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Abstract  27 

The rate of penetration (ROP) measures drilling speed, which is indicative of the overall 28 

time and in general, the cost of the drilling operation process. ROP depends on many engineering 29 

factors; however, if these parameters are held constant, ROP is a function of the geology. We 30 

examine ROP in the relatively heterogeneous Mississippian Limestone reservoir of north-central 31 

Oklahoma where hydrocarbon exploration and development have been present in this area for 32 

over fifty years. A 400 mi2 (1036 km2) 3D seismic survey and 51 horizontal wells were used to 33 

compute seismic attributes and geo-mechanical properties in the area of interest. Previous Tunnel 34 

Boring Machines (TBM) studies have shown that ROP can be correlated to rock brittleness and 35 

natural fractures. We therefore hypothesize that both structural attributes and rock properties 36 

should be correlated to ROP in drilling horizontal wells. We use a proximal support vector 37 

machine (PSVM) to link rate of penetration to seismic attributes and mechanical rock properties 38 

with the objective to better predict the time and cost of the drilling operation process. Our 39 

workflow includes three steps: exploratory data analysis, model validation, and classification. 40 

Exploratory data analysis using 14 wells indicate high ROP is correlated with low porosity, high 41 

lambda-rho, high mu-rho, low curvedness, and high P-impedance. Low ROP was exhibited by 42 

wells with high porosity, low lambda-rho, low mu-rho, high curvedness and low P-impedance. 43 

Validation of the PSVM model using the remaining 37 wells gives an R2 = 0.94. Using these five 44 

attributes and 14 training wells, we used PSVM to compute a ROP volume in the target 45 

formation. We anticipate that this process can help better predict a budget or even reduce the cost 46 

of drilling when an ROP assessment is made in conjunction with reservoir quality and 47 

characteristics.  48 
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Introduction 49 

Drilling and completion of horizontal wells are the largest expenses in unconventional 50 

reservoir plays, where the cost of drilling a well is proportional to the time it takes to reach the 51 

target objective. Accordingly, the faster the desired penetration depth and offset is achieved, the 52 

lower the cost of the drilling process. The rate of penetration (ROP) is measured in all wells, but 53 

rarely examined by geoscientists. ROP depends on many factors, but the primary factors are 54 

weight on the drill bit, drill bit rotation speed, drilling fluid-flow rate, and the characteristics of 55 

the formation being drilled (Bourgoyne et al., 1986). In this study, all wells were drilled within a 56 

two-year period using similar drilling parameters, allowing investigation of the formation 57 

characteristics on the ROP.  58 

Various approaches have been applied to estimate ROP. One of the main challenges for 59 

ROP estimation is the variability in the interplay between the rock and drilling speed (Farrokh et 60 

al., 2012). A “drill-off test” is a method primarily used to determine an optimum ROP for a set of 61 

conditions; however, a limitation of the drill-off test is that this process produces a static weight 62 

only valid for limited conditions during the test. The drill-off test does not work well under more 63 

complex geological conditions (King and Pinckard, 2000). Gong and Zhao (2007) utilized 64 

numerical simulations to investigate how rock properties affected penetration rates in Tunnel 65 

Boring Machines (TBM) and found that an increase in rock brittleness caused an increase in 66 

penetration rate. Later, a numerical model was created to model penetration rate for TBM’s by 67 

Gong and Zhao (2009), who found that an increase in compression strength decreased ROP and 68 

an increase in volumetric joint count increased ROP.  69 

In addition to well logs and cores, seismic attributes are widely used to predict 70 

lithological and petrophysical properties of reservoirs. For example, curvature anomalies 71 
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commonly indicate an increase in rock strain, which in turn can be used to infer fractures (White 72 

et al., 2012). Impedance inversion is currently the most direct seismic-based estimate of rock 73 

properties. Seismic-impedance inversion results have been used to predict fault zones, potential 74 

fractures, and lithology in the Mississippian Limestone (Dowdell et al., 2013; Roy et al., 2013; 75 

Verma et al., 2013; Lindzey et al., 2015;). Young’s modulus, E, and Poisson’s ratio, υ, calculated 76 

from bulk density, ρ, compressional velocity, Vp, and shear velocity, Vs logs can be used to 77 

estimate rock brittleness (Harris et al., 2011).  78 

Drilling and borehole measurements such as ROP are usually not linearly related to 79 

volumetric seismic attributes, such that the use of multilinear regression is limited. Artificial-80 

