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Abstract

Semblance and other coherence measures are routinely used in seismic processing, such as velocity spectra
analysis, in seismic interpretation to estimate volumetric dip and to delineate geologic boundaries, and in post-
stack and prestack data conditioning such as edge-preserving structure-oriented filtering. Although interpreters
readily understand the significance of outliers for such measures as seismic amplitude being described by a
Gaussian (or normal) distribution, and root-mean-square amplitude by a log-normal distribution, the measure-
ment significance of a given coherence of poststack seismic data is much more difficult to grasp. We have
followed early work on the significance of events seen in semblance-based velocity spectra, and we used
an F -statistic to quantify the significance of coherence measures at each voxel. The accuracy and resolution
of these measures depended on the bandwidth of the data, the signal-to-noise ratio (S/N), and the size of the
spatial and temporal analysis windows used in their numerical estimation. In 3D interpretation, low coherence
estimated not only the seismic noise but also the geologic signal, such as fault planes and channel edges. There-
fore, we have estimated the S/N as the product of coherence and two alternative measures of randomness, the
first being the disorder attribute and the second estimate based on eigenvalues of a window of coherence values.
The disorder attribute is fast and easy to compute, whereas the eigenvalue calculation is computationally in-
tensive and more accurate. We have demonstrated the value of this measure through application to two 3D
surveys, in which we modulated coherence measures by our F -statistic measure to show where discontinuities
were significant and where they corresponded to more chaotic features.

Introduction
Semblance and other coherence measures are rou-

tinely used in seismic processing, including for velocity
spectra analysis (Taner and Koehler, 1969; Neidell and
Taner, 1971), seismic edge detection and volumetric
dip estimation (Marfurt et al., 1998), and edge-preserving
structure-oriented filtering (Hoecker and Fehmers, 2002;
Marfurt, 2006). The application of seismic attributes to
depth-migrated data in which the wavelength extends
by increasing the velocity with depth justifies the use
of data-adaptive analysis windows, in which the window
size is proportional to a percentile of the time or time-
and space-varying spectra (Lin et al., 2014; T. Lin, per-
sonal communication, 2015).

In this paper, we reexamine the analysis by Douze
and Laster (1979) on the significance of velocity-based
semblance analysis to evaluate the significance of co-
herence anomalies within a noisy background, and
the choice of parameters for structure-oriented filter-
ing. These same concepts are readily generalized to ei-
genstructure-type coherence estimates.

We begin with a summary of semblance and KL-filter
(energy ratio) coherence algorithms, as well as the use

of the F -statistic. The F -statistic requires an estimate of
the signal-to-noise ratio (S/N). We therefore evaluate Al-
Dossary et al.’s (2014) disorder attribute and introduce
a new S/N estimate based on the eigenvalues computed
from a window of coherence. With these definitions in
place, we apply our new metric to a coherence volume
computed from a survey acquired in China. We con-
clude with a discussion on how such estimates may
be useful in risk analysis, for differentiating different
geologic features by their coherence expression, and
for improved edge-preserving smoothing applications.

Theoretical analysis
Following Douze and Laster (1979) work, we gener-

ate a suite of figures to show the significance of typical
windows used in edge detection and structure-oriented
filtering. First, we define the significance of similarity
(coherence) as the cumulative probability of a noncen-
tral F -distribution. A high value of significance means
the calculation of similarity is more reliable. In con-
trast, a low value of significance always indicates an
unreliable similarity value. The range of the significance
is 0–1 (see Appendix A).
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Examining equation A-22, we identify four basic
parameters in computing significance: bandwidth f B,
temporal analysis window size 2KΔt, spatial analysis
window size J, and the S/N. With these values, we
can compute the significance of a given semblance es-
timate using the noncentral F -distribution. The product
of the bandwidth and the vertical analysis window
2KΔtf B determines the first degree of freedom, the
number of seismic traces J determines the second de-
gree of freedom, and S/N determines the noncentrality
parameter.

