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Abstract

Pattern recognition-based seismic facies analysis techniques are commonly used in modern quantitative seis-
mic interpretation. However, interpreters often treat techniques such as artificial neural networks and self-
organizing maps (SOMs) as a “black box” that somehow correlates a suite of attributes to a desired geomor-
phological or geomechanical facies. Even when the statistical correlations are good, the inability to explain such
correlations through principles of geology or physics results in suspicion of the results. The most common
multiattribute facies analysis begins by correlating a suite of candidate attributes to a desired output, keeping
those that correlate best for subsequent analysis. The analysis then takes place in attribute space rather than (x,
y, and z) space, removing spatial trends often observed by interpreters. We add a stratigraphy layering com-
ponent to a SOM model that attempts to preserve the intersample relation along the vertical axis. Specifically,
we use a mode decomposition algorithm to capture the sedimentary cycle pattern as an “attribute.” If we cor-
relate this attribute to the training data, it will favor SOM facies maps that follow stratigraphy. We apply this
workflow to a Barnett Shale data set and find that the constrained SOM facies map shows layers that are easily
overlooked on traditional unconstrained SOM facies map.

Introduction
Skilled seismic interpreters identify seismic facies by

examining spatial variations in seismic reflection ampli-
tude, phase, frequency, continuity, and orientation.
Modern seismic attributes and impedance inversion al-
gorithms quantify the local variation of these reflectors
voxel by voxel, allowing them to be statistically ana-
lyzed by a computer. Zhao et al. (2015) review some
of the more commonly used supervised and unsuper-
vised seismic facies classification techniques, such as
principal component analysis (PCA), k-means classifi-
cation, self-organizing maps (SOMs), generative topo-
graphic mapping, artificial neural networks, and
support vector machines. In general, unsupervised clas-
sification techniques are solely driven by the input data,
whereas supervised techniques incorporate external
control provided either by wells or as data labels de-
fined by the interpreter. In either case, validation of
the results is critical to gaining confidence in the pre-
diction. When there is a great deal of well control or
interpreter-generated labels (geomorphological/petro-
physical facies), statistical validation may be sufficient.
However, when the well control is limited or the inter-
preter is suspect, correlation to well-accepted geologic
and petrophysical models provides added confidence.

In a conventional reservoir, such a correlation may
be that of a gas-sand facies exhibiting high negative re-
flectivity, low Poisson’s ratio, high local continuity, and
occurring near the top of an anticlinal fold. For an un-
conventional shale reservoir such as the Barnett Shale,
such a correlation may be a pattern of laterally continu-
ous brittle and ductile layers that correspond to the cy-
clicity of the Fort Worth Basin evolution, interrupted by
faults and collapse features associated with the deeper
Ellenburger dolomite.

The SOM (Kohonen, 1982) is one of the most popular
seismic facies analysis algorithms that projects N -di-
mensional multiattribute data vectors, one for each
voxel, onto a deformed lower dimensional surface that
attempts to best fit the data distribution. Poupon et al.
(1999) describe one of the earliest SOM-based seismic
facies analyses. In their application, the attributes con-
sisted of seismic amplitude from a suite of 16 phantom
horizon slices. Data vectors in this 16D space were then
projected onto a 1D shoestring “manifold” that best rep-
resented the data. The mean of each cluster along this
shoestring therefore could be interpreted as a 16-sam-
ple seismic waveform. They then subsequently plotted
the location of the cluster center along the 1D manifold
against a 1D rainbow colorbar to delineate multiple tur-
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bidite deposits. Later, Strecker and Uden (2002) cluster
volumetric attributes such as envelope, frequency, and
coherence rather than amplitudes extracted about a
surface and project them onto a 2D deformed surface
(manifold) rather than a 1D shoestring, plotting the
cluster centers against a continuous 2D color table. Co-
léou et al. (2003) further this work using more sophis-
ticated attributes. More recently, Matos et al. (2009) use
concepts of intercluster distances and a 2D Hue, light-
ness, saturation (HLS) color table to improve the visu-
alization of SOM facies. Roden et al. (2015) show how to
incorporate PCA to select the most mathematically
meaningful input attributes for SOM. Because the tradi-
tional Kohonen SOM only preserves topology but not
distance, the distance information in the input attribute
space is lost once projected into the 2D SOM latent
space. Here, the “distance” is not the spatial/temporal
distance defined in (x, y, and z) space in which the in-
terpreter lives but rather the mathematical L2 norm be-
tween two N -dimensional data vectors or between an
N -dimensional data vector and an N -dimensional clus-
ter center. Based on this definition, two data vectors
that have a similar seismic-attribute response should
be adjacent to each other, whereas their projections
onto the deformed 2D manifold should also be close.
To preserve the consistency of distance from input
attribute space to 2D SOM space, Zhao et al. (2016)
adopt a distance-preserving step, constraining the
SOM facies to better reflect the degree of diversity as
found in the input attribute space. However, unless
the interpreter provides attributes that somehow mea-
sure the spatial proximity between two data vectors,
the analysis remains spatially and temporally unaware.

