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Abstract

One of the key components of traditional seismic interpretation is to associate or “label” a specific seismic
amplitude package of reflectors with an appropriate seismic or geologic facies. The object of seismic clustering
algorithms is to use a computer to accelerate this process, allowing one to generate interpreted facies for large
3D volumes. Determining which attributes best quantify a specific amplitude or morphology component seen by
the human interpreter is critical to successful clustering. Unfortunately, many patterns, such as coherence im-
ages of salt domes, result in a salt-and-pepper classification. Application of 3D Kuwahara median filters smooths
the interior attribute response and sharpens the contrast between neighboring facies, thereby preconditioning
the attribute volumes for subsequent clustering. In our workflow, the interpreter manually painted n target
facies using traditional interpretation techniques, resulting in attribute training data for each facies. Candidate
attributes were evaluated by crosscorrelating their histogram for each facies with low correlation implying good
facies discrimination, and Kuwahara filtering significantly increased this discrimination. Multiattribute voxels
for the n interpreter-painted facies were projected against a generative topographical mapping manifold, result-
ing in n probability density functions (PDFs). The Bhattacharyya distance between the PDF of each unlabeled
voxel to each of n facies PDF's resulted in a probability volume of each user-defined facies. We have determined

the effectiveness of this workflow to a large 3D seismic volume acquired offshore Louisiana, USA.

Introduction

Seismic stratigraphy plays a key role in the interpre-
tation of many Gulf of Mexico (GOM) seismic surveys.
Although many geologic features are represented by a
specific geometric pattern, such as channel incisement,
angular unconformities against erosional surfaces, and
onlap onto smooth horizons, some geologic features are
more chaotic and more difficult to describe. Salt domes
and mass transport complexes (MTCs) are often seen in
offshore data of the GOM. Salt can form seals, whereas
MTCs can be seals or drilling hazards. Seismic geomor-
phology coupled with an appropriate depositional
model allows prediction of lithology distribution, defor-
mation features, and overall reservoir heterogeneity.
Salt holds an additional interest in the processing shop,
in which the accurate definition of high-velocity salt is
critical to prestack depth migration. Defining the limits
of salt domes in offshore seismic data consumes hours
of interpreter time. MTCs often exhibit similar textures
to salt in 3D coherence volumes. Both features are dif-
ficult to autopick, whereas geobody tools often perform
poorly.

The published literature on salt segmentation ex-
ceeds that of any other computer-aided facies identifi-
cation workflow and can be divided into two methods.

The first method is based on image segmentation.
Lomask et al. (2007) apply a modified version of a nor-
malized cuts image segmentation (NCIS) algorithm,
which was first introduced to seismic interpretation
as atomic meshing of a seismic image (Hale and Eman-
uel, 2002). The NCIS was adapted from the eigenvector-
based method proposed by Shi and Malik (2000), and it
provides a globally optimized solution to the problem of
seismic salt-boundary picking. Lomask et al.’s (2007)
workflow builds a weighting function, which indicates
the presence of a boundary between pairs of voxels in
the image. In related work, Halpert et al. (2014) modify
a pairwise region comparison algorithm, based on the
human-interpreted supervision on one or more 2D sli-
ces to guide a 3D segmentation process.

The second method is based on the pattern recogni-
tion and texture attribute classification. Gao (2003)
applies a gray-level co-occurrence matrix (GLCM) to
detect a salt dome and find that one GLCM attribute
is insufficient to automatically define the salt boundary.
Berthelot et al. (2013) combines several GLCM attrib-
utes, spectral components, dip, and coherence and uses
a supervised Bayesian classification method to delin-
eate the salt. They focus on texture to characterize
the change of seismic character between the salt and

University of Oklahoma, ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, USA. E-mail: jie.qi@ou.edu;

tengfei.lin@ou.edu; tao-zhao@ou.edu; fangyu.li@ou.edu; kmarfurt@ou.edu.

Manuscript received by the Editor 30 June 2015; revised manuscript received 8 October 2015; published online 15 February 2016. This paper
appears in Interpretation, Vol. 4, No. 1 (February 2016); p. SB91-SB106, 19 FIGS.
http://dx.doi.org/10.1190/INT-2015-0098.1. © 2016 Society of Exploration Geophysicists and American Association of Petroleum Geologists. All rights reserved.

