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ABSTRACT 1 

During the past two decades, the number of volumetric seismic attributes have increased 2 

to the point in which interpreters are overwhelmed and cannot analyze all the information 3 

available. Principal Component Analysis (PCA) is one of the best-known multivariate analysis 4 

technique, and decomposes the input data into lower statistics, mathematically uncorrelated 5 

components. Unfortunately, while these components mathematically represent the information in 6 

the multiple input data volumes using a smaller number of volumes, they often mix rather than 7 

separate geologic features of interest. To address this issue, we implement and evaluate a 8 

relatively new unsupervised multi-attribute technique called Independent Component Analysis 9 

(ICA), which based on higher order statistics, separates multivariate data into independent 10 

subcomponents. We evaluate our algorithm to study the internal architecture of turbiditic channel 11 

complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input 12 

twelve spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and plot 13 

three of the resulting independent components against an RGB color scheme to generate a single 14 

volume in which different colors correspond to different seismic facies. The results obtained 15 

using ICA proved to be superior to the obtained using PCA. Specifically, using ICA we obtain 16 

independent components that have better resolution and better separation between geologic 17 

features and noise compared to uncorrelated components obtained using PCA. Moreover, with 18 

ICA, we are able to geologically analyze the different seismic facies and relate them to sand-19 

prone and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill 20 

architectures. 21 

INTRODUCTION 22 
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In addition to picking horizons, traditional interpretation includes the identification of 1 

geological features of interest such as faults, collapse features, channel complexes, salt domes, 2 

and mass transport deposits in 3D seismic amplitude volumes. Volumetric seismic attributes 3 

such as coherence, curvature, gray-level co-occurrence matrix (GLCM) texture attributes and 4 

spectral-decomposition analysis can both accelerate and facilitate this process, enhancing subtle 5 

features that may otherwise be overlooked. Depending on the seismic attributes interpreters 6 

select, different information is extracted (Infante-Paez and Marfurt, 2017; Infante-Paez, 2018). 7 

Therefore, relying solely in a single attribute can lead to an incomplete seismic interpretation in 8 

which important geological elements can be overlooked. During the past two decades, the 9 

number of volumetric seismic attributes have increased to the point in which interpreters are 10 

overwhelmed and cannot analyze all the information available. 11 

Co-rendering using red-green-blue (RGB) or hue-lightness-saturation (HLS) color 12 

gamuts provide an efficient means of combining the information content of three volumes. For 13 

more than three volumes, one must project the higher dimensional data onto a lower dimensional 14 

space.  Principal Component Analysis (PCA) (Guo et al., 2009; Chopra and Marfurt, 2014; Zhao 15 

et al. 2015; Roden et al., 2015) decomposes multivariate data into linearly uncorrelated 16 

components using second order statistics based on the covariance matrix of the data. The first 17 

three components are either co-rendered using RGB or interpreted using crossplotting tools. PCA 18 

is also widely used as the first iteration for clustering techniques in order to reduce 19 

dimensionality of the input data (Zhao et al. 2015; Sinha et al., 2016). The k-means algorithm 20 

(MacQueen,1967) is a clustering technique in which, after the interpreter decides the number of 21 

desired clusters, the distance between the multiattribute data point and the center of the clusters 22 

is measured using the Mahalanobis distance. Each data point is associated with the closest cluster 23 
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(Zhao et al., 2015). Generative Topographic Maps (GTM) generates a probabilistic 1 

representation of the data on a lower dimensional manifold (Roy et al., 2014; Zhao et al., 2015). 2 

Perhaps the most widely used clustering technique is Self-Organizing Maps (SOM) in which a 3 

lower dimensional manifold is first deformed to represent the data which in turn are projected 4 

onto a corresponding latent space (Kohonen 1982; Strecker and Uden, 2002; Coléou et al., 2003; 5 

Zhao et al., 2015; Zhao et al., 2016; Marfurt, 2018).  6 

Spectral-decomposition analysis (Sinha et al., 2005; Chopra and Marfurt, 2016) 7 

decomposes the seismic volume into a suite of magnitude and phase components at different 8 

frequencies that allows the study of geologic features near the limits of seismic resolution, 9 

enabling the interpreter to map lateral changes in thickness, lithology, and porosity. A major 10 

drawback in spectral-decomposition analysis is that from one 3D amplitude volume one may 11 

generate up to 10 to 100 output volumes (Guo et al., 2009), making the selection and 12 

visualization of the most important components a cumbersome task. Guo et al. (2009) applied 13 

Principal Component Analysis (PCA) to characterize channels draining an unconformity in the 14 

Central Basin Platform in Texas, Li et al. (2009) applied Independent Component Analysis 15 

(ICA) to a carbonate bank data volume in order to map reef as well as shoaling features. Zanardo 16 

Honorio et al., (2014) applied ICA to a fluviodeltaic system in order to map channels.   17 

Inspired by the Zanardo Honorio et al.’s (2014) work, we implemented our own ICA 18 

algorithm and applied it to deep water turbidite system in the Taranaki Basin, New Zealand, and 19 

compared the results not only to the input data volumes, but also on the more commonly used co-20 

rendered PCA volume. 21 

To illustrate ICA, we consider the popular cocktail-party problem, in which two people 22 

are speaking simultaneously in a room where two microphones record the combination of their 23 
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voices (Figure 1). The recorded signals X={X1,X2} are linear mixture of the people’s voices 1 

P={P1,P2}, which can be written as: 2 

                                                                  � = ��,                                                         (1) 3 

where A is an unknown matrix called the mixing matrix, whose parameters are a function of the 4 

distances between the microphones and the speakers.  5 

Although the goal is to estimate the people’s voices P1 and P2, the matrix A is unknown, 6 

such that P1 and P2 cannot be computed directly from X. ICA assumes that the components 7 

��	are statistically independent, allowing the computation of the matrix A and its inverse W 8 

(Hyva� rinen and Oja, 2000): 9 

                                                                        � = 	�.                                                        (2) 10 

In this study, we begin with an explanation of the differences between Principal 11 

Component Analysis and Independent Component Analysis techniques. Using an ICA algorithm 12 

developed by Hyva� rinen and Oja (2000) for feature extraction and signal separation as a guide, 13 

we implement an ICA algorithm that can work on a suite of large, 3D volumetric seismic 14 

attributes. The choice of attributes used depends on the geologic target. To study submarine 15 

turbidites in the Moki A sands of the Taranaki Basin, New Zealand, we use spectral magnitude 16 

components, which are routinely used to image both fluvial and deep-water channel and canyon 17 

systems (e.g. Partyka et al., 1999; Marfurt and Kirlin, 2001; Lubo-Robles and Marfurt, 2017). 18 

We then analyze these spectral components individually and as input to both PCA and ICA 19 

algorithms. We conclude with a discussion of the Independent Component Analysis and its 20 

advantages with respect  to the well-established Principal Component Analysis. Finally, we add 21 

an appendix with mathematical details explaining how the algorithm works.      22 
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THEORY 1 

 A principal component is a scalar value that represents the projection of a N-dimensional 2 

sample vector, against a N-dimensional eigenvector. This technique is known as Principal 3 

Component Analysis (PCA) and, based on Gaussian statistics, decomposes the data into 4 

mathematically linearly uncorrelated components. PCA reduces the dimensionality and 5 

redundancy of the input multivariate data, but may omit geological features associated with 6 

lower reflectivity (Guo et al., 2009). PCA is based on an assumption that the data exhibit 7 

