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Summary 

 

Seismic decomposition discriminates different geological 

expressions by isolating seismic signals of particular 

frequency ranges. As a novel signal decomposition method, 

Variational mode decomposition (VMD) exhibits advanced 

features compared with the classic Empirical Mode 

Decomposition (EMD) method. VMD can resolve the 

instinct mode functions (IMFs) more robust and 

reasonably. Besides a synthetic example, we show a field 

application of the VMD in sedimentary cycle identification. 

However, like other high resolution decomposition method, 

traditional VMD also decomposes data trace by trace, 

which would result in poor lateral consistency. In order to 

appropriately apply it on seismic data, a lateral consistency 

preserved VMD method is proposed to meet the challenges 

of seismic application, which has been verified through 

field applications to be valuable for further analyses. 

 

Introduction 

 

Seismic decomposition shows people more hidden 

information in the data than superficially. As the most 

classic spectral analysis tool, Fourier transform gives us the 

stationary frequency information. But, seismic signal 

frequency changes along the traces and depth, termed non-

stationary and need to be analyzed with time frequency 

analysis (TFA) methods (Han & van der Baan 2013). 

Developing from Fourier transform, short-time Fourier 

transform (STFT) and continuous wavelet transform 

(CWT) are classical TFA tools (Partyka et al., 1999; Sinha 

et al., 2005), but this kind linear convolution based methods 

are bound by the Heisenberg uncertainty principle with a 

tradeoff between time and frequency resolutions (Tary et 

al. 2014). The highest vertical resolution is achieved by a 

method based on a matching pursuit (MP) approach, 

whereby the waveforms in a mother wavelet library are 

matched to a seismic trace in an iterative process according 

to the highest spectral energy (Wang, 2007). But the 

performances of MP methods depend on the configuration 

of wavelet library and fitting methods, while it also 

occasionally fails to consistently match wavelets to the 

relatively low energies at the low/ high frequencies.  

 

As a data-driven signal decomposition method, Empirical 

mode decomposition (EMD) (Huang et al., 1998) analyzes 

non-stationary signal and has been widely used (Klplan et 

al., 2009). But instinct mode function (IMF) of EMD is not 

based on bandlimited assumption, so EMD attacks all 

energy at high wave-number. Regarding to this drawback, 

variational mode decomposition (VMD) (Dragomiretskiy 

and Zosso, 2014) was proposed for decomposing a data 

into an ensemble of band-limited IMFs. 

 

In this paper, we first introduce the principles of EMD and 

VMD. Then in order to apply VMD on seismic 

processing/interpretation, we propose a lateral consistency 

preserved VMD method. In the artificial signal 

decomposition example, we compare EMD and VMD to 

illustrate their differences. Next, based on a sedimentary 

model test, we investigate VMD’s capability in 

sedimentary pattern recognition. Later, a field application 

shows through the division of sedimentary cycle, we can 

get the stratigraphic sequence framework to guide the 

reservoir prediction. After displaying the 1D case, we show 

the proposed VMD results on vertical sections compared 

with the traditional 1D VMD, which confirms the lateral 

consistency reinforcement is necessary and effective.   

 

EMD 

 

EMD decomposes a data series into a finite set of IMFs, 

which represent different oscillations embedded in the data. 

They are constructed to satisfy two conditions: (1) the 

number of extrema and the number of zero-crossing must 

be equal to or differ at most by one; and (2) at any point the 

mean value of the envelope defined by the local maxima 

and the envelope defined by the local minima must be zero. 

Each IMF has a localised frequency content by preventing 

frequency spreading due to asymmetric waveforms. The 

IMFs are elementary amplitude/frequency modulated 

harmonics that can model the nonstationarity and the 

nonlinearity of the data (Huang et al., 1998). 

 

Lateral Consistency Preserved VMD 

 

VMD decomposes a real input signal into a number of 

modes that have specific sparsity properties while 

reproducing the input. Meanwhile, the sparsity prior of 

each mode is chosen to be its bandwidth in spectral 

domain. The IMFs are extracted concurrently instead of 

recursively, leading to its high effciency. VMD is achieved 

by solving the following optimization problem: 

 
   

2

2
,

min

. .

k

k k

j t

t k
u

k

k

k

j
t u t e

t

s t u f









    

     
    





 ,         (1) 

where ku  and k  are modes and their center frequencies, 

respectively. The summation over all modes is input signal. 
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The goal of VMD is to decompose an input signal into a 

discrete number of sub-signals (modes) that have specific 

sparsity properties while reproducing the input. We assume 

each mode to be mostly compact around a certain 

“oscillation”, which is to be determined along with the 

decomposition. However, if all modes are determined only 

from the current trace, the lateral consistency is hard to be 

assured, which is of great importance in seismic processing 

and interpretation. Thus, we modify from only using single 

trace to employing the surrounding traces, which means we 

use the trimmed medium “modes” of a local small area 

instead of just a single trace. (The field seismic example in 

Figures 6 and 7 demonstrates the differences between 

traditional and proposed VMD methods.) 

Artificial Signal Decomposition 

In order to compare EMD and VMD, we design a mixed 

signal with a lower background frequency and a gapped 

higher frequency. The analyzed signal is 1 2s s s  with 
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Figure 1 and 2 show IMFs from EMD and VMD. The two 

components can be clearly resolved by VMD and separated 

signals are basically consistent with the original ones.  

 
Figure 1:  Decomposition of the artificially mixed signal by EMD. 

 

Figure 2:  Decomposition of the artificially mixed signal by VMD. 