Douze and Laster (1979) demonstrate that the corre-
lation between band-limited experimental data and the
theoretical cumulative probability distribution for
broad-band data is quite good, allowing us to use this
formalism for not only their velocity anomalies, but also
our coherence attribute and structure-oriented filtering
application. Meanwhile, considering the complexity of
the significance algorithms, the calculation takes five
times longer than the coherence code for typical
parameters.

Applications
Example 1: A 2D synthetic of normally
faulted layers

Figure 2a shows a simple model used to generate a
suite of 200 finite-difference common-shot gathers.
These gathers were then prestack time-migrated to gen-
erate the image shown in Figure 2b. There are five main
layers B, C, and D, each of which contains five sub-
layers. To address the issue of S/N, we also added differ-
ent levels of band-limited incoherent noise in layers B
and C. The white arrow indicates a fault-plane re-
flection.

The images in Figure 3 form a matrix with vertical
window sizes corresponding to 0, 10, and 20 ms along
column, and lateral window sizes of 5, 9, and 13 analysis
points along rows, by blending the similarity and the
significance of coherence to illustrate the influence
of spatial (number of seismic traces) and temporal
analysis window size on the significance of similarity.
With the increase of temporal analysis window size,
the significance value of similarity is higher, which in-
dicates that the coherence value is more reliable. The

increase in the number of seismic traces shows a sim-
ilar phenomenon, but the resolution of the fault zone
decreases.

Example 2: 3D seismic data over Bohai Bay
Basin, China

We next compute the significance coherence com-
puted from a 3D seismic volume acquired over Bohai
Bay Basin, China that images a channel reservoir. Given
the influence of d1 (the vertical analysis window size)
on significance, we introduce a self-adaptive window
attribute calculation, defining the temporal window

Figure 1. Two-dimensional diagram of similarity calculation.

Figure 2. (a) The fault model and (b) the resulting image
after forward modeling using a finite-difference algorithm
and prestack Kirchhoff time migration. Band-limited random
noise has been added resulting in PS∕PN ¼ 1.0.
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to be propotional to the average frequency of each time
slice. Figure 4 shows time slices at t ¼ 0.5 s through
seismic amplitde, peak frequency, and spectral band-
width volumes using matching pursuit algorithm. The
black arrow indicates a fault, the red arrow indicates
a channel, and the blue arrow indicates an oxbow,
which can be clearly seen in the coherence image
shown in Figure 5.

Figure 5 shows slices at t ¼ 0.5 s through coherence
volumes computed using a self-adaptive temporal ana-

lysis window size, respectively. Black arrows indicate
the main fault through the seismic slice. The inner bank
of the oxbow lake can be indicated by the blue arrows,
and three distinguished channels can be indicated by
the red arrows.

Figure 6 shows the S/N corresponding to Figure 5
computed using equation A-11. The temporal analysis
window size not only affects the degrees of freedom
but also influences S/N, which indirectly controls the
noncentrality parameter ε.

Figure 3. Vertical slice through similarity blended with significance of coherence computed from the seismic data shown in Figure 4
using a variable temporal analysis window size (0.0, 1.0, and 2.0 of mean period) and variable number of trace (J ¼ 5, 9, and 13).
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Figure 7 shows the sensitivity of significance to tem-
poral analysis window size and bandwidth. The black
arrows indicate the faults characterized by low coher-
ence and significance. The red arrows indicate channel
deposition or sheet sand characterized by high coher-
ence and high significance. By computing the variable
bandwidth and using a self-adaptive temporal analysis
window size, we are able to improve the significance of

Figure 4. Time slices at t ¼ 0.5 s through (a) seismic ampli-
tude, (b) peak frequency, and (c) bandwidth. The dominant
frequency is approximately 25 Hz, corresponding to a period
of 40 ms.

Figure 5. The coherence slice using self-adaptive (0.5–2.0 of
the mean period of 20–80 ms) temporal analysis window size
of seismic slice in Figure 3.

Figure 6. Time slices at t ¼ 0.5 s through S/N volumes com-
puted using a self-adaptive temporal analysis window size
(0.5–2.0 time of the mean period).

