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Abstract

Seismic data with enhanced resolution allow interpreters to effectively delineate and interpret architectural
components of stratigraphically thin geologic features. We used a recently developed time-frequency domain
deconvolution method to spectrally balance nonstationary seismic data. The method was based on polynomial
fitting of seismic wavelet magnitude spectra. The deconvolution increased the spectral bandwidth but did not
amplify random noise. We compared our new spectral modeling algorithm with existing time-variant spectral-
whitening and inverse Q-filtering algorithms using a 3D offshore survey acquired over Bohai Gulf, China. We
mapped these improvements spatially using a suite of 3D volumetric coherence, energy, curvature, and fre-
quency attributes. The resulting images displayed improved lateral resolution of channel edges and fault edges
with few, if any artifacts associated with amplification of random noise.

Introduction
Enhancing the resolution of surface seismic data is

key to improving images of thin geologic features com-
mon to fluvial systems. High-resolution facilitates hori-
zon interpretation, highlights sequence boundaries, and
sharpens attribute images.

Chopra and Marfurt (2007) find that seismic data
with limited resolution gives rise to lower resolution
seismic attribute and inversion volumes due to narrow
frequency bandwidth, thereby hindering the delineation
of subtle reservoir features. Conversely, seismic attrib-
utes computed on seismic reflection data having en-
hanced resolution can facilitate quantitative and quali-
tative interpretation and reveal the spatial distribution
of structural and stratigraphic features. In fact, the qual-
ity and reliability of reservoir characterization based
on seismic attributes, such as coherence, curvature,
dip-azimuth, and impedance inversion depend directly
on the seismic resolution.

Algorithms to improve seismic resolution fall into
two broad categories: time-variant spectral balancing
(deconvolution) and inverse Q-filtering. The goal of de-
convolution is to compress the seismic wavelet and at-
tenuate reverberations as well as short-period multiples
by estimating the earth’s reflectivity (Rosa and Ulrych,
1991; Ziolkowski, 1991; Margrave and Lamoureux, 2001;

Yilmaz, 2001; Margrave et al., 2011; Wang et al., 2013).
Chopra et al. (2006) propose an alternative “thin-bed
spectral inversion” that removes the time-variant wave-
let from the seismic data using a matching-pursuit vari-
ant of sparse spike inversion of time-frequency spectral
components. The goal of inverseQ-filtering is to compen-
sate for nonstationary attenuation (Futterman, 1962;
Kjartansson, 1979; Hale, 1982; Hargreaves and Calvert,
1991; Hargreaves, 1992; Zhang et al., 2007; Wang, 2010).
In practice, it is difficult to estimate a stable and accurate
Q-model that represents intrinsic and geometric attenu-
ation as waves propagate.

Time-variant deconvolution and inverse Q-filtering
algorithms operate implicitly or explicitly in the time-
frequency domain. Hence, time-frequency transform
methods, which decompose nonstationary seismic sig-
nal into a series of nonstationary time-frequency atoms,
form the basis of spectral resolution enhancement.
Current time-frequency transforms include the Gabor
transform (Gabor, 1946), the short time Fourier trans-
form (STFT) (Partyka et al., 1999; Marfurt and Kirlin,
2001), the continuous wavelet transform (CWT) (Rioul
and Vetterli, 1991; Matos et al., 2009), empirical mode
decomposition (EMD) (Huang et al., 1998), the seislet
transform (Fomel and Liu, 2010), S-transform (Stock-
well et al., 1996), the generalized S-transform (GST)
(McFadden et al., 1999; Gao et al., 2003; Pinnegar
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and Mansinha, 2003), matching pursuit related methods
(Liu and Marfurt, 2007; Wang, 2007, 2010), and a local
attribute using an iterative inversion framework based
on regularized nonstationary regression (Fomel, 2007,
2009; Liu et al., 2011). In this paper, we compute
time-frequency spectra using a GST due to its adjustable
time-frequency characteristics and easy implementa-
tion. We then model these spectra with a series of wave-
let spectra parameterized by low-order polynomials and
spectrally balance these wavelets to obtain high time-
frequency resolution seismic traces.