Interpretation / February 2016 SB91


http://crossmark.crossref.org/dialog/?doi=10.1190%2FINT-2015-0098.1&domain=pdf&date_stamp=2016-02-15

Downloaded 02/03/17 to 129.15.66.178. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

surrounding geology. Wallet and Pepper (2013) apply
mathematical morphology to a single attribute to con-
strain texture boundaries, thereby reducing the vari-
ance of seismic attributes for improved salt delineation.

Three-dimensional computer-assisted seismic facies
classification is based on attributes. West et al. (2002),
Meldahl et al.(1999), and Corradi et al. (2009) use inter-
preter-provided seed points or polygons to train neural
network classifiers. Coleou et al. (2003), Gao (2007),
Matos et al. (2009), and Roy et al.(2013) use 3D self-
organizing maps (SOMs) to compute unsupervised fa-
cies volumes that are later calibrated with well control
and principles of geomorphology. Roy et al. (2014) use
GTM to cluster multiattribute data volumes, which is
then compared with well control using the Bhattachar-
yya distance.

Unlike photographic images, seismic textures are 3D
and contain many voxels. On vertical slices, seismic fa-
cies span the continuum from conformal sands and
shales to more complex turbidites, to highly deformed
MTCs, and to chaotic salt. To segment such facies, it is
necessary to quantify the differences in their seismic
attribute expression. Barnes and Laughlin (2002) find
that the choice of attributes is critical to effective
classification.

Skilled human interpreters have little difficulty in dif-
ferentiating seismic facies, such as salt and MTCs from
each other. Teaching a computer to do the same is more
difficult, requiring careful psychological analysis of the
human process. How does a human interpreter differ-
entiate these two chaotic textures? How do we quantify
different degrees of chaos?

Figure 1 indicates our seismic facies classification
workflow. We begin our paper with a summary of can-
didate attributes that appear to differentiate the seismic

Figure 1. Workflow illustrates the steps used Paint

facies of interest. Then, we precondition the attribute
volumes through Kuwahara filtering, resulting in a
smoother facies response and sharper edges. We then
introduce a degree of supervision by computing histo-
grams for each candidate attribute for a suite of user-
defined facies. Cross-multiplying these histograms
quantifies which attributes best differentiate a given fa-
cies pair. The selected attributes are then used as input
to a GTM classification algorithm. The probability of a
given facies at each voxel is estimated using the Bhat-
tacharyya distance. We conclude by validating the pre-
dicted facies on seismic vertical lines and time slices
that were not used in the training and generating a suite
of geobodies.

Attribute expression of seismic facies

Seismic amplitude is the most common attribute
used in seismic interpretation. If a geologic feature is
not measureable by the spatial variation in the seismic
amplitude and phase, no derivative attributes will en-
able identification. Much of seismic interpretation is
based on pattern recognition. Seismic attributes pro-
vide quantitative measures of statistical, geometric,
or kinematic patterns seen in the 3D seismic amplitude
volume. Our initial choice of candidate attributes to dif-
ferentiate the target seismic facies is based on experi-
ence. However, the final choice will be determined
through quantitative attribute histogram analysis of
manually picked seismic facies.

Figure 2 shows a summary of seismic attribute
anomalies associated with different facies seen in the
GOM data volume described in this paper. Coherence
is sensitive to lateral discontinuities, such as faults,
channel edges, and karst (Qi et al., 2014) and chaotic
zones, such as salt and MTCs. We use the vector dip
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as input for principal-component structure-oriented fil-
tering (SOF) in the most coherent window to suppress
random and crosscutting coherent noise and improve
vertical resolution (Marfurt, 2006). We estimate the co-
herent part of the data using a Karhunen-Loeve filter;
the coherent energy is the energy of the Karhunen-
Loeve filtered data with stronger reflectors exhibiting

higher energy than weaker reflectors. Incoherent
events internal to salt exhibit the lowest coherent en-
ergy. Coherent energy can use to separate a strong re-
flectivity sand/shale package from a weaker reflectivity
shale/shale package.

