
∑   

√∑       √∑    
 ……………………. (3)  

where, the best estimate acquires values close to 1. 
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The Bhattacharya Distance  

 

In this metric, we use a probability distribution functions to measure similarities or dissimilarities between two 

PDFs. Initially we define a 2D latent space grid with uniformly defined control points K and we project the posterior 

probabilities of the vectors onto the grid points k=1,2,….,K. Let Rwk be the posterior probability distribution 

corresponding to the w
th

 well data-vector Qw, at k
th

 grid location of the latent space (Figure 1a). Let Rnk be the 

posterior probability projected at k
th

 grid point, of any n
th

 voxel seismic attribute data-vector Pn (Figure 1b). Thus 

each vector Qw and Pn forms a PDF in the defined 2D latent space. Then by Bhattacharya (1943) measure, we can 

find the similarities (Figure 1c) between the two PDFs by  

                                                   ∑ √      
 
   ……………………. (4) 

where, k are the grid points of the 2D latent space. Thus when two distributions are identical (Rnk = Rwk), we have a 

coefficient of    ∑       
   . In contrast when there is no overlap between the PDFs     . Thus, this 

coefficient ranges from      . 

For generating the PDF similarity seismic volumes we follow the workflow proposed by Roy (2013) who uses 

Generative Topographic Mapping (GTM) (Bishop, 1998) to generate a probability density functions (PDFs) of the 

well vectors and the attribute data-vectors. The GTM is a non-linear dimensional reduction technique that provides a 

probabilistic representation of the data-vectors in a corresponding lower dimensional latent space.  

 

Figure 1: A schematic representation of the supervised GTM analysis workflow: (a) The posterior probability of the well data vector (PDF) 
projected onto the latent space. (b) The PDF of a data vector corresponding to voxel n in the seismic attribute volume projected onto the latent 

space. (c) The joint PDF of the average well data vector and the attribute data vector. The coefficient dn from the Bhattacharya measure is the 

measure of the similarity (overlap) between the two PDFs. 

 

A set of non-linear continuous and differentiable basis functions is used to map points in the L-dimensional latent 

space into a lower dimensional non-Euclidean manifold S embedded within the D-dimensional data-space. Data 

vectors are modeled by a suite of Gaussian PDFs centered on the mapped grid points onto the non-Euclidean 

manifold S. This manifold defines the space in which the data vector lies. Each mapped grid point on this 2D 

manifold holds a finite probability that they represent a data-vector. For the purpose of visualization these 

probabilities are projected as posterior probabilities back onto the 2D grid space, using Bayes theorem. Initially each 

target well data-vector forms a PDF in the 2D latent space (Figure 1a). These PDFs are compared with the PDFs of 

the data-vectors (Figure 1b). In this manner, we compute the overlap value of dn for all the data-vectors in the survey 
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(Figure 1c) resulting in a supervised facies “similarity” volume, quantitatively comparing each voxel to good and 

poor wells (Roy, 2013). Thus, we calculate the overlap of the posterior probability distribution of each of these well 

data-vectors and the remaining data-vectors by calculating the coefficient from the Bhattacharya (1943) measure 

(equation 1). Separate “similarity” volumes for each shale petrotype are generated. 

 

 

Barnett Shale from the Fort Worth Basin  

 

The Fort Worth Basin is a foreland basin, located in north-central Texas and is associated with the late Paleozoic 

Ouachita orogeny. This basin is bounded by the Muenster Arch to the northeast, the Ouachita Thrust Front to the 

east, the Bend Arch to the west, the Red River Arch to the north, and the Llano Uplift to the south (Figure 2a). In 

this study area the Barnett sits on an angular unconformity above the Cambrian to upper-Ordovician-age carbonates 

of the Ellenberger Group and Viola Formation and overlying Pennsylvanian-age Marble Falls Limestone (Figure 

2b). In between, the Forestburg Limestone divides the Barnett formation into Upper and Lower Barnett zone (Figure 

2c). The Barnett Shale is not homogeneous, but rather can be subdivided into siliceous shale, argillaceous shale, 

calcareous shale, and limestone layers, with minor amounts of dolomite (Singh, 2008).  