We begin our discussions with a review of time-vari-
ant spectral balancing and inverse Q-filtering methods.
We then review key components of our time-frequency
spectral-modeling algorithm. Next, we apply these three
methods to a 3D offshore seismic survey acquired over
the Bohai Gulf, China, and compare the results to each
other and to the original data. We validate the improve-
ment provided by the NPF algorithm by correlating
synthetic seismograms from a well log in the survey.
Finally, we use coherence, curvature, and mean fre-
quency attributes to quantify the improvement in delin-
eating lateral extent and vertical resolution of a faulted
fluvial system.

Methodology
Several methods have been applied to expand the

frequency bandwidth of nonstationary seismic data to
compensate for attenuation. Two of the more important
techniques are time-variant spectral balancing (decon-
volution) and inverse Q-filtering.

Time-variant spectral balancing
Time-variant spectral whitening (TVSW) (Yilmaz,

2001) is a common method to broaden the frequency
bandwidth of the seismic signal and deal with attenua-
tion. More recently, spectral whitening may be modified
to become spectral “bluing” (Neep, 2007) giving rise
to the term spectral balancing to obtain any desired
objective spectrum. TVSW divides the input seismic
trace into multiple overlapping windows. Within each
window, TVSW computes a suite of band-pass-filtered
versions of the data (not unlike an S-transform). The
envelope of each band-pass-filtered component pro-
vides a means to estimate the spectral decay rate. Next,
one computes the inverse of (or otherwise compensates
for) this decay rate to obtain a spectrally balanced sig-
nal within each analysis window. Finally, the output
trace is constructed by blending the windows together
(van der Baan, 2008). In most implementations, the
window length is determined by the user rather than
by the data, such that an improper choice of the window
lengthmay give rise to unsatisfactory results. In addition,
high-frequency noise may be erroneously amplified that
may negatively impact subsequent interpretation. More
modern spectral-balancing implementations minimize
the size of the vertical analysis window and obtain accu-
rate statistics through the use of time-variant spectra of

adjacent traces, or even of the entire survey (e.g., Mar-
furt and Matos, 2014).

Inverse Q-filtering
Loss of higher frequencies caused by intrinsic attenu-

ation in rocks gives rise to wavelet nonstationary behav-
ior, such that the wavelet shape changes with time
(Yilmaz, 2001). Seismic attenuation is usually described
by a dimensionless quality factor Q, which is defined by
the ratio of the mean-stored energy to the energy loss
within a single cycle (Kjartansson, 1979). Although the
previously described time-variant spectral balancing
uses simple statistics (curve fitting) to estimate the at-
tenuation, inverse Q-filtering uses fits — a deterministic
spectral attenuation model to the time-varying spectral
components. This model (estimate of Q) can then be
used to not only boost the amplitude of the higher fre-
quency components, but also it can compensate for the
corresponding dispersion effects by rotating the phase
components of seismic data (Chopra, 2011). Inverse Q-
filtering works well when based on VSP measurements
(Chopra et al., 2003) or on a large number of carefully
constructed synthetics (Taner and Treitel, 2003). How-
ever, accurate estimation of Q directly from surface seis-
mic data has proven to be a challenging problem.

Time-frequency domain deconvolution based on
nonstationary wavelet spectra modeling

We propose a new enhanced-resolution method in
time-frequency domain, which contains three steps as
follows.