The pitfall in being spatially and temporally unaware
is the potential of mixing geology across different
formations during the SOM process. In practice, an
experienced interpreter can mitigate the possibility of
mixing data samples from different formations by
manipulating an operation window just localized at
the target formation, yet there would always be vertical
variations defined by sedimentary cycles in a different
scale (ranges from hundreds of millions of years to one-
tenth of a million years), e.g., pinchouts and thin layers,
within the operation window. Adding information of
stratigraphy (sedimentary cycle), which provides
temporal (or spatial, if seismic data are in the depth do-
main) constraint on the vertical axis, may help to define
layers that are otherwise not well-defined on seismic
attributes. Relative geologic-time (RGT) volume gener-
ated from unwrapping instantaneous phase (Stark,
2003, 2004; Wu and Zhong, 2012) is an appropriate
candidate for constraining SOM facies analysis with
geologic time. However, in such RGT volumes, the ver-
tical axis is monotonically increasing, on which sedi-
mentary cycles controlled by changing sea level are
not easily identified. In fact, there is very limited pub-
lished research, if any, on calibrating RGT volumes with
wells to identify sedimentary cycles that are routinely
interpreted on well logs (e.g., gamma ray logs). An

oscillation curve that directly links to periodic change
in grain size is more preferred, and due to the limited
resolution, presence of noise, and layer-interface rela-
tion in seismic data, such periodic change in grain size
in most cases cannot be matched to seismic events. Em-
pirical mode decomposition (EMD) (Huang et al., 1998)
is an effective method to decompose seismic signal
into several band-limited modes, and researchers have
discovered that some of the decomposed modes (which
are called intrinsic mode functions [IMFs]) corre-
sponded with sedimentary cycles derived from well
logs (Liu et al., 2010, 2015). However, EMD is a recur-
sive decomposition method, and it is sensitive to noise
and sampling and therefore not so robust. To overcome
this issue, Dragomiretskiy and Zosso (2014) propose a
novel mode decomposition method, variational mode
decomposition (VMD), which decomposes a signal con-
currently and is robust to noise and sampling. Lateral
consistency-preserved VMD has been successfully ap-
plied to seismic amplitude data to derive a sedimentary
cycle model (Li et al., 2016). In this study, we adopt the
workflow described in Li et al. (2016) to derive a sedi-
mentary cycle model, and we use this model as a con-
straint on SOM facies analysis. We test the proposed
stratigraphy constrained SOM to a Barnett Shale survey
in the United States, with the objective of recovering
more subtle lithologic variations than using the uncon-
strained SOM.

We begin our paper by introducing the workflow of
stratigraphy-constrained SOM, followed by the geologic
background of the study area, which is in the Fort
Worth Basin, United States. We then apply the stratig-
raphy-constrained SOM to analyze the lithofacies distri-
bution in the Barnett Shale reservoir intervals. To
illustrate the effectiveness of the proposed method,
we also compare with the unconstrained SOM using
the same input attributes. Finally, we summarize the
values and limitations of the proposed method in the
“Conclusion” section.

Stratigraphy-constrained SOM
The proposed method starts from extracting VMD

modes (IMFs) from seismic amplitudes to build a sedi-
mentary cycle model. In this implementation, we
choose to decompose the seismic signal into four
modes, aiming to represent the sedimentary cycles with
varies orders. Because the IMFs are decomposed from
seismic amplitude signal, which is the response of the
interfaces, we further calculate the gradient of IMFs, as-
suming that the oscillation in the IMF gradients is a
more suitable candidate to match with the sedimentary
cycle caused by cyclic sea-level change, comparing
with the oscillation of IMFs. To verify this assumption
and choose the appropriate gradient, we use gamma ray
logs as the representation of the sedimentary cycle pat-
tern, and we compare with the derived IMF gradients to
choose one that matches the gamma ray pattern the
best. Such an IMF gradient with the highest correlation
to the gamma ray log (referred in the later text as best
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matching IMF gradient) is the sedimentary cycle model
to be used to constrain the SOM.