 

The Fort Worth Barnett shale gas play is traditionally more of an engineering driven play. It requires hydraulic 

fracturing for gas production. Our 3D seismic survey (Figure 3a) consists of a 200 square mile survey in the North 

East Fort Worth Basin. The data are sampled at 110ft by 110ft by 2ms. However, the above survey was acquired 

after numerous vertical and horizontal wells have been drilled and hydraulically fractured. For effective well 

placement within the survey in future drilling, care should be taken to identify the brittle zones by mapping the 

geomechanical rock type of the Barnett shale. The dataset between the Marble Faults (overlaying the Barnett 

formation) and the Viola limestone (below the Barnett formation) are considered for attribute analysis. 

 

Input Seismic Attributes for Seismic Facies classification  

 

The inputs to our algorithms are different seismic inversion volumes (P-impedance, lambda-rho, mu-rho), which 

help in understanding the highly heterogeneous nature of the Barnett shale. For the above attribute generations the 

seismic data between the Marble faults horizon and the Viola limestone is considered. The impedance volumes 

better reflect a heterogeneous shale reservoir based rock type. The Lamé parameters of seismic inversion such as 

lambda-rho (λρ) and mu-rho (μρ) correlate to "fracability" and different elastic properties of rocks. Simple cross-plot 

between two such elastic properties from the wells sometimes helps in segregating different rock types. However, it 

is very difficult to separate between classes when we cross-plot any of these two seismic volumes. 

We pre-condition our input data so that all the three input attributes are associated with each of the x, y, z location of 

the survey (we call them as attribute data-vectors). Also the dataset is normalized to remove any bias to one of the 

input attributes.  

Study of the different Petrotypes in Barnett shale 

The petrotype analysis for Barnett Shale is done for three different zones with their boundaries defined by the 

sequences in the gamma-ray log from Figure 3. The Barnett shale is not homogeneous and based on the 

parasequences, several lithofacies have been defined within the Barnett shale formation (Singh et al, 2008). 

Analyzing various well logs from the survey, we have considered only three different lithofacies or shale petrotypes 

: shale petrotype A represents the Upper Barnett Shale, shale petrotype B represents the brittle upper section of 

Lower Barnett shale, and shale petrotype C represents the ductile, TOC rich lower section of Lower Barnett 

shale. Zone A is defined within the upper Barnett shale shown in Figure 3c. An average attribute data-vector is 

extracted around well A (Figure 3a and b) from this zone. We call this as shale petrotype A. Petrotype A (well data 

vector) shows a higher lambda-rho value compared to the mu-rho and the P-impedance (Figure 3b).  

 

Zone B is defined within the upper section of the Lower Barnett Shale. An average attribute data-vector (Shale 

petrotype B) is extracted around well B (Figure 3a and b) from this zone. This zone mostly has siliceous non-

calcareous shale lithofacies (Singh, 2008). Petrotype B shows a low lambda-rho and P-impedance (Figure 3b).  
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Zone C is defined within the lower section of the Lower Barnett Shale. The shale petrotype C is extracted around 

well C (Figure 3a and b) from this zone. This lowermost Barnett Shale is the zone of hot shale (Pollastro et al., 

2007) with very high gamma ray. Petrotype C shows a low lambda-rho and P-impedance. 

 

We use the three distance measures (explained before) to classify the attribute data vectors based on these shale 

petrotypes A, B and C (target vectors) in the Barnett shale formation. 

 

 

Figure 2:  (a) The map of Texas highlighting major basins and uplifts. This Ft. Worth basin is bounded by the Muenster Arch to the northeast, 

the Ouachita Thrust Front to the east, the Bend Arch to the west, the Red River Arch to the north, and the Llano Uplift to the south. (b) 

Stratigraphic section including the Gamma ray and the resistivity log showing the major units. The Barnett sits on an angular unconformity above 

the Cambrian to upper-Ordovician-age carbonates of the Ellenberger Group and Viola Formation and overlying Pennsylvanian-age Marble Falls 

Limestone with the Forestburg Limestone in dividing the Barnett formation. (c) Cross-section of the stratigraphy of Ft. Worth basin from 
Montgomery et al. (2005). 
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Figure 3: (a) The Location of the three horizontal wells Well A, Well B and Well C overlaid over the upper Barnett time horizon of the 3D 
survey. (b) The location of the wells and their horizontal extension within the Barnett zone and the sub-volumes for extracting an average well-

data vector. (c) The zones for extracting the average well data-vector are highlighted on a gamma ray log from the survey. Shale petrotype-A is 

extracted from a zone within the upper Barnett shale, shale petrotype-B facies is extracted from the upper region of the lower Barnett zone, and 
petrotype-C is extracted from the “hot” gamma ray region of the lower Barnett shale.  

