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SUMMARY

Typically, interpreters qualitatively choose input attributes 
for multiattribute facies analysis based on their experience 
and geologic target of interest. In this study, we augment this 
qualitative attribute selection process with quantitative 
measures of which candidate attributes best differentiate 
features of interest, by weighting input attributes based on 
their response from the unsupervised learning algorithm that 
used to generate the facies map, as well as interpreter’s 
preference. We use self-organizing map (SOM) as an 
example of unsupervised seismic facies analysis algorithm. 
By comparing with results from equally weighted attributes, 
we demonstrate that the proposed attribute weighting 
workflow is able to represent the information from the input 
attributes more adequately.

INTRODUCTION

With the rapid development in seismic attribute and 
interpretation techniques, interpreters can be overwhelmed 
by the number of attributes available at their disposal. Barnes 
(2007) discusses redundant attributes, stating that there are 
many duplicate attributes, and many attributes with vague 
geological meaning. Excluding those redundant attributes 
greatly simplifies the seismic interpretation workflow. 
However, interpreters still face the challenge of selecting 
which of the remaining attributes are appropriate for a given 
interpretation task. 

Researchers have spent considerable amount of effort on 
how to qualitatively and quantitatively select the most 
suitable attributes for facies and reservoir property 
estimation. Chen and Sidney (1997) provide a 
comprehensive review of attribute selection for reservoir 
predicting and monitoring. Kalkomey (1997) discusses the 
risk of false correlation between seismic attributes and 
reservoir properties, in which she suggests that special 
caution is needed when there are few wells to correlate or 
using too many attributes. Hart and Balch (2000) present a 
case study on predicting reservoir properties from seismic 
attributes with limited well control, and propose a suite of 
visual correlation schemes to define the attributes of choice. 
From a more quantitative aspect, Schuelke and Quirein 
(1998) propose to use cross-validation as a measure of 
prediction performance, then select attributes that lead to 
higher cross-validation. Since then, almost all the proposed 
alternative strategies have shared one fundamental concept, 
which is to select attributes that lead to the lowest validation 
error. One example is from Dorrington and Link (2004), in 
which the authors use a genetic algorithm (a popular 

nonlinear inversion approach) to automatically determine 
input attributes based on the error of a neural network 
porosity prediction.

Such prediction error based approaches are of great value if 
the facies analysis is in a supervised fashion, which means 
the interpreters provide training data to the learning 
algorithm. In scenarios that no training data are available and 
the objective is to discover natural facies distribution in the 
data, interpreters use unsupervised learning algorithms, such 
as self-organizing map (SOM), to cluster the multiattribute 
input data. In Barnes and Laughlin (2002), the authors 
conclude that the selection of input attributes has a higher 
impact on the facies map than the unsupervised learning 
algorithm used for classification. Qualitatively, Zhao et al. 
(2015) review several competing unsupervised learning 
algorithms and provide a recommendation of attributes to 
highlight different architectural elements in a turbidite 
system. By using principal component analysis (PCA), 
Roden et al. (2015) determine the amount of variation 
contributed from each seismic attribute to the top principal 
components of a large number of attributes, then select the 
attributes with the highest contribution to be used in the 
subsequent facies analysis. Although PCA estimates the 
contribution of each attribute to represent the data variability 
as a whole, it does not provide a measure of attribute 
importance to the subsequence unsupervised learning 
process.

The attribute selection system we use today is in fact simply 
a weighting system: if we use an attribute, its weight is one; 
if we reject it, its weight is zero. We therefore propose to use 
a weighting scheme that instead of either selecting or 
rejecting an attribute, we define weights that represent the 
value of each input attribute in differentiating facies of 
interest. We weight the interpreter-selected input attributes 
base on both their response from the unsupervised learning 
algorithm and interpreter’s knowledge. The weights 
therefore represent both “which attribute is favored by an 
interpreter as input for unsupervised learning” from an 
interpretation perspective, and “which attribute is ‘favored’ 
by the learning algorithm” from a data-driven perspective. 
We use SOM as the example of the unsupervised learning 
algorithm, and provide the definition of attribute weights in 
the next section.

DEFINITION OF ATTRIBUTE WEIGHTS

To emphasize and deemphasize the importance of a given 
attribute, we define a weight matrix W when calculating 
distance in SOM:
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Attribute weighting in facies analysis 

𝑟 = (𝐚1 ‒ 𝐚2)𝑇𝐖(𝐚1 ‒ 𝐚2).                  (1)
Here,  and  are two z-score normalized 𝐚1 𝐚2 𝑁⨯1
multiattribute data vectors of N attributes, r is the distance 
between the two multiattribute data vectors, and W is a 
diagonal matrix. We show a schematic plot of two attributes 
in Figure 1 to demonstrate the effect of the distance matrix 
W on data clustering.