In traditional Kohonen SOM, the distance used to
find the best matching unit for a given multiattribute
data sample vector is calculated using only attribute val-
ues. As discussed in the “Introduction” section, the lack
of a temporal/spatial constraint may sometimes lead to
unreasonable classification results. As an improvement,
we add a term defined by the best matching IMF gra-
dient into the distance metric, which now becomes

d ¼ ð1 − λÞ
XN

i¼1

kai − âik þ λkg − ĝk; (1)

where d is the weighted distance between a multiattri-
bute data sample and a prototype vector, N is the num-
ber of attributes, a and â are the N-dimensional
multiattribute vectors at each voxel and of prototype
vector, respectively, g and ĝ are the best matching
IMF gradients for a data sample and a prototype vector,
respectively, and λ is a weight between zero and one.

Unfortunately, the weight λ is handpicked by inter-
preters. A larger weight means the generated SOM fa-
cies will follow the trend of IMF gradient more, and
vice versa. A weight that is too large will generate a
SOM facies map that follows the IMF gradient strictly
and therefore suppress the response found in input
attributes. A weight that is too small will not add the
amount of constraint interpreters need. Therefore, an
optimal weight is really up to the interpreter’s choice
and depends on project objective. In practice, we find
that values of λ between 0.6 and 0.7 to provide good
results. When λ ¼ 1∕N þ 1, the IMF gradient is
weighted equally with other attributes. Such a modifica-
tion, although in an extremely simple form, introduces a
degree of stratigraphic constraint, which we will later
illustrate through our application. The complete work-
flow of the modified SOM facies analysis is shown in
Figure 1.

Geologic setting
The seismic data used to evaluate the stratigraphy

constrained SOM were acquired to image the Barnett
Shale unconventional reservoir of the Fort Worth Basin,
United States. The Fort Worth Basin is a shallow north–
south-elongated foreland basin that encompasses
roughly 15,000 mi2 in north-central Texas and was
formed during the late Paleozoic Ouachita orogeny
(Walper, 1982). Being one of the most classic unconven-
tional shale reservoir, the Barnett Shale is an organic-
rich petroliferous shale formation deposited in Missis-
sippian age, when an alternating series of black, or-
ganic-rich shales, and shallow marine limestones were
deposited (Montgomery et al., 2005). The Barnett For-
mation is deposited directly over the Viola Limestone
Formation, and topped by the Marble Falls Limestone
Formation. In the study area, the Barnett Shale is fur-
ther divided into an upper and lower interval by a lime-

stone interval, known as the Forestburg Limestone
(Montgomery et al., 2005). All three limestone intervals
are water bearing and behave as highly ductile, which
make them hydraulic fracturing barriers. The general
stratigraphy of the Barnett Shale is shown in Figure 2.
The upper and lower Barnett Shale formations are not
homogeneous, and they can be subdivided into sili-
ceous shale, argillaceous shale, calcareous shale, and
limestone layers, with the presence of dolomite (Singh,
2008). Lithofacies-stacking patterns (usually system-
atic) are also identified in the Barnett Shale, which are
controlled by the eustatic sea-level change over multi-
ple scales of geologic time (Slatt and Abousleiman,
2011). Slatt and Abousleiman (2011) further define brit-
tle-ductile couplets at different scales from such sys-
tematic lithofacies patterns identified on gamma ray
logs and core cuttings, ranging from more than 100 m
thick to only a few centimeters thick. The lithofacies
patterns and brittle-ductile couplets are directly linked
to sedimentary cycles that are a result of eustatic sea-
level change. Therefore, if we are able to replicate the
sedimentary cycles on seismic data and use such strati-
graphic pattern to constrain the SOM analysis process,
it well definitely benefit the facies classification, even
though the sedimentary cycles are of high order due
to the limited frequency band in seismic data.

Application
We applied the proposed stratigraphy constrained

SOM facies analysis to the aforementioned Barnett
Shale seismic survey, and we compared the facies
analysis result with one from unconstrained SOM, using
the same input attributes and model parameters. In un-
conventional shale reservoirs, in which interpreters are
usually interested in lithology changes more than struc-
tural deformations, we prefer seismic inversion attrib-

Figure 1 Workflow of the stratigraphy constrained SOM fa-
cies analysis. All abbreviations are explained in the main text.
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utes as the input attributes for automatic facies analysis
algorithms. Zhang et al. (2015b) and Verma et al. (2016)
use such inversion attributes to estimate brittleness and
total organic carbon in a supervised fashion. Spectral
decomposition attributes are also routinely used as lith-
ology indicators, and they are especially helpful in map-
ping the horizontal extension of different facies and
geobodies. However, due to the window-based nature
when generating such attributes, spectral decomposi-
tion attributes, such as peak spectral frequency and
magnitude, have suboptimal vertical resolution; there-
fore, they are not suitable to represent vertical stacking

patterns resulted from cyclic sea-level change. In this
study, attributes from prestack simultaneous inversion
were used as inputs, which are P-impedance ZP, S-
impedance ZS, the ratio of incompressibility and shear
modulus λ∕μ, and Poisson’s ratio ν. We selected these
attributes with the understanding that such attributes
directly correlate with mineral contents, grain size,
and elastic properties of the rocks. The prestack seis-
mic data were carefully processed and preconditioned
with the workflow described by Zhang et al. (2013,
2015a).