Although the coherence response to MTCs and salt
may be similar, gray-level co-occurrence attributes can

Facies Seismic expression Coherence Coherent Reflector GLCM Figure 2. Table of five seismic facies, their
name energy convergence | entropy | dissimilarity seismic expression, and their attribute re-
sponse seen in this data volume. The recogni-
- = = tion of features that allow discrimination
Salt Low energy, incoherent, salt and Low Low High b . ic faci . itical. If thi
vertically and laterally pepper” etween seismic ac1es_ is critical. t_ is can
chaotic be done, the next most important task is to se-
lect attributes that quantitatively measure
these features.
MTC Mixed energy, “salt and “salt and Low High
incoherent, mixed pepper” pepper”
frequency, piecewise
conformal
Turbidite Low energy, coherent, High Low Moderate Moderate High
piecewise conformal
Sand/shale High energy, coherent, High High High Moderate
package modern frequency,
conformal
Shale Low energy, coherent, High Moderate High Moderate
package conformal

Additive noise
salt and pepper

Figure 3. A photo of the first author with and
without additive noise before and after Kuwa-
hara filtering applied to each of the R, G, and B
components. Note that noise type is salt and
pepper. Kuwahara filtering smooths the inter-
nal details of the image, but preserves edges.

Interpretation / February 2016 SB93



Downloaded 02/03/17 to 129.15.66.178. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

help to differentiate different kinds of chaotic textures.
Texture analysis holds significant promise in computer-
aided interpretation and is often used in interpreter-
driven or computer-assisted facies analysis (West et al.,
2002; Gao, 2007; Corradi et al., 2009). We calculate the
GLCM along a structural dip, which quantifies the spa-
tial repeatability (co-occurrence) of voxel amplitude
values (gray levels) at a distance within an analysis win-
dow. The GLCM entropy is a statistical measure of
randomness of the seismic amplitude. The GLCM dis-
similarity highlights regions having strict stationary sta-
tistics (invariant mean and variance).

The structural curvature is computed by taking the
derivatives of the dip components. Reflections that
exhibit similar waveforms that, having small offset
(<1/4 wavelength) and subtle changes in dip across
faults, will generate curvature, but not coherence
anomalies (Al-Dossary and Marfurt, 2006). Reflector
convergence (Marfurt and Rich, 2010) also differenti-
ates eroded zones from more conformal stratigraphy.

We select five attributes that quantify a specific am-
plitude or morphology component exhibited by the
target. Coherence and reflector convergence can differ-
entiate a chaotic zone, such as a salt dome, or an MTC,
from sediment, but not from each of them. Further-
more, local high-coherence zones occur within salt
and MTCs given these observation. Texture attributes,
such as GLCM entropy and GLCM dissimilarity differen-
tiates chaotic zones, but they are relatively insensitive
to seismic facies boundaries. Coherent energy differen-

X

Figure 4. Cartoon of 2D Kuwahara filtering. The input data
include 25 samples centered about the red square. The gray
squares indicate voxels used in the nine laterally shifted
nine-sample analysis windows, each of which contains the
output location indicated by the red square. The output is
the mean as median of that gray window that has the smallest
standard deviation. In 3D, we evaluate 125 neighboring voxels
and compute the mean, the median, and standard deviation
o/p in 27 overlapping 3 X 3 x 3 analysis window.

tiates a strong-reflectivity sand/shale package from a
weaker reflectivity shale/shale package, but the MTCs
exhibit low- and high-energy elements. Our final task
is therefore to precondition the attribute data to provide
piecewise smooth images amenable to computer clas-
sification algorithms.

Kuwahara filtering

Kuwahara et al. (1976) filtering is commonly used
in SOF. Kuwahara filters adapt to the variability of
the data within overlapping analysis windows, where
Luo et al. (2002) use standard deviation followed by
a mean filter, and Marfurt (2006) uses 3D coherence
followed by a 3D Karhunen-Loeve filter to generate
edge-preserving SOFs. The Kuwahara filter as an edge-
preserving filter is widely used in image processing.
Applied to photographs, Kuwahara filters result in
piecewise monochromatic features separated by sharp
boundaries (Figure 3). By localizing the smoothing, the
Kuwahara filter properly removes detail, even salt-and-

Time (ms)

000

Picked facies of interests

Figure 5. (a) Time slice at t = 1144 ms and (b) vertical slice
along line AA’ through the seismic amplitude volume. In these
images, we have painted two seismic facies of interest: a red
salt facies and a yellow MTC facies. Two other facies of inter-
est are a suite of weak reflectors, which we interpret to be
shale on shale package, and areas of stronger reflectors that
we interpret to be a mixed sand-shale package. Line BB’ has
not been interpreted and will be shown in later figures.

oot e aaans
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pepper noise in high-contrast regions, whereas preserv-
ing shape boundaries in low-contrast regions. Kypriani-
dis et al. (2009) find that the Kuwahara filter “maintains
a roughly uniform level of abstraction across the image
while providing an overall painting-style look.” In our
work, we use the same concept to define edges between
different types of incoherent zones. Equally impor-
tantly, the Kuwahara filter will smooth rapidly varying
attribute anomalies within salt and MTCs to facilitate
subsequent clustering.

