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Summary 
 
Curvature gradient is a third order surface property which 
has been shown to improve surface and fault 
characterization. Previous applications have been restricted 
to gradients calculated in the same direction as curvature 
and for cases of zero dip.  We demonstrate the value that 
can be gained by considering the full 3D tensor for 
variation in curvature including computation of volumetric 
curvature gradient in arbitrary directions relative to the 
curvature directions.  
  
 
Introduction 
 
Geometrical attributes are frequently used for 
characterizing faults and inferred fracturing (Rich and 
Ammerman, 2010).  The most commonly applied of these 
are measurements of curvature.  These attributes are 
usually calculated on either a surface or volumetrically 
using dip volumes as input (Al Dossary and Marfurt, 2003).  
When used for dip slip fault characterization, the 
interpretation of curvature attributes can become complex. 
In this case Gao (2013) demonstrated the value of 
considering the gradient of curvature, where the differential 
of curvature is considered in the maximum curvature 
direction to better characterize faulting.  
 
Curvature is fully characterized by a second order tensor.  
At each point on a surface the curvature varies smoothly by 
azimuth.  For geophysical characterization and 
interpretation the extreme values of curvature are usually 
considered.  To fully characterize the gradient of curvature 
we must think in terms of a third order tensor where the 
curvature at some given azimuth is known to vary in any 
other arbitrary direction.  We are then concerned with two 
directions, both the direction of the considered curvature 
and the direction in which we consider its variation.   
 
Theory 
 
In terms of the tensor of curvature, the quantities 
interpreters are most familiar with are the eigenvalues and 
eigenvectors of that tensor which give the extrema of the 
curvature values (Rich, 2008).   It is common to write the 
curvature in some direction in terms of spanning vectors for 
a tangent plane at the local point of interrogation, 

 u vγ δ= +r S S , as: 
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Where the extrema are found by considering the eigenvalue 

equation, nII k I=r r  (Cipolla, 2000). I andII  are the first 

and second fundamental form whose components are given 
by, 
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It is useful to remind the reader that the first fundamental 
form gives the metric for a surface which defines both 
length and in general the inner product of two vectors on 
the surface.  

 
In order to consider the gradient of the curvature for the 
case of zero dip we could consider the directional 
derivative, 

| |n nk k∇ = ∇ ⋅r
r

r
                    (4) 

 
which leads to the expression, 
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where, 

 
u uuu uu uL = ⋅ + ⋅S N S N  
u uvv vv uN = ⋅ + ⋅S N S N  
v uuv uu vL = ⋅ + ⋅S N S N  
v vvv vv vN = ⋅ + ⋅S N S N  

 
This is equivalent to the approach given by Gao (2013).  It 
is immediately apparent that there are two complicating 
factors that introduce potential for additional value.  First 
we may wish to consider the gradient of curvature in a 
direction other than the direction in which it is measured.  
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Curvature gradient attributes 

For instance it may be very useful to quantify how the 
maximum curvature (perpendicular to the fault) changes 
along the trace of the fault (minimum curvature direction).  
The other consideration is for the real case where dips are 
non-zero.  In this case of non-zero dip for a surface 
manifold embedded in 3D space it becomes necessary to 
consider the covariant derivative.  Replacing the directional 
derivative operator with the covariant derivative the 
expression becomes,  
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With the terms introduced by Mehlum and Tarrou (1998), 
 

3uuu uu uP = ⋅ + ⋅S N S N  

2uuv uv u uu vQ = ⋅ + ⋅ + ⋅S N S N S N
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Note that, in general, even if the third derivative is zero the 
gradient of curvature is not necessarily zero.  This is 
important to recognize because in the case of a quadratic 
surface commonly considered for calculation of curvature 
there is still clearly a variation in curvature. 
 