With the input attributes at our disposal, the next
step is to generate the four IMFs using VMD. Figure 3
shows an example trace along well A (location shown
in later figures) together with its decomposed four
IMFs, and the gradient of IMF 3, which, after further
analysis, was able to match the pattern found in gamma
ray logs. Figure 4 shows the vertical sections along the
seismic amplitude and the gradient of IMF 3 plotted
with the gamma ray log at well A, and Figure 5 shows
how the composite trace of the gradient of IMF 3
matches the gamma ray log along wells A and B (loca-
tions of both wells are shown in later figures). In Fig-
ure 4, formation tops are marked as solid colored
curves, gamma ray logs as a solid blue curve, and the
well trajectory as a dashed red line. From the top to the
bottom, the marked formation tops are Marble Falls
Limestone, Upper Barnett Limestone, Upper Barnett
Shale, Forestburg Limestone, and Lower Barnett Shale.
The formation tops are displayed in the same color
scheme for all remaining figures. We identify a similar
cyclic pattern in the IMF 3 gradient as in the gamma ray
log, which is commonly used by sequence stratigra-
phers to interpret sedimentary cycles controlled by
eustatic sea-level change, subsidence rate of the basin,
and sediment supply. Therefore, the gradient of IMF 3
provides a volumetric approximation of sedimentary

Figure 2 General stratigraphy of the Ordovician to Pennsyl-
vanian section in the Fort Worth Basin through a well near the
study area (after Loucks and Ruppel, 2007).

Figure 3 (a) Seismic amplitude from a trace along well A (lo-
cation shown in Figure 6). (b) VMD components (IMFs) of the
trace above. Four components are used to represent sedimen-
tary cycle at different scales. (c) The gradient of IMF 3. The
dashed lines show the correspondence among seismic ampli-
tude, IMF 3, and IMF 3 gradient, when IMF 3 gradient is at
zero, local minimum, and local maximum.

Figure 4 Vertical sections along the seismic amplitude and
IMF 3 gradient plotted with the gamma ray log (blue curve)
at well A (location shown in Figure 6). The well trajectory
is marked by the red dashed line. Formation tops are marked
as colored curves. Note the good match in patterns between
the gamma ray log and IMF 3 gradient.
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cycles, providing information that is not easily acquired
from traditional spectral decomposition.

We provided the input attributes with and without
the constraint to a SOM classifier defined in the work-
flow discussed in Figure 1. Figure 6 shows time slices
from unconstrained SOM (Figure 6a) and constrained
SOM (Figure 6b), on which the location of wells A
and B and vertical sections AA′, BB′, and CC′ (dis-
cussed later) are displayed. The facies maps are gener-
ated by crossplotting the data projected onto two SOM
axes, and such a crossplot enables the use of a 2D color
map, providing better visualization. By looking at these
two time slices alone, it is nearly impossible to draw any
conclusions comparing the quality of facies because the
contribution of the stratigraphy constraint is in the ver-
tical direction. Moving to the vertical section AA′, Fig-
ure 7 shows the unconstrained SOM facies, and Figure 8
shows the constrained SOM facies, both of which are
overlapped by the gamma ray log at well B. The forma-
tion tops are marked as colored curves. We identify the
gamma ray value increases from the top to the bottom
in the Marble Falls Limestone (black arrows in Figures 7
and 8), which translates into a color change from pur-
plish to magenta in the unconstrained
SOM facies (Figure 7), and a color
change from orange to lime green in the
constrained SOM facies (Figure 8). Add-
ing the stratigraphy constraint makes
such lithology variation more obvious
in the form of colors with higher con-
trast, and matches the gamma ray trend
better. The white arrows in Figures 7
and 8 show a local variation within
the Upper Barnett Formation, which
is more obvious on the constrained
SOM facies. Figure 9 displays vertical
section AA′ along with the VP∕VS ratio.
Although VP∕VS is derived from ZP and
ZS, it is not directly used as an input
attribute for SOM. We clearly identify
a high VP∕VS ratio layer corresponding
to the high gamma ray at the bottom of
Marble Falls Limestone, and a very low
VP∕VS zone within the Upper Barnett at the white
arrow.