The Kuwahara filter (Figure 4) searches all windows
containing a given voxel. In our workflow, the analysis
windows are oblique cylinders with radius = 50 m and
height of £20 ms containing L = 143 voxels, whose top
and bottom faces are aligned with the local dip magni-
tude and dip azimuth. The L overlapping windows con-
tain any given voxel. For a given attribute, one
computes the standard deviation o, the mean u, and
the median m in each of the L overlapping analysis win-
dows. The filtered attribute will then be the value of m
associated with the window having the minimum value
of normalized standard deviation ¢/u. The smoothness
and noise suppression of an image are controlled by the
size of the analysis window. If the analysis window
length is large, the image will be smoother, but some-
what blocky. If the analysis window is small, the image
will be smoothed less, and blockiness will be reduced.
Numerical experiments showed that a single large-
window L = 500 filter provided superior results to
cascading two small-window L = 143 filters at reduced
computation cost.

a) A ‘ % c)

Seismic
attribute

Compute
statistics for
windows j=1,J

Standard
deviation, o;

Median, m;

Find Kuwahara
window
k =arg[MIN(oy/u)]

Median of
Kuwahara
window, m,

Figure 7. Workflow showing the input to Kuwahara filtering.
For each attribute, we first compute the mean, standard
deviation, and median for every voxel using a centered
J-sample analysis window. Then, find the window k of J non-
centered windows containing the target voxel that has the
smallest normalized standard deviation o/p. Finally, output
the median m of window k as the filtered value at the target
voxel.

o Figure 6. Vertical slices along line AA’
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Interpreter supervision and attribute
histogram analysis
Clustering

The use of classification algorithms to detect natural
clusters of attribute responses to geologic facies is re-
ferred to as unsupervised classification. In contrast, su-
pervised classification is based on a set of training data,
in our case composed of a suite of attribute vectors cor-

Figure 8. Vertical slices along line AA’ A

responding to interpreter-picked voxels within a given
seismic facies. There are many interpreter-supervised
machine-learning methods used in seismic facies clas-
sification, such as artificial neural networks, support
vectors machines, SOMs, and GTM. SOMs and GTM
fit the N-attribute residing in N-dimensional space with
a lower dimensional manifold (in our application, a 2D
manifold).

2km s
[ A A
GLCM

through median-filtered (a) coherence,
(b) magnitude of reflector convergence,
(¢) GLCM entropy, (d) GLCM dissimilarity,
and (e) coherent energy. Note that the salt-
and-pepper expression of coherence and the
magnitude of reflector convergence have
been suppressed.
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Figure 9. Vertical slices along line AA’ a)
through Kuwahara-filtered (a) coherence,
(b) magnitude of reflector convergence,
(¢) GLCM entropy, (d) GLCM dissimilarity,
and (e) coherent energy. Compared with the
median-filtered attributes; the Kuwahara-
filtered attributes have much clearer edges be-
tween any facies.
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Attribute histograms

A histogram is a graphical representation of the prob-
ability distribution of a quantitative variable. The rela-
tionship to geologic events is best understood by
examining the data histogram with Sheffield and Parne
(2008) finding that effective 3D visualization requires
the mapped feature be near a histogram extremum.
The correlation coefficient between voxel value histo-
grams of images can be used to detect image content
from a large database.

We represent the distribution of attribute values as-
sociated with the voxels that fall within an inter-
preter-painted facies by its histogram. The voxel
histogram represents the amplitude distribution of a
given attribute, and it represents a probability density
function (PDF). A zero-mean seismic amplitude usu-
ally has a Gaussian distribution centered around zero.
The inclusion of dead traces and mute zones in the

e)

histogram calculation results in a spike at value zero
and should be avoided. Correlation of histograms is
sensitive to their PDF, and it is insensitive to geomet-
ric rotation and scaling in seismic data. Luo et al.
(2001) introduce a scheme based on histogram equali-
zation to scale seismic data for optimum display. We
begin by generating a matrix of histograms for each of
the F facies and each of the N candidate attributes.
Then for each facies pair (salt versus MTC, MTC ver-
sus sediment, or sediment versus salt), we generate a
vector of N crosscorrelation coefficients. The histo-
grams from seismic amplitude and seismic attributes
contain noise, such that their histograms poorly
crosscorrelate. Furthermore, the edges between the
different facies may be fuzzy and difficult to identify.
Kuwahara filtering of the seismic attributes followed
by histogram smoothing addresses these issues. The
correlation coefficient 7, between histogram for