Figure 7. The significance slice using a self-adaptive tempo-
ral analysis window size 1.0 times the peak period corre-
sponding to Figure 4b and variable bandwidth from Figure 4c.
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coherence image, while maintaining the sharp contrast
of faults and channel edges.

Example 3: Structure-oriented filtering based on
the statistical significance of coherence

We now apply the significance analysis of coherence
to a 3D seismic volume provided by Schlumberger. Fig-
ure 8 shows a time slice at t ¼ 0.7 s through seismic am-
plitude; a white arrow indicates a meandering channel,
orange arrows indicate three main faults, and red ar-
rows indicate north–south acquisition footprint noise.

Figure 9 shows the coherence slices corresponding
to Figure 8 using different color bars, which aid in illus-
trating the interactive workflow of structure-oriented
filtering used to define weights w for the similarity data
volumes (Davogustto and Marfurt, 2011) using the color
bar to choose appropriate color ramp values of slow and
shigh. Specifically, we set the color to be white if s >
shigh, black if s < slow, and shades of gray if slow < s <
shigh. The resulting image will be the weights applied
to the filtered data on output, such that all black discon-
tinuities will be preserved and all white areas will be
filtered.

By modifying the threshold values for s, we increase
or decrease the smoothing weights thereby changing the
aggressiveness of the filter. In Figure 9a (shigh ¼ 0.9,
slow ¼ 0.7), we adjust the color bar to enhance the foot-
print noise (red arrows), as well as structural and strati-
graphic features (white and orange arrows). Figure 9b
(shigh ¼ 0.99, slow ¼ 0.97) indicates the preservation of
structures indicated by green arrows, greater improve-
mentoffeaturesindicatedbybluearrows,andclearersup-
pression of the footprint noise in the significance of
coherence slice.Furthermore, according to thedefinition
of the significance of the coherence, it
showsusthestatisticalconclusion,which
holdsphysicalmeaning.Byestimatingthe
significance of coherence, we can easily
suppress the footprint noise, as well as
other random noise, because they can
be separated from structural anomalies
compared with the ones in coherence.
Consequently, more null hypotheses (no
anomaly) are rejected in structure-ori-
ented filtering by using significance than
by using statistical significance of coher-
ence, which can be found in Figure 10.

Figure 10a and 10b shows the result of
filtering the data in Figure 8 using struc-
ture-oriented filtering based on similarity
and statistical significance of coherence.
The red arrows in Figure 8 indicate
footprint, the amplitude of the footprint
in Figure 10 is diminished, whereas
the sturctural features are sharpened.
Although there are still remnants of foot-
print noise visible in Figure 10a, it is al-
most removed in Figure 10b using the
significance low threshold. Yellow ar-

rows indicate residual footprint noise that cannot be re-
moved; this is because the values of the coherence and
significance of the artifacts are similar to those of the
stratigraphic features. We have to keep the artifacts fea-
tures to preserve the real features of coherence.

Figure 8. Time slice at t ¼ 0.75 s through seismic amplitude.

Figure 9. Time slice at t ¼ 0.75 s through (a) coherence using a self-adaptive
temporal analysis window size and (b) significance of coherence of Figure 7.
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Conclusions
We have generalized analysis on the 

significance of velocity spectra to 
grantify the significance of coher-ence 
anomalies used in 3D interpretation and 
to con-trol structure-oriented filtering. 
Four factors control the significance 
calculation: vertical window size, 
bandwidth, the number of seismic traces 
number, and the S/N. The vertical 
window size is the most im-portant of 
these four factors and plays an important 
role in both the degrees of the freedom 
and the non-centrality parameter ε. We 
estimate the S/N using a dis-similarity 
calculation. This estimate is the data 