Figures 10 and 11 are the vertical sections of uncon-
strained and constrained SOM facies maps along line
BB′, respectively. Here, besides the higher color con-
trast at the Marble Falls Limestone and Upper Barnett
Limestone, the constrained SOM also shows more de-
tails in the Upper Barnett Shale formation, compared
to the unconstrained SOM. As previously discussed,
the Barnett Shale is deposited over multiple cycles of
sea-level change, and thin layers at different scales
are developed. In the unconstrained SOM facies map
(Figure 10), the middle section of the Upper Barnett
Shale is a thick layer of grayish colors, with a hint of
yellow. However, in the same region of the constrained
SOM facies map (Figure 11), the two black arrows point

Figure 5 Traces of IMF 3 gradient plotted with gamma ray
logs (blue curve) at well A (left) and well B (right) (well lo-
cations are shown in Figure 6). Well A is a vertical well, and
the corresponding IMF 3 gradient trace is the most adjacent
trace of well A. Well B is a deviated well, and the correspond-
ing IMF 3 gradient trace is a composite trace along the well
trajectory. Note the good match in pattern between the
gamma ray log and IMF 3 gradient at both wells.

Figure 6 Time slices at t ¼ 1.28 s along SOM facies maps generated (a) without
stratigraphy constraint and (b) with stratigraphy constraint. A 2D colorbar is
used for visualization. Note the difference between two time slices is very limited
because the stratigraphy constraint is added on the vertical axis.

Figure 7 Vertical section along line AA′ (location shown in
Figure 6) through unconstrained SOM facies map. Formation
tops are marked with colored curves. The black arrow indi-
cates a high gamma ray layer at the bottom of the Marble Falls
Limestone formation. The white arrow indicates a local facies
change.
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at two facies with different colors in a stacking pattern,
which are nearly identical in Figure 10. Figure 12 shows
that a vertical section of the VP∕VS ratio along the same
BB′ line, which does not contain the sedimentary cycle
information, can still provide an indication of thin layers
of different VP∕VS ratio, and the green facies in Fig-
ure 11 clearly correlates with the relatively higher
VP∕VS regions in the middle part of Upper Barnett
Shale. Figure 13 shows a magnification around traces
X1 and X 0

1 that are extracted from the unconstrained
and constrained SOM facies volumes, respectively, at
the same location and overlaid with a curve display
of these two traces. The values on the traces are “facies
numbers,” which are overdefined with 4096 SOM proto-
type vectors to ensure a smooth visualization. Such
4096 “facies” are then arranged over a 64 × 64 2D space,
and color coded using the 2D color map shown in the
lower right corner. This translates to the fact that facies
N and facies N � 64 have similar colors, so the curve

Figure 8. Vertical section along line AA′ (location shown in
Figure 6) through constrained SOM facies map. Formation
tops are marked with colored curves. The black arrow indi-
cates a high-gamma-ray layer at the bottom of the Marble Falls
Limestone formation. This high-gamma-ray layer corresponds
better to the constrained SOM facies than the unconstrained
SOM facies, as the facies show higher contrast in color (or-
ange to lime versus purple to magenta in Figure 7). The white
arrow indicates a local facies change in the Upper Barnett,
which corresponds to a low VP∕VS region.

Figure 9. Vertical section along line AA′ (location shown in
Figure 6) through VP∕VS ratio. Formation tops are marked
with colored curves. The black arrow indicates a high-
gamma-ray layer at the bottom of the Marble Falls Limestone
formation. This high-gamma-ray layer has a very high VP∕VS
ratio. The white arrow indicates a low VP∕VS region.

Figure 10. Vertical section along line BB′ (location shown in
Figure 6) through the unconstrained SOM facies map. Forma-
tion tops are marked with colored curves. The black arrows
indicate two thin layers in the Upper Barnett Shale formation
that are not well-defined in the unconstrained SOM facies
map. The area in the dashed box is discussed in Figure 13.
The red dashed line is the location of trace X1, which is dis-
cussed in Figure 13.

Figure 11 Vertical section along line BB′ (location shown in
Figure 6) through the constrained SOM facies map. Formation
tops are marked with colored curves. The black arrows indi-
cate two thin layers in the Upper Barnett Shale formation that
can be identified in the constrained SOM facies map but are
not well-defined in the unconstrained SOM facies map. The
area in the dashed box is discussed in Figure 13. The red
dashed line is the location of trace X 0

1, which is discussed
in Figure 13.

Figure 12 Vertical section along line BB′ (location shown in
Figure 6) through VP∕VS ratio. Formation tops are marked
with colored curves. The black arrows indicate two thin layers
in the Upper Barnett Shale formation identified in the con-
strained SOM facies map. Although the stratigraphy constrain
is not from the VP∕VS ratio, we do observe a difference in the
VP∕VS ratio between these two layers. The red dashed line is
the location of trace X1∕X 0

1, which is discussed in Figure 13.
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display alone may sometime be misleading and has to
be verified with a color display. In practice, we are still
able to see different layers (black arrows) on trace X 0

1,
but it is nearly impossible to see on trace X1. Such de-
tails provide interpreters more insights of the small
scale stratigraphy distribution in the Upper Barnett
Shale formation.

