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SUMMARY

Noise reduction is critical for structural, stratigraphic, litholog-
ical and quantitative interpretation. In the absence of physical
insight into its cause and behavior, separating the noise from
the underlying signal can be difficult. We construct a noise
suppression workflow based on a data-adaptive signal decom-
position method (variational mode decomposition). Key to our
workflow is to determine which of the generated intrinsic mode
functions represent signal and which represent noise. We ad-
dress this issue by a scaling exponent based on detrended fluc-
tuation analysis. The proposed method shows excellent per-
formance on synthetic and field data, especially when encoun-
tering data exhibiting a low signal-to-noise ratio. Laterally
continuous events are preserved and steeply dipping coherent
events due to aliasing as well as random noise are rejected.

INTRODUCTION

Seismic signal is non-stationary because of complex subsur-
face structures, random and coherent interferences, as well as
acquisition related noises. Denoising is a necessary step to en-
hance signal-to-noise ratio (SNR) (Li et al., 2014). Methods
based on signal decomposition and thresholding scheme show
good performance in denoising non-stationary signal (Donoho
and Johnstone, 1994; Chkeir et al., 2010). Unlike the popu-
lar continuous wavelet transform that consists of applying a
suite of stationary filter banks, empirical mode decomposition
(EMD) is a data-driven signal decomposition method (Huang
et al., 1998). EMD analyzes non-stationary signals and adap-
tively decomposes signal into oscillatory components called
intrinsic mode functions (IMF) plus a residual (Huang et al.,
1998). However, EMD has the frequency mixing issue, espe-
cially in low SNR situation (Kabir and Shahnaz, 2012). To
address this drawback, Dragomiretskiy and Zosso (2014) pro-
posed variational mode decomposition (VMD) to decompose
a signal into an ensemble of band-limited IMFs. VMD solves
an optimization problem in frequency domain to best isolate
different spectral modes. In VMD, low order IMFs represent
slow oscillations (low frequency modes), and high order IMFs
represent fast oscillations (high frequency modes).

EMD- and VMD-based denoising methods require a criterion
to separate noise from signal (Li et al., 2015; Liu et al., 2016).
Ideally, the decomposed IMFs contain most of the signal while
the residual contain most of the noise. Peng et al. (1994) pro-
posed detrended fluctuation analysis (DFA) to analyze differ-
ent signal trends of unknown duration. They then use scaling
exponent estimated from DFA to evaluate the variation of the
average root mean square (RMS) fluctuation around the local
trend. In addition, the scaling exponent value is an indica-
tor of roughness: the larger the value, the smoother the time
series or the slower the fluctuations (Berthouze and Farmer,

2012). Chen et al. (2002) applied DFA on complex noisy sig-
nals with varying local characteristics and investigated the strate-
gies for non-stationary signal analysis.

In this paper, we propose a hybrid denoising method combin-
ing the DFA and VMD algorithms. We first introduce the prin-
ciples of EMD and VMD. Using synthetic noisy signal decom-
position examples, we evaluate the two algorithms for high and
low SNRs. Next, we use the DFA scaling exponents to con-
struct a threshold that excludes noise components. We demon-
strate the effectiveness of our workflow through application to
a legacy, low fold, land data volume acquired over a limestone
play in North Central Texas .

THEORY

VMD vs. EMD

To suppress noise, almost all filtering techniques attempt to
differentiate the signal components from the noise components
from measured data in either the time or “transform” domain.
EMD adaptively decomposes a multicomponent signal into a
finite set of IMFs in the time domain (Huang et al., 1998; Gan
et al., 2014). In EMD, IMF components are the mean value of
upper and lower envelopes interpolated from the local maxima
and local minima of the original signal. The residual obtained
by subtracting the original signal and the summation of the
acquired IMFs is considered to be a new signal that will be
analyzed in the next iteration. EMD stops when the residual
satisfies a user-defined stopping criterion. We see EMD as a
sifting process with the following representation:
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where IMFy(t) is the kth IMF of the signal, and rg(¢) stands
for the residual trend.

Dragomiretskiy and Zosso (2014) proposed VMD to decom-
pose intrinsic modes in the frequency domain, which are com-
pact around their respective central frequencies. In VMD, the
IMFs are defined as elementary amplitude/frequency modu-
lated (AM-FM) harmonics to model the non-stationarity of the
data. In other words, for a sufficiently long interval, the mode
can be considered to be a pure harmonic signal. The VMD is
realized by solving the following optimization problem:
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where u; and @y, are modes and their central frequencies, re-
spectively. &(e) is a Dirac impulse. d(r) is the signal to be
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decomposed, with the constraint that the summation over all
modes should be the input signal. (S(t) + %) * uy(¢) indi-
cates the original data and its Hilbert transform.