Neural Networks (ANN) is commonly used to link attributes to properties such as gamma-ray 81 

response (Verma et al., 2013), Total Organic Carbon (TOC) (Verma et al., 2016), and well 82 

production (Da Silva et al., 2012). The Proximal Support Vector Machine (PSVM) method is a 83 

more recent innovation that has been successfully used to predict brittleness (Zhang et al., 2015). 84 

PSVM utilizes pattern recognition and classifies points by mapping them to a higher dimension 85 

before assigning them to categories. PSVM has been applied in seismic facies recognition (e.g. 86 

channels, mass-transport complexes, etc.) (Zhao et al., 2015) and lithofacies classification (Zhao 87 

et al., 2014). Zhao et al. (2014) used PSVM to categorize shale and limestone on well logs with 88 

training inputs of gamma-ray and sonic logs. 89 

With the recent onset of unconventional techniques such as horizontal drilling and 90 

hydraulic fracturing, the Mississippian Limestone has seen a growth in activities. Where 91 

operators once targeted structural traps with vertical wells, now they target stratigraphic traps 92 

with horizontal wells (Lindzey et al., 2015). Such horizontal wells require a better understanding 93 

of the variability within the Mississippian Limestone in order to increase the success and 94 
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efficiency of precisely targeted directional wells. Throughout this study, a workflow is presented 95 

to establish a relationship between seismic attributes and rock mechanical properties with ROP 96 

in order to optimize well placement and decrease the drilling cost.   97 
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Geological Setting 98 

The Mississippian Limestone is a broad informal term that refers to dominantly carbonate 99 

deposits of the Mid-continent (Parham and Northcutt., 1993). The main depositional 100 

environment represented in north-central Oklahoma is associated with the east-west trending 101 

ramp margin of the Burlington shelf of a starved basin environment (Costello et al., 2013). The 102 

thickness of the Mississippian Limestone ranges from 350 ft (106.7 m) to 700 ft (213.4 m) north 103 

to south over the study area (Costello et al., 2013). 104 

Mississippian Limestone in the study area were deposited in a southward prograding 105 

system near the shelf margin during Osagean and Meramecian time (Costello et al., 2013). This 106 

environment has resulted in commonly acknowledged facies within the Mississippian carbonates, 107 

ranging from shale, chert conglomerate, tripolitic chert, dense chert, altered chert-rich limestone, 108 

dense limestone, to shale-rich limestone (Lindzey et al., 2015). In the study area, tripolitic chert 109 

is most prevalent in the Upper Mississippian zones and rapidly decreases in abundance at depth 110 

greater than 150 ft (45.7 m) below the pre-Pennsylvanian unconformity (Lindzey et al., 2015).   111 

During the early Mississippian, warm oxygenated water covered much of the ramp in the 112 

study area. Sponge-microbe bioherms formed elongate mounds below storm wave base and 113 

produced abundant SiO2 spicules which led to formation of spicule-rich wackestones and 114 

packsontes (Lindzey et al., 2015). Limestone and cherty limestone rich in marine fauna were the 115 

dominant sediments deposited at this time (Parham and Northcutt., 1993).   116 

Regional uplift occurred during the Pennsylvanian, creating the Pennsylvanian 117 

unconformity that overlies most of the Mississippian in the midcontinent (Parham and Northcutt, 118 

1993). The uplift not only removed large sections of rock but also reworked and caused 119 

alteration at the top of the Mississippian section and created detrital deposits of reworked 120 
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Mississippian-aged rocks (Rogers, 2001). These altered sections of rocks are comprised of highly 121 

porous tripolitic chert and very dense glass-like chert. The leaching due to meteoric waters 122 

during relative sea-level fall  has led to karstification and the formation of caverns and solution-123 

channel features (Parham and Northcutt., 1993). 124 

In the study area, diagenesis left intensely altered Mississippian Limestone after 125 

deposition, and one of the most prominent of these diagenetic features is silica replacement  126 

