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Special section: Seismic attributes

Relative acoustic impedance from wavelet transform

Marcilio Castro de Matos', Rodrigo Penna?, Paulo Johann?, and Kurt Marfurt®

Abstract

Most deconvolution algorithms try to transform the seismic wavelet into spikes by designing inverse filters
that remove an estimated seismic wavelet from seismic data. We assume that seismic trace subtle disconti-
nuities are associated with acoustic impedance contrasts and can be characterized by wavelet transform
spectral ridges, also called modulus maxima lines (WTMML), allowing us to improve seismic resolution
by using the wavelet transform. Specifically, we apply the complex Morlet continuous wavelet transform
(CWT) to each seismic trace and compute the WIMMLs. Then, we reconstruct the seismic trace with
the inverse continuous wavelet transform from the computed WTMMLs with a broader band complex Morlet
wavelet than that used in the forward CWT. Because the reconstruction process preserves amplitude and
phase along different scales, or frequencies, the result looks like a deconvolution method. Considering this
high-resolution seismic representation as a reflectivity approximation, we estimate the relative acoustic
impedance (RAI) by filtering and trace integrating it. Conventional deconvolution algorithms assume the seis-
mic wavelet to be stochastic, while the CWT is implicitly time varying such that it can be applied to both
depth and time-domain data. Using synthetic and real seismic data, we evaluated the effectiveness of the
methodology on detecting seismic events associated with acoustic impedance changes. In the real data ex-
amples, time and in-depth RAI results, show good correlation with real P-impedance band-pass data com-
puted using more rigorous commercial inversion software packages that require well logs and low-frequency

velocity model information.

Introduction

Deconvolution of separate earth reflectivity from the
seismic wavelet is still an important research topic.
Deconvolution increases temporal resolution and yields
a representation of subsurface reflectivity by com-
pressing the basic seismic wavelet in the seismogram
(Yilmaz, 2001). Most existing deconvolution algorithms
involve first estimating the seismic wavelet and then de-
signing an inverse filter to remove these wavelets from
the seismic trace (Lines and Ulrych, 1977). These algo-
rithms also assume that seismic traces can be modeled
by convolving a basic seismic wavelet with the earth
reflectivity (Yilmaz, 2001).

Nowadays, joint time-frequency filtering methods,
such as the wavelet transform, are widely used to filter
undesired noise such as ground roll and air waves (de
Matos and Osoério, 2002). Filtering is implemented by
exploiting the high redundancy of the joint time-
frequency representation that, ideally, maps the noise
and signal to different regions of the time-frequency
plane. The processor identifies the noise component

of the data, mutes or otherwise attenuates it, and recon-
structs the signal from the remaining components.
Among several joint time-frequency techniques, the
continuous wavelet transform (CWT) is widely used
and can be interpreted as a lookup tool that enhances
certain signal features at different scales or frequencies.
Using wavelet transform ridges detected along the
scales, called the modulus maxima lines (WTMMLs),
Herrmann and Stark (2000), de Matos et al. (2007),
and Li and Liner (2008) show how to characterize seis-
mic trace subtle discontinuities and how they can be
associated with acoustic impedance contrasts.

Therefore, because the WTMML can be associated
with earth reflectivity, we propose a CWT filtering algo-
rithm that reinforces the acoustic impedance contrasts
by compressing the inverse continuous wavelet trans-
form (ICWT) wavelet.

We begin our paper by reviewing WTMML theory and
showing how it can be associated with seismic singular-
ities. Next, we present how the WTMML can be used to
reconstruct a high-resolution seismic trace through
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ICWT and the relative acoustic impedance (RAI) attrib-
ute from the high-resolution seismic trace. Finally, we
show how seismic interpretation can be improved by
applying the proposed methodology to both synthetic
and real seismic data.

ICWT Deconvolution—-iCWTdec

The CWT is formalized by Grossman and Morlet
(1984) and is defined as the crosscorrelation between
a signal, i.e., the seismic trace, and the enlarged and
compressed versions of a basic wavelet (or “mother”)
function having zero mean, at different scales. The
CWT can also be interpreted as the convolution be-
tween the seismic trace and the same (but time re-
versed) basic scaled wavelets. In this manner, we
can interpret the CWT as a band-pass filter bank, and
consequently, we can state that the CWT is a time-
frequency or spectral decomposition method.

After CWT, each seismic trace is transformed into a
time (or depth)-versus-scale (or frequency bandwidth)
matrix. Each matrix coefficient represents how well the
seismic trace correlates to each dilated wavelet as a
function of time (or depth).