Step 1: Spectral decomposition of nonstationary seismic data
Time-frequency analysis provides a means to charac-

terize the nonstationarity seismic signals. Here, we use
the GST to do spectral decomposition because of its
high time-frequency resolution, which is defined as

x̂ðτ; f ÞGST ¼
Z þ∞

−∞
xðtÞ jf jrffiffiffiffiffi

2π
p

σ 0 0 e
−ðτ−tÞ2 jf j2r

2σ 0 02 e−i2πf tdt; (1)

where xðtÞ is the original seismic signal, τ is the time-
shift parameter, and x̂ðτ; f ÞGST is a 2D time-frequency
variable with regard to f and τ, whereas σ 0 0 and r are
adjustable parameters that define the trade-off between
temporal and spectral resolution. Testing alternative
parameters on our data shows optimal time-frequency
resolution for values of σ 0 0 ¼ 1.2 and r ¼ 0.8. Examin-
ing equation 1, we see that the Gabor transform (Gabor,
1946) is a special case of the GST where r ¼ 0. Simi-
larly, one obtains the S-transform (Stockwell et al.,
1996) by setting σ″ ¼ 1 and r ¼ 1.

Step 2: Spectral modeling using
nonstationary polynomial fitting

Based on the assumption of statistically white reflec-
tivity, Rosa and Ulrych (1991) model the magnitude
spectra of the time-varying seismic wavelets, from a
seismic amplitude trace using a smooth polynomial
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in the time-frequency domain (or generalized S-domain)
as

Waðτ; f mÞ ¼ jf mjk exp
�XN

n¼0

anðτÞf nm
�
; (2)

where Waðτ; f mÞ denotes a smooth amplitude spectrum
of a time-varying wavelet, anðτÞ is the nth polynomial
coefficient independent on frequency at time τ, N is the
lower polynomial order, and f m is the mth frequency.
Rosa and Ulrych (1991) use equation 2 to model the am-
plitude spectrum of a wavelet. In our implementation,
the polynomial coefficients vary with time and fre-
quency, providing a means to represent nonstationarity
of seismic data more precisely than the original tempo-
rally variant fitting method. Specifically, we redefine
equation 2 to obtain

Ŵaðτ; f mÞ ¼ jf mjk exp
�XN

n¼0

anðτ; f mÞf nm
�
: (3)

Then, we estimate the polynomial coefficients by
solving the following least-squares problem:

min
anðτ;f mÞ

XM
m¼1

ε2m
∧
¼
XM
m¼1

����lnAðτ;f mÞ−klnjf mj−
�XN

n¼0

anðτ;f mÞf nm
�����

2

2

þR½anðτ;f mÞ�; (4)

wherekk22 denotes the squared L-2 norm of a function,
Aðτ; f mÞ denotes the time-frequency amplitude spectra
of seismic trace, anðτ; f mÞ expresses the polynomial
coefficients varying with time and frequency, R denotes
a regularization operator, and εm is the misfit error to
be minimized. Here, we use “shaping regularization”
(Fomel, 2007), which is integrated in a conjugate-gra-
dient algorithm for iterative least-squares estimation
and adopt the Gaussian smoothing operator with an
adjustable radius to control the smoothness of the co-
efficients anðτ; f mÞ.

Note that the time-frequency amplitude spectra
Ŵaðτ; f mÞ of a wavelet can be estimated by iterating the
procedure of equations 3 and 4 over all the frequencies
at every time sample τ. Once we obtain the nonstation-
ary polynomial coefficients anðτ; f mÞ, we can model the
wavelet spectra using the equation 3.

Step 3: Deconvolution in the time-frequency domain
We spectrally balance, or deconvolve, the seismic

data by the time-frequency spectra of the seismic trace
by the time-frequency spectra of the estimated seismic
wavelet (equation 3) to estimate the spectrally balanced
time-frequency spectra of the reflectivity. We then apply
the inverse GST to obtain a spectrally balanced esti-
mate of reflectivity in the time domain.