Figure 1. A schematic drawing to show the effect of 
weighting attributes. (a) Two equally weighted attributes 
with three clusters. The red and green clusters are very close 
such that a distance-based clustering algorithm may only 
find two instead of three clusters. (b) The same data samples 
but now with different weights applied to the two attributes 
changing their distance from the origin. The red and green 
clusters are now better separated.

Inspired by Benabdeslem and Lebbah (2007), given N input 
attributes and J prototype vectors (which are the proxies of 
the 2D SOM neurons in the attribute space), we define , 𝜔𝑖
the ith attribute’s contribution to a SOM model, as:

𝜔𝑖 =
𝐽

∑
𝑗 = 1

𝑑𝑗

|𝑝𝑗𝑖|
𝑁

∑
𝑘 = 1

|𝑝𝑗𝑘|
,                           (2)

and

𝑑𝑗 =
ℎ𝑗

𝑀,                                          (3)

where hj is the number of multiattribute training samples that 
are nearest to the jth prototype vector, M is the total number 
of multiattribute training samples, dj represents the density 
of training samples assigned to the jth prototype vectors, and 
pjk is the value of the jth prototype vector along dimension k 
(the dimension of the kth attribute). Physically, if a prototype 
vector has a very large value in the dimension of the target 
attribute, and a large percentage of training samples are close 
to this prototype vector, then the target attribute’s 
contribution at this prototype vector is significant. Summing 
up over all the prototype vectors, we then arrive at the target 
attribute’s contribution to the whole SOM model.

We loosely define an “edge” attribute to be an attribute 
representing the variation among neighboring seismic 
samples, and a “body” attribute to be an attribute 
representing a property of a seismic sample or samples 
within a window. And for seismic facies analysis, we prefer 

body attributes with color representation so that the edge 
information becomes complimentary. A body attribute has a 
flatter and more symmetric histogram, whereas an edge 
attribute’s histogram is tighter and skewed. Therefore, we 
propose to use skewness s, and kurtosis, k, which measures 
the symmetry and sharpness of a histogram, to quantify the 
interpreter’s preference of body attributes over edge 
attributes. We finally define an element in the weight matrix 
W to be:

𝑊𝑖𝑖 =
2

1 + 𝑒
‒ 𝑤𝑖

,                                  (4)

where  is the weight for the ith attribute, and  is a 𝑊𝑖𝑖 𝑤𝑖
function of , , and . Once we compute the weight 𝜔𝑖 𝑠𝑖 𝑘𝑖
matrix W, we use the distance representation in equation 1 
in the SOM algorithm so that different attributes are 
emphasized accordingly to their weight values.

APPLICATION

We demonstrate the proposed attribute weighting scheme on 
a field example from the Barnett Shale, United States, and 
compare with SOM facies map from equally weighted input 
attributes. In our field example, the Barnett Shale lies 
directly on top of the dolomitic Ellenburger formation in the 
western region of the Fort Worth Basin. The Ellenburger 
formation is highly deformed, with extensive development 
of karst and joints that extend upwards from the water-
saturated Ellenburger into the Barnett Shale, posing drilling 
and completion hazards (Pollastro et al., 2007). Our 
objective is to use spectral decomposition, geometric, and 
texture attributes, which are sensitive to strata thickness, 
lithology, and structural deformation, to illuminate the 
architectural elements presented in the shallow part of 
Ellenburger formation. Figure 2a to 2d provide co-rendered 
attributes along a phantom horizon (Horizon A) 25 ms below 
the top of Ellenburger, on which we observe karst features 
either in isolated circular to oval shape, or in a cellular 
network of polygonal karst. Structural curvature (Figure 2a) 
defines the extension of karst regions, while amplitude 
curvature (Figure 2b) highlights the small scale collapse. We 
observe that highly karsted regions exhibit lower frequency 
compared to the surrounding area, possibly due to the non-
specular scattering from the chaotic reflectors. These regions 
are also low in peak spectral magnitude (dimmer color in 
Figure 2c), as a substantial amount of the reflected energy is 
not properly received by the receivers within the migration 
aperture.