(Lindzey et al., 2015). Water washed through the pores and redistributed the siliceous volcanic 127 

ash and some macrofossils, which left extensive micro-scale porosity (Lindzey et al., 2015). The 128 

dissolved silica precipitated in pore space and partially or completely replaced some carbonate 129 

fossils (Lindzey et al., 2015). Pore Sediment structures are not well preserved due to the strong 130 

diagenetic overprint. Chert nodules are present, especially in highly reworked and bioturbated 131 

zones. Fractures are often filled with silica or calcite (Costello et al., 2013).   132 

Molds, fractures, channels and especially vugs are the most prominent pore type observed 133 

in the Mississippian interval of the study area (Lindzey et al., 2015). Vuggy porosity is often 134 

associated with tripolite, but also exists in the other dominant facies. In many places where silica 135 

replacement took place, extensive secondary porosity formed in the shape of vugs (Rogers, 136 

2001). Moldic porosity is also common, especially in packstone and grainstone facies that 137 

exhibit more skeletal grains. Moldic porosity develops by dissolution of sponge spicules 138 

(Montgomery et al., 1998). Fracture and channel porosity both exist but are less abundant 139 

compared to the other pore types (Lindzey et al., 2015).    140 

  141 
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Methodology  142 

In 2010, Chesapeake Energy acquired a 400 mi2 (1036 km2) 3D seismic survey in Woods 143 

County, Oklahoma (Figure 1a). The seismic processing workflow included refraction statics, 144 

velocity analysis, residual statics, prestack time migration, Frequency-Space-Time (FXY) 145 

predictive noise rejection, and Ormsby filtering. The overall data quality is excellent. The signal 146 

to noise ratio (S/N) is relatively high and the wavelet amplitude appears continuous throughout 147 

the Mississippian target. The data set includes digital well logs and mud logs for 83 wells, 148 

consisting of 52 horizontal and 31 vertical wells. For the ROP analysis, only horizontal wells 149 

were used. These data consisted of 52 gamma-ray logs, 51 mud logs, and 18 of them are open-150 

hole logs. 151 

The wells in the area of interest were drilled by the same operator in a similar time period; 152 

therefore we assume consistency between the wells regarding weight on bit, mud type, and bit 153 

type. This study evaluates the impact of geological properties on the ROP. The work flow 154 

contains three steps: training, validation, and classification (Figure 2). Pre-stack inversion and 155 

seismic-attribute volumes were generated for the Mississippian Limestone and converted to 156 

depth. Geomechanical rock properties (from seismic inversion) and seismic-attribute values were 157 

interpolated and then extracted along each wellbore every 2 ft (0.61 m) corresponding to the 158 

well-coordinate system from the mud logs. The mud logs give ROP in units of min/ft, which is 159 

an inverse velocity. We define the inverse velocity to be the Cost of Penetration (COP). The 160 

mean and standard deviation of COP for the 51 horizontal wells resulted in two categories: high 161 

and low COP with average values of 27 and 2.5 min/ft (89 min/m and 8.2 min/m), respectively 162 

(Figure 3). Each coordinate location is assigned a COP category and a set of values including 163 

seismic attributes and geomechanical rock properties. The category and values for 30% of the 164 
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wells were used as inputs to train the model. The remaining 70% of the wells were used to 165 

validate the model. When an optimal accuracy is reached, the model is used to classify the entire 166 

data set where wells have yet to be drilled and no COP data are available.  167 

Time-depth conversion  168 

Formation tops for the Lansing, Mississippian and Woodford units were interpreted on 169 

the time-migrated seismic data in the time domain and on well logs in the depth domain. A 170 

conversion velocity model ( ( )0 ,  V x y ) was built using commercial software PETREL (© 171 

Schlumberger), where velocity, V0 is defined at the top of the Lansing datum, ( )0 ,  Z x y . Depth, 172 

Z, is calculated by adding the depth below the Lansing, ( ) ( )0 0,  ,Z V x y t t x yΔ = × −⎡ ⎤⎣ ⎦  to the 173 

datum. The well tops were used as a correction factor in the creation of the velocity model. Well 174 

data were assigned more weights than the seismic data. We followed the recommended settings 175 

to build the velocity model, such that a moving-average method was used as an interpolation 176 

approach for creating the new depth surfaces and an inverse-distance-squared algorithm was 177 

used to compute the inverse distance during the interpolation processes. Because the seismic 178 

horizons honored the faults in the study area, the velocity model is computed taking faults into 179 