The noise-free synthetic example shown in Figure 1
provides a quantitative comparison of the three-candi-

date spectral balancing algorithms. Figure 1a shows a
suite of random spikes, representing the ideal reflectiv-
ity. Figure 1b shows the corresponding attenuation-free
synthetic obtained by convolving the reflectivity in Fig-
ure 1a with a 40-Hz Ricker wavelet. Figure 1c shows the
same trace that has undergone attenuation with a qual-
ity factor Q ¼ 45. Application of TVSW, inverse Q-filter-
ing, and the NPF algorithm to Figure 1c, produces the
enhanced-resolution results shown in Figure 1d–1f.
Note that all three algorithms provide comparable im-
provements in resolution of the area within the black
dashed-line box. In contrast, comparison of the results
within the dashed-line ovals with the actual reflectivity
clearly shows that the NPF method (Figure 1f) provides
the best enhancement of resolution. Furthermore, ex-
amination of the results within the solid line rectangles
of Figure 1 indicates that the noise produced by the
NPF method is less than those of other two methods.

Application
The Bohai Gulf consists of a thick succession of flu-

vial-deltaic systems. Though many of these channels
are filled with sand and form excellent reservoirs, some
are filled with shale and form baffles. The key to suc-
cessful development is to laterally delineate such chan-
nels and to determine whether stacked channels are
either vertically separated (forming separate reservoir
compartments) or whether younger channels have in-
cised older ones (potentially forming a single reservoir
compartment). Our goal is to evaluate the effectiveness
time-variant spectra whitening (TVSW), inverse Q-filter-
ing, and our new NPF spectral modeling algorithm
as resolution enhancement tools. We quantify such im-
provements by examining key vertical slices through
the seismic amplitude volumes as well as time slices
through the corresponding coherence, curvature, and
frequency attribute volumes.

Improvements in resolution seen
on seismic amplitude volumes

In Figure 2, we show a comparison of vertical sec-
tions through the seismic amplitude data before and
after the application of TVSW, inverse Q-filtering, and
the proposed NPF spectral modeling method. TVSW
and inverse Q-filtering (Figure 2b and 2c) provide im-
provements in resolution compared with original section
in Figure 2a. However, examining the data within the
black dashed boxes, it is clear that the NPF results
shown in Figure 2d obtained by the NPF provide more
reflection detail and better delineate the faults high-
lighted by the oblique dashed lines. In the areas indicated
by the black arrows, note that the thin beds clearly
resolved in Figure 2d are poorly resolved in Figure 2b
and 2c.

Well logs provide ground truth, though our normal
incident synthetics (which lack S-wave sonic logs) do
not account for AVO effects. In Figure 3, we show a
zoomed window of the data corresponding to the win-
dow within the dashed-line boxes of Figure 2. Synthetic
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traces produced by convolving Ricker wavelets with re-
flectivity derived from well logs are inserted within
each window. The correlation of the well log synthetic
with the original data (Figure 3a) is 0.67, for TVSW (Fig-

ure 3b) is 0.76, for inverse Q-filtering (Figure 3c) is 0.77,
and for the proposed NPF spectral modeling algorithm
(Figure 3d) is 0.80. Such values indicate that the im-
proved seismic data using the NPF method are real.

Figure 1. A noise-free synthetic seismic trace example. (a) The reflectivity. (b) The synthetic seismic trace without attenuation.
(c) The synthetic seismic trace with attenuation created by Q ¼ 50. Panels (d-f) show the improved resolution results applied by
time-variant spectra whitening (TVSW), inverse Q-filtering, and the proposed spectral modeling method. The black dotted-line
boxes and ovals denote the comparing areas. Notice that the best enhancement of seismic resolution is in Figure 1f.

Figure 2. Vertical slices along line AA′
through the (a) original seismic amplitude
volume and through volumes after spectral
balancing using (b) after TVSW, (c) inverse Q-
filtering, and (d) the proposed spectral model-
ing method. The oblique dashed-lines indicate
the location of faults. Black arrows and
dashed-line boxes indicate areas of improved
vertical resolution, with the clearest identifi-
cation of thin beds seen in Figure 2d. The lo-
cation of line AA′ is shown on subsequent
time slices.
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Note that the adjacent events indicated by the green
arrow are resolved in Figure 3d but cannot be clearly
separated in Figure 3a–3c.