Gaussian statistics, allowing the use of second order statistics to decompose the data into 8 

orthogonal components sorted based on their variability. Principal components are ranked 9 

according to the energy of the input data they represent. 10 

In contrast to PCA, Independent Component Analysis (ICA) is based on higher order 11 

statistics, separates a multivariate signal into independent, but not necessarily orthogonal 12 

subcomponents, finding a linear representation of non-Gaussian data (Hyva� rinen and Oja, 2000). 13 

The concept of “independence” provides a means to capture more interesting information from 14 

the multivariate data (Zanardo Honorio, et al., 2014). The independent components are not only 15 

non-orthogonal but their order is undefined (Figure 2), i.e., the independent components cannot 16 

be ranked (Hyva� rinen and Oja, 2000; Tibaduiza et al., 2012).  17 

The independent component algorithm that we propose (Figure 3) is based on the 18 

FastICA algorithm developed by Hyva� rinen and Oja (2000), with modifications in order to 19 

implement it using volumetric seismic attributes. In our workflow, we first select the seismic 20 

attributes, 
, based on the geological features of interest and compute their means � and standard 21 

deviations �	in order to apply Z-score normalization. We compute the correlation matrix 
 from 22 

the scaled parameters and compute its eigenvectors and eigenvalues. To be computationally 23 
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efficient, we decimate the data in order to create a representative training data subset	
�� from 1 

which the unmixing matrix W is computed. 2 

After the training data are Z-normalized in order to avoid issues related to different units 3 

of the seismic attributes, the data are whitened and filtered using Principal Component Analysis 4 

(Stanford, 2018) whereby the eigenvalues retained just exceeding 90% are considered to be 5 

signal, and the others to be noise.  6 

To initialize the algorithm, we must assume an initial guess for the unmixing matrix W. 7 

Instead of using a random initial guess, we generate an initial guess based on the eigenvectors 8 

and eigenvalues of the correlation matrix 
 in order to guarantee exact repeatability of the 9 

process. 10 

Gaussian behavior has maximum entropy. In ICA, the unmixing matrix W is estimated 11 

by maximizing the non-Gaussian behavior of the multivariate data measured by an 12 

approximation of negentropy (Hyva� rinen and Oja, 2000). When convergence is reached, the 13 

independent components are computed by projecting the Z-normalized and whitened seismic 14 

attributes onto the final unmixing matrix, W, obtained from the algorithm. For more information 15 

on the mathematical details of the procedure, please refer to Appendix A. 16 

GEOLOGICAL BACKGROUND 17 

The Taranaki Basin is a sedimentary basin located along the western side of the North 18 

Island, New Zealand (Palmer, 1985) (Figure 4). The eastern Taranaki Graben Complex and the 19 

Western Platform are the two main structural elements of the basin (Pilaar and Wakefield, 1984). 20 

The Western Platform, with a width of more than 100 km, is characterized by 2,000 to 21 

5,000 meters of Late Cretaceous-Recent sediments and represents the offshore part of the 22 
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Taranaki Basin (Palmer, 1985). The Western Platform was affected by normal block faulting 1 

during the Late Cretaceous-Eocene, but during most of the Tertiary it remained relatively stable 2 

(Pilaar and Wakefield, 1984).  The Taranaki Graben structure is controlled by movement in the 3 

basement and faults developed during the Late Cretaceous – Eocene (Palmer, 1985) with its infill 4 

characterized by sedimentary and igneous rocks (Pilaar and Wakefield, 1984).  5 

The Taranaki Basin was initially formed by transcurrent rifting during the Late 6 

Cretaceous. Throughout this time, transgressive marine and terrestrial sedimentary rocks  of the 7 

Pakawau Group were deposited (Thrasher, 1992). The Pakawu Group can be subdivided into the 8 

Rakopi and the North Cape Formations. An important characteristic of the Rakopi Formation is 9 

that it was deposited under fluvial-lacustrine conditions and has good hydrocarbon source 10 

potential (Dauzacker et al., 1996). 11 

The Paleocene to Lower Oligocene is characterized by the deposition of the Kapuni 12 

Group, a sequence of sandstones, coal and mudstones lithologies, that overlie the Pakawau 13 

Group after a period of transgression. Contrary to the Pakawau Group, the Kapuni Group 14 

sedimentation is distributed across all the Taranaki Basin and is not confined only to the 15 

Cretaceous Grabens (De Bock, 1994). 16 

After the deposition of marine siltstones and mudstones related to the Turi Formation in 17 

the Eocene to Early Oligocene, the Tikorangi Limestone, a bioclastic limestone sequence, was 18 

deposited widely in the Taranaki Basin during the Oligocene, and according to De Bock (1994) 19 

represents a regional seismic marker.  20 

The Miocene deposits are characterized by detrital sedimentation associated with relative 21 

sea-level fluctuations and tectonism associated with deposition of sediments in the South 22 
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Taranaki Graben during the Early Miocene and reverse faulting in the South Taranaki Graben 1 

during the Late Miocene (De Bock, 1994). Deposition started with deep water mudstones and 2 

siltstones represented by the Lower Manganui Formation. In the Early to Middle Miocene, 3 

deposition of submarine fans occurred associated with a major regression (De Bock, 1994). 4 

These submarine fans were deposited on the basin floor or at the base of continental slope 5 

(Dauzacker et al., 1996) and are represented by the Mt Messenger and Moki Formations. These 6 

sandstone turbidites are diachronous towards the North (Dauzacker et al., 1996). 7 

During the Middle to Late Miocene, the Moki Formation was buried by progradational 8 

deposits of the (Upper) Manganui Formation (Dauzacker et al., 1996). The end of the Miocene 9 

was characterized by a sea level falling stage, depositing a sequence of prograding strata known 10 

as the Giant Foresets Formation. Pliocene to present day sediments are associated with marine 11 

deposition (De Bock, 1994).  12 

The Moki Formation is a fine-grained turbidite sequence (Engbers, 2002) and is 13 

comprised of sandstones interbedded with siltstone, bathyal claystone and thin limestones 14 

(Bussell, 1994). The Moki Formation can be subdivided into the Moki A sands, Moki B shale 15 

and the Moki B sands (Bussell, 1994). The Moki B sands form the lower unit in the Moki 16 

Formation and consist of turbidite sheet sands with large laterally extension which were 17 

deposited on a basin floor (Engbers, 2002). The Moki B shale represents a period of low 18 

sedimentation associated to deposition of bathyal claystones (Engbers, 2002) and it tends to 19 

thicken to the East and Northeast (Bussell, 1994). The Moki A sands unit was deposited as a 20 

base of slope turbidite (Engbers, 2002) and is characterized by major submarine meandering 21 

channel complexes (Bussell, 1994) trending NW-SE (Yagci, 2016). According to Bussell (1994), 22 

the Moki B sands has few channels while the Moki A sands are incised by sinusoidal channel 23 
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complexes, consistent with a progradation of the slope model. The channel complexes present in 1 

the Moki A sands unit are the geological feature of interest in this study.  2 

DATASET 3 

The Tui3D seismic survey is located offshore Taranaki Basin on the southwest coast of 4 

the North Island, New Zealand (Figure 4) and was acquired by Veritas DGC Australia Pty. Ltd 5 

from March 25, 2003 to May 10, 2003 (Veritas DGC, 2003). The Tui3D seismic volume 6 

provided by New Zealand Overseas Petroleum Limited (NZOP) has a surface area of  350 km
2
 7 

with streamer separation of 150 m and source separation of 75 m and a 12.5 by 12.5 m bin size.  8 