After precomputing the attribute weight matrix as described 
previously, we obtain the weights of the eight input attributes 
and display with their corresponding histograms in Figure 3. 
We observe that highly skewed attributes (curvature and 
similarity) are penalized; in contrast, “body” attributes are 
amplified. With such a penalty on curvature and similarity 
attributes, one may suspect that the anomalies from these 
attributes would have been overly mitigated. We assume that 
the high contrast in curvature and similarity between features 
of interest (karst and faults, versus planar features in this 
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Attribute weighting in facies analysis 

example) still allows them to be classified by the SOM facies 
map. 

The SOM facies map with equally weighted input attributes 
is shown in Figure 4, and from the proposed workflow using 
the same group of input attribute in Figure 5. Comparing 
Figure 4 and 5, we observe that both SOM facies maps are 
able to delineate the karst, faults, and fractures equally well. 
This observation verifies the assumption that we made 
earlier, that adding a penalty weight does not significantly 
alter the curvature and similarity anomaly contributions. The 
polygonal karst regions are characterized by purple and cyan 
facies, where purple corresponds to anticlinal components 
and cyan synclinal components. Compared to the co-
rendered structural curvatures, both SOM facies maps 
provide details about smaller scaled karst caves that are not 
identifiable on structural curvatures, most of which 
correspond to fracture joints (blue arrows). We are also able 
to identify the major faults (red arrows) close to the 
polygonal karst regions, suggesting a tectonic control of the 
karst development (Qi at al., 2014). The main difference 
between Figure 4 and 5 comes from regions marked with 
yellow and orange arrows. In Figure 5, the yellow arrow 
regions are in a lime green facies, where the orange arrow 
regions are in an orange facies. In contrast, these regions 
look nearly identical in Figure 4, all being brownish cellular 
textures that somehow follow the trend on the curvature 

attributes. The lime green versus orange facies change in 
Figure 5 reflects the frequency variation found in Figure 2c, 
where low peak frequency regions are in lime green facies 
(yellow arrows), and high-frequency regions are in orange 
facies (orange arrows). The peak frequency provides 
information on tuning thickness, which adds another 
dimension besides surface morphology. The SOM facies 
map from equally weighted attributes, on the other hand, 
does not distinct such frequency variation clearly.

CONCLUSION

In this study, we introduce attribute weighting for seismic 
facies analysis. We define the attribute weight to be a 
function of both SOM response and interpreter’s preference. 
By using such weights, information in the input attributes are 
more adequately represented in the SOM facies map, and 
less dominated by attributes with very high contrast. 
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(c) (d)

(a) (b)

Figure 2. A phantom Horizon A 25 ms 
below the top of the Ellenburger 
formation through (a) co-rendered 
structural curvatures k1 and k2; (b) co-
rendered amplitude curvatures epos and 
eneg; (3) peak spectral frequency 
modulated by peak spectral magnitude; 
and (4) co-rendered GLCM homogeneity 
and energy ratio similarity. Red arrows 
denote locations of large regional faults. 
Blue arrows denote small scale, isolated 
karst collapse features. Yellow arrows 
denote less deformed regions of relatively 
thick layers, while orange arrows denote 
less deformed regions of relatively thin 
layers.
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Attribute weighting in facies analysis 

Figure 4. SOM facies map from equally weighted attributes 
along a phantom Horizon A 25 ms below the top of the 
Ellenburger formation. Red arrows denote locations of large 
regional faults. Blue arrows denote small scale, isolated karst 
collapse features. Yellow arrows denote less deformed regions 
of relatively thick layers, while orange arrows denote less 
deformed regions of relatively thin layers. The dashed lines in 
the 2D color maps denotes the 1D colorbar used for each 
projection along a SOM axis in order to approximate the 2D 
color map.

Figure 3. Histograms of the eight input attributes within the analysis window. Weights are computed using the method 
described in the earlier section. . Note that histograms exhibiting high kurtosis and/or skewness are assigned lower weights, 
while those that rea broader and more symmetric are assigned higher weights.

Figure 5. SOM facies map from adaptively weighted attributes 
along a phantom Horizon A 25 ms below the top of the 
Ellenburger formation. Red arrows denote locations of large 
regional faults. Blue arrows denote small scale, isolated karst 
collapse features. Yellow arrows denote less deformed regions 
of relatively thick layers, while orange arrows denote less 
deformed regions of relatively thin layers. The dashed lines in 
the 2D color maps denotes the 1D colorbar used for each 
projection along a SOM axis in order to approximate the 2D 
color map.
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