.
i)
GLCM GLCM
Dissimilarity Entroj
Ta 7%

GLCM

Energy Dissimilarity
14

H Positive

s 0

Energy

H Positive
0

Reflector
(Convergence

H Positive

0

Figure 10. Time slices at ¢ = 1144 ms through (a) seismic amplitude, (b) coherence, (c) magnitude of reflector convergence,
(d) GLCM entropy, (e) GLCM dissimilarity, and (f) coherent energy. (g-k) Kuwahara-filtered attributes. The Kuwahara-filtered
attributes suppress the salt and pepper; these are much clearer boundaries between any two seismic facies. Patterns are easy
for human interpreters to identify, but difficult for classifiers to identify as a single face.
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where the f_Lf and I_zg are the average of the histogram west and east (Figure 5). The uplift of the western salt
and where we have constructed our histogram to dome is contemporaneous with the upper minibasin fill,

span 101 bins.

Figure 11. (a) A vertical slice along line AA’
through the seismic amplitude, (b) original
attribute values along the trace 1 and the
trace 2, and (c) Kuwahara-filtered attribute.
Before Kuwahara filtering, values within the
salt dome vary rapidly, making it difficult to
detect the top salt boundary. In contrast,
the Kuwahara-filtered trace shows piecewise
smooth values, producing a sharp boundary
at the top of the salt dome and MTC.
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We interpret (paint) three seismic facies of interest: the
salt dome, MTCs, and relatively undeformed sediment
that includes strong (an interbedded sand and shale
package) reflectors and weak (a thick, predominantly
shale package) reflectors. The edge of the salt and
the limit of the MTCs can be easily recognized by the
human eye. Salt exhibits a lower amplitude and lower
frequencies, and it appears to be internally highly cha-
otic. The MTC exhibits a generally higher amplitude,
broadband frequencies, and laterally chaotic and is ver-
tically moderately conformal. The sedimentary pack-
ages exhibit alternatively high or low amplitudes,
broadband frequencies, are coherent, and are highly
conformal.

Although they can be easily recognized by a human
interpreter, mapping salt domes and MTCs using voxel-
based classifiers is quite difficult. Within the chaotic

Original After
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Coherence 55 |,| ;W
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—JMJ
Reflector
convergence
GLCM
entropy
GLCM
dissimilarity
Coherent
energy

I I 1T T
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salt, there may be coherent multiples or coherent migra-
tion aliasing artifacts. Within an MTC, there will be a
jumble of coherent and incoherent reflectors cut by
slump surfaces and small listric and toe-thrust faults.

Seismic attributes

We calculate coherence, coherent energy, magnitude
of reflector convergence, GLCM entropy, and GLCM
dissimilarity along a structural dip (Figure 6). Examina-
tion of Figure 6a shows that the layered sediments
exhibit high coherence. Faults, stratigraphic bounda-
ries, and other discontinuities exhibit low coherence.
Salt domes have high-coherence inclusions (displayed
as white) within a generally low-coherence (black)
background, whereas MTCs will have coherent (white),
often rotated, reflectors embedded in a relatively inco-
herent (black) matrix. Thus, in these data, salt and MTC

Kuwahara-
filtered After
attribute normalization

Kuwahara
filtering

0.5 —
0.25—

0 = | R B
0 0250507510 02505075 1

_/\Ij\ A

Figure 12. Histograms of picked facies are normalized for easy comparison and do not change the correlation coefficient of any
histogram pair. Note that Kuwahara filtering narrows and further separates the distribution of the attribute histograms.
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exhibit a salt-and-pepper appearance in coherence vol-
umes. Reflector convergence (Figure 6b) is a 2D vector
and shows the magnitude and azimuth of convergence,
such as occurs at pinch-outs and angular unconform-
ities. These attributes help to differentiate more
fumbled internal salt dome and MTC reflectors from
conformably layered stratigraphy. The GLCM entropy
(Figure 6¢) and GLCM dissimilarity (Figure 6d) show
salt domes and MTCs to have high dissimilarity and high
entropy, whereas sediments have low entropy and dis-
similarity. Coherent energy (Figure 6e) highlights
high-reflection coefficient reflectors (the deeper sand/
shale package) from low reflectivity, shallower shale/
shale packages. Salt appears as low energy with some
high-energy inclusions. The MTC is more hetero-
geneous with high-energy reflectors embedded in a low-
energy matrix.