Taner and Koehler (1969) define the semblance s of a
collection of J seismic traces uj within a 2K þ 1 sample
vertical analysis window to be the ratio of the energy of
the average trace to the average energy of the individual

traces (as shown in Figure 1). The traditional estimate
of semblance is thus

sðzÞ¼
PþK

k¼−K αk

��P
J
j¼1βjujðzþkΔzÞ

�
2
þ
�P

J
j¼1βju

H
j ðzþkΔzÞ

�
2
�

PþK
k¼−K αk

�P
J
j¼1βj ½u2

j ðzþkΔzÞþuH2

j ðzþkΔzÞ�
� ;

(A-1)

where ujðzÞ denotes the measured amplitude of the jth
trace at sample z, αk is the weights applied to the kth
sample, and βj is the weights applied to the jth trace.
Traditionally, βj ¼ 1∕J, where the J traces fall within
a user-defined elliptical or rectangular analysis window.
T. Lin (personal communication, 2015) shows how one
can generalize equation A-1 for radially tapered analysis
windows, where the radius and tapering of the analysis
window are defined by some measure of the time or
time- and space-varying spectrum. Generalization of
equations requires one to first compute the covariance
matrix C

Cjl ¼
XþK

k¼−K
αk

�XJ
j¼1

βj½ujðzj þ kΔzÞulðzj þ kΔzÞ

þ uH
j ðzj þ kΔzÞuH

l ðzj þ kΔzÞ�
�
: (A-2)

Along dipping horizon zj, where we have augmented
the data sample vectors uj by its Hilbert transform, uH

j to
provide more robust estimates for small windows about
zero crossings. We will use the same tapering windows
described by T. Lin (personal communication, 2015),
although the subsequent description is appropriate for
any tapering function. Specifically, we define

Figure 10. Time slices at t ¼ 0.75 s through
the output (filtered) seismic amplitude using
structure-oriented filtering based on (a) simi-
larity and (b) statistical significance of coher-
ence.
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adaptive windows that improve the significance. 
Be-sides, the estimation of significance is 
subjected to the calculation cost; while 
equally important, the use of significance helps to 
determine parameters for edge-preserving 
structure-oriented filtering. The footprint noise 
as well as other random noise can be distin-
guished from structural anomalies contrast to the one 
as shown in coherence. Therefore, more null 
hypoth-esis (no  anomaly) can be rejected in 
structure-oriented filtering using statistical 
significance of coherence than the one 
using statistical significance of coher-ence. In the 
future, we will keep our study in realizing the 
variable-horizontal window size.
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Appendix A

Mathematical background
The covariance matrix, semblance, and KL-filter 
estimates of coherence



αk ¼
(

1
2

h
1þ cos

�
πkΔz
Z

�i
kΔz < Z

0 kΔz ≥ Z
; (A-3)

here

Z ¼ ðK þ 1ÞΔz ¼ γ

κref
þ Δz; (A-4)

where κref is the reference wavenumber (a percentile p
of the local wavenumber spectrum) and γ represents a
fraction of this reference window (e.g., 1.0 times the
reference window). The final term Δz increases the
computational window, such that samples �K will al-
ways have a nonzero value.

The radial analysis window will have weights

βj ¼
�

1
2 ½1þ cos

�
πrj
R

�i
rj < R

0 rj ≥ R
; (A-5)

where

rj ¼ ðx2j þ y2j Þ1∕2 (A-6)

and

R ¼ γ

κref
þMINðΔx;ΔyÞ: (A-7)

Using these weights, T. Lin (personal communica-
tion, 2015) computes the semblance of a radially ta-
pered analysis window to be

csðzÞ ¼
aTCa
TrðCÞ ; (A-8)

where the mathematical trace TrðCÞ of the covariance
matrix C is defined as

TrðCÞ ¼
XJ
j¼1

Cjj (A-9)

and where

aj ¼
�

βjPJ
l¼1 βl

	
1∕2

: (A-10)