Mallat and Zhong (1992) show how the CWT can be
used to detect multiscale edges by identifying modulus
maxima lines (WIMML) along the scales. Tu and
Hwang (2005) extend the same concept to complex
wavelets. The manner in which the WTMML varies
along the scales determines the sharpness of the edges.
Specifically, a parameter called the Lipschitz, or Holder
exponent, is calculated by taking the derivative of the
WTMML using a logarithmic scale. Borrowing hints
found in Mallat and Zhong (1992), Herrmann and Stark
(2000), and Li and Liner (2008) show that the Lipschitz
coefficients can be used to characterize acoustic imped-
ance contrasts when applied to seismic data with appro-
priate wavelet functions, while de Matos et al. (2007)
use the whole WTMML to cluster different seismic
facies.

Mallat and Zhong (1992) also show that the original
signal can be approximately reconstructed using a mul-
tiscale edge representation. In fact, the seismic trace
can be reconstructed from its CWT coefficients by
integrating over time and frequency the coefficients
multiplied by each dilated basic wavelet (Teolis,
1998). If a perfect trace reconstruction is not required,
then any wavelet function can be used with the ICWT.

Assuming that the WTMML is associated with impor-
tant acoustic impedance contrasts, we propose in this
paper to reconstruct each seismic trace directly from
the detected WTMMLs using a shrunken complex Mor-
let wavelet rather than the Morlet wavelet used in the
forward CWT decomposition of the seismic data. In this
manner, despite the different analysis and synthesis
wavelet used, the CWT magnitude and phase are pre-
served and the ICWT reconstruction simply removes
the wavelet side lobe effects of the main seismic events.

The proposed methodology is summarized as
follows:

1) Compute the complex Morlet CWT of each seis-
mic trace.

2) From the CWT magnitude, extract the WTMMLs that
fall above an interpreter-defined threshold.

3) Compute the ICWT from WTMML coefficients using
a shrunken Morlet wavelet.

4) Compute the RAI by band-pass integrating (Berteus-
sen and Ursin, 1983) the ICWT.

Formally, deconvolution algorithms require a sto-
chastic wavelet, which often occurs for time-domain
data where one can use the convolutional model to syn-
thesize the seismic data from the earth reflectivity. Be-
cause of lateral and vertical velocity variations, the
seismic wavelet is no longer stochastic. Unlike decon-
volution, the proposed algorithm enhances the seismic
resolution of stochastic data and thus works equally
well in the time and depth domains. Because the pro-
posed workflow mimics a deconvolution process, we
owe it the name iCWTdec.
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Figure 2. (a) Synthetic channel model, (b) its
corresponding ICWT deconvolution, and
(c) the RAL

Figure 3. Plot (a) shows 10 ms thickness
trace, (b) ICWT deconvolution trace,
(c) CWT Morlet magnitude, and (d) CWT
modulus maxima.

Figure 4. Plot (a) shows 30 ms thickness
trace, (b) ICWT deconvolution trace,
(c) CWT Morlet magnitude, and (d) CWT
modulus maxima.
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Figure 1 illustrates schematically how the proposed
algorithm works using a real seismic trace. First, we
generate the reflectivity series 4 ms sampled (Fig-
ure 1a), from real well log data. Comparing the 30 Hz
Ricker wavelet filtered synthetic seismic (Figure 1b)
and the closest seismic trace (Figure 1c¢), we can con-
firm a good well tie. The Morlet CWT (Figure 1d) of the
seismic is computed, and the ridges of the CWT magni-
tude along the scales are detected (Figure 1e) and used
as a guide to reconstruct the higher resolution trace us-
ing a shrunken Morlet wavelet (Figure 1f). Finally, after
band-pass integration, the RAI is computed (Figure 1g).

We shall illustrate the use of such a workflow by us-
ing synthetic and real data examples.

Example 1: Synthetic seismic channel

To test the proposed methodology, we first apply it
to a 2D synthetic seismic response of a channel with
thickness varying from 1 to 50 ms convolved with a
band-pass wavelet (Figure 2a).
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Figure 5. (a) Noisy channel model and (b) corresponding
ICWT deconvolution.
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Figure 6. Marmousi2 Vp model (Martin, 2004).
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Figures 3a and 4a show the synthetic traces at 10 and
30 ms thickness. Figures 3b and 4b show the corre-
sponding ICWT-reconstructed traces. Figures 3c and
4c show the Morlet CWT magnitudes, which, associated
with Figures 3d and 4d, show the desired seismic events
after the WTMML detection.