 

Discussion 

Each of the three zones A, B and C within the Barnett shale formation are analyzed separately and separate 

algorithm outputs separate classification volumes, which will be discussed subsequently. Each zone has five 

separate volumes; one from minimum Euclidean distance measure (MED), one from spectral angle mapper (SAM) 

and three PDF similarity volumes from GTM classification (Figures 4, 5, and 6). The results from each of the 

classification volumes are analyzed and a comparative study is made. 

 

Figure 4 shows the comparative study of all the five volumes from the Upper Barnett shale (zone A). The average 

well data-vector is extracted around Well A, which acts as the target vector. The MED classification (Figure 4b) and 

the SAM classification (Figure 4c) give similar results around the well (cyan color facies).  However, the shale 

petrotype-A spatially varies over the survey depending on the cutoff factor between MED and SAM. The PDF 

similarity measure from Bhattacharya measure has three separate volumes (Figure 4d, 4e and 4f) corresponding to 

the three predefined shale petrotypes. Analysis shows that the Upper Barnett zone has mostly rocks belonging to 

petrotype-A (Figure 4d). However some rocks in this zone A have properties similar to petrotype C (Figure 4f). 

Further we infer that it is extremely unlikely that the petrotype-B is present in this zone (Figure 4e).  
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Figure 4: Supervised classification analysis for Zone A, which corresponds to the Upper Barnett zone. (a) The shale facies petrotype-A is 

extracted from this upper Barnett shale (blue arrow) around the Well A (red arrow). The shale petrotype A is colored cyan, shale petrotype B is 

colored green and the shale petrotype C is colored red. Strata slice within zone A from the results of (b) Minimum Euclidean Distance (MED) 
measure and (c) Spectral Angle mapper (SAM). The regions similar to shale petrotype-A (from the MED classification and the SAM classifier) 

are colored cyan. The gray areas in b and c are unclassified and do not belong to any of the pre-defined shale petrotype. Figure c, d, and e show 

the results of supervised GTM analysis. The “red” color in the colorbar highlights regions with highest probability and the “dark grey” 
corresponds to the least probability, respectively of occurrence of the petrotype-A shale facies. (c) PDF Similarity volume for the petrotype -A 

facies. The stratal slice shows that petrotype-A is abundant in this zone. (d) PDF Similarity volume showing the probability of occurrence of 

shale petrotype-B (corresponding to zone B) within zone A. Mostly dark gray color highlights that the petrotype B has the least probability of 
occurrence in zone A. (e) The probability of occurrence of the petrotype-C (corresponding to the hot-gamma zone C) are color-coded on the 

strata-slice. The analysis shows that there are localized occurrences of the petrotype-C in zone A.  
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Figure 5: Supervised classification analysis for Zone B, which corresponds to the upper region of Lower Barnett zone. (a) The shale petrotype-B 
is extracted from this upper region of Lower Barnett zone (blue arrow) around the Well B (red arrow). The shale facies A is colored cyan, shale 

petrotype B is colored green and the petrotype C is cored red. Strata slice within zone B from the results of (b) Minimum Euclidean Distance 

(MED) measure and (c) Spectral Angle mapper (SAM). The regions similar to shale petrotype-B (from the SAM classification and the MED 
classifier) are colored green. Regions similar to Type-C shale facies are colored red. Figure c, d, and e show the results of supervised GTM 

analysis. The “red” color in the colorbar highlights regions with highest probability and the “dark grey” corresponds to the least probability of 

occurrence respectively of the Type-B shale facies. (c) PDF Similarity volume for the Type-A facies. Mostly dark gray color highlights that the 
shale petrotype A has the least probability of occurrence in zone B. (d) PDF Similarity volume showing the probability of occurrence of shale 

petrotype-B (corresponding to zone B) within zone B. Zone B shows the highest probability of spatial occurrence of Type B shale facies. (e) The 

probability of occurrence of the petrotype-C (corresponding to the hot-gamma zone C) are color-coded on the strata-slice. The analysis shows 
that there are localized occurrences of the petrotype-C in zone B. 