Figure 1a shows a synthetic 50 Hz signal, and Figure 1b shows
its corresponding spectrum. With 3 dB noise (power ratio be-
tween signal and noise (PSNR) is about 2) added, the signal
becomes noisy. We display noisy signal and noise component
in Figures 1c and 1d, with the corresponding spectra in Figures
1d and 1f, respectively.
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Figure 1: Noisy signal synthetic example: (a) 50 Hz noise
free signal with its spectrum (b); (c) 3 dB noisy signal with its
spectrum (d); (e) the added noise and the noises spectrum (f).
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Figure 2: IMF from EMD and their corresponding spectra.

Figure 2 demonstrates the decomposed IMFs from EMD and
their corresponding spectra, while Figure 3 shows the corre-
sponding products from VMD. Because the number of IMFs
produced from EMD is not user-defined, we set the output
number of VMD to be the same as that from EMD. Although
we truncated the VMD series, VMD better isolates frequency
components according to spectra, because of VMDs formula-
tion as an optimization problem in the frequency domain. In
particular, the IMF2 component from VMD in Figure 3 closely
approximates the original noise free signal. In contrast, none
of the results from EMD approximates the signal well.
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Figure 3: IMF; from VMD and their corresponding spectra.

A Thresholded VMD Denoising Method

Peng et al. (1994) proposed to use DFA to estimate signal non-
stationary properties based on its scaling exponent. If the data
(length N) are long-range power-law correlated, the RMS fluc-
tuation around the local trend in the box size n increases fol-
lowing a power law:

K
F() = }vkzl[yw)yn(k)]z a0

where the scaling exponent  is defined as the slope of the
curve [F(n)]/log(n) , which is estimated as the log-log scale
Hurst exponent. y(k) is the time series subtracted from the
mean value. y, (k) is the estimated local trend by simply fitting
a linear line. When 0 < o < 0.5, the signal is anti-correlated.
When a = 0.5, it corresponds to uncorrelated white noise (Mert
and Akan, 2014).
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Figure 4 illustrates the proposed denoising workflow. We use
VMD to decompose the signal, and DFA to determine the num-
ber of IMFs from VMD, as well as the threshold for every IMF
in the reconstruction process. In the end, we obtain the filtered
signal by summing the first K IMFs with larger o values.

Original signal

Apply DFA and
Calculate IMF Number
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‘ Apply VMD ‘
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Evaluating every mode
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Exclude residuals based on
thresholding criteria

L

‘ Reconstruct signal ‘

Denoised signal

Figure 4: Workflow of the proposed thresholded VMD denois-
ing method.

SINGLE TRACE FILTERING APPLICATIONS

First, we adopt the HeaviSine signal as a synthetic example,
we evaluate our algorithm for a suite of different SNRs: 10 dB
(PSNR 10), 3 dB (PSNR 2), 0 dB (PSNR 1) and -3 dB (PSNR
0.5). Figure 5 shows filtered results from the proposed method.
Note that it performs well even at low SNR cases.
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Figure 5: Synthetic example on HeaviSine signal using the
proposed denoising approach at different SNR situations: (a)
10 dB, (b) 3dB, (c) 0 dB, and (d) -3 dB.

Second, we employ a field seismic trace in Figure 6. We also
add different levels of noises as the previous example. Again,

the VMD-based filter shows stable performance even at low
SNR situations, shown in Figure 6.
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Figure 6: Filtering results on a real seismic signal at different
SNR situations: (a) 10 dB, (b) 3 dB, (¢) 0 dB and (d) -3 dB.

FIELD APPLICATIONS

In Figure 7, we apply the proposed workflow to a low fold,
land seismic survey acquired in the mid-1990s that suffers from
backscattered ground roll and migration operator aliasing. This
data set is from North Central Texas, here the target is discon-
tinuous high porosity Mississippian Chert (Verma et al., 2016).
Figure 7a shows the original seismic data. Figure 7b shows the
filtered result, where one notes that both amplitude and phase
of the coherent reflectors have been preserved. As a quality
control, Figure 7c shows the residual, rg, (or difference be-
tween Figures 7a and 7b) plotted at the same amplitude scale.
Laterally continuous events are modeled and steeply dipping
coherent noise is rejected. Figure 8 shows the time slice com-
parison between original data and filtered result. We also cal-
culate the coherence attribute before and after filtering. In Fig-
ure 9, note that the discontinuities from noise have been sup-
pressed, and the true geology is preserved.

CONCLUSIONS

We propose a DFA thresholding for VMD based denoising
method. A few IMFs of a noisy measured data can repre-
sent signal, while the residuals represent noise. To achieve
this objective, we use exponents from DFA as a metric to de-
termine which IMFs are noisy oscillations and should be ex-
cluded in the reconstruction process. Synthetic and field ex-
amples demonstrate that the denoising performance of the pro-
posed method is promising especially at low SNR values.
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Figure 7: Vertical sections through (a) noisy seismic data, (b) filtered result and (c) difference between noisy data and filtered result.
All images plotted using the same amplitude scale.

Figure 8: Time slices at t=820 ms through (a) original seismic Figure 9: Coherence attribute results of (a) original seismic

data and (b) filtered result. It is obvious that the filtered result data and (b) filtered result. Note that less noise interference
is smoother. makes the attribute clearer.
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