consideration.  180 

Geometric attributes  181 

Geometric attributes for this dataset were generated using software AASPI developed at 182 

the University of Oklahoma. The attributes generated included: most positive curvature, k1, most 183 

negative curvature, k2, curvedness, 2 2
1 2k k+ , shape index, 2 1

2 1

2 ( )k ks ATAN
k kπ

+=
−

, coherent 184 

energy, and coherence. These attributes were chosen because of their ability to delineate the 185 
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structural complexity in the area of interest. The sampling interval of these attributes is the same 186 

as the original seismic data volume, 110 ft by 110 ft (33.5 m by 33.5 m). In order to match the 187 

mud log coordinate spacing, linear interpolation was used to generate values at 2 ft (0.61 m) 188 

intervals.  189 

Geomechanical rock properties 190 

Geomechanical rock properties were derived from pre-stack inversion results using 191 

commercial software Hampson Russell (© CGG GeoSoftware). Data preconditioning steps, prior 192 

to a pre-stack seismic inversion included phase shift, bandpass filtering (10-15-110-120 Hz), 193 

parabolic Radon transform, and trim statics. 194 

Exploratory data analysis 195 

Exploratory data analysis consisted of evaluation of two different families of volumetric 196 

attributes as input to PSVM classification: geometric attributes and geomechanical rock 197 

properties with the goal of determining which attributes are most sensitive to COP in the 198 

heterogeneous Mississippian Limestone. 199 

Geometric attributes are used to aid in the interpretation of folds and faults. Based on the 200 

TBM observation by Gong and Zhao (2007), we hypothesize that COP is affected by faults and 201 

fractures. Therefore we examined the correlation of the structural attributes coherence, dip 202 

magnitude, curvature, and curvedness to our two well clusters (Figure 6). The attribute 203 

histograms indicate little to no separation for coherence and dip magnitude; however, curvature 204 

and curvedness exhibit measurable separation. Figure 4d indicates that low curvedness 205 

correlates to low COP.  206 
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TBM analysis by Gong and Zhao (2007) also suggested that mechanical properties play a 207 

significant role in the variation of COP.  Using prestack seismic inversion we computed porosity, 208 

lambda-rho, λρ , mu-rho, μρ , and P-impedance volumes to analyze the Mississippian Limestone 209 

(Figure 5). The P-impedance measures the product of density and seismic P velocity.  λρ and  μρ 210 

are used to estimate lithology and geomechanical behavior such as the brittleness index (Perez 211 

and Marfurt, 2013). Figures 4b, 4c, and 4e show the high degree of separation for these rock 212 

properties. Low COP is related to low porosity, high λρ, high μρ, and high P-impedance values. 213 

Conversely, high porosity, low λρ, low μρ, and low P-impedance values are indicative of high 214 

COP. These differences were used to train the PSVM model and classify COP data based on the 215 

geomechanical rock properties within the Mississippian interval in the study area (Figure 10). 216 

Results 217 

Interactive Classification 218 

The rectangular frame separating the dark gray circle from the light gray circle in Figure 219 

7b is called a discriminator. Note that many of the measurements cannot be separated in Figure 220 

7a. Because Gong and Zhao, (2009) found that increased brittleness improved TBM performance, 221 

we examine brittleness as a means to predict COP. Altamar and Marfurt (2014) used 222 

geomechanical properties to predict brittleness index for shale plays in the USA. We display a 223 

crossplot in Figure 9 where each sample was color-coded bzy COP and plotted in a 2D space. 224 

Then we manually defined high COP (red), low COP (green) and mixed COP (yellow) polygons 225 

to define a 3-cluster template. A crossplot of λρ and μρ in Figure 9a illustrates the limitations of 226 

manually picking clusters in two-attribute space, where 50% of the voxels fall into the mixed 227 

COP (yellow) class. Figure 9b, a crossplot of ρ and Vp/Vs, further shows this problem with the 228 

handpicked clusters where an even larger number of voxels falls into the mixed (yellow) class. 229 
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Figure 8 suggests improved class separation when using three attributes. However, drawing a 230 

template is significantly more challenging than in Figure 6. 231 

PSVM Classification 232 

 Visualization and interactive visualization with more than three attributes is intractable. 233 

