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Coherence attribute at different spectral scales

Fangyu Li' and Wenkai Lu?

Abstract

In general, we wish to interpret the most broadband data possible. However, broadband data do not always
provide the best insight for seismic attribute analysis. Obviously, spectral bands contaminated by noise should
be eliminated. However, tuning gives rise to spectral bands with higher signal-to-noise ratios. To quantify geo-
logic discontinuities in different scales, we combined spectral decomposition and coherence. Using spectral
decomposition, the spectral amplitudes corresponding to a given scale geologic discontinuity, as well as some
subtle features, which would otherwise be buried within the broadband seismic response, can be extracted. We
applied this workflow to a 3D land data volume acquired over the Tarim Basin, Northwest China, where karst
forms the principle reservoirs. We found that channels are better illuminated around 18 Hz, while subtle dis-

continuities were better delineated around 25 Hz.

Introduction

Structural and stratigraphic discontinuities such as
channels, faults and fractures may provide lateral varia-
tion in seismic expression. Seismic attributes such
as coherence delineate such lateral discontinuities, ac-
celerate interpretation, and provide images of subtle
features that may otherwise have been overlooked.
Al-Dossary and Marfurt (2006) use both long- and
short-wavelength curvature attributes from multispec-
tral curvature estimation to enhance geologic features
having different scales. Sun et al. (2010) use discrete
frequency coherence cubes in fracture detection and
find that high-frequency components can provide
greater detail. Gao (2013) notices that more subtle
structural details in reservoirs are revealed using a
higher frequency wavelet as the spectral probe.

The seismic response of a given geologic feature is
expressed differently at different spectral bands. Often,
a particular frequency component carries the informa-
tion regarding structure and stratigraphy. Spectral de-
composition methods map 1D signal into the 2D time
and frequency plane, generating amplitude and phase
spectral components (Partyka et al., 1999; Castagna
et al., 2003). Extracting the spectral components at dif-
ferent dominant frequencies may provide more precise
perspectives of given geologic structures. For example,
the thickness of a channel and its spectral amplitude are
strongly correlated (Laughlin et al., 2002).

Time-frequency representation can be broadly di-
vided into two classes: linear time-frequency and

bilinear (quadratic) time-frequency transforms. Chark-
raborty and Okaya (1995) and Partyka et al. (1999) com-
pute seismic spectral response using the short-time
Fourier transform (STFT). Since then, other linear
time-frequency transforms, such as the continuous
wavelet transform (Sinha et al, 2005) and the S
transform (Matos et al., 2005) as well as bilinear
time-frequency transforms, such as the smoothed
pseudo-Wigner-Ville distribution (Li and Zheng, 2008)
have been introduced to improve the temporal data
analysis and frequency resolution. Fourier transform
representation of the convolution between the signal
and the time-frequency atom is equivalent to a suite
of narrow band-pass filters, resulting in a suite of com-
plex spectra (Qian, 2002). In contrast, bilinear trans-
forms based on quadratic energy do not generate
phase information. Spectral magnitude of the joint
time-frequency spectrum is routinely used in reservoir
characterization (Liu and Marfurt, 2007), hydrocarbon
detection (Castagna et al., 2003; Lu and Li, 2013), and
measuring tuning and attenuation effects (Partyka et al.,
1999). However, to delineate lateral stratigraphic dis-
continuities (Matos et al., 2011), we need the spectral
phase component of the joint time-frequency distribu-
tion. Fahmy et al. (2005) apply a band-pass filter using
the most significant frequency bandwidth of seismic
data for reservoir illumination. Hardage (2009) demon-
strates that frequency-constrained seismic data can pro-
vide improved images of geologic systems.
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Estimates of seismic coherence (Bahorich and
Farmer, 1995; Marfurt et al., 1998; Gerstzenkorn and
Marfurt, 1999; Lu et al., 2005) measure changes in wave-
form and provide a quantitative measure of geologic
discontinuities. In general, most interpreters apply
coherence to the final processed, broadbanded data
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Figure 1. A seismic trace and its derived attributes: (a) the
measured seismic trace (solid line) and the instantaneous
envelope (dotted line), (b) instantaneous phase, and (c) a
scaled version of the measured seismic trace (light line)
and the cosine of the instantaneous phase (heavy line).
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Figure 2. (a) A seismic trace and (b) its STFT spectrogram.
The white dotted lines indicate the positions of the extracted
isofrequency spectral components at 18, 25, and 38 Hz.
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(Chopra and Marfurt, 2007). Coherence can be com-
puted from the real seismic or from the analytic seismic
data (Taner et al., 1979). Using the analytic trace can
sharpen discontinuities (Guo et al.,, 2009). For this
reason, we adopt linear rather than quadratic time-
frequency analysis methods to generate complex spec-
tra in our work.