Applying this process to all the traces in Figure 2a,
we obtain the iCWTdec image in Figure 2b. Note the
improvement in the temporal resolution of the pro-
posed methodology.

By integrating the reflectivity series, we also calcu-
lated the RAI Figure 2c shows the RAL

Figure 5 shows how the proposed algorithm also
works well after applying random additive noise to
the same synthetic data.
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Figure 7. (a) Wave equation prestack depth migrated syn-
thetic seismic section from Marmousi2 model, (b) iCWTdec,
and (c) RAL
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Example 2: Marmousi2 synthetic data

Figure 6 shows the Marmousi2 Vp model. This model
is designed by Martin (2004) to evaluate AVO attributes
after different seismic processing schemes. Different
from our simple convolutional first example, Martin
(2004) uses elastic wave-equation forward modeling
to keep realistic seismic events, such as multiples, head
waves, etc. In this paper, we used Martin’s (2004) wave-
equation prestack depth-migrated data set (Figure 7a)
to test our proposed algorithm.

Although the data in Figure 7a are in depth, we can
further enhance vertical resolution directly applying the
iCWTdec. Figure 7b shows the iCWTdec, while Fig-
ure 7c displays the band-pass integration result, or
RAI, computed from the iCWTdec data.

)

a)

Figure 8a shows a representative trace from the Vp
section shown in Figure 6 indicated by a vertical dotted
line. Figure 8a shows the migrated trace, and Figure 8c
shows the ICWT deconvolved trace. Note the improve-
ment in resolution even though the wavefield is not
stochastic.

Example 3: Real data offshore Brazil in time

The depositional model of our Campos Basin turbi-
dite reservoirs data example is as a complex turbidity
system, mainly represented by amalgamated channels,
lobes and overbank facies (Bruhn et al., 2003). The
heterogeneities related to the erosive channels and
small displacement faults fall below seismic resolu-
tion and are therefore tough to detect. The traps are

Figure 8. (a) The Vp trace at CDP 500 from

Figure 8. (b) Seismic trace at CDP 500 from
Figure 7a. (c) ICWT deconvolved data trace
at CDP 500 from Figure 7b.

Depth (km)

H"'IH'T' [v =

10
1

T T T

I I T
1000 2000 3000 4000 -0.01 0 0.01
Ve (m/s) Amplitude

T I
0 0.02

Amplitude

Figure 9. (a) Vertical seismic line AA’.
(b) The black dashed line shows the top hori-
zon of the upper reservoir zone, and the green
line shows the bottom horizon of the base res-
ervoir zone.
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essentially stratigraphic, with some secondary struc-
tural components (Lemos et al., 2006).

Figure 9a shows a representative vertical slice
through the 3D seismic amplitude data. The dashed
black line in Figure 9b indicates the top of the upper
reservoir zone, and the green line shows the bottom
of the lower reservoir zone. Figure 10 shows the map
of the root-mean-square (rms) amplitude value between
top and base of the upper reservoir zone, where one
can see the complex-channel turbidite sedimentary
system and also the deposition direction and amalga-
mated stack.

After applying the proposed methodology to the
whole 3D seismic data, Figure 11a and 11b illustrates

Figure 10. Horizon slice through the rms
seismic amplitude values around the top of
the upper reservoir zone. AA’ and BB’ indicate
the vertical lines’ locations.

Figure 11. (a) The iCWTdec vertical slices f
AA’; (b) RAJ, and (c) P-impedance band-pass.

SA112 Interpretation / February 2014

the same line shown in Figure 9 of the iCWTdec and
RAI attributes, respectively. The iCWTdec results
clearly help to better discriminate the limits of the main
stratigraphic sequences.

Using a commercial sparse-spike model-based
acoustic inversion (Levy and Fullagar, 1981) software
assisted by well logs, we computed the P-impedance,
and we applied a low-cut filter to generate a P-
impedance band-pass attribute, here shown in Fig-
ure llc. By visually comparing Figure 11b and 1llc,
we see that RAI is a reasonable approximation
to band-limited P-impedance. In addition, iCWTdec
(Figure 11a) explicitly shows the location of the imped-
ance changes.
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Figure 12. (a) The 3D visualization of the AA’ P-impedance
band-pass and BB’ RAI vertical lines, respectively, and con-
versely (b) AA’ RAI and BB’ P-impedance band-pass RAI ver-
tical lines, respectively.
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Figure 13. RAI x P-impedance band-pass crossplot values
around the top of the upper reservoir zone.