The Tui3D seismic volume data quality is good, but contaminated by acquisition 9 

footprint. A phase shift of 180
o
 was applied to the volume resulting in a zero-phase American 10 

polarity. In addition to the seismic volume, we use the Tui SW-2 well to validate our 11 

unsupervised seismic facies analysis. 12 

Seismic attributes and analysis interval 13 

Seismic attributes are powerful tools that quantitatively measure properties including 14 

continuity, morphology and frequency, facilitating the identification of turbidites and channel 15 

complexes in this seismic data volume. Different attributes highlight different features of 16 

interest. Combining them using multi-attribute analysis techniques provides a means to better 17 

understand the underlying geological processes and to better characterize the reservoir. 18 

Marfurt (2018) summarizes some of the more commonly used multi-attribute data 19 

integration tools, including 3D co-rendering, principal component analysis, and self-organizing 20 

maps among other. In this paper, we evaluate the relatively new independent component analysis 21 

multi-attribute decomposition technique.  22 
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In order to apply the independent component algorithm to make a facies analysis and 1 

study the geomorphology of the turbiditic channel complexes in the Moki A sands Formation, 2 

several seismic attributes are used as input. The choice of these attributes is critical to obtain 3 

satisfactory results. Spectral components are sensitive to both impedance and thickness 4 

variations and are thus good candidates for turbidite analysis. We hypothesize that applying ICA 5 

to spectral magnitude components will reduce the dimensionality of the data, reject noise and 6 

extract the most valuable information components, thus accomplishing our goal of highlighting 7 

the turbiditic channels in order to study their internal architecture and facies distribution. 8 

Spectral-decomposition analysis is a powerful technique for studying bed-thickness, 9 

lateral changes in porosity, and the presence of hydrocarbons (Sinha et al., 2005; Chopra and 10 

Marfurt, 2014) and the sequence stratigraphy and the deposition of a particular system (Marfurt 11 

and Kirlin, 2001). The method of choice in this study was the Continuous Wavelet Transform 12 

(CWT) decomposing the seismic volume into phase and magnitude components at different 13 

time-frequency samples, often improving the temporal and vertical resolution and allowing us to 14 

interpret geological features at different scales. These frequency components are similar to 15 

applying a bandpass filter to the volume and represent its information at a particular frequency 16 

(Chopra and Marfurt, 2015; Chopra and Marfurt, 2016).  17 

Besides an appropriate choice of seismic attributes, another critical factor for multi-18 

attribute facies analysis techniques, is the design of the analysis interval. The ideal analysis 19 

interval encloses only the target formation thereby avoiding mixing adjacent facies that have 20 

little to do with the target turbidite facies and basin floor matrix. Fewer facies results in easier 21 

facies discrimination.  22 
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In this study, the Moki A sands unit consists of strong continuous reflectors incised by 1 

discontinuous reflectors with variable reflectivity (Figure 5). For this reason, picking a consistent 2 

horizon through the Moki A sands Formation is a challenging task. Instead, we picked a horizon 3 

along the base of the Tikorangi Limestone, characterized by a strong continuous reflector and 4 

similar depositional trend as the Moki Formation, to create phantom horizons bracketing the top 5 

and bottom of the Moki A sands Formation resulting in an analysis interval of 300 ms. Although 6 

the ideal analysis interval should enclose only one target formation, to completely enclose the 7 

channel complexes present in the Moki A sands Formation, our analysis interval brackets the 8 

Moki A sands Formation, the Moki B shale and part of the Moki B sands and Upper Manganui 9 

Formations.  10 

RESULTS 11 

Seismic geomorphology and facies analysis using spectral magnitude components as input in the 12 

independent component analysis 13 

In order to interpret the geomorphology and facies of the channel complexes present in 14 

the Moki A sands unit, each spectral magnitude component, independent component and 15 

principal component volumes are flattened against the top analysis interval horizon (Horizon A) 16 

which is equivalent to extracting a suite of phantom horizons parallel to Horizon A (Figure 6). 17 

Spectral magnitude components are often plotted against a RGB color scheme for their 18 

interpretation (Li and Lu, 2014; Li et al., 2018). If we plot different combinations of these 19 

spectral components along a phantom Horizon A + 196 ms, we note that the combination of 25-20 

35-45 Hz (Figure 7a) is similar to the combination of 40-50-60 Hz (Figure 7b), even though a 21 

small meandering channel (blue arrow) tends to be better resolved in the former. In contrast, the 22 

combination of 60-70-80 Hz (Figure 7c) is contaminated by strong acquisition footprint (red 23 
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rectangle) but delineates thin beds inside the channels (yellow arrows). If we plot the 25-50-75 1 

Hz (Figure 7d) we note that the infill of the channels tends to tune at the low frequencies while 2 

their flanks are more coherent at approximately 50 Hz, also some thin beds tune at high 3 

frequencies of approximately 75 Hz. Analyzing the same combinations at Horizon A + 248 ms 4 

(Figure 8), we still observe that the infill of the channels tends to tune at low frequencies, the 5 

flanks, internal thin beds and acquisition footprint tune at higher frequencies.  6 

Besides the redundant data existing in the spectral component analysis, selection of 7 

which combination better represents the turbiditic channels in the Moki A sands Formation can 8 

be cumbersome because there are many output components to choose from, requiring manually 9 

scrolling and analysis of each combination. The internal architecture of the channel complexes is 10 

poorly captured at 10, 15 and 20 Hz. For these reasons, in workflow #1 (Figure 9), we analyze 11 

the spectral magnitude components ranging from 25 to 80 Hz with intervals of 5 Hz in the ICA 12 

algorithm. Based on the retained variability criteria (Stanford, 2018), the algorithm automatically 13 

outputs four principal components, from which the independent components are computed, 14 

because they represent 94.04% of the variability of the data (Figure 10a). 15 

Workflow #1 reduces the 12D attribute space to a 4D mathematical space, in which the 16 

12D vectors at each voxel are projected against the whitened eigenvectors and the results 17 

projected against the unmixing matrix W. Therefore, if we project the independent components 18 

against a RGB color scheme, voxels that are projected to similar colors can be considered as 19 

similar seismic facies.  20 

Principal components are sorted based on the energy represented by their eigenvalues. 21 

Thus the first principal component (PC1) is the strongest in these data and represents 63.52% of 22 

the variability (Figure 10a). The corresponding eigenspectrum is approximately flat (Figure 10b) 23 
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because the spectral components were spectrally balanced during the CWT spectral 1 

decomposition. The second principal component (PC2) is orthogonal to PC1 and represents 2 

16.66% of the data (Figure 10a). The spectrum monotonically decreases to the larger frequencies 3 

(Figure 10b) however, because of the ambiguity in the sign of eigenvectors, it could also 4 

monotonically increase. The third principal component (PC3) represents 8.11% of the variance 5 

(Figure 10a), is orthogonal to PC1 and PC2 and its amplitude changes sign between 45 to 50 Hz 6 

(Figure 10b). Finally the fourth principal component (PC4) is orthogonal to PC1, PC2 and PC3 7 

and captures only 5.74% of the variability of the input data (Figure 10a). Guo et al. (2009)  8 

observed that because the principal components reside in a mathematical space, where the 9 

spectral components are represented as orthogonal uncorrelated components, little physical 10 

significance can be assigned to these spectra. 11 

In contrast, the order of the independent components is undefined because they have unit 12 

variance. All four components represent similar energy (Figure 11a). For this reason, the order is 13 

defined subjectively, using the geologic features as a criterion, with the noisiest energy being 14 

defined as IC4. Independent component #1 tends to represent lower frequency features, 15 

independent component #2 is higher between 35 to 60 Hz and independent component #3 very 16 

low and moderate frequencies of the spectral components (Figure 11b).  Independent component 17 