For arbitrary angles with curvature measured in direction 
theta and the gradient in direction phi we find a slightly 
more complex expression which reduces to the previous 
expression for the case of θ φ= . 
. 
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The last step is to represent the components of the vector in 
the tangent plane in terms of the azimuthal angles.  In the 

local ˆ ˆ,i j coordinate plane, tan az
δθ γ= . Rewriting the 

expression for curvature and curvature gradient in terms of 
tan azθ ζ= we have, 
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For completeness we recognize that it may also be useful to 
consider curvature and curvature gradient as measured in 
the tangent plane.  In this case we consider the inner 

product, cosu u θ⋅ =S r S r . Computing this inner 

product using the first fundamental form the expression 
becomes 
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Introducing a term 
γ
δ

=ε we arrive at the solution, 

 
21 cotF EG F

E

θ
ζ

− ± −= =ε           (12) 

 
 
Volumetric curvature gradient 
 
Al Dossary and Marfurt (2003) introduced the process for 
calculation of volumetric curvature where the coefficients 
of a quadratic surface are written in terms of volumetric dip 
estimates and their differentials.  While it is understood that 
variation in curvature is non-zero for a quadratic surface, 
we will consider a cubic surface both for completeness and 
with the recognition that a cubic expression is necessary to 
fully characterize inflection of fault planes.  Keeping the 
standard coefficients for a quadratic we have, 
 

( )
3 3 2 2 2 2
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f x y
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(13) 
 

The coefficients given by Al Dossary and Marfurt (2003), 
where p and q are the inline and crossline dips respectively, 
are 
 

.5 xa D p=  

.5 yb D q=  
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Curvature gradient attributes 

.5( )x yc D q D p= +  
d p=  
e q=  

 
The newly introduced cubic terms are, 
 

1
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1
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.25( )xx xyi D q D p= +  
.25( )yy xyj D p D q= +  

 
Solving for the curvature coefficients in terms of the cubic 
coefficients we have for the first and second fundamental 
forms (Rich 2008), 
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and for the curvature gradient terms we have, 
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It is now possible to completely characterize the curvature 
and curvature gradient in general volumetric terms.  
Curvature gradient can be computed in the same direction 
as the curvature or at arbitrary directions to the curvatures.  

The pre-computation of the curvature and gradient 
coefficients also allows for real-time calculation and 
display of the attributes for any arbitrary angles. 
 
Interpretation 
 
Gao et al (2013) demonstrated the benefit of gradient of 
curvature in characterizing faults in the Teapot Dome 3D.  
For comparison we use the complete tensor solution for the 
Tensleep horizon in the Teapot Dome 3D.    Figure 1 is the 
maximum curvature of the Tensleep. The linear ridges 
bounding the faults are clearly evident on the maximum 
curvature display, however the actual location of the faults 
is not.  With the curvature gradient we expect to see a 
negative, zero, positive anomaly at the down thrown side, 
followed by a zero at the axis of the fault and then positive, 
zero, negative sequence delineating the up thrown side.  
This pattern is clearly apparent on Figure 2.  A fault with 
opposite offset would exhibit the reverse of this pattern.  

 
 Figure 1. Maximum curvature on the Tensleep  
  Horizon 
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Curvature gradient attributes 

Not only is relative motion of the fault apparent on the 
curvature gradient, but the axis of the fault is better defined 
than on a curvature display.  The reason for the pattern is 
an increase in negative curvature when approaching the 
axis on the down thrown side, followed by a decrease in 
negative curvature (which is a positive gradient) when 
moving onto the plane of the fault.  The inflection point on 
the fault is a zero.  This pattern is then reversed when 
approaching the up thrown side.  An increase in positive 
curvature is a positive gradient followed by a decrease in 
positive curvature which is a negative gradient.  Figure 3 
shows the gradient of maximum curvature measured in the 
minimum curvature direction.  While there is more ‘noise’ 
on this display, the actual fault planes, particularly the 
northern fault, are very well defined.  
 

 
Figure 2. Gradient of maximum curvature in the  
 direction of maximum curvature 

 
 

  
 Figure 3. Gradient of maximum curvature in the  
  direction of minimum curvature  
 
Conclusions 
 
Curvature is a well-known tool for characterization of both 
inferred fracturing and faulting.  Recently curvature 
gradient has been introduced and shown to add value to 
fault characterization.  We have extended the definition of 
curvature gradient to include both the dip terms and general 
azimuths of differentiation. This allows for improved fault 
plane characterization. In addition we have derived the 
expression for volumetric curvature gradient which allows 
for the modification of existing volumetric curvature 
algorithms to include general curvature gradient 
implementations. 
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