In this paper, we combine spectral decomposition,
which extracts complex spectral amplitudes from the
frequency bands of interest, and complex coherence
computation to map discontinuities at different vertical
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Figure 3. (a) Real (heavy line) and imaginary (light line)
components and envelope (dotted line) at 18, 25, and
38 Hz. (b) Corresponding instantaneous phase components.



scales. We begin our paper with a review of complex
spectra and coherence. Then, we propose a workflow
of complex spectral coherence calculation. Finally, we
apply the proposed workflow on fault delineation and
channel detection, and obtain promising results.

Complex spectra and coherence

Complex seismic trace analysis has long been used
to aid seismic interpretation (Taner et al., 1979; Barnes,
2007). Traditional complex signal analysis is based
on the Hilbert transform. The original data and their
Hilbert transform that satisfies the Cauchy-Riemann
integral condition form an analytic signal (Claerbout,
1976). Complex trace analysis represents the mea-
sured signal as the product of two independent
and separable functions: instantaneous envelope
e(t) = ||c(t)| and the cosine of the instantaneous phase
o(t) as

c(t) = e(t) cos[O(t)] + ie(t) sin[0(¢)]. €Y}

Figure 1 shows a seismic trace and its derived com-
plex attributes. Figure 2 displays the seismic trace
shown in Figure 1 and its spectrogram (magnitude of
the STFT). The magnitude component characterizes
variations of the seismic response such as attenuation,
which can be caused by reservoir and hydrocarbon ac-
cumulation. We extract three isofrequency components
from the spectrum, at 18, 25, and 38 Hz, indicated by the
white dotted lines in Figure 2b, and we display them as
the dashed lines in Figure 3. The real and imaginary
components of the data are displayed as thin and bold
solid lines in Figure 3a, while the phase components are
plotted in Figure 3b. The spectral components are a
function of the signal and the Gaussian window used.
Different carrier frequencies measure the seismic
behavior at different scales. The magnitude component
is sensitive to changes in impedance while the phase
component is sensitive to stratigraphy. Subtle geologic
features, which are usually buried in broadband data,
can be detected on isofrequency components as
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Figure 4. Workflow of complex spectral coherence attribute.
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the disturbance when other frequencies have been
suppressed.

In this work, we will apply coherence to measure
the similarity of complex spectral components of the
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Figure 5. Waveform and spectrum of the wavelet extracted
from the data set.

Figure 6. Fault detection by complex spec- a)
tral coherence. Vertical slices through (a) seis-
mic amplitude (b) 18, (c¢) 25, and (d) 38 Hz
spectral magnitude components and (e) broad-
band, (f) 18, (g) 25, and (h) 38 Hz component
coherence volumes. The dotted lines indicate
faults. Vertical analysis window = +20 ms.
Horizontal analysis window = five traces.

Time (ms)

seismic data. Coherence has several implementations:
crosscorrelation-based coherence, semblance-based
coherence, variance-based coherence, eigenstructure-
based coherence, least-squares-based coherence, and
gradient structure tensor-based coherence. Different
measurements of seismic character variability have dif-
ferent sensitivities to geology, spectral bandwidth. and
seismic noise. The size of the vertical and lateral analy-
sis windows also produces different images such that
no one coherence algorithm is always “best.”

Here, we use an eigenstructure-based coherence al-
gorithm. Traditionally, for the computation of what
Gersztenkorn and Marfurt (1999) call “C3 coherence,”
a 3D analysis cube enclosing a relatively small subvo-
lume of traces is selected. The analysis cube moves
throughout the 3D seismic volume, and the full data
covariance matrix is assembled by crosscorrelating
the 3D analysis cube:

ij = (Ao * dmj)’ 2)

M=

m=1

where Cy; is the kjth element of the covariance matrix
C, M is the sample number of the analysis cube, and d,,,;,
and d,,; are the amplitudes of the mth sample of the kth
and jth trace.

Computing covariance matrices from the complex
components needs to include both imaginary and real
components, giving

M
ij = Z(”dmk” COS Py * ”dmj” COS Py
m=1
= ||kl SN @ * (||| SN @45), 3)

Time (ms)

4 Interpretation / February 2014




where ||d,,.| is the magnitude, ¢,,, is the phase of the
complex spectral components, and ||d,,, || sin ¢,,, and
||| COS @y are the imaginary and real components,
respectively. During 3D attribute computation, Gersz-
tenkorn (2012) uses a similar way to facilitate the rep-
resentation for matrix entries.

Application

The entire workflow of complex spectral coherence
calculation is displayed in Figure 4. To obtain isofre-
quency components at different frequencies, these
spectral components should be checked for both reso-
lution and artifact suppression. Large windows may be
more “stable,” but they may mix stratigraphy. Small
windows may be too small to contain a period of inter-
est. After obtaining complex spectral components with
both real and imaginary parts, the selected discrete iso-
frequency components are used as input to coherence.
Because of thin bed tuning, some spectral components
will illuminate geology better than others, as Fahmy
et al. (2005) find with AVO analysis. Other components
may be dominated by noise and should be rejected, as
Hardage (2009) shows.