4 monotonically changes from lower to higher frequencies. Because the independent components 18 

reside in a space where the spectral components are represented as oblique projections in order to 19 

find independent signals, we believe that the ICA spectra has a more physical significance that 20 

the PCA eigenspectrum.  21 

Comparing the variability of the principal components to the energy of the independent 22 

components, we observe that PCA tends to be dominated by principal component #1 (PC1), 23 
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while the independent components exhibit almost the same energy, and thus they are equally 1 

important. 2 

In Figure 12 compares principal component 1 (PC1) (Figure 12a) to independent 3 

component 1 (IC1) (Figure 12b) along Horizon A + 196 ms. Numbering is used to identify the 4 

different architectural elements and is not associated with time of deposition of the channel 5 

complexes.  On both pictures, we observe the confluence of two leveed meandering tributary 6 

channels with moderate sinuosity and a tabular shape channel with an architecture similar to a 7 

braided channel, the merging of these three late lowstand turbidite channel infill systems form a 8 

major turbidite channel towards the Northwest of the study area.  9 

In addition, we note that IC1 presents better footprint suppression (red rectangle) and a 10 

smoother; less noisy picture than PC1. Moreover, the large scale channels (green arrows) and 11 

small scale features such as oxbow 1, oxbow 2, oxbow 3 (orange arrows) and a small abandoned 12 

meandering channel (blue arrow) are better delineated using IC1 (Figure 12b).  13 

Analyzing the IC1 and PC1 at Horizon A + 248 ms (Figure 13), we notice that the result 14 

obtained from the ICA (Figure 13b) still provides better resolution, less random noise and better 15 

footprint suppression (red rectangle) than PC1 (Figure 13a). Furthermore, while the leveed 16 

meandering channels (green arrows) are difficult to delineate in PC1, these are better resolved 17 

using IC1. In addition, the tabular shape channel bifurcates into two distributary channels 18 

towards the Northwest and it is being better delineated and internally resolved using IC1. The 19 

small scale oxbow 3 (orange arrow) is also better resolved by IC1.  20 

When comparing the PC2 and IC2 volumes at Horizon A + 196 ms (Figure 14), we still 21 

observe a smoother, less noisy with better footprint suppression image using ICA (Figure 14b). 22 
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Moreover, the IC2 better exhibits than PC2 (Figure 14a) the large scale geological features such 1 

as the leveed meandering channels and the tabular shape channel (green arrows) and the small 2 

scale geological features such as oxbows (orange arrows) and the small abandoned channel (blue 3 

arrow).  4 

At Horizon A + 248 ms, IC2 provides a remarkably better result than PC2 (Figure 15). 5 

The leveed meandering tributary channels (green arrows) that are difficult to delineate using 6 

PC2, are well resolved using IC2 (Figure 15b). In addition, the latter has less footprint (red 7 

rectangle) and less random noise than the former and similar to IC1, the small-scale oxbow 3 8 

(orange arrow) has better resolution in IC2 than in PC2 (Figure 15a). 9 

Now, analyzing Figure 16, we observe at Horizon A + 196 ms that the IC3 has still better 10 

footprint suppression than PC3 (red rectangle), even though it has more footprint and random 11 

noise than IC1 and IC2. The leveed meandering channels, the tabular shape and the subsequent 12 

merged main channels (green arrows), together with the small-scale oxbows (orange arrows) are 13 

interpretable on both pictures (Figure 16a and Figure 16b). On the other hand, the small 14 

abandoned channel that was not completely delineated in PC1 and PC2, is now visible in PC3, 15 

while in IC3 itis barely resolved.  16 

At Horizon A + 248 ms (Figure 17), the leveed meandering tributary channel 1 and 2 are 17 

still better delineated in IC3 (Figure 17b), but its resolution increases considerably in PC3 18 

(Figure 17a) compared to PC1 and PC2. In addition, the meandering channels 3 and 4 are 19 

resolved on both pictures. Moreover, the oxbow 3 (orange arrow) is delineated on both pictures, 20 

but it looks better highlighted using PC3.  21 
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PC4 at Horizon A + 196 ms (Figure 18a) and at Horizon A + 248 ms (Figure 19a), still 1 

exhibits the footprint (red rectangle) and random noise seen in PC1, PC2 and PC3. Also, the 2 

geological deep water architectural elements analyzed before are not as well delineated as in the 3 

other principal components. In contrast, IC4 at Horizon A + 196 ms (Figure 18b) and at Horizon 4 

A + 248 ms (Figure 19b), is contaminated by strong acquisition footprint and random noise. The 5 

architectural elements of IC4 are poorly delineated when compared to ICA1, IC2 and IC3. This 6 

observation is consistent with the objective of independent component analysis which seeks to 7 

better separate alternative patterns (e.g. the geological features seen in IC1, IC2 and IC3 and the 8 

noise pattern seen in IC4).  Principal component analysis sorts the data into orthogonal 9 

components based on higher variability and tends to mix geological features of interest with 10 

noise (PC1, PC2, PC3 and PC4).  11 

In order to accomplish the goal of making an unsupervised seismic facies analysis, we 12 

plot the independent components IC1, IC2 and IC3 against a RGB color scheme. As stated 13 

before, similar seismic facies are voxels projected to similar colors. In addition, we compare the 14 

ICA RGB blending with the PCA RGB blending using PC1, PC2 and PC3.  15 

In Figure 20, we note that the RGB blending using independent components at Horizon A 16 

+ 196 ms (Figure 20b) provides better resolution of geological features than the RGB blending of 17 

principal components (Figure 20a). Like in the individual components, the leveed meandering 18 

channels, the tabular shape main channels (green arrows) as well as the small scale geological 19 

features such as the older abandoned channel and the oxbows are better delineated using ICA. 20 

We also notice, that the ICA RGB blending provides better contrast between distinct seismic 21 

facies. While the axis and off-axis of the leveed meandering channel (Posamentier and Kolla, 22 

2003; McHargue et al., 2010; Fildani et al. 2012; Hubbard et al., 2014) are characterized by 23 
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similar greenish colors in PCA RGB blending, they are characterized in the ICA RGB blending 1 

by a purple color for the axial deposition of the leveed meandering channels and a green color 2 

associated with the off-axis to marginal deposition. Moreover, we note that similar to a braided 3 

channel, the tabular shape tributary channel has a more variable internal architecture with 4 

predominantly purple seismic facies mixed with green and some blue seismic facies. In addition, 5 

the oxbows present different infill patterns. Oxbow 1 is filled by a blue, oxbow 2 by a purple and 6 

oxbow 3 by a green seismic facies. Finally, the small abandoned channel appears as purple 7 

seismic facies. 8 

At Horizon A + 248 ms (Figure 21), the leveed meandering channels 1 and 2 are much 9 

better delineated using ICA RGB blending (Figure 21b) than PCA RGB blending (Figure 21a). 10 

The leveed meandering channel 1 is characterized predominantly by purple seismic facies 11 

intercalated with some blueish seismic facies, while the leveed meandering channels 2 appears as 12 

a green seismic facies. As at Horizon A + 196 ms, the tabular shape channel internal architecture 13 

is highly variable with a mix of different seismic facies; this variability is better captured using 14 

ICA. The distributary channel 1 is characterized by a predominant purple seismic facies, while 15 

now the distributary channel 2 looks like a prolongation of the tabular channel because they have 16 

the same variable internal architecture. The meandering channel 3 is characterized by a purple 17 

seismic facies while oxbow 3 and meandering channel 4 are characterized by a green infill. 18 

In terms of random noise and footprint, ICA RGB blending (Figures 20b and 21b) 19 

provides a smoother picture with remarkably less footprint than PCA RGB blending (Figures 20a 20 

and 21a). Even though the acquisition footprint in ICA RGB blending increases at Horizon A + 21 