PSVM addresses this problem in two ways. First, it projects the data, in this case, two attributes 234 

defining a 2D space that cannot be separated by a linear discriminator, into a higher 3-235 

dimensional space (Figure 7) where separation by a planar discriminator is possible. Second, 236 

because the discriminator generation is machine driven rather than interpreter driven, one can 237 

introduce more than three input attributes. We used the five attributes, curvedness, λρ, μρ, 238 

porosity, and P-impedance which found to exhibit good histogram separation in all exploratory 239 

data analysis steps (Figure 3). The PSVM method allows us to create a classification model 240 

based on a set of training input. As the dimensionality of the input increases, the model becomes 241 

more accurate at classifying COP within the dataset. For instance, during the validation process, 242 

we found the model to be sensitive to porosity. Before porosity was introduced to the model, the 243 

accuracy was 88.9%. When porosity was added as a new degree of dimensionality, the accuracy 244 

increased to 94%. This allowed for the creation of an optimal model with five degrees of 245 

dimensionality for COP classification across the study area. 246 

A comparison of the histograms (Figure 4) shows that the generated PSVM model is 247 

more sensitive to geomechanical rock properties than geometric attributes.  Indeed, strain 248 

(measured by curvature) is only one component necessary to generate natural fractures. Stearns 249 

(2015) found fractures measured in horizontal image logs were highly correlated to gamma ray 250 

(lithology) response and only less connected to curvature, if at all. Nevertheless, this is not to say 251 

structural attributes such as curvature have no effect on the model. We observed that higher COP 252 



14 
 

values are linked with higher curvedness, which indicated that it is harder to drill through the 253 

formation with higher structural complexities. Studies have found that large curvature values are 254 

related with natural fractures, which may or not be cemented (Bourgoyne et al., 1986; Hunt et al., 255 

2011). Such heterogeneities may slow the drilling progress. Porosity is another a good indicator 256 

of microstructures associated with fracture geometry. Low porosity observed in low COP wells 257 

may seem counter-intuitive at first; however, woodworkers observe that there are few bit 258 

problems when drilling through oak, but that the bit often gets stuck or even breaks when drilling 259 

relatively “soft” pine (Neher, 1993). Again using the woodworker’s analogy, one uses different 260 

saw blades for different woods. The bits used in this survey may have been chosen to deal 261 

effectively with the very hard chert. 262 

Conclusions 263 

COP is a major factor affecting the time spent drilling a well and is directly related to the 264 

overall cost of the drilling process. This is the first study that links COP to seismic data and 265 

seismic-related attributes. Clustering five attributes using a PSVM classification method, we 266 

were able to correlate COP with seismic attributes and geomechanical rock properties and obtain 267 

a confidence of 94%. Low COP was observed in wells encountering low porosity, high λρ, high 268 

μρ, low curvedness and high P-impedance. High COP was observed in wells encountering high 269 

porosity, low λρ, low μρ, high curvedness and low P-impedance. By using this workflow, we can 270 

use COP of previously drilled wells with 3D seismic data to predict COP over the study area. 271 

While one may still wish to drill a specific target objective, we claim that this statistical analysis 272 

technique will provide a more accurate cost estimate and help choose the appropriate drilling 273 

equipment.   274 

  275 
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Figure captions  

Figure 1. (a) Major geologic provinces of Oklahoma with the area of interest outlined in red. (Modified 

from Johnson and Luza (2008); Northcutt and Campbell (1996)). (b) a type log showing the Mississippian 

Limestone section in the area of interest (Modified from Lindzey et al., 2015).  

Figure 2. (a) Workflow for attribute generation and depth conversion, (b) data analysis of the extracted 

parameters, (c) the training process, and (d) the validation process. 

Figure 3. The mean and standard deviation of COP for 51 horizontal wells that fall within the 3D seismic 

survey. We separate these wells into two classes: seven high COP (the grey cluster) and forty-four low COP 

wells (the white cluster). The dashed line is called the discriminator between the two clusters. 

Figure 4. Exploratory data analysis using the work flow shown in Figure 2b. Showing five attributes 

exhibiting good histogram separation between high COP (in dark gray) and low COP (in light gray) along 

all well trajectories: (a) curvedness, (b) , (c) , (d) P-impedance, and (e) porosity. (f) Results of the 

validation test using seven low and seven high COP wells which are highlighted by gray circle in Figure 3. 

With increases in the number of inputs (from one to five), the accuracy increases accordingly. 