Figures 14, 15, and 16 show the unconstrained SOM
facies, constrained SOM facies, and VP∕VS ratio along
line CC′, respectively. Similar to line AA′ and BB′, we
are still able to identify more facies with higher color
contrast in the constrained SOM facies, whereas in
the unconstrained SOM facies map, the facies are more
smeared. The black arrows point to some high VP∕VS
regions in the Upper Barnett formation, which are bet-
ter delineated in the constrained SOM map as bright
green spots (Figure 15). The constrained SOM map also
shows the high VP∕VS layer in the Lower Barnett (white
arrows) clearer than in the unconstrained SOM map.
Better delineation of such local elastic property change
will greatly facilitate well planning in the comple-
tion stage.

Conclusions
We explored the feasibility of constraining the SOM

facies analysis using stratigraphy information, in the
form of sedimentary cycles. The stratigraphy con-
strained SOM facies map provides more details and
shows layers that are more likely being overlooked
on SOM facies maps without such constraints. The
extra features can be calibrated with well log data
and the VP∕VS ratio attribute, which prove the credibil-
ity of the resulted facies. The sedimentary cycle is esti-
mated by decomposing seismic amplitude signal into a
finite number of modes using VMD, and we believe the
selection of the most appropriate component to re-
present sedimentary cycle requires calibration with
other data, and the most appropriate component may
differ from region to region. However, the geologic
meaning of such modes is not well understood, and
these modes need to be carefully calibrated with well
logs. The different VMD gradient patterns in adjacent

Figure 13 Magnified around traces X1 and X 0
1 extracted from

the unconstrained and constrained SOM facies volume, re-
spectively, at the same location, and overlaid with curve dis-
play of these two traces. The values on the traces are facies
numbers, which are overdefined with 4096 SOM prototype
vectors to ensure a smooth visualization. Such 4096 facies
are then arranged over a 64 × 64 2D space, and color coded
using the 2D color map shown in the lower right corner. We
identify different layers (black arrows) on trace X 0

1, but they
are nearly impossible to see on trace X1.

Figure 14. Vertical section along line CC′ (location shown in
Figure 6) through the unconstrained SOM facies map. Forma-
tion tops are marked with colored curves. The black arrows
indicate a thin layer with a high VP∕VS ratio in the Upper Bar-
nett Shale formation. The white arrows indicate a thin layer
with a high VP∕VS ratio in the Lower Barnett Shale formation.

Figure 15. Vertical section along line CC′ (location shown in
Figure 6) through the constrained SOM facies map. Formation
tops are marked with colored curves. The black arrows indi-
cate a thin layer with high VP∕VS ratio in the Upper Barnett
Shale formation. The white arrows indicate a thin layer with
high VP∕VS ratio in the Lower Barnett Shale formation.

Figure 16. Vertical section along line CC′ (location shown in
Figure 6) through the VP∕VS ratio. Formation tops are marked
with colored curves. The black arrows indicate a thin layer
with high VP∕VS ratio in the Upper Barnett Shale formation.
The white arrows indicate a thin layer with high VP∕VS ratio in
the Lower Barnett Shale formation.
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layers are a good indicator of layer geometry; however,
layers with the same VMD gradient response are not dis-
tinguishable. Fortunately, such a limitation poses less of
a problem in real application because adjacent layers
rarely have the same VMD gradient in the seismic scale.

Acknowledgments
We thank Devon Energy for providing the seismic

and well log data. Financial support for this effort is
provided by the industry sponsors of the Attribute-As-
sisted Seismic Processing and Interpretation (AASPI)
consortium at the University of Oklahoma. The pre-
stack inversion was performed using licenses to Hamp-
son and Russell provided to the University of Oklahoma
for research and education courtesy of CGG GeoSoft-
ware, and all visualizations are from Petrel, courtesy
of Schlumberger.

References
Coléou, T., M. Poupon, and K. Azbel, 2003, Unsupervised

seismic facies classification: A review and comparison
of techniques and implementation: The Leading Edge,
22, 942–953, doi: 10.1190/1.1623635.

Dragomiretskiy, K., and D. Zosso, 2014, Variational mode
decomposition: IEEE Transactions on Signal Process-
ing, 62, 531–544.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q.
Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, 1998, The
empirical mode decomposition and the Hilbert spec-
trum for nonlinear and nonstationary time series analy-
sis: Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences,
The Royal Society, 454, 903–995, doi: 10.1098/rspa
.1998.0193.

Kohonen, T., 1982, Self-organized formation of topologi-
cally correct feature maps: Biological Cybernetics,
43, 59–69, doi: 10.1007/BF00337288.