196 ms, we hypothesize that it is associated with independent component 3 (IC3).  22 
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ICA shows better results than PCA in terms of delineating deep water architectural 1 

elements of interest, reduces noise, and improve the contrast between different seismic facies. 2 

However, neither of these techniques can be used to predict thickness or porosity because the 3 

independent and principal components project the data onto a mathematical space. To study 4 

reflector thickness, we must use the original or reconstructed spectral components (Guo et al., 5 

2009; Zanardo Honorio et al., 2014). 6 

Geological interpretation of seismic facies using ICA RGB blending 7 

Following McHargue et al. (2010), channels associated with turbiditic deposits are a 8 

product of multiple waxing and waning flows. During a waxing cycle, high energy turbiditic 9 

flows produce erosion forming a channel conduit. In a waning cycle, turbiditic flows become less 10 

energetic, thus allowing filling of the channel conduit.  11 

Deposition in deep water channels can be divided into axis, off-axis and margin turbiditic 12 

facies (Figure 22). In most cases, the axis represents the thickest part of the channel and is 13 

characterized by deposition of thick-bedded amalgamated sandstone facies. In contrast, off-axis 14 

to marginal deposition is associated with interbedded sandstone and mudstone facies, also known 15 

as heterolytic facies, implying a lower concentration of net sand compared to axis facies 16 

(McHargue et al., 2010; Fildani, et al., 2012; Hubbard et al., 2014).  17 

Although the internal architecture of the channels present in the Moki A sands Formation 18 

is highly variable and complex, based on principles of geomorphology and following the model 19 

of deposition of turbiditic facies (McHargue et al., 2010; Fildani, et al., 2012; Hubbard et al., 20 

2014) and cut-and-fill architecture (Posamentier and Kolla, 2003) in channel complexes, we 21 

generate several vertical sections of seismic amplitude through the channels complexes, in order 22 
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to correlate the different seismic facies obtained from the ICA RGB blending analysis with axis, 1 

off-axis and margin deposition and lateral and upward migration of facies.  2 

In Figure 23a, we generated a vertical section AA’ through the straight tabular shape 3 

channel that contains a more variable internal architecture of seismic facies with predominantly 4 

purple seismic facies mixed with some green and blue facies. We hypothesize that this channel 5 

complex was developed as a deep cut associated with high energy turbiditic flows in which, 6 

during a waning cycle, weakly unconfined channels migrated inside the channel conduit. 7 

According to McHargue, et al. (2010), these weakly unconfined channels are characterized by a 8 

tabular shape and similar architecture to braided channels with predominant sand-rich facies. 9 

Also, in vertical section AA’, we observe the oxbow 3, with a predominant green seismic facies 10 

related to low amplitude reflectors, are enclosing the purple seismic facies associated with high 11 

amplitude, continuous reflectors.  12 

Vertical section BB’ (Figure 23b) through the meandering leveed channel 1 shows an 13 

asymmetrical configuration which, according to McHargue et al. (2010), occur in sinusoidal 14 

channels. The fact that this channel complex is asymmetrical can be associated with cut-and-fill 15 

or waxing and waning cycles (Posamentier and Kolla, 2003). Cut-and-fill architectures can lead 16 

to upward and lateral migration of channel facies (Posamentier and Kolla, 2003). We 17 

hypothesize that in BB’ (Figure 23b) there was a first waxing and waning cycle in which sand-18 

prone facies are deposit in the axis of the channel, while in the off-axis to margin of the channel, 19 

mud-prone facies are deposit (Posamentier and Kola, 2003; McHargue et al., 2010). Then, a 20 

second waxing-waning cycle occurred, creating a cut-and-fill architecture in which facies 21 

migrated upward and laterally (red arrow). On both waxing and waning cycles, sand-prone facies 22 

are deposited in the axis of the channel, while mud-prone facies are related to off-axis to 23 

Page 20 of 71

https://mc.manuscriptcentral.com/interpretation

Interpretation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21 

 

marginal deposition. Also, in vertical section BB’, we note that axial facies associated with 1 

purple seismic facies are characterized by high amplitude, continuous reflectors with limited 2 

lateral extent, while green seismic facies, associated with off-axis to marginal deposition are 3 

characterized by low amplitude reflectors. From Figure 23b, we note that the sheet sands of the 4 

Moki A sands Formation are represented by a mixture of bright blue with yellow, red and purple 5 

seismic facies associated with high amplitude with great lateral extension parallel reflectors. 6 

In Figure 24a, we make another vertical section CC’ through meandering leveed channel 7 

1, but now the outer bend of the channel is facing to the opposite direction. In vertical section 8 

CC’, we note that there is lateral and upward migration of facies (red arrow), thus cut-and-fill 9 

architecture related with waxing and waning cycles is present. Like in vertical section BB’ 10 

(Figure 23b), we hypothesize that sand-prone facies are deposited in the axis of the channel and 11 

mud-prone facies deposit in off-axis to marginal deposition. Moreover, purple seismic facies are 12 

still associated with axial deposition and characterized by high amplitude continuous reflectors, 13 

while green purple facies with low amplitude reflectors represent off-axis to marginal deposits. 14 

Sheet sands are associated with bright blue seismic facies, mixed with yellow, red and purple 15 

seismic facies.  16 

Vertical section DD’ (Figure 24b) through meandering leveed channel 2 shows cut-and-17 

fill architecture associated with waxing-waning cycles. Also, we hypothesize that during channel 18 

deposition related with a second waning-waxing cycle, axial deposits from the previous waning-19 

waxing cycle were eroded. Like in previous observations, purple seismic facies represent high 20 

amplitude continuous reflectors suggesting sand-prone deposits along the axis of the channel. 21 

Furthermore, green seismic facies are still characterized by low amplitude reflectors and they 22 

represent mud-prone facies related with off-axis to marginal deposition.  23 
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Vertical section EE’ (Figure 25) through meandering channel 3 at Horizon A + 248 ms. 1 

shows a lateral change in the amplitude thickness which we interpret is associated with 2 

differential compaction (Chopra and Marfurt, 2012). Differential compaction is related to lateral 3 

changes in lithologies. We interpret the positive relief in EE’ as a channel filled with sand-prone 4 

sediments that do not experience as much compaction as the mud-prone facies outside it. In this 5 

case, the purple seismic facies are associated with sand-prone facies and high amplitude 6 

reflectors and the green facies are related to mud-prone sediments and lower amplitude reflectors 7 

associated with the Moki B shale Formation. 8 

Based on the observations made using vertical section through the channel complexes 9 

present in the Moki A sands Formation, we hypothesize that purple seismic facies, characterized 10 

by continuous high amplitude reflectors, are associated with sand-prone facies related to axial 11 

deposition. In contrast, we believe that green seismic facies, characterized by low amplitude 12 

reflectors, are associated with mud-prone facies related to off-axis to marginal deposition in the 13 

meandering channel complexes. Finally, mixed blue, yellow and red facies represent sheet sands 14 

deposits, we hypothesize these seismic facies are associated with higher concentration of sand-15 

prone deposits.  16 

Validation of seismic facies using well data 17 

In order to validate our interpretation of the seismic facies using principles of 18 

geomorphology and the ICA RGB blending to highlight the different architectural elements, we 19 

relate the seismic facies with lithologies analyzing the Gamma Ray log from the Tui SW-2 well. 20 

