
Random Noise Suppression Using Normalized Convolution Filter  
Fangyu Li*, Bo Zhang, Kurt J. Marfurt, The University of Oklahoma; 

Isaac Hall, Star Geophysics Inc.; 
 

Summary 

 

Random noise in seismic data hampers seismic 

interpretation, confounds automatic pickers, overprints 

seismic attributes, and masks subtle geologic features of 

interest. For this reason much of seismic processing is 

devoted to increasing the  the signal to noise ratio. In this 

paper, we introduce a novel method named the normalized 

convolution, or NC filter, which is based on a confidence 

estimation of the signal, to improve our signal to noise 

raito. The NC filter attenuates noise and enhances the 

continuity of seismic events. We demonstrate the 

effectiveness of the filter on simple synthetic, a real data set 

contaminated with real band-limited seismic noise, and a 

real data set contaminated with high amplitude artificial 

noise. These examples suggest that the proposed method is 

ready for application to seismic data. 

 

Introduction 

 

Field seismic data almost always contain some amount of 

noise. Depending on its strength, spectrum, and 

organization, such noise can significantly impede accurate 

and efficient seismic interpretation. In nature, noise can be 

either random or coherent. Unlike coherent noise, random 

noise is unpredictable. Abundant methods have been 

proposed for seismic random attenuation. (Lu et al., 2006; 

Zhang et al., 2013) In general terms, these methods can be 

classified into global filtering and local filtering methods. 

Many local filtering methods have been presented and often 

give good results. However, most of the existing methods 

have a negative effect on denoising in the case of low 

signal-noise-ratio (SNR).  

 

Geological structures in seismic volumes with higher SNR 

can be more accurately and rapidly interpreted. 

Autopicking and geobody extractions would work as 

designed. Subtle onlaps and offlaps key to seismic 

stratigraphic analysis can be identified and used to map 

sequence boundaries and infer the depositional 

environment. Unfortunately, strong random noise often 

overprints a seismic  features of interest. Interpretation is 

tedious at best and unreliable at worst. Subtle features 

critical to making a play or understanding the depositional 

environment are easily overlooked.   

 
Normalized convolution (NC) was first proposed by 

Knutsson and Westin (1993), and provides a  general 

framework for the estimation of a local model 

representation of a signal (Katartzis, 2007; Westin, 1994). 

NC approximates a signal with a linear combination of 

local basis functions. The method takes uncertainties in the 

signal values into account.At the same time method permits 

spatial localization of the basis functions which may have 

infinite support. Normally, NC is used as an interpolation 

algorithms. (Burt, 1998; Farneback, 1999) 

 

We begin with an overview of the normalized convolution 

method. It is shown that one can use NC as a filter rather 

than as an interpolator. We then show how NC can remove 

random noise  while enhancing the continuity of seismic 

events. We validate  our method on synthetic and real data 

and find that the proposed NC filter is very effective in 

removing random noise and recovering important signal, 

especially in the cases of low SNR. 

 

Theory  

 

Normalized convolution was introduced as a general 

method for interpolating missing and uncertain data. This 

method can be viewed as locally solving a weighted least 

squares problem. Figure 1 shows a 2D example of using 

NC on irregular and sparsely sampled data. Even though 

the  sampling rate and resolution are low, we find that NC 

can recover most features of the original image.  

 
Figure 1: Interpolation of a sparsely, irregularly sampled image 
using normalized convolution. (Left) the famous image of “Lena”. 

(Middle) A randomly sampled image containing only 10% pixels 
of the original image. (Right) Reconstructed image using 

normalized convolution. 

 

A general expression of linear data representation can be 

written as follows: 

b = Ax ,
                                  

(1) 

where, b is the observation, matrix A is a set of basis 

functions, and x is the input data. If A is the sampling 

matrix, b will be of lower data density than x. 

 

For a given set of basis functions A, we can use weighted 

least squares to approximate the input data x: 

2
argmin argmin *

w
b - Ax = (b - Ax) W(b - Ax) .      (2) 
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Normalized Convolution Filtering Random Noise 

Then, the solution x becomes: 

T -1 T

T 2 -1 T 2

x = [(WA) WA] (WA) Wb

= [A W A] A W b

  .            (3) 

In NC, the weight matrix W is divided into two parts. The 

first part is assigned to the basis functions and is usually 

referred to as the applicability function a, an alternative 

scalar windowing function that deals with spatial 

localization of the operators in A. The second part is 

assigned to  the signal and is referred to as the signal 

certainty function, c, describing the credence of the signal 

samples. Missing samples are handled by setting this 

function to zero. Note that the cerainty function is usually 

set to zero outside the signal border, thereby reducing the 

impact of traditional edge effects. 

 

Given these constructs, the diagonal weighted matrix W is 

expressed as 

a c

2 T
W = W W = W W ,                (4) 

where, ( )a = diag aW , ( )c diag cW . 