Li, F., T. Zhao, X. Qi, K. Marfurt, and B. Zhang, 2016, Lateral
consistency preserved variational mode decomposition
(VMD): 86th Annual International Meeting, SEG, Ex-
panded Abstracts, 1717–1721, doi: 10.1190/segam2016-
13880188.1.

Liu, Q., W. Yang, and L. Tian, 2010, Research and applica-
tion of seismic facies analysis based on the empirical
mode decomposition: 80th Annual International Meet-
ing, SEG, Expanded Abstracts, 2329–2333.

Liu, Y., G. Yang, and W. Cao, 2015, The division of sedimen-
tary cycle based on HHT: 85th Annual International
Meeting, SEG, Expanded Abstracts, 1902–1906.

Loucks, G. R., and C. S. Ruppel, 2007, Mississippian Bar-
nett shale: Lithofacies and depositional setting of a
deep-water shale-gas succession in the Fort Worth Ba-
sin, Texas: AAPG Bulletin, 91, 579–601, doi: 10.1306/
11020606059.

Matos, M. C., K. J. Marfurt, and P. R. S. Johann, 2009, Seis-
mic color self-organizing maps: Presented at the 11th
International Congress of the Brazilian Geophysical
Society, Extended Abstracts.

Montgomery, S. L., D. M. Jarvie, K. A. Bowker, and R. M.
Pollastro, 2005, Mississippian Barnett shale, Fort Worth
basin, north-central Texas: Gas-shale play with multi-
trillion cubic foot potential: AAPG Bulletin, 89, 155–
175, doi: 10.1306/09170404042.

Poupon, M., K. Azbel, and G. Palmer, 1999, A new method-
ology based on seismic facies analysis and litho-seismic
modeling: The Elkhorn Slough field pilot project, Sol-
ano County, California: 69th Annual International Meet-
ing, SEG, Expanded Abstracts, 927–930.

Roden, R., T. Smith, and D. Sacrey, 2015, Geologic pattern
recognition from seismic attributes: Principal compo-
nent analysis and self-organizing maps: Interpretation,
3, no. 4, SAE59–SAE83, doi: 10.1190/INT-2015-0037.1.

Singh, P., 2008, Lithofacies and sequence stratigraphic
framework of the Barnett shale, Northeast Texas: Ph.
D. dissertation, University of Oklahoma.

Slatt, R. M., and Y. Abousleiman, 2011, Merging sequence
stratigraphy and geomechanics for unconventional gas
shales: The Leading Edge, 30, 274–282, doi: 10.1190/1
.3567258.

Stark, T. J., 2003, Unwrapping instantaneous phase to
generate a relative geologic time volume: 73rd Annual
International Meeting, SEG, Expanded Abstracts,
1707–1710.

Stark, T. J., 2004, Relative geologic time (age) volumes —
Relating every seismic sample to a geologically reason-
able horizon: The Leading Edge, 23, 928–932.

Strecker, U., and R. Uden, 2002, Data mining of 3D post-
stack attribute volumes using Kohonen self-organizing
maps: The Leading Edge, 21, 1032–1037, doi: 10.1190/
1.1518442.

Verma, S., T. Zhao, K. J. Marfurt, and D. Devegowda, 2016,
Estimation of total organic carbon and brittleness vol-
ume: Interpretation, 4, no. 3, T373–T385, doi: 10.1190/
INT-2015-0166.1.

Walper, J. L., 1982, Plate tectonic evolution of the Fort
Worth basin, in C. A. Martin, ed., Petroleum geology
of the Fort Worth basin and Bend arch area: Dallas Geo-
logical Society, 237–251.

Wu, X., and G. Zhong, 2012, Generating a relative geologic
time volume by 3D graph-cut phase unwrapping
method with horizon and unconformity constraints:
Geophysics, 77, no. 4, O21–O34, doi: 10.1190/
geo2011-0351.1.

Zhang, B., D. Chang, T. Lin, and K. J. Marfurt, 2015a, Im-
proving the quality of prestack inversion by prestack
data conditioning: Interpretation, 3, no. 1,T5–T12, doi:
10.1190/INT-2014-0124.1.

Zhang, B., K. Zhang, S. Guo, and K. J. Marfurt, 2013,
Nonstretching NMO correction of prestack time-
migrated gathers using a matching-pursuit algorithm:
Geophysics, 78, no. 4, U9–U18, doi: 10.1190/geo2011-
0509.1.