Figure 26 shows that high gamma ray values associated with bathyal claystones of the Moki B 21 

shale Formation correlate with the green seismic facies (yellow arrow) suggesting a mud-prone 22 

seismic facies. Also the small low gamma ray values (blue arrow) which are associated with 23 
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calcareous sandstones, are not seen in the seismic because their thickness is approximately 5 m, 1 

thus they are under resolution. In addition, intercalation of high gramma ray with low gamma ray 2 

values associated with interbedded calcareous sandstone and claystones related to base of slope 3 

turbidites present in the Moki A sands Formation are characterized by red and blue seismic 4 

facies (green arrows), which is consistent with our interpretation of sheet sands characterized by 5 

a mixture of blue, red and yellow seismic facies. Finally, the low gamma ray calcareous 6 

sandstone of approximate thickness of 30 m bracketed by high gamma ray claystone are 7 

associated with mixed purple and green seismic facies (orange arrow) in the Tui SW-2 well. 8 

Although the Tui SW2 well is not drilled through one of the channel complexes, we believe that 9 

the validation of the seismic facies using this well can be extrapolated to the other zones of the 10 

seismic volume. 11 

CONCLUSIONS 12 

Applications to a 3D seismic data volume acquired in the Taranaki Basin show that 13 

Independent Components Analysis (ICA) are a powerful technique to reduce dimensionality, 14 

extract valuable information from multiple seismic attribute volumes and separate geological 15 

features from noise. ICA uses higher order statistics that found projections that were more 16 

geological and less mathematical than Principal Component Analysis (PCA), where PCs based 17 

on Gaussian statistics seems to mix multiple geologic features as well as noise. For this reason, 18 

ICA provided better resolution and better footprint reduction than PCA in this study. Small scale 19 

geological features characterized by lower reflectivity than large scale geological features are 20 

overlooked by the Principal Component Analysis, while in Independent Component Analysis 21 

geological features at all scales are well preserved. Specifically, small scale meandering and 22 

tabular shape tributary channels as well as abandoned meandering channels and oxbows are 23 

Page 23 of 71

https://mc.manuscriptcentral.com/interpretation

Interpretation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

24 

 

better delineated using ICA. Finally, ICA RGB blending provided better contrast between 1 

distinct seismic facies than PCA RGB blending. In ICA RGB blending, axial deposition 2 

associated with sand-prone facies is characterized by a distinct (in this case purple color) seismic 3 

facies related to high amplitude reflectors. In contrast, off-axis to marginal deposition of the 4 

channels is represented by a different (green color) seismic facies associated with mud-prone 5 

facies and characterized by low amplitude reflectors. Finally, sheet sand deposits are 6 

characterized by high amplitude continuous reflectors with greater lateral extent and are 7 

associated with a mixture of (purple, red and yellow) facies dominated by one (bright blue) 8 

seismic facies.  9 
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APPENDIX A 17 

Preprocessing for ICA estimation 18 

Estimation of the independent components P={P1,P2} requires finding an unmixing 19 

matrix, W, such that its projection maximizes the independence or non-Gaussianity between the 20 

components (Hyva� rinen and Oja, 2000). ICA assumes that the data have a non-Gaussian 21 

distribution. This assumption is valid in seismic data because, according to Walden (1985) and 22 
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Zanardo Honorio et al. (2014), seismic data can be considered as super-Gaussian distributions 1 

that are characterized by a positive kurtosis. 2 

We apply some preprocessing steps to better condition the problem. Hyva� rinen and Oja 3 

(2000), suggest subtracting the mean vector ��	of the data �, from the value at each voxel prior to 4 

estimating the independent components. However, unlike human voices and other ICA 5 

applications, each seismic attribute may have a different unit of measurement and range of 6 

values. For example, the seismic envelope may range between 0 and +10000, while curvature 7 

may have value that range between -1 and +1 km
-1
. For this reason, we apply a Z-score 8 

normalization to the data, i.e., subtracting its mean but also dividing by its standard deviation:  9 

                                                   ��(����)=(�� -	����� )/�(��).                                              (A1) 10 

The next preprocessing step is to whiten the data. Whitening guarantees that the data are 11 

uncorrelated (mathematically, its covariance matrix is the identity matrix). The correlation 12 

matrix, C, is constructed by comparing each sample vector to itself and all its neighbors and can 13 

be computed from K attribute volumes as: 14 

                         ��� = �
�∑ a �(����)(! , # , $ )a �(����)(! , # , $ )� %� ,                 (A2) 15 

where M is number of voxels in the volume to be analyzed.  16 

According to Hyva� rinen and Oja (2000), uncorrelated data simplify the estimation of 17 

independent components because the mixing matrix A becomes an orthogonal matrix, thereby 18 

reducing the number of free parameters to be computed. 19 

Principal Component Analysis (PCA) is a common technique used for dimensionality 20 

and noise reduction. The k
th
 principal component, P

(k)
, at the m

th 
voxel (tm,,xm,ym)  is a scalar that 21 
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represents the projection of a N-dimensional sample vector, a, against the k
th
 unit length, N-1 

dimensional eigenvector, v
(k)
: 2 

      &�(�)'! , # ,$ ( = ∑ ��(����)'! , # ,$ ()�(�).+�%�                    (A3) 3 

PCA can be used to whiten the data. Specifically, after computing the principal 4 

components, �,, we rescaled them by 1 ./�⁄  thereby making each of the projections have unit 5 

variance: 6 

                                                   ��(1) = &2
(3)'45,65,75(
(829:); <=

 ,                                       (A4) 7 

where, �,(>), represents the data after Z-score normalization and whitening, /�	are the 8 

eigenvalues of the correlation matrix, and ?	is a fraction of the largest eigenvalue /� , to avoid 9 

division by zero. 10 

Using PCA whitening, we not only reduce the dimensionality of the data but we also 11 

reduce noise during the independent component estimation (Hyva� rinen and Oja, 2000). To 12 

decide how many components we should preserve, we analyze the percentage of variance 13 

retained (Stanford, 2018). 14 

If we have N principal components the eigenvalues are /�, /@, /A, … , /+ where /� ≥15 

/�9�. For N attributes, Stanford (2018) suggests keeping the largest K components whose sum 16 

just exceeds a user-defined percentage D, of the variability E of the data, where the remaining 17 

variability is considered to be noise:  18 

                                                                 
∑ 82E2F;
∑ 82G2F;

≥ D,                                                   (A5) 19 

where we use a value D = 0.9 to define the data from noise. 20 
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The ICA algorithm 1 

Based on the Central Limit Theorem, Hyva� rinen and Oja (2000), state that the 2 

distribution of two independent variables is less Gaussian than the distribution of the sum of the 3 

two variables. Therefore, by maximizing the non-Gaussianity of the preprocessed data, we can 4 

find the unmixing matrix, W, that maximizes the independence of the sources P1 and P2.  5 

Because a Gaussian variable has the largest entropy of all, Hyva� rinen and Oja (2000), 6 

quantitatively measure non-Gaussianity based on an approximation of negentropy, which is a 7 

modified version of entropy that is always nonnegative and is equal to zero for a Gaussian 8 

distribution.      9 

Assuming a random variable y=	H�(I) with zero mean and unit variance, Hyva� rinen 10 

(1999) approximate the negentropy J as: 11 

                                                   J($) = KLMN($)O − LMN(Q)OR@,                                          (A6) 12 

where G is a non-quadratic function called the contrast function, v is a centered and whitened 13 

Gaussian variable and E is the expected value operator. In practice, the expectation operator must 14 

be replaced by the sample means (Hyva� rinen and Oja, 2000). 15 

To compute the independent components, Hyva� rinen and Oja (2000), developed an 16 

algorithm called “FastICA”, where, the goal is to maximize the contrast function, G. Any non-17 

quadratic function can be used in the computations (Hyva� rinen and Oja, 2000). We follow 18 