We will wish to apply our F -statistic estimate of the
significance to not only semblance but also to KL-
filtered (energy ratio) coherence anomalies. This later
estimate is (T. Lin, personal communication, 2015)

cKLðzÞ¼
PþK

k¼−K αk

�P
J
j¼1βj½U2

j ðzjþkΔzÞþUH2
j ðzjþkΔzÞ�

�
PþK

k¼−K αk

�P
J
j¼1βj½ujðzjþkΔzÞþuH

j ðzjþkΔzÞ�2
� ;

(A-11)

where UlðzlÞ and UH
l ðzlÞ are the Karhunen-Loeve-

filtered versions of the original data.
Because they consider coherent energy to be signal

and incoherent energy to be noise on common midpoint
seismic gathers, Douze and Laster (1979) are able to es-
timate the S/N from the numerator and denominator of
the semblance computation

s ¼
PþK

k¼−K

h
1
J

PJ
j¼1 ujðtþ kΔtÞ

i
2

PþK
k¼−K

1
J

P
J
j¼1½u2

j ðtþ kΔtÞ� ¼ PS

PS þ PN
: (A-12)

In this case, the S/N PS∕PN is simply

�
PS

PN

	
s
¼

PþK
k¼−K

�
1
J

P
J
j¼1ujðtþkΔtÞ

�
2

PþK
k¼−K

1
J

��P
J
j¼1ujðtþkΔtÞ

�
2
−
P

J
j¼1½u2

j ðtþkΔtÞ�
� ;

(A-13)

which varies between zero and infinity.
For our attributes calculation, the S/N for equation A-

11 is
�
PS

PN

	
KL

¼
PþK

k¼−K αk

�P
J
j¼1βj ½U2

j ðzjþkΔzÞþUH2
j ðzjþkΔzÞ�

�
PþK

k¼−Kαk

�P
J
j¼1βj½u2

j ðzjþkΔzÞþuH2
j ðzjþkΔzÞ�2−PJ

j¼1βj ½U2
j ðzjþkΔzÞþUH2

j ðzjþkΔzÞ�
�:

(A-14)

For seismic interpreters, high coherence indicates a
high S/N. However, low semblance or coherence has
four interpretations:

1) a sharp discontinuity, which may indicate the pres-
ence of a fault, channel edge, or erosional surface
(i.e., the presence of planar geologic features)

2) a relatively diffuse low-coherence pattern, which
may indicate the presence of karst collapse, hydro-
thermally altered dolomite, and mass transport
complexes (i.e., the presence of chaotic geologic
features)

3) a relatively diffuse low-coherence pattern that is as-
sociated with low reflectivity or inaccurate veloc-
ities, and hence inaccurate imaging, which may
indicate the presence of salt diapirs, overpressured
shales, and gas chimneys (i.e., an indicator rather
than an image of the geology at a given voxel)

4) a relatively diffusive low-coherence pattern associ-
ated with random noise, operator aliasing, acquisi-
tion footprint, or overprinted multiples (i.e., the
absence of geologic signal, and hence the presence
of seismic noise).

Although we will not be able to differentiate cases 3
and 4 described above, our more limited goal is to
differentiate diffuse low-coherence anomalies from
high-coherence reflectors and planar low-coherence
anomalies. One way to estimate such an S/N is to use
the disorder attribute.
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Disorder
Al-Dossary et al. (2014) introduce a “disorder” attrib-

ute that passes not only coherent reflectors but also
vertically and horizontally oriented low-coherence
anomalies as signal, and thus separates these two geo-
logic patterns from diffuse low-coherence patterns. His
original algorithm cascades second derivatives in the x-,
y-, and z-directions on a window of the energy (or the
power) of the data. This is equivalent to squaring the
data, and then filtering it with a 3 × 3 × 3 operator

L¼
8<
:
2
4 1 −2 1
−2 4 −2
1 −2 1

3
5;

2
4−2 4 −2

4 −8 4
−2 4 −2

3
5;

2
4 1 −2 1
−2 4 −2
1 −2 1

3
5
9=
;:

(A-15)

The original algorithm suffers from two main draw-
backs: (1) it is sensitive to the local average amplitude
and (2) it gives rise to diagonal artifacts. To compensate
for the local average amplitude sensitivity, Ha (2014)
slightly modifies the algorithm to compute disorder D
by normalizing the attribute by the root-mean-square
magnitude of the windowed data

D ¼ L · e
kLkkek þ ε

; (A-16)

where L is given by equation A-15, e is a volume of am-
plitude energy, the dot indicates a triple inner product,
kLk and kek indicate the L2-norm, or magnitude, of the
operator and data, and ε is a small number to prevent
division by zero. To minimize diagonal artifacts, we
compute the standard deviation of this attribute along
structural dip.