Zhang, B., T. Zhao, X. Jin, and K. J. Marfurt, 2015b, Brittle-
ness evaluation of resource plays by integrating petro-

T170 Interpretation / May 2017

D
ow

nl
oa

de
d 

12
/1

9/
17

 to
 6

8.
97

.1
15

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/1.1623635
http://dx.doi.org/10.1190/1.1623635
http://dx.doi.org/10.1190/1.1623635
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1190/segam2016-13880188.1
http://dx.doi.org/10.1190/segam2016-13880188.1
http://dx.doi.org/10.1190/segam2016-13880188.1
http://dx.doi.org/10.1190/segam2016-13880188.1
http://dx.doi.org/10.1306/11020606059
http://dx.doi.org/10.1306/11020606059
http://dx.doi.org/10.1306/11020606059
http://dx.doi.org/10.1306/09170404042
http://dx.doi.org/10.1306/09170404042
http://dx.doi.org/10.1190/INT-2015-0037.1
http://dx.doi.org/10.1190/INT-2015-0037.1
http://dx.doi.org/10.1190/INT-2015-0037.1
http://dx.doi.org/10.1190/1.3567258
http://dx.doi.org/10.1190/1.3567258
http://dx.doi.org/10.1190/1.3567258
http://dx.doi.org/10.1190/1.1518442
http://dx.doi.org/10.1190/1.1518442
http://dx.doi.org/10.1190/1.1518442
http://dx.doi.org/10.1190/1.1518442
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/INT-2015-0166.1
http://dx.doi.org/10.1190/geo2011-0351.1
http://dx.doi.org/10.1190/geo2011-0351.1
http://dx.doi.org/10.1190/geo2011-0351.1
http://dx.doi.org/10.1190/geo2011-0351.1
http://dx.doi.org/10.1190/INT-2014-0124.1
http://dx.doi.org/10.1190/INT-2014-0124.1
http://dx.doi.org/10.1190/INT-2014-0124.1
http://dx.doi.org/10.1190/geo2011-0509.1
http://dx.doi.org/10.1190/geo2011-0509.1
http://dx.doi.org/10.1190/geo2011-0509.1
http://dx.doi.org/10.1190/geo2011-0509.1


physical and seismic data analysis: Interpretation, 3,
no. 2, T81–T92, doi: 10.1190/INT-2014-0144.1.

Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015, A
comparison of classification techniques for seismic fa-
cies recognition: Interpretation, 3, no. 4, SAE29–SAE58,
doi: 10.1190/INT-2015-0044.1.

Zhao, T., J. Zhang, F. Li, and K. J. Marfurt, 2016, Character-
izing a turbidite system in Canterbury Basin, New
Zealand, using seismic attributes and distance-preserv-
ing self-organizing maps: Interpretation, 4, no. 1, SB79–
SB89, doi: 10.1190/INT-2015-0094.1.

Tao Zhao received a B.S. (2011) in ex-
ploration geophysics from the China
University of Petroleum and an M.S.
(2013) in geophysics from the Univer-
sity of Tulsa. He is currently pursuing a
Ph.D. in geophysics at the University of
Oklahoma as a member of the Attrib-
ute Assisted Seismic Processing and
Interpretation (AASPI) consortium.

His current research interests include developing and apply-
ing pattern recognition and machine learning techniques in
seismic facies analysis, unconventional shale resource play
characterization, and seismic attribute development.

Fangyu Li received a bachelor’s de-
gree (2009) in electrical engineering
from Beihang University and a mas-
ter’s degree (2013) in electrical engi-
neering from Tsinghua University.
He is pursuing a Ph.D. in geophysics
at the University of Oklahoma. His re-
search interests include seismic
processing, quantitative seismic inter-

pretation, and seismic attribute development.

Kurt J. Marfurt received a Ph.D.
(1978) in applied geophysics at Co-
lumbia University’s Henry Krumb
School of Mines in New York. He
joined The University of Oklahoma
in 2007 where he teaches geophysics.
His career includes 18 years with
Amoco Research and 20 years in aca-
demia. He teaches short courses on

attributes for SEG and AAPG and currently serves as edi-
tor of Interpretation. His research interests include the de-
velopment and calibration of new seismic attributes to aid
in seismic processing, seismic interpretation, and reservoir
characterization, with a focus on resource plays.

Interpretation / May 2017 T171

D
ow

nl
oa

de
d 

12
/1

9/
17

 to
 6

8.
97

.1
15

.2
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://dx.doi.org/10.1190/INT-2014-0144.1
http://dx.doi.org/10.1190/INT-2014-0144.1
http://dx.doi.org/10.1190/INT-2014-0144.1
http://dx.doi.org/10.1190/INT-2015-0044.1
http://dx.doi.org/10.1190/INT-2015-0044.1
http://dx.doi.org/10.1190/INT-2015-0044.1
http://dx.doi.org/10.1190/INT-2015-0094.1
http://dx.doi.org/10.1190/INT-2015-0094.1
http://dx.doi.org/10.1190/INT-2015-0094.1