Zanardo Honorio et al. (2014), and use the contrast function: 19 

     	N($) = −STU
7< @= V,                                                 (A7) 20 
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which through empirical analysis appears to provide good resolution and delineation of the 1 

geological features. The independent components are computed simultaneously. To avoid 2 

convergence to the same maxima, the outputs are decorrelated after each iteration (Hyva� rinen 3 

and Oja, 2000).  4 

Following Hyva� rinen and Oja (2000), in each iteration of the algorithm, we update each 5 

row of the unmixing matrix, W, is updated by 6 

       	W9 = L Xa(1) YZY7 '	W[�(\)(] − L X
Y<Z
Y<7 '	W[�(\)(]^W,                  (A8) 7 

and normalized by:   8 

   	W9 = 	W
9
|`	W9`|a ,                                         (A9) 9 

where W
+
 is the updated unmixing matrix Finally, the updated unmixing matrix, W

+
, is 10 

decorrelated using Eigenvalue Decomposition (EVD) by 11 

   																							bcd���9 = (		e)T� @= 	.                                      (A10) 12 

Convergence is reached when the dot-product between the old and new values of W is 13 

close to 1, indicating that they are parallel and unchanged. (Hyva� rinen and Oja, 2000).   14 

Finally, the energy of each independent component is the sum of the energy over all the 15 

voxels that fall in the target region: 16 

             f = ∑ $g'! , # ,$ (@� %� .                                      (A11) 17 

where, $g'! , # ,$ ( is the hth independent component at voxel m, and M is the number of 18 

voxels in the target area. 19 
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 6 

 7 

 8 

 9 

CAPTIONS 10 

Figure 1. Illustration of Independent Component Analysis (ICA) using the popular cocktail-11 

party problem. The goal is to recover the individual signals P1 and P2 from the mixtures signals 12 

X1 and X2. 13 

Figure 2. Differences between Principal Component Analysis (PCA) and Independent 14 

Component Analysis (ICA). Attributes 
j	and 
k are scaled by their means and standard 15 

deviations. The first eigenvector lj is a line that least-squares fits the data cloud and best 16 

represent the variance of the data. PC1 is a projection of each data point onto lj. The second 17 

eigenvector lk is a perpendicular to lj and for two dimensions these two eigenvectors best 18 

represents the data. In contrast, the independent components IC1 and IC2 are latent variables 19 

whose order is undefined and are not orthogonal to each other (Hyvarinen and Oja, 2000; 20 

Tibaduiza et al., 2012). To compute the independent components, each data point is projected 21 

onto the whitened eigenvectors	lj and lk, and then projected onto the unmixing matrix W. 22 
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Figure 3. Independent Component Analysis (ICA). The algorithm is a based on the FastICA 1 

algorithm developed by Hyvarinen and Oja (2000), but with modifications for volumetric 2 

seismic attribute application. 3 

Figure 4. The Taranaki Basin can be divided in the Taranaki Graben Complex and the Western 4 

Platform (Pilaar and Wakefiled, 1984). The Tui3D seismic survey (orange star) is situated 5 

offshore Taranaki Basin, New Zealand. After King et al. (1993), King and Thrasher (1996), 6 

Thrasher et al. (2002) and Hansen and Kamp (2006). 7 

Figure 5. Analysis interval between Horizon A and Horizon B enclosing the Moki Formation. A 8 

strong continuous reflector associated with the Tikorangi Limestone was picked and phantom 9 

horizons were created bracketing the Moki Formation. In order to completely enclose the 10 

channel complexes present in the Moki A sands Formation, the analysis interval brackets the 11 

Moki A sands Formation, the Moki B Shale and parts of the Moki B sands and Upper Manganui. 12 

The analysis interval has a width of 300 ms. 13 

Figure 6. Spectral magnitude, independent and principal components volumes are flattened 14 

against the top analysis interval Horizon A. This procedure is similar that extracting them along 15 

phantom horizons within the analysis interval. 16 

Figure 7. Spectral magnitude components plotted against a RGB color scheme along a phantom 17 

Horizon A + 196 ms. (a) Combination of 25-35-45 Hz spectral magnitude components showing 18 

the channel complexes present in the Moki A sands Formation. (b) The combination of 40-50-60 19 

Hz also shows the channel complexes, however the small scale abandoned meandering channel 20 

(blue arrow) is better resolved in the combination of 25-35-45 Hz. (c) Combination 60-70-80 Hz. 21 

At higher frequencies, the picture is contaminated by acquisition footprint (red rectangle). 22 

Internal architecture of the channel is still delineated (yellow arrows) (d)  Combination of the 25-23 
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50-75 Hz. Infill of the channels predominantly tune at lower frequencies than their flanks (~50 1 

Hz). Thin beds inside the channels tune at approximately 75 Hz. 2 

Figure 8. Spectral magnitude components plotted against a RGB color scheme along a phantom 3 

Horizon A + 248 ms. Analyzing the same combinations as in Figure 7, the infill of the channels 4 

still tunes at lower frequencies while the flanks, internal thin beds and acquisition footprint tune 5 

at higher frequencies. 6 

Figure 9. Proposed workflow to highlight and study the internal architecture of the channel 7 

complexes present in the Moki A sands Formation. We use spectral magnitude components 8 

ranging from 25 to 80 Hz with intervals of 5 Hz to analyze the stratigraphy and depositional 9 

system of the target area. Independent Component Analysis (ICA) attempts to extract stronger 10 

correlated patterns in the data (geology and acquisition footprint), with random uncorrelated 11 

noise remaining in the residual. The independent components are sorted by visual inspection 12 

using geological insight. For both PCA and ICA we co-render the three most useful components 13 

using RGB blending. 14 

Figure 10. Variability retained. (a) Based on the percentage of variability retained (Stanford, 15 

2018), the algorithm automatically outputs four components during the PCA whitening 16 

preprocessing step that represent 94.04% of the variability of the data, from these components 17 

the independent components are computed. Also, PC1 is the strongest and represent 63.52% of 18 

the variability (b) PC1 is characterized by a flat spectrum because the spectral components were 19 

spectrally balanced. PC2 monotonically changes from lower to higher frequencies and is 20 

orthogonal to PC1. PC3 is orthogonal to PC1 and PC2 and its spectrum changes sign between 45 21 

to 50 Hz. PC4 captures 5.74% of the variability and is orthogonal to PC1, PC2 and PC3. Little 22 

physical significance can be assigned to the eigenspectrum because principal components reside 23 
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in a mathematical space where spectral components are represented as orthogonal uncorrelated 1 

components. 2 

Figure 11. ICA energy. (a) Independent components exhibit similar energy and this is not clearly 3 

correlated to geology, thus independent components are sorted based on visual inspection, 4 

seeking for better resolution of large and small scale geological features (b) IC1 captures 23.92% 5 

of the energy and tend to represent lower frequency geological features. IC2 amplitude is higher 6 

at frequencies from 30 to 60 Hz. IC3 captures the largest energy and its spectrum is associated 7 

with low to moderate frequencies. IC4 spectrum monotonically changes from lower to higher 8 

frequencies. Because independent components represent spectral components as oblique 9 

projections seeking for independence, the ICA spectra has more physical significance than the 10 

PCA eigenspectrum. 11 

Figure 12. Principal component 1 (PC1) vs. independent component 1 (IC1) along phantom 12 

Horizon A + 196 ms. (a) PC1 shows the confluence (red arrow) of two leveed meandering 13 

tributary channels with moderate sinuosity and a tabular shape channel with an architecture 14 

similar to a braided channel (green arrows). In addition, PC1 is contaminated by acquisition 15 

footprint (red rectangle) (b) IC1 shows a smoother, less noise picture with less acquisition 16 

footprint (red rectangle) than PC1. Also, in IC1 the large-scale geological features (green arrows) 17 

and the small-scale geological features such as oxbows (orange arrows) and a small abandoned 18 

meandering channel (blue arrow) are better delineated than in PC1. Please, note that numbering 19 

is used to identify the different architectural elements and is not associated with time of 20 

deposition of the channel complexes. 21 

Figure 13. Principal component 1 (PC1) vs. independent component 1 (IC1) along Horizon A + 22 