Kuwahara-filtered attributes

Although our preliminary analysis of seismic attrib-
utes differentiates the three target facies in this GOM
survey, two challenges reduce the accuracy of com-

Sediment vs.Salt

Original Attribute [Salt vs. MTC| MTC vs. Sediment

Coherence
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convergence
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< 0.5 are
highlighted in green between (a) original seismic attributes
pairs and (b) Kuwahara-filtered attributes pairs.

Figure 13. Histogram correlation coefficient 7y,

puter-assisted facies classification. The first challenge
is the mixed high- and low-value (salt-and-pepper)
anomalies seen in the salt and the MTC. The second
challenge is that of additional facies. We have already
suggested that the sediments’ facies can be broken into
a sand/shale versus shale/shale facies. In addition,
faults may also be misclassified as one of our three fa-
cies. Specifically, the faults in this survey give rise to
low coherence, high magnitude of reflector conver-
gence, high GLCM entropy, and high GLCM dissimilar-
ity anomalies. In Figure 6, around the right salt dome,
there are three faults (indicated by red arrows) cutting
through the salt dome and neighboring sand that exhibit
a similar attribute response through the salt and MTC.

We address the first (heterogeneity) problem by ap-
plying a Kuwahara filter to smooth rapidly varying
attribute anomalies to facilitate subsequent clustering.
Figure 7 shows the Kuwahara filtering workflow. One
computes three subattributes from each seismic attrib-
ute: the standard deviation o, the mean u, and the
median m in each of the overlapping analysis windows.
Figure 8 shows the median m of each candidate attrib-
ute, computed within a 100 x 100 m by +12 ms rectan-
gular window, resulting in much smoother, less detailed
images. The salt-and-pepper features in the salt and MTC
are now more continuous, whereas the thin anomalies
associated with the faults are eliminated.

Unfortunately, median filtering has smoothed the
edges of seismic facies from rapidly varying to smoothly
varying. To apply a Kuwahara filter, we find window k&
of the L noncentered overlapping windows that contain
a target voxel that has the smallest normalized standard
deviation o/u. Kuwahara filtering then assigns the
median of window k to be the output value for the target
voxel. In this example, we cascaded two small 50 m ra-
dius by +8 ms Kuwahara filters. Compared with the
median-filtered attributes shown in Figure 8, the Kuwa-
hara-filtered attributes shown in Figure 9 better preserve
the boundaries between different seismic facies, precon-
ditioning them for subsequent classification. Figure 10
compares time slices through several attributes before
and after Kuwahara filtering, in which we note that the
Kuwahara-filtered attributes have smoothed seismic fa-
cies (Figure 10). Like the median filter, the Kuwahara fil-
ter eliminates thin anomalies, such as faults (red arrows)
and channels (blue arrow).

To more clearly see the detailed improvements by
Kuwahara filtering, we examine the attributes before
and after filtering along two different traces. In Fig-
ure 11a, trace 1 intersects a top salt boundary, whereas
trace 2 intersects the top and bottom boundaries of
MTC. Before filtering (Figure 11b), values within the
salt dome vary rapidly, making it difficult to detect
the top salt boundary. Likewise, the discrimination of
the edges of the MTC is also difficult. In contrast, the
Kuwahara-filtered trace in Figure 11c shows piecewise
smooth values, producing a sharp boundary of the salt
dome and MTC.
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Attribute selection to separate painted facies

Given these filtered attributes, the next task shown
in Figure 1 is to paint the target facies of interest on
vertical or time slices and generate histograms for each
facies. Figure 12 shows histograms for the three seismic
facies: sediment (blue), MTC (green), and salt (red).
Histograms of the picked facies are normalized to range
between zero and one for easy comparison and do not
change the correlation coefficient of any histogram
pair. Note that Kuwahara filtering narrows and further
separates the distribution of the attribute histograms.
Coherence and GLCM dissimilarity attributes now have
significantly greater discrimination between the three
target facies, allowing the facies to be separated. Re-
flector convergence and GLCM entropy attributes have
poor separation between salt and MTC but good sepa-
ration of these two facies from the sediments.