Figure 5 shows the waveform and the spectrum of
the wavelet extracted from our well tie. This wavelet
is zero phase, centered at about 25 Hz, so we will illus-
trate our analysis with 10, 25, and 40 Hz frequencies. In

e)

Time (ms)

Time (ms)

this application, we used STFT as the linear transform
and the eigenstucture-based algorithm as the coherence
attribute.

Fault Delineation

Figure 6 displays a fault detection example. Figure 6a
shows seismic amplitude, Figure 6b—6d shows the cor-
responding vertical slices through 10, 25, and 40 Hz
spectral magnitude components, while vertical slices
through the coherence volumes from the original
(“broadband”) shown in Figure 6e and Figure 6f—6h
are the 10, 25, and 40 Hz spectral component coherence
profiles, respectively. Red dotted lines indicate normal
faults. But, the broadband coherence result delineates
the main fault on the right but not the one on the left. In
contrast, the low-frequency spectral coherence delin-
eates both main faults most clearly, while the middle-
and high-frequency spectral coherence highlights
smaller discontinuities near the faults that we interpret
to be conjugate faults. The 10 Hz component of the
coherence attribute shows more continuous images
of large scale features.

Figure 7 displays more subtle discontinuities.
Figure 7a shows seismic amplitude with corresponding
10 (Figure 7b), 25 (Figure 7c), and 40 Hz (Figure 7d)
spectral magnitude components, while vertical slices
are shown through the coherence volumes from

Figure 7. Subtle discontinuity delineation by
complex spectral coherence. Vertical slices
through (a) seismic amplitude, (b) 18,
(c) 25, and (d) 38 Hz spectral magnitude com-
ponents and (e) broadband, (f) 18, (g) 25, and
(h) 38 Hz component coherence volumes. The
dotted lines indicate the subtle discontinuity.
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broadband (Figure 7e), 10 (Figure 7f), 25 (Figure 7g),
and 40 Hz (Figure 7h) spectral components, respec-
tively. The fracture lineaments in Figure 7g correlate
with textures with faulting we expect to occur with
compression.

Channel delineation

Before the calculation of complex spectral coher-
ence, we analyzed the frequency components on the
target horizon, shown in Figure 8. Different types of
geologic structures with different scales reveal different
peak frequencies. Seismic data analysis of stronger fre-
quency bandwidths improves the delineation of certain

Peak Freq (Hz)
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13

Figure 9. Channel detection by complex

geologic structures. Figure 9 displays horizontal slices
from different component coherence results. Figure 9a
shows the broadband result, while Figure 9b—9d shows
the 18, 25, and 38 Hz components, respectively. The
channels indicated by the left dotted ellipse are better
illuminated on the 18 Hz spectral component. The chan-
nels indicated by the right dotted ellipse are better illu-
minated by the 18 Hz spectral component in the upper
and middle parts, but in the bottom part by the 25 Hz
component. The faults are better seen in the broadband
volume.

For easier comparison and viewing more detailed
features, we integrated the horizontal slices of different
complex spectral coherence into a color-blended image
displayed in Figure 10 (such as is done for enhanced
understanding of temporal location of depositional
and structural elements by Leppard et al. (2010)). In
Figure 10, the 10, 25, and 38 Hz spectral components
paint red, green, and blue (RGB), respectively. As
shown in the RGB color map, if the energies in three
color channels are equal, the blended color is white,
and if the energy of one channel is stronger than the
other two, its color would dominate. We can find a
lot of new information shown by the color changes.
As there is a strong correlation between channel thick-
ness and the spectral decomposition component, differ-
ent scale channels correspond to different frequency
bands, and they will show up in different colors. For
example, we can still remember the channel in the right
dotted ellipse in Figure 9, and its boundaries are clearer
on the 18 Hz spectral coherence, which is the red com-
ponent in the color-blended image. Because the coher-
ence values at the edges of channels are low, it appears
as light blue after blending, which is the opposite color
of red. So, the low coherence at low frequency indicates
that the channel is fairly thick. In the same way, we can
use this pattern to recognize the thickness of channels.

The examples above demonstrate that the pro-
posed workflow can highlight the different scale faults,

spectral coherence. Horizontal slices through
(a) broadband, (b) 18, (c) 25, and (d) 38 Hz
component coherence volumes. Dotted
circles indicate two channel systems.
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Figure 10. Color-blended images. Integration of complex
spectral coherence attributes: 18, 25, and 38 Hz components
paint red, green, and blue, respectively.

fractures, and channels within a certain frequency
bandwidth. Conversely, we can also identify and
quantify the scale of discontinuities through the com-
parison between the serial complex spectral coherence
attributes.

Conclusions

We propose a workflow for identification and accu-
rate estimation of geologic discontinuity at different
temporal scales. Our approach is based on a linear
time-frequency transform and complex coherence cal-
culation, and it is shown to be valuable for prediction of
discontinuity lineaments in deformed strata. Inter-
preters can choose their own combinations of linear
spectral decomposition method and coherence algo-
rithm to suit their needs. The application of complex
spectral coherence shows that it is useful for detecting
different-scale structural and stratigraphic discontinu-
ity features.
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