Figure 4 shows corresponding time slices at t ¼
510 ms through the same volumes shown in Figure 1.
Note that little random noise appears in any of the spec-
trally balanced time slices. Also, note that some of the
channels seen in Figure 4a no longer appear in the spec-
trally balanced images. This “loss of geology” is com-
mon on spectrally balanced images. A given low-reso-
lution channel seen in Figure 4a that lies above or below
the target time slice will no longer be seen after spectral
balancing, but rather it will be more tightly concen-
trated about the shallower or deeper time level where
it actually occurs. This reduction in vertical smearing
will carry through in subsequent attribute slices and
is well documented in a recent paper by Leppard et al.
(2010). Figure 5 shows average amplitude spectra for
the original and three enhanced-resolution data. As ex-
pected from our previous inspection of Figure 2, the
average spectrum of the section applied our proposed
nonstationary polynomial fitting (NPF) deconvolution
method denoted by the red solid curve
is broader than those of TVSW deconvo-
lution (green solid curve) and inverse-
Q-filtering data (blue solid curve) and
broader still than the original data (black
solid curve). Moreover, as observed in
Figure 5, the dominant frequency of the
result using our NPF method is greater
than the other three.

Local weighted averaging of instan-
taneous seismic attributes improves
their interpret ability by removing spikes
and reducing rapid and confusing varia-
tions (Barnes, 2000). We calculate the
average weighted frequency shown in
Figure 6 for the corresponding section
of Figure 2 to evaluate the influence
of the improved resolution on the fre-
quency components, which is performed
throughweighting the value of the instan-
taneous frequency by the instantaneous
envelope and averaging over a short
time window. The NPF method shows
a higher weighted average frequency
(Figure 6d) than the other methods, par-
ticularly around the well indicated by
the black dashed-line boxes. Note the
decrease in the average weighted fre-
quency near the faults described by
the oblique dashed-lines are due to ei-
ther anomalous attenuation or alterna-
tively, laterally smeared images and
loss of high frequency due to an inaccu-
rate migration velocity model.

The amplitude time slices shown in
Figure 4b–4d are comparable. To deter-
mine which is “best,” we compute a suite

of attributes commonly used to map channels and
faults.

Fault detection and channel delineation
Chopra and Marfurt (2007) argue that the quality of

seismic data directly influences the quality of sub-
sequent structural attributes results such as coherence,
curvature, and other attributes, which can aid inter-
preters by enhancing subtle structural and stratigraphic
features such as fault, channel, fracture, fold, and so on.
To evaluate the impact of enhanced-resolution process-
ing on coherence, in Figure 7, we display a comparison
of time slices through coherence volumes computed
from the original seismic data (Figure 7a) as well as
from resolution-enhanced data obtained using TVSW
(Figure 7b), inverse Q-filtering (Figure 7c), and the pro-
posed NPF method (Figure 7d). Because the data have
a 50-Hz component, all computations used a five-trace,
�10‐ms analysis window. In general, coherence images
from low-frequency data mix vertical stratigraphy, giv-
ing rise to the washed-out, more coherent image seen in
Figure 7a, in which red arrows indicate poorly focused

Figure 3. The zoomed view of the black dashed-line rectangle zone in Figure 2.
(a) Original field seismic data. Panels (b-d), respectively, denote the results using
TVSW, inverse Q-filtering, and the proposed spectral-modeling method. The syn-
thetic obtained by convolving the Ricker wavelet with reflectivity derived from
well logs is inserted in (a-d). The correlation coefficients between the synthetic
and the well-side traces in (a-d) are 0.67, 0.76, 0.77, and 0.80, respectively.
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Figure 5. Comparison of average amplitude
spectra of four images shown in Figure 2 for
the original data (black solid curve), data after
TVSW deconvolution (green solid curve), data
after inverse-Q-filtering (blue solid curve) and
data after the proposed method (red solid
curve). Note that the dominant frequency is
higher and bandwidth broader for the seismic
section processed with proposed method com-
pared to the original, TVSW deconvolution, and
inverse-Q-filtering data.