Then, equation 3 can be expressed as: 

a c a c

T 2 -1 T 2

T -1 T

x = [A W A] A W b

= [A W W A] A W W b

                   (5) 

Application of equation 5 in each local area can be 

efficiently implemented by means of convolution, inspiring 

the name normalized convolution. However, we can apply 

this algorithm in the opposite direction. We start by 

sampling the input data by ourselves, compute the 

confidence function, define the applicability function, and 

then use the two functions to estimate the noise-free data. 

In this way, the coherent component of the input data can 

be reconstructed and incoherent noise attenuated by 

random sampling and recovery. In order to fully reconstruct 

the features of the input data, we need to assure that all the 

input data are used through  multi-sampling.  

Examples 

To demonstrate the effectiveness of the method, we apply 

our normalized convolution filter to synthetic and real data 

to test its performance. 

 

Figure 2: 1D synthetic seismic trace filtering. (a) Noise-free seismic trace. (b) 0 dB noisy trace. (c) 30% randomly sampled data. (d) 

Reconstructed trace from (c). (e) 50% randomly sampled data. (f) Reconstructed trace from (e). (g) 80% randomly sampled data. (h) 
Reconstructed trace from (g). 

 

Figure 2 displays a 1D synthetic seismic trace filtering 

example. Note that the proposed method can filter most 

noise even at a low sampling rate; the result would be 

smoother at a higher sampling rate. 

 

Figures 3-5 show the NC filter applied a noisy 2D seismic 

section. The input data on the left of Figure 3 is 

contaminated by strongly dipping coherent noise, probably 

due to the migration of aliased ground roll. Note on the , on 

the left is  filtered image to the right that  random noise 

between seismic reflection events has been suppressed, and 

the continuity of the events in the red rectangles has been 

enhanced.  

 

To test the capability of our approach in the cases of low 

SNR, we add artificial random noise to the original data in 

Figure 3. The input data of Figure 4 and Figure 5 are noisy 

with SNRs of 0 dB and -10 dB, respectively. As the 

definition of SNR is the common logarithm of the ratio of 
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Normalized Convolution Filtering Random Noise 

the power of signal and the power of noise, the noise in 

Figure 4 is as strong as the input data, while the power of 

noise is Figure 5 is 10 times of that of signal. Note that the 

filtered result of the 0 dB noise data is very similar to that 

of the original data, which proves that the proposed method 

can remove strong noise. In addition, when the noise is 10 

times stronger than the input data, we are still able to 

recontruct the main features  (Figure 5). 

 

 
Figure 3: 2D seismic section filtering. (Left) Original seismic section. (Right) Filtered result by proposed method. 

 

Figure 4: 2D seismic section filtering. (Left) Seismic section with 0 dB noise on original data. (Right) Filtered result by proposed method. 
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Normalized Convolution Filtering Random Noise 

 
Figure 5: 2D seismic section filtering. (Left) Seismic section with -10 dB noise on original data. (Right) Filtered result by proposed method.

In our implementation of the NC filter, we set  confidence 

function, c, to be the sampling matrix, with   c=1 for the 

sampled points and c=0 for the unsampled points. The 

applicability function, a, used in NC defines the 

localization of the convolution operator. The appropriate 

choice of this function depends on the application. The 

basis function is based on the random sampling matrix 

given by 

( )sign  A R ,                             (6) 

where, R is the normal random distribution matrix,  is 

the sampling rate, and the sign function is defined as 

1: 0
( )

0: 0

x
sign x

x


 

 . 

 

In our examples, where we added Gaussian white noise, we 

used a 2D Gaussian window as the applicability function: 
















2

2

exp)(


r
ra ,                            (7) 

where σ = 3 samples laterally and 5 samples vertically and 

r is the distance from the sample to the point to be 

interpolated. We also used a Gaussian window for the real 

band limited noise shown in Figure 3. If the noise is non 

Gaussian, we should choose the applicability function 

suitable for the input data. In addition, the localization 

character is also important, if the applicability function is 

too local, we will recover the input data as well as the 

noise; if it is wider, the filter will suppress the noise in the 

neighborhood area. 

Future Work 

Our first implementation is “dip unaware”. The first pass of 

the filter as shown above may allow us to estimate more 

accurate structural dip. As a second pass, we wish to design 

confidence and applicability functions that honor the local 

structure information resulting in a structure-oriented filter.   

Conclusions 

We develop a local filtering method based on normalized 

convolution to attenuate the random noise in seismic data. 

By testing this approach on synthetic and real data, we 

demonstrate that the proposed filter has a clear effect on 

suppressing random noise and can recover seismic events. 

Comparing the results of input data with different SNR, we 

find that our approach has wide applicability, especially in 

the cases of noisy seismic data with low SNR. 
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