Coherence

Sediment

Sedi,mer;t

'.bl.-(s'f\[}d{. N

: 1 :
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Figure 13 compares the correlation coefficients 7y,
between the original seismic attribute painted facies
with those between the Kuwahara-filtered attribute
painted facies. For the original attributes (Figure 13a),
the histogram correlation coefficients 7, of sediment
versus salt are all less than 0.5 for most attributes. In
the salt versus MTC facies, only coherence has a
low value of 1, whereas coherence and GLCM-
dissimilarity attributes have low values of r,, for the
MTC versus the sediment facies. After Kuwahara filter-
ing (Figure 13b), the correlation is significantly re-
duced, suggesting that our classifier will be better
able to discriminate one facies from the other, where
the green boxes indicate correlation coefficients of less
than a threshold of 0.5. Coupled with the improved edge
enhancement of the Kuwahara filter, we expect im-
proved results. Figure 14 shows overlays of the filtered

GLCM
Entropy

Sedimer;t
(Sand)

Coherent

Sediment

Sediment
(Sand)

Figure 14. Vertical slices along line BB’ and time slices at ¢ = 1172 ms through seismic amplitude corendered with Kuwahara
filtered attributes and using threshold attributes (a) coherence, (b) magnitude of reflector convergence, (c) GLCM entropy,
(d) GLCM dissimilarity, and (e) coherent energy. Note that the Kuwahara-filtered attributes, with the low facies histogram corre-
lation coefficient (Figure 13b), more clearly block the desired facies. Location of line BB’ is shown in Figure 5.
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Figure 15. Vertical slices along line AA’ and time slice at ¢ = 1144 ms through crossplotted coherence and GLCM dissimilarity
before (a) and (b) and after (c) and (d) Kuwahara filtering. Note that the Kuwahara-filtered crossplot shows sharper edges and less
internal variation.
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Figure 16. (a) Vertical slices along line AA’ and (b) time slice at { = 1144 ms through GTM classification with original attributes
use a 2D latent space mapped against; (c) vertical slices along line AA’ and (d) time slice at t = 1144 ms through GTM classification
with Kuwahara-filtered attributes.
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attributes on the vertical seismic slice and time slices at
t = 1172 ms. Such threshold discrimination between fa-
cies is limited to one attribute at a time, although one
can sequentially reject larger and larger areas of exami-
nation through cascade thresholding of additional
attributes.

Crossplotting of two attributes

Crossplotting of seismic attributes is used to high-
light relationship of input attributes. In seismic facies
analysis, the interpreter picks polygons on the cross-
plot and display the result, providing a degree of super-
vision. Figure 15a and 15b shows a vertical section and
time slice of original coherence and GLCM-dissimilarity
crossplot corendered with seismic amplitude. Figure 15¢
and 15d shows the same images after by Kuwahara
filtering. The crossplotted Kuwahara-filtered images

MTC Sediment

show better facies boundaries and have less internal
salt-and-pepper behavior. Unfortunately, crossplotting
becomes difficult with three attributes and intractable
for more than three facies. Gao (2007) addresses this
problem by crossplotting principal components of the
attributes, which projects the data onto a plane. Thus,
we propose using GTM analysis, which maps data onto
a deformed manifold.

GTM interactive clustering and the Bhattacharyya
distance

We apply GTM (Roy et al., 2014) to obtain vector pro-
jections of multiple attributes onto a 2D latent space.
On this example, GTM represent 5D (five-attribute) data
by a lower 2D deformed manifold. The GTM starts with
an initial 2D plane, defined by the first two eigenvectors
of the 5 x 5 attribute covariance matrix (i.e., principal

Sediment

Figure 17. Vertical slices along line BB’ and time slices at ¢ = 1172 ms through (a) seismic amplitude and corendered (b) with salt
facies (inred), (c) MTC facies (in yellow), (d) sediment facies (in green), and (e) with all three facies obtained by manually drawing

a polygon on the GTM histogram.