248 ms. (a) The leveed meandering channel (green arrows) are difficult to delineate using PC1, 23 
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also PC1 is still contaminated by acquisition footprint (red rectangle). (b) IC1 provides better 1 

resolution than PC1, thus the leveed meandering channels (green arrows) are better delineated 2 

using the former. In addition, IC1 has less footprint (red rectangle) than PC1 and the internal 3 

architecture of the tabular shape channel improves considerably. Finally, the small scale oxbow 4 

(orange arrow) that is not seen in PC1 can be interpreted using IC1. 5 

Figure 14. Principal component 2 (PC2) vs. independent component 2 (IC2) along Horizon A + 6 

196 ms. (a) PC2 is characterized by strong acquisition footprint (red rectangle), also the large 7 

scale leveed meandering and tabular channels (green arrows) and the small scale geological 8 

features such as oxbows (orange arrows) and the small abandoned channel (blue arrow) are 9 

difficult to interpret using PC2. (b) IC2 provides a remarkable increase in the resolution 10 

compared to PC2, thus the large scale (green arrows) and small scale geological features (orange 11 

arrows and blue arrows) are easier to delineate in IC2. In addition, the independent component 2 12 

has less acquisition footprint (red rectangle) than the principal component 2. Similar to Figures 13 

12 and 13, numbering is used to identify the different architectural elements and is not associated 14 

with time of deposition of the channel complexes. 15 

Figure 15. Principal component 2 (PC2) vs. independent component 2 (IC2) at phantom Horizon 16 

A + 248 ms. (a) In PC2, the leveed meandering channels 1, 2 and 4 (green arrows) are difficult to 17 

interpret, also the principal component 2 is characterized by acquisition footprint (red rectangle) 18 

and random noise. (b) In contrast, IC2 provides a result with less acquisition footprint (red 19 

rectangle) and random noise compared to PC2. Moreover, the leveed meandering channels 20 

(green arrows) that were difficult to interpret in PC2 are better delineated using IC2. The small 21 

scale oxbow (orange arrow) is also better resolved in IC2. 22 
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Figure 16. Principal component 3 (PC3) vs. independent component 3 (IC3) at Horizon A + 196 1 

ms. (a) From PC3 is possible to interpret the large scale geological features such as the leveed 2 

meandering channels and the subsequent merged main channel (green arrows) and the small 3 

scale oxbows (orange arrows). Also, the small abandoned meandering (blue arrow) channel that 4 

was not possible to delineate in PC1 and PC2 is now seen in PC3 (b) IC3 is characterized by less 5 

acquisition footprint (red rectangle) and smoother results than PC3. Also, the large scale (green 6 

arrows) and small scale (orange arrows) geological features are well delineated. However, the 7 

small abandoned meandering channel (blue arrow) was not completely delineated in IC3. Similar 8 

to the previous analysis, numbering is used to identify the different architectural elements and is 9 

not associated with time of deposition of the channel complexes. 10 

Figure 17. Principal component 3 (PC3) vs. independent component 3 (IC3) along phantom 11 

Horizon A + 248 ms. (a) The resolution of the leveed meandering and the tabular channels 12 

(green arrows) increases considerably in PC3, thus is easier to interpret the geological features. 13 

Also, is possible to observe acquisition footprint (red rectangle) in PC3. (b) Although the 14 

resolution of the large geological features increased in PC3, they are still better delineated using 15 

IC3. Moreover, IC3 still provides a smoother picture with less acquisition footprint (red 16 

rectangle) than PC3. The small scale oxbow (orange arrow) can be interpreted on both pictures, 17 

but its resolution seems to be greater in PC3. 18 

Figure 18. Principal component 4 (PC4) vs. independent component 4 (IC4) along Horizon A + 19 

196 ms. (a) In PC4, geological deep water architectural elements can still be interpreted, but they 20 

are not as well delineated as in the other principal components. In addition, PC4 still presents 21 

acquisition footprint (red rectangle) and random noise as in PC1, PC2 and PC3. (b) IC4 is 22 
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characterized by strong acquisition footprint and random noise. Architectural elements are 1 

difficult to delineate. 2 

Figure 19. Principal component 4 (PC4) vs. independent component 4 (IC4) at phantom Horizon 3 

A + 248 ms. (a) PC4 is still contaminated by acquisition footprint (red arrow) and random noise, 4 

but large (green arrows) and small scale (orange and blue arrows) geological features are 5 

interpreted. (b) IC4 is still contaminated by strong acquisition footprint and random noise. Large 6 

and small scale geological features are difficult to interpret. We hypothesize that because 7 

independent component analysis looks for independence in the multivariate data, it provides 8 

better separation between geological features (IC1, IC2 and IC3) and noise signal (IC4) than 9 

PCA. Also, independent components provides better resolution of large and smaller scale 10 

geological features than principal component analysis, thus providing a mean of making a better 11 

seismic interpretation. 12 

Figure 20. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3 at 13 

phantom Horizon A + 196 ms, in which similar colors can be interpreted as similar seismic 14 

facies. (a) From PCA RGB blending is possible to analyze the large scale geological features 15 

(green arrows), and the small scale oxbows (orange arrows), but the small abandoned channel 16 

(blue arrow) is only partially delineated. PCA RGB blending is contaminated by acquisition 17 

footprint (red rectangle). Axis and off-axis seismic facies are characterized by similar greenish 18 

colors. (b)  From ICA RGB blending the large scale (green arrows) and small scale geological 19 

features such as oxbows (orange arrows) and the small abandoned channel (blue arrow) are 20 

better delineated than PCA RGB blending. In addition, the former presents lower acquisition 21 

footprint (red rectangle) and random noise than the latter. ICA RGB blending also provides a 22 

better contrast between different seismic facies, e.g., the axis of the channel is characterized with 23 
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a purple seismic facies, while the off-axis of the channel is associated with a green seismic 1 

facies. Also, the tabular shape channel is characterized by a more variable internal architecture 2 

with predominant purple seismic facies mixed with blue and green seismic facies. Finally, the 3 

oxbows infill varies from purple to blue and green facies and the small abandoned channel is 4 

associated with purple seismic facies. 5 

Figure 21. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3 at 6 

phantom Horizon A + 248 ms, similar colors are associated with similar seismic facies. (a) From 7 

PCA RGB blending, the large scale meandering and tabular shape channels are well delineated 8 

but the resolution decreases compared to the ICA RGB blending. Also, the former presents more 9 

acquisition footprint than the latter. (b) The geological architectural elements are better resolved 10 

in ICA RGB blending than in PCA RGB blending. The leveed meandering channel 1 is 11 

characterized predominantly by purple seismic facies intercalated with some blueish seismic 12 

facies, and the leveed meandering channels 2 is associated with a green seismic facies. The 13 

tabular shape channel internal architecture is highly variable with a mix of different seismic 14 

facies. The distributary channel 1 is characterized by a predominant purple seismic facies and the 15 

distributary channel 2 looks like a prolongation of the tabular channel. Finally, the meandering 16 

channel 3 is characterized by only a purple seismic facies and the oxbow 3 and the meandering 17 

channel 4 are characterized by a greenish infill. 18 

Figure 22. Following McHargue et al. (2010); Fildani, et al. (2012) and Hubbard et al., (2014), 19 

deposition of turbiditic facies in deep