Figure 4. Time slices at t ¼ 510 ms through
the (a) original seismic amplitude volume
and through volumes after spectral balancing
using (b) TVSW, (c) inverse Q-filtering, and
(d) the proposed spectral-modeling method.
Note that none of the spectrally balanced time
slices (b-d) are contaminated by noise. Be-
cause channels may cut above or below this
time slice, direct comparisons of Figure (b-d)
with (a) can be misleading, with “more geol-
ogy” in (a) due to adjacent channels in leaking
into the time slice shown on this image.

Figure 6. Vertical slices along line AA′
through average weighted frequency volumes
computed from the seismic amplitude vol-
umes shown in Figures 2 and 4: (a) Original
seismic amplitude and spectrally balanced
volumes using (b) TVSW, (c) inverse Q-filter-
ing, and (d) the proposed spectral modeling
method. The oblique dashed line indicates the
location of faults. Note that the black dashed-
line boxes indicate the comparing areas of
average weighted frequency components on
the vertical section.
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faults and green arrows indicate less poorly defined
channel edges. Notice that time slices extracted from
the coherence volumes run on frequency-improved data
show significantly increased identification of faults
discontinuity and clear delineation of channel features
in Figure 7b–7d, with the highest lateral resolution and
clearest delineation of major faults and channels ob-
served from coherence in Figure 7d.

Geometric attributes often allow us to map faults on
time-slice faults that may not readily seen on conven-
tional amplitude slices (Chopra andMarfurt, 2007). Spec-
tral components are also routinely used to map faults
and channels. In Figure 8a and 8b, we show time slices
through the peak frequency corendered with peak
magnitude volumes and coherence computed from the
original and NPF-filtered data corendered using a hue-
lightness-saturation (HLS) color model. Note that the
major faults on Figure 8b are clearer and the peak fre-
quency is higher than those on Figure 8a.

In addition, we calculate multiple attributes run on
the NPF enhanced-resolution data to comprehensively
delineate the faults and channels. Note that all the fol-
lowing attribute figures in this paper are obtained from
attribute volumes computed on enhanced-resolution

data using the proposed method without specific dec-
laration. In Figure 9a, it is difficult for us to see obvious
trending faults from the amplitude slice, and, needless to
say, identifying the edge of channels. The corresponding
coherence slice in Figure 9b (the same as Figure 7d) not
only shows clear faults but also the distribution of chan-
nels indicated as the red dotted line. In Figure 9c, the
instantaneous phase slice also shows faults, channels,
and lateral stratigraphic changes. To clearly delineate
the faults and channels, we overlay the coherence, in-
stantaneous slices on the corresponding amplitude slice
displayed in Figure 9d to help us understand the seismic
expressions of the structural and stratigraphic features,
and it can also reveal the corresponding relationship be-
tween seismic attributes and amplitude when delineating
the same geologic phenomenon.

Next, we choose a representative seismic line per-
pendicular to faults of interest indicated by the dashed
line BB′ in Figure 9a–9c andwe display the corresponding
vertical slices including seismic amplitude (Figure 10a),
the corresponding instantaneous phase (Figure 10b),
and coherence (Figure 10c). Figure 10 reveals two main
faults and some subtle faults between layers indicated by
a white dotted line as we expect.

Figure 7. Time slices at t ¼ 510 ms through
coherence volumes computed from the seis-
mic amplitude volumes shown in Figures 2
and 4: (a) Original seismic amplitude and
spectrally balanced volumes using (b) TVSW,
(c) inverse Q-filtering, and (d) the proposed
spectral modeling. Note that the time slices
from the coherence volumes show clearer
fault features described by red arrows and
more obvious channels illustrated by blue ar-
rows in Figure 7d.