 

While EMD can decompose the signal, it generates seven 

different IMFs, which is hard to be used in signal analysis. 

So we believe that VMD method can decompose seismic 

signal without generating too many IMFs. 

 

Sedimentary Pattern Identification 

 

Sedimentary cycle is the result of the periodic occurrence 

of any depositional event. It is mainly caused by the earth's 

crust periodic oscillation (Liu et al., 2015). The key for 

division of the stratigraphic sequence is dividing the 

sedimentary cycle correctly, which can be done by 

processing the logging data. But, well logs cannot cover the 

whole survey. So, we want to extract the sedimentary cycle 

from the seismic using a signal decomposition method, 

which should be data-driven and robust. From the previous 

introduction and example, VMD becomes our choice. 

 
Figure 3: Normal-inverse cycle model test: reflectivity series, 

seismic and IMFs from VMD. 
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There are four kinds of typical cycle model: a) Normal, b) 

Inverse, c) Inverse-normal, and d) Normal-inverse cycle 

model. As the above four models are similar to each other, 

we only build the last one, Normal-inverse cycle model, 

which means grain size change from fine to coarse then 

from coarse to fine with energy and frequency first 

increases then decreases. The reflectivity series, seismic are 

shown in Figure 3. VMD is used to decompose the seismic 

signal. Note the sedimentary changes are clear on IMF3 

compared to the reflectivity. 

Field Application 

The field data set is from the Fort Worth Basin, Texas. The 

Barnett Shale reservoir falls between the Marble Falls and 

Viola Limestones which form the frac barriers (Perez and 

Marfurt, 2014). A thin Forestburg Limestone which can 

acts as an imperfect frac barrier separates the reservoir into 

the Upper Barnett and the Lower Barnett sections. Figure 3 

shows the seismic data and inverted seismic impedance 

with the interpreted Marble falls, Upper Barnett shale, 

Forestburg, and Lower Barnett Shale. As our objective is to 

analyse the sedimentary cycle, we choose Marble falls 

limestone to be the target area.  

 

 

Figure 4: Field application. (Left) Seismic profile. (Right) Inverted 

seismic impedance. 

 

Figure 4 shows the vertical seismic section and impedance 

with horizons annotated. It is hard to find the sedimentary 

cycle directly from seismic. Figure 5 shows the IMFs from 

VMD of the Marble falls Limestone. The seismic trace is 

extracted from 10 ms above Marble falls horizon and 10 ms 

below Upper Barnett shale horizon. So it is about 60 ms 

long. From the IMF1, we can clearly see a Normal-inverse 

model pattern, shown in Figure 3. From the gamma logs in 

Figure 4, we can also see a similar curve in the middle of 

Marble falls. So, this application persuades us that VMD 

like signal decomposition methods can be used in 

sedimentary pattern characterization.  

 

After examining the seismic trace passing through the well 

location, we apply the VMD method on the whole seismic 

volume. Spectral decomposition methods can produce 

multi spectral components to highlight certain scale 

geological structures (Li and Lu, 2014). So, we expect IMF 

volumes from VMD can also reveal some geological 

information. 

 

Figure 5: Seismic decomposition from VMD of Marble falls 

Limestone. 

 

Figure 6 displays vertical seismic section with the IMFs 

from traditional VMD method. As we expected, traditional 

VMD is calculated from the current trace, which provides 

high resolution to the results but can’t assure the lateral 

consistency. Even a small oscillation would totally change 

the decomposition results, which is always the drawback of 

high resolution decomposition methods---unstable. For 

seismic data, noise can’t be fully suppressed and structural 

changes always happen. The IMF2 and IMF3 in Figure 6 

are really hard to interpret. Figure 7 shows the IMFs from 

lateral consistency preserved VMD. The events in Figure 

7c and 7d are more continuous and reasonable. Note, the 

events in Figure 7b-7d can be combined together to explain 

the reflector changes in Figure 7a, which can be helpful for 

seismic interpretation. 

 

Discussions 

 

Based on only the seismic data other than well logs, we 

adopt VMD to divide the sedimentary cycle and investigate 

its pattern. Sedimentary cycle is a good indicator of 

sequence stratigraphy, and will be really helpful for facies 

analysis (Li et al., 2016). Currently, machine learning 

facies analysis tools usually project multi-attributes to 

“potential spaces” without geology constraints. It doesn’t 

mean researchers don’t want to use seismic stratigraphic 

information, but because purchasing that kind of geology 

information is very time consuming. So if IMFs obtained 

from VMD can be used as a facies identification constraint, 
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the classification results should be more reasonable. 

Another problem comes up: how to use the IMFs. Figure 5 

shows the IMF1 is useful, but Li et al. (2016) decide IMF3 

is the best in their application after cross-correlating the 

IMFs with well logs. To sum up, we want to just use 

seismic to perform some roles well logging is always 

acting, but well logs are still needed as the “answer”. 

 

Conclusions 

 

Through synthetic comparison, we find VMD is better than 

EMD in current applications. Then, the modeling test and 

field application both show good results of sedimentary 

pattern identification. In order to better apply VMD on 

seismic applications, a lateral consistency preserved VMD 

method has been developed to respond to the challenges. It 

provides an improved lateral consistency, which enhances 

the quality and reliability of further analyses, such as 

seismic facies classification.  
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Figure 6: Example of traditional VMD. (a) Seismic and (b-d) different IMFs . 

 

 

Figure 7: Example of lateral consistency preverved VMD. (a) Seismic and (b-d) different IMFs corresponded with thos in Figure 6. 
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