Figure 5 above shows the comparative study of all the five volumes from the upper region of Lower Barnett shale 

(zone B). The average well data-vector is extracted around Well B, which acts as the target vector. The MED 

classification (Figure 5b) and the SAM classification (Figure 5c) give similar results around the well (green color 

facies).  However, the shale petrotype-B spatially varies over the survey for SAM classifier compared to MED 

classifier, which is varying less spatially. We see the presence of petrotype C (red color facies) in this zone from the 

SAM classifier. The PDF similarity measure from Bhattacharya measure has three separate volumes (Figure 5d, 5e 

and 5f) corresponding to the three predefined shale petrotypes. Analysis shows that the upper region of Lower 

Barnett zone has mostly rocks belonging to petrotype-B (Figure 5e) and less of petrotype-C (Figure 5f). We infer 

that it is extremely unlikely that the petrotype-A is present in this zone (Figure 5d). Generally this region of the 

Lower Barnett shale has siliceous non-calcareous shale lithofacies (Singh, 2008) and is brittle in nature (Perez, 

2013). Shale petrotype B corresponds to brittle shale. Mapping these brittle zones is helpful because these are the 

regions where a horizontal well can be placed for effective fracturing. 
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Figure 6: Supervised classification analysis for Zone C, which corresponds to the lower region of Lower Barnett zone. (a) The shale petrotype-C 
is extracted from this lower region of Lower Barnett zone (blue arrow) around the Well C (red arrow). The shale facies A is colored cyan, shale 

petrotype B is colored green and the petrotype C is cored red. Strata slice within zone C from the results of (b) Minimum Euclidean Distance 

(MED) measure and (c) Spectral Angle mapper (SAM). The regions similar to shale petrotype-B (from the SAM classification and the MED 
classifier) are colored green. Regions similar to Type-C shale facies are colored red. Figure c, d, and e show the results of supervised GTM 

analysis. The “red” color in the colorbar highlights regions with highest probability and the “dark grey” corresponds to the least probability of 

occurrence respectively of the Type-B shale facies. (c) PDF Similarity volume for the Type-A facies. Mostly dark gray color highlights that the 
shale petrotype A has the least probability of occurrence in zone B. (d) PDF Similarity volume showing the probability of occurrence of shale 

petrotype-B (corresponding to zone B) within zone B. Zone B shows the highest probability of spatial occurrence of Type B shale facies. (e) The 

probability of occurrence of the petrotype-C (corresponding to the hot-gamma zone C) are color-coded on the strata-slice. The analysis shows 
that there are localized occurrences of the petrotype-C in zone B.  

 

Figure 6 above shows the comparative study of all the five volumes from the lower region of Lower Barnett shale 

(zone C). The average well data-vector is extracted around Well C, which acts as the target vector. The MED 

classification (Figure 6b) and the SAM classification (Figure 6c) give similar results around the well (red color 

facies).  However, the shale petrotype-C spatially varies over the survey for SAM classifier compared to MED 

classifier, which is varying less spatially. We see the presence of petrotype B (green color facies) in this zone from 

the SAM classifier. The three separate volumes from PDF similarity measure (Figure 6d, 6e and 6f) correspond to 

the three predefined shale petrotypes. Analysis show that within the survey this zone C has mostly rocks belonging 

to petrotype-B (Figure 6e) and petrotype-C (Figure 6f). We infer that it is extremely unlikely that the petrotype-A is 

present in this zone (Figure 6d). From the study it is evident that the northeast corner of the survey around the well 

C, it is mainly shale petrotype C. Petrotype B is present mostly in the center and south of the survey. The SAM 

results are more consistent with the PDF similarity outputs. Shale petrotype C corresponds to the high gamma values 

in the well logs and corresponds to regions of most ductile shale, which may be due to high TOC concentration in 

this zone (Singh, 2008 and Perez, 2013). 
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Conclusions  
 

In the paper, we have studied the three different supervised distance metric classifiers when applied on the multi-

attribute seismic data from the Barnett shale in the Fort Worth Basin. Our results demonstrate the unique divergence 

properties of the three distance metrics discussed in the paper when seen on facies classification outputs.  In all the 

three zones of our case study, it is evident that the SAM classifier results are more consistent with the PDF similarity 

results. The mapped brittle zones and the mapped high TOC zones are consistent within the results of the SAM 

classifier and the PDF similarity. In this study we have tried to demonstrate that the classification based on distance 

metrics have significant value in the identification and classification heterogeneous Barnett shale. 
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