Figure 8. Time slices at t ¼ 510 ms through
composite volumes of peak amplitude, peak
frequency, and coherence computed on (a)
the original field data and (b) the enhanced-
resolution data. Note that the highest lateral
resolution of faults and channels is in the Fig-
ure 8b.
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The most-positive and most-negative curvatures are
the most unambiguous of the curvature images in high-
lighting faults, folds, and the edge of the channel
(Chopra and Marfurt, 2007). In Figure 11, we show a
comparison of time slices at t ¼ 510 ms through long-
wavelength and short-wavelength most-positive curva-
ture volumes computed from the data before and after
enhancing resolution to illustrate the impact of seismic
resolution on the curvature attributes. Figure 11a and
11b, respectively, shows the long-wavelength and short-
wavelength most-positive curvature derived from the
original data volumes. As observed from the comparing
points denoted by green arrows, the long-wavelength
(Figure 11c), and short-wavelength (Figure 11d) most-

positive curvature computed from the enhanced-resolu-
tion data volumes demonstrate that the lateral resolution
is slightly strengthened compared with the results of
Figure 11a and 11b. By contrasting, we also find that the
long-wavelength curvature shown in Figure 11a and 11c
has an obvious advantage in delineating the lineament
of faults and channels. However, the short-wavelength
curvature can provide abundant, detailed information,
which helps to reveal the buried geologic features as
shown in Figure 11b and 11d.

To further clarify the seismic attributes characteriza-
tion of faults and channels, Figure 12c demonstrates
an overlay of instantaneous envelope displayed in Fig-
ure 12a and coherence attribute shown in Figure 12b.

Figure 9. Time slices at t ¼ 510 ms through
(a) seismic amplitude, (b) coherence, and (c)
instantaneous phase volumes computed using
the proposed spectral-modeling method.
(d) Color stack all three attributes. The verti-
cal dashed-line BB′ indicates the location of
Figure 10a and 10c on the time slice. Note that
the overlay facilitates marking the extent and
trend of the channel features described by red
dotted line and aids in delineating the faults.

Figure 10. A vertical slice BB′ through (a)
seismic data, (b) instantaneous phase, and
(c) coherence volumes corresponding to Fig-
ure 9a–9c. The white dotted lines indicate the
faults.
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Similarly, we overlay curvature attribute shown in Fig-
ure 11c and coherence attribute displayed in Figure 12b
to get Figure 12d. The overlays shown in Figure 12c and
12d reveal that the lineaments in red seen on the most-
positive curvature will correlate with the upthrown
signatures that may be corresponding to the sharp vari-
ance area of instantaneous envelope or low coherence
and obviously indicate the location and trend of faults
and channels.

In Figure 13, we depict a suite of time slices through
the long-wavelength (Figure 13a) and short-wavelength
(Figure 13b) most-negative curvature volumes com-
puted from the seismic data, and the long-wavelength
(Figure 13c) and short-wavelength (Figure 13d) most-
negative curvature volumes run on the enhanced-reso-
lution data. Compared with the most-positive curvature
displayed in Figure 11, subtle channels described as

green arrows are clearly shown in Figure 13, with the
highest lateral resolution in Figure 13c and 13d. In this
case, note that delineation of faults and channels is
not specifically obvious such as that observed on the
coherence attribute shown in Figure 12b, which may be
explained by the fact the curvature attribute is more
sensitive to the structural variances than coherence.

Similar to Figure 12, for the convenience of compari-
son, in Figure 14, we display the time slices of the
most-positive curvature (Figure 14a, same as Figure 11c),
most-negative curvature (Figure 14c), coherence (Fig-
ure 14b, same as 12b), and an overlay (Figure 14d) of
three attributes stated above. In Figure 14d, we can ob-
serve the lineaments in blue seen on the most-negative
curvature slice will correlate with the downthrown signa-
tures. Because the positive curvature tightly correlates to
a channel seen on coherence, it is an indicator that it has

Figure 11. A time slice at t ¼ 510 ms through
(a) most-positive curvature (long-wavelength)
and (b) most-positive curvature (short-wave-
length) volumes run on input seismic data, (c)
most-positive curvature (long-wavelength),
and (d) most-positive curvature (short-wave-
length) volumes run on seismic data with
enhanced resolution. Note that the lateral res-
olution denoted by the green arrows is slightly
strengthened in Figure 11c and 11d.

