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Summary 

Spectral decomposition is a powerful analysis tool that has 

been significant success in delineating channels, fans, 

overbank deposits and other relative thin architectural 

elements of clastic and carbonate depositional 

environments. Because of its success in fluvial-deltaic and 

basin floor turbidite-fan systems, most publications of 

spectral decomposition have used time-migrated data. 

Interpreting spectral components and spectral attributes 

such as peak frequency on depth migrated data requires a 

slightly different perspective. First, the results are 

computed as cycles/km (or alternatively as cycles/1000 ft) 

rather than as cycles/s or Hertz, with the dominant 

wavenumber decreasing with increasing velocities at depth. 

Second, interpreters resort to depth migration when there 

are significant lateral velocity changes in the overburden 

and/or steep dips. All present-day implementations 

compute spectral components vertical trace by vertical 

trace rather than perpendicular to the bedding plane, giving 

rise to tuning and other anomalies at an apparent rather than 

at a true frequency or wavenumber. 

We illustrate the interpretational differences of spectral 

decomposition between time- and depth-migrated data 

through the use of a simple synthetic model and a modern 

3D data volume. We show how one can approximately 

compensate for reflector dip by normalizing each spectral 

magnitude component by 1/cosθ, where θ is the volumetric 

dip magnitude commonly computed in seismic attribute 

analysis 

Introduction 

Seismic attributes have been applied to depth-migrated data 

since their inception. Since the dominant wavelength 

increases with increasing velocity which in turn increases 

with depth, attributes such as coherence benefit by using 

shorter vertical analysis windows in the shallow section and 

longer vertical analysis windows in the deeper section. 

Since most coherence implementations require a fixed 

vertical analysis window, the interpreter simply runs the 

algorithm using an appropriate window for each zone to be 

analyzed. Curvature is naturally computed in the depth 

domain, with most algorithms requiring a simple 

conversion velocity for time-migrated data. For more 

accurate results, the interpreter uses different conversion 

velocities for different target depths, or simply converts the 

entire volume to depth using well control. Both coherence 

and curvature are structurally driven algorithms, with 

coherence computed along structural dip and curvature 

computed from structural dip. 

In contrast, spectral decomposition is computed trace by 

trace which implicitly ignores any dipping structure. One of 

the most common uses of spectral decomposition is to 

map shallow (e.g. Partyka et al., 1999; Peyton et al., 1998) 

and deepwater (e.g. Bahorich et al., 2002) stratigraphic 

features using a simple thin bed tuning model. Widess 

(1973) used a wedge model and found maximum 

constructive interference occurs when the wedge 

thickness equals the tuning thickness (one-half of the two-

way travel-time period for time-migrated data or one-

quarter of the wavelength for the depth-migrated data). 

Using this model, Laughlin et al. (2002) shows that deeper 

channels are stronger at lower frequencies, while the 

shallower flank of the channel has stronger amplitudes at 

higher frequencies. Although this is the most common use 

of spectral decomposition, spectral components are 

currently the method of choice in estimating attenuation 

(1/Q), pore-pressure prediction, and seismic unconformities, 

as well as some implementations of seismic 

chronostratigraphy. 

Theory 

Short-window Discrete Fourier Transform (SWDFT), 

Continuous Wavelet Transforms, and Matching Pursuit 

There are currently three algorithms used to generate 

spectral components: short-window discrete Fourier 

transforms (SWDFT), continuous wavelet transforms, and 

matching pursuit. Leppard et al. (2010) find that matching 

pursuit provides greater vertical resolution and less vertical 

stratigraphic mixing than the other techniques. For this 

reason, all our examples here will be generated using a 

matching pursuit algorithm described by Liu and Marfurt 

(2007). However, the concept of apparent vs. true 

frequency is perhaps easiest to understand using the fixed 

length analysis window used in the SWDFT. For time data, 

the window will be in seconds, such that the spectral 

components are measured in cycles/s or Hz. For depth data, 

the window will be in kilometers, such that the spectral 

components are measured in cycles/km. Significant care 

must be made when loading the data into commercial 

software, where the SEGY standard stores the sample 

interval in microseconds. For everything to work correctly, 

a depth sample interval of 10 m will need to be stored as 
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10000 “microkilometers”. If the units are not stored in this 

manner, the numerical values of the data may appear to 

be in fractions of a cycles/m. Many commercial software 

packages will not operate for cycles/s (or cycles/km) that 

fall beyond a reasonable numerical range of 1-250.  

Once the data are loaded, the range of values will be 

different. If the time domain data range between 8-120 Hz, 

depth domain data will range between 2-30 cycles/km at a 
velocity of 4 km/s, such that anomalies will be shifted to 

the lower “frequencies”.  

Volumetric dip and its influence 

If the dip angle is  , and the real thickness hr, then the 

apparent thickness            (Figure 1). The tuning 

frequency (and tuning wavenumber) will therefore decrease 

with increasing values of θ. The shift to lower apparent 

frequency is familiar to those who examine data before and 

after time migration, where dipping events on unmigrated 

stacked data with moderate apparent frequency “migrate” 

laterally to steeper events with lower apparent frequency. 