Estimation of fault-plane dip and azimuth using
eigenvector analysis

Randen et al. (2000) show how one can estimate the
dip and azimuth of a fault (or other planar) discontinu-
ity through the use of the eigenvectors of a coherence-
weighted distance matrix G defined over a window of
M ¼ J � ð2K þ 1Þ data points within an analysis win-
dow by

Gij ¼
P

M
m¼1 ximxjmγmP

M
m¼1 γm

; (A-17)

where γm ¼ 1 − cm is the similarity, cm is the coherence
at the mth data point, and xim is the distance from the
center of the analysis window along axis i of the mth
data point. Because we are interested in estimating
anomalous behavior, we use γm, where most values
are close to 0.0, rather than coherence cm, which has
values close to 1.0. The matrix G has three eigenvalues
λj and eigenvectors vj. By construction

λ1 ≥ λ2 ≥ λ3: (A-18)

The first eigenvalue λ1 represents the amount of vari-
ance defined by the first eigenvector v1. Similarly, the
second eigenvalue λ2 represents the amount of variance
defined by the second eigenvector v2. These first two
eigenvalues and eigenvectors represent the amount
of variance defined by v1 and v2. Following Kirlin
and Done (1999), a truly chaotic pattern will have

λ1 ¼ λ2 ¼ λ3: (A-19)

The third eigenvalue λ3 can thus serve as an estimate
of S/N if it is normalized. To be large, there are two con-
ditions to be taken into consideration. First, there need
to be some nonzero values of γm if any of the eigenval-
ues are to be nonzero. Second, the distribution of these
finite values needs to be random rather than linear or
planar, thereby representing either seismic or geologic
noise as described by scenarios 3 and 4 above.

Statistical significance of coherence estimates
With this background, we can now estimate the sig-

nificance of a given semblance or energy ratio coher-
ence estimate. Following Douze and Laster (1979),
we approximate the F -statistic with d1 and d2 degrees
of freedom and noncentrally parameter ε (Blandford,
1974) as

Fsðd1 ;d2 ;εÞ

¼
ðJ−1ÞPþK

k¼−K αk

��P
J
j¼1βjujðtþkΔtÞ

�
2
þ
�P

J
j¼1βju

H
j ðtþkΔtÞ�2

�
PþK

k¼−K αk

�P
J
j¼1βj ½u2

j ðtþkΔtÞþuH2
j ðtþkΔtÞ�−

�P
J
j¼1βjujðtþkΔtÞ

�
2
þ
�P

J
j¼1βju

H
j ðtþkΔtÞ

�
2
�

(A-20)

and

Fcðd1;d2;εÞ

¼
ðJ−1ÞPþK

k¼−Kαk

�P
J
j¼1½U2

j ðtþkΔtÞþUH2
j ðtþkΔtÞ�

�
PþK

k¼−Kαk

�P
J
j¼1βj ½u2

j ðtþkΔtÞþuH2
j ðtþkΔtÞ�−PJ

j¼1½U2
j ðtþkΔtÞþUH2

j ðtþkΔtÞ�
�;

(A-21)

where

d1 ¼ f B
XþK

k¼−K
αkΔt; (A-22a)

d2 ¼ d1
XJ
j¼1

βj ; (A-22b)

and

ε ¼ Jd1

�
S
N

	
2
; (A-22c)

where f B is the bandwidth of the signal in Hz, and S/N is
the signal-to-noise ratio we obtain from equations A-13
and A-14.
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