Figure 5. Horizon probes along the top of Mississippian Limestone through (a) porosity, (b) , (c) , and 

(d) P-impedance volumes. Red and green well paths denote representative high and low COP wells, 

respectively.  

Figure 6. Co-rendered the most positive (k1) and the most negative (k2) curvature along the top of the 

picked Mississippian horizon with two representative high and low COP wells paths. The opacity curve is 

applied to k1 and k2. 

Figure 7. (a) when two different clusters are impossible to separate by a line in a 2-D space. (b) increasing 

the dimensionality to 3 through a nonlinear attribute transformation allows separation of the two classes by 

a plan.  
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Figure 8

2-D space. (b) Discrimination becomes easier by adding a third porosity axis. 

Figure 9. -

triplets. Each sample is color- -

mixed cluster polygons are hand-drawn polygons around each cluster. This template is then used to color-

code voxels between the top of the Mississippian Limestone and the top of Woodford. Red and green well 

paths denote representative high and low COP wells. In (b) -Vp/Vs 

Vp/Vs and COP are sampled along the wellbore, crossplotted, and a new template constructed and used to 

color code the Mississippian interval. Note that neither template accurately predicts the COP of these two 

wells.  

Figure 10. Horizon probe of COP on the Mississippian Limestone computed using the five attributes shows 

in Figure 4-6 and a PSVM classifier. Note that the two representative wells now fall along voxels 

corresponding to their observed COP value. 
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Figure 1. (a) Major geologic provinces of Oklahoma with the area of interest outlined in red. 

(Modified from Johnson and Luza (2008); Northcutt and Campbell (1996)). (b) a type log showing the 

Mississippian Limestone section in the area of interest (Modified from Lindzey et al., 2015).  

b) 
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Figure 2. (a) Workflow for attribute generation and depth conversion, (b) data analysis of the extracted 

parameters, (c) the training process, and (d) the validation process. 
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Figure 3. The mean and standard deviation of COP for 51 horizontal wells that fall within the 3D 

seismic survey. We separate these wells into two classes: seven high COP (the grey cluster) and forty-

four low COP wells (the white cluster). The dashed line is called the discriminator between the two 

clusters.  

Discriminator 
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Figure 4. Exploratory data analysis using the work flow shown in Figure 2b. Showing five attributes 
exhibiting good histogram separation between high COP (in dark gray) and low COP (in light gray) along 
all well trajectories: (a) curvedness, (b) , (c) , (d) P-impedance, and (e) porosity. (f) Results of the 
validation test using seven low and seven high COP wells which are highlighted by gray circle in Figure 
3. With increases in the number of inputs (from one to five), the accuracy increases accordingly.    
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Figure 5. Horizon probes along the top of Mississippian Limestone through (a) porosity, (b) , (c) , 
and (d) P-impedance volumes. Red and green well paths denote representative high and low COP wells, 
respectively.  
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d) c) 
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Figure 6. Co-rendered the most positive (k1) and the most negative (k2) curvature along the top of the 
picked Mississippian horizon with two representative high and low COP wells paths. The opacity curve is 
applied to k1 and k2. 
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Figure 7. (a) when two different clusters are impossible to separate by a line in a 2-D space. (b) increasing 
the dimensionality to 3 through a nonlinear attribute transformation allows separation of the two classes 
by a plan. 
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Figure 8. (a) Similarly, high and low COP is difficult to discriminate when using  and curvedness in a 2-
D space. (b) Discrimination becomes easier by adding a third porosity axis. 
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Figure 9. (a) -
triplets. Each sample is color-coded along the well by its COP - reen and 
mixed cluster polygons are hand-drawn polygons around each cluster. This template is then used to 
color-code voxels between the top of the Mississippian Limestone and the top of Woodford. Red and 
green well paths denote representative high and low COP wells. In (b) -Vp/Vs space. 

p/Vs and COP are sampled along the wellbore, crossplotted, and a new template 
constructed and used to color code the Mississippian interval. Note that neither template accurately 
predicts the COP of these two wells.  

(a) 

(b) 
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Figure 10. Horizon probe of COP on the Mississippian Limestone computed using the five attributes 
shows in Figure 4-6 and a PSVM classifier. Note that the two representative wells now fall along voxels 
corresponding to their observed COP value. 
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