Figure 12. A time slice at t ¼ 510 ms through
the (a) instantaneous envelope data volume,
(b) coherence volume, (c) instantaneous en-
velope overlaid on the coherence volume,
and (d) most-positive curvature (same as Fig-
ure 11c) overlaid on the coherence volume.
Note that the overlay slice helps to show the
corresponding relation between all three
attributes when delineating the stratigraphic
features.
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compacted less than the flood plain and may be sand-
filled. If it is tightly correlated with a negative curvature
anomaly, it is either incised or has been filled with
material that has compacted more than the surrounding
flood plain. Note that the curvature shows more subtle

features not observed by coherence because coherence
is focused on measuring the lateral discontinuities.

Al-Dossary and Marfurt (2006) use different wave-
length curvature attributes to enhance geologic fea-
tures having different scales. Li and Lu (2014) use

Figure 14. A time slice at t ¼ 510 ms through
(a) most-positive curvature volume, (b) coher-
ence, (c) most-negative curvature, and (d)
most-positive and negative curvature overlaid
on coherence.

Figure 13. A time slice at t ¼ 510 ms through
(a) most-negative curvature (long-wavelength)
and (b) most-negative curvature (short-wave-
length) volumes run on input seismic data,
(c) most-negative curvature (long-wavelength),
and (d) most-negative curvature (short-wave-
length) volumes run on seismic data with en-
hanced resolution. Note that the points of
comparison denoted by green arrows show
subtle channels, which cannot be detected
by most-positive curvature shown in Figure 11.

Figure 15. A time slice at t ¼ 510 ms through
(a) composite volume of long-wavelength most-
positive, most-negative curvature, and coher-
ence and (b) composite volume of short-wave-
length most-positive, most-negative curvature,
and coherence. Note that the composite images
show the clear edges of major faults and chan-
nels.
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color-blended technique to integrate complex spectral
coherence attributes at different scales and get promis-
ing results. Here, we also use RGB technique to gener-
ate the color-blended images. Figure 15a shows an
integration attribute slice extracted from the composite
volume of coherence, long-wavelength most-positive,
and most-negative curvatures, whereas Figure 15b is
calculated from coherence, short-wavelength most-pos-
itive, and most-negative curvatures. We can find the ma-
jor trends of faults and channels in Figure 15a and more
details in Figure 15b.

Conclusions
Spectral balancing is critical in improving the reso-

lution of thin beds such as the fluvial channels seen
in the Bohai Gulf. Time-variant spectral balancing and
inverse Q-filtering improve the resolution of the original
seismic data, providing a means of more accurate chan-
nel mapping. Our proposed NPF spectral-modeling
technique provides the best results of the three spectral
balancing algorithms, as seen on vertical slices through
seismic amplitude and time slices through seismic
attributes. Spectral balancing improves some attributes
but not others. The most direct impact is on spectral
components. The bandwidth is extended, and the mean
frequencies are increased, providing a greater dynamic
range of the spectral decomposition images. The phase
is nearly unchanged. By construction, spectral balanc-
ing results in tighter seismic wavelets than the original
seismic data. Such tighter wavelets allow the use of a
smaller analysis window in our coherence computation
and subsequently in the delineation of the edges of thin-
ner channels. Because spectral balancing is applied
trace to trace, it should not radically change the appear-
ance of larger folds and flexures. However, individual
channels may undergo different amounts of differential
compaction. Improving the vertical resolution allows us
to map such features as lithology indicators.

Our new spectralmodeling algorithmdoes not address
dispersion effects associated with intrinsic attenuation.
In theory, inverse Q-filtering should further improve
resolutionbycompensatingforsuchdispersion.Weattrib-
ute this lack of greater improvement to a strong compo-
nent of our attenuation due to geometric scattering.
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