 

Figure 1. The percent change in apparent thickness ha/hr with 

respect to dip magnitude, θ. 

Most volumetric dip computations provide apparent dips 

along the survey axes,    and   , which in turn define the 

unit normal, a, (Figure 2 where 

           ,                                                    (1) 

           ,   and                                            (2) 

       ,                                                              (3) 

where   is the dip magnitude and   is the dip azimuth. 

The first eigenvector of dip estimates of the gradient 

structure tensor provides a direct estimate a.  Other 

workers compute instantaneous frequency, ω, and 

wavenumbers, kx and ky, or use a semblance dip scan to 

compute apparent dips p and q measured in s/m.  
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Figure 2. The definition of reflector dip. (After Marfurt, 2006). 

If the earth can be approximated by a constant velocity, v, 

the relationships between apparent time dips p and q, and 

the apparent angle dips    and   , are 

               ,                                     (6) 

               ,                                     (7) 

      
 

                                                        (8) 

A synthetic example 
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Figure 3. (a) A thin bed model showing layers components with (1) 

flat dip (2) strong dip to the left, and (3) moderate dip to the right. 

(b) The apparent (in blue) and real (in red) tuning frequency of the 

layer. (c) Synthetic seismic data generated by prestack time 

migration and stacking a suite of shot gathers. The deeper event is 

a multiple. (d) The peak frequency of (c) computed using a 

matching pursuit algorithm. Note the peak frequency (50Hz) in 

the layer corresponds to the apparent frequency in (b). 

In Figure 3a, the vertical thickness of the thin bed is 100 

m; the tuning frequency should be 50 Hz considering 

the velocity is 5000 m/s. The apparent thickness is 

constant across the model when measured vertically  (blue 

curve in Figure 3b) such that  spectral analysis results in a 

constant value of fpeak  50 Hz rather than the variable peak 

frequency given by the red curve in Figure 4b. Correcting 

the apparent thickness by 1/cosθ gives the correct answer. 

We generated a suite of shot gathers for the model shown 

in Figure 3a, migrated them, and then stacked the result, 

giving the vertical section shown in Figure 3c. We then 

computed the peak frequency using a matching pursuit 

spectral decomposition. Note the constant value of 50 Hz 

through the variable thickness layer. 

Real Data Example 

The real data are from an oilfield of east China. There are 

lots of fault-controlled reservoirs, exhibiting strongly on 

the seismic profile shown on both the time migrated 

and depth migrated data in Figure 4. The blue color 

cover the same position in both profiles, we found that 

the horizons are much deeper in depth migrated data 

than the ones in time migrated data.  This is because the 

increase of velocity with time (depth). 

The migrated data are sampled at Δt=0.002 s in time and 

Δz=0.01 km in depth. Figure 5 shows the average spectra 

of the data shown in Figure 4. 

We compute the 3D dip and azimuth of the data and co-

render it with seismic amplitude in Figures 6a and 7a. 

We also compute the peak spectral frequency using a 

matching pursuit algorithm and display the results in 

Figures 6b and 7b. Finally, we normalize the peak 

freque  y by dividi g by 1    θ   d di pl y  he re ul   

in Figure 6c and 7c. As expected, the values of peak 

frequency are unchanged in areas of low dip but change 

significantly in areas of high dip (block arrows). 

  
Figure 4. Seismic profile of time migrated data (left) and depth 

migrated data (right). 

 

Figure 5. Average spectra of the (top) depth-migrated and 

(bottom) time-migrated data shown in Figure 4.  Note the 

numerical range of 2-24 cycles/km for the depth migrated data in 

cycles/km is numerically lower than the 5-50 Hz range for the 

time migrated data. Even if the original seismic data were 
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bandlimited to 10-100 Hz, migration shifts the apparent spectrum 

to values below 10 Hz for steeply dipping events. 

Conclusions 

Spectral decomposition is a powerful analysis tool in 

mapping lateral variation in thin stratigraphic features at 

or below seismic resolution. Unfortunately, lateral 

variations in structural dip θ give rise to changes in 

apparent frequency that overprint the geological signal of 

interest. Time migration will shift the spectra to 

frequencies lower than that of the input unmigrated data 

in areas of steep dip. Such interpretational artifacts can be 

partially compensated by normalizing the spectrum by 

1/cosθ. Spectral decomposition works equally well for 

depth and time-migrated data, with tuning frequencies in 

Hz being replaced by tuning wavenumbers in cycles/km.. 
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Figure 6. Analysis of time-migrated data shown in Figure 4(left). The frequency decomposition results (a. 19 cycles/s; b, 21cycles/s; c. 23 

cycles/s) and dip azimuth vs. dip magnitude plot for the object pointed by the arrow in time migrated data 

 

Figure 7. Analysis of time-migrated data shown in Figure 4(right). The frequency decomposition results (a. 9 cycles/km; b, 10 cycles/km; c. 

11 cycles/km) and dip azimuth vs. dip magnitude plot for the object pointed by the arrow in depth migrated data 
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