Figure 12 uses 3D visualization to compare two
workflows by sliding a RAI crossline over the P-imped-
ance band-pass inline, and vice versa. Note the continu-
ity at the intersection neighborhood when changing
from one attribute to another.

In Figure 13, we try to be quantitative by crossplot-
ting RAI and P-impedance band-pass values between
the top of the upper reservoir zone to the bottom of
the lower level reservoir zone, and the fairly linear re-
sult gives us some confidence to use RAI as a band-pass
impedance estimation, when few, limited, or no well log
data are available.

As a final visual comparison, Figure 14a displays
the horizon slice of the rms RAI values between the
top and base of the upper reservoir zone, and Figure 14b
shows the P impedance band-pass obtained by model-
based inversion rms values for the same time interval.
Once again, the turbidite-like depositional system
shown previously in Figure 10 is very similar in both
slices.

Example 4: Real data offshore Brazil in depth

This real 3D seismic data are depth migrated,
sampled in depth, and also come from the Campos
Basin, Brazil. Figure 15a shows a vertical user-defined
section through the seismic amplitude volume. The
maximum amplitude between closest top horizon zero
crossings horizon slice is illustrated in Figure 16. The
top and base of the target region are shown in
Figure 15b.

Although the data are sampled in depth, we apply
iCWTdec and RAI and compute the high-resolution seis-
mic trace (Figure 17a) and the band-pass integration of
the high-resolution trace (Figure 17b).

Because the 3D seismic data are in depth, the follow-
ing model-based acoustic inversion workflow should be
applied to the seismic data in time. We must first (1)
convert seismic data from depth to time using a velocity
model, then (2) compute the model-based P-impedance
band-pass and finally, (3) convert the inversion results
back from time to depth. Figure 18 compares the work-
flow for the RAI algorithm and the band-passed model
based inversion. Figure 17c shows the P-impedance
band-pass section.

Using 3D visualization, Figure 19 shows an RAI
crossline over the P-impedance band-pass inline, and
vice versa. In this manner, we can check the continuity
of the intersection neighborhood when we change from
one attribute to another.

The crossplot between RAI and P-impedance band-
pass values around the top horizon (Figure 20) confirms
a linear trend linking both attributes. The rms value
maps using the same time window are plotted in
Figure 21a and 21b for the RAI and P-impedance
band-pass, respectively. Note how anomalies, structural
features, and facies associations are equal for both
maps.
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Figure 14. (a) RAI and (b) P-impedance band-
pass horizon map of the rms values around the
top of the upper reservoir zone.
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Conclusions
The CWT spectral decomposition filtering pro-
cess described generates high-resolution events that
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Figure 16. Horizon map of the maximum seismic amplitude
between zero crossings around the upper horizon.

correlate to major acoustic impedance changes. Such
higher-resolution images can be particularly valuable
in resolving thin beds approaching the limits of seismic
resolution. Because this frequency broadening is a
trace-by-trace independent process, laterally consistent
thin-bed terminations and other truncations can be in-
terpreted with confidence. As a seismic resolution en-
hancement algorithm, iCWTdec can be applied directly
to data in depth.

Comparisons between RAI and more time- and
data-intensive P-impedance band-pass computed from
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Figure 18. Acoustic inversion workflow applied to seismic
data sampled in depth compared with the RAL

Figure 17. (a) The iCWTdec vertical slices
AA’, (b) RAL and (c) P-impedance band-pass.
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acoustic inversion algorithms are good, suggesting that
we can use RAI, mainly, for explorationist purposes,
when few or no wells are available.
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Figure 19. (a) The 3D visualization of AA’ P-impedance
band-pass and BB’ RAI vertical lines, respectively, and con-
versely (b) AA’ RAI and BB’ P-impedance band-pass RAI ver-
tical lines, respectively.
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Figure 20. RAI x P-impedance band-pass crossplot values
around the top of the upper reservoir zone.

The spectrum of the forward complex Morlet
wavelet should accurately express (and if desired,
reconstruct) the bandwidth of the input traces. The
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Figure 21. (a) RAI and (b) P-impedance band-pass horizon
map of the rms values around the top of the upper reservoir
zone.
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CWT magnitude and the WTMML analysis of represen-
tative vertical slices should be examined to confirm if
the chosen scales (frequency band) and thresholds
used to detect WTMML anomalies detect and delineate
the features of interest.

In this paper, we reconstruct the seismic trace
by preserving all the WTMML scales, giving rise to a
broadband reconstruction.
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