B
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component analysis). This plane is uniformly populated
with clusters, each of which describes a Gaussian PDF.
The plane is deformed onto a curved manifold by
moving the center of a Gaussian to better fit the data.
At each iteration, the variance of the Gaussian is
decreased. The process continues until convergence,
providing a maximum likelihood estimation of the
Gaussian centers. At the end, all vectors are projected
onto a 2D latent space.

From our histogram analysis, the five-attribute vol-
umes used in the GTM are coherence, magnitude of
reflector convergence, GLCM entropy, GLCM dissimi-
larity, and coherent energy, representing the depositio-
nal features seen in the seismic facies volume. After
training, the 5D attribute vectors at each voxel are pro-
jected onto the 2D latent space.

Figure 16a and 16b shows the slices through the un-
supervised GTM volume computed using the original
attribute corendered with seismic amplitude. Figure 16¢
and 16d shows the slices through the GTM volume com-
puted by Kuwahara-filtered attributes corendered with
seismic amplitude. Each voxel is projected onto the 2D
latent space that is mapped against a 2D colorbar. Users

Figure 18. The voxels painted in Figure 5b @)
onto the latent space, generating PDFs for 1
(a) salt, (b) MTC, and (c) sediment, and the
single voxels painted in Figure 5b, generating
PDFs for (d) salt, (e) MTC, and (f) sediment.

GTM axis 1

GTM axis 1

GTM axis 1
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can then define polygons about hypothesized clusters
on display then using commercial crossplotting tools.
The salt, MTC, and sediment can be differentiated,
where purple indicates salt, red indicates MTCs, green
indicates the low-amplitude conformal shale packages,
and blue indicates the high-amplitude conformal water
bottom and sand/shale packages. Figure 17a shows ver-
tical slice BB’ and time slice at ¢ = 1172 ms, through the
seismic amplitude. By drawing polygons on the GTM 2D
histogram, we define geobodies of salt (Figure 17b),
MTCs (Figure 17¢), and sediment (Figure 17d). To more
quantitatively introduce supervision, we project each
painted face onto the previously trained 2D manifold,
generating average PDFs for each facies. We then
project each 5D data voxel onto the same manifold, gen-
erating its own PDF. The Bhattacharyya distance (Roy
et al., 2014), which measures the similarity between two
PDFs, is then calculated between the voxel PDF with
each facies PDF. We first run our method on a few seis-
mic lines. At the paint, the clustering is “unsupervised”.
We add supervision by projecting the voxels painted in
Figure 5b onto the latent space, generating PDFs for
salt, MTC, and sediment facies (Figure 18a-18c). To
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validate these PDFs, we pick single voxels for each fa-
cies on a line in a different part of the survey, and we
project them on the latent space (Figure 18d-18f). Note
that the PDF of the single voxel falls with the PDF of the
supervision data. Cross-multiplying the PDF of a given
voxel and the PDF of the supervision gives the square of
the Bhattacharyya distance. The Bhattacharyya dis-
tance determines how likely the voxel belongs to each
facies.

Figure 19 shows seismic amplitude corendered with
Bhattacharyya-distance volumes for each of the super-
vised facies. The Bhattacharyya distance provides a
probability measurement of how likely a facies is to ap-
pear at a certain spatial location. A Bhattacharyya-dis-
tance value of 0.8 against salt means that the analysis
point is 80% likely to be salt. Such probability estimation
is especially useful when there is no clear separation
within a transition zone among multiple facies.

Bhattacharyya
Coefficient

Bhattacharyya
Coefficient
1

Bhattacharyya

Coefficient
1

Figure 19. Vertical slice along line BB’ and time slice at ¢ =
1172 ms through seismic amplitude, and corendered with
Bhattacharyya coefficient associated with (a) salt, (b) MTC,
and (c) sediment facies.

Conclusions

We have developed a workflow to automate the volu-
metric delineation of seismic facies, with a focus on
chaotic facies such as salt diapirs and MTCs common
in the GOM. Key to such classification is the choice
of attributes that capture patterns seen by the human
interpreter that help identify the target facies. Human
interpreters see patterns and facies boundaries at
scales larger than a few voxels. We approximate this
pattern recognition by applying 3D Kuwahara filtering
to each attribute volume. The GTM not only allows clus-
tering of the attribute data, but it also facilitates the
introduction of interpreter-provided supervision, result-
ing in a probabilistic volume of each desired facies. The
Bhattacharyya distance between the PDF of each unla-
beled voxel to each of n facies PDFs results in a prob-
ability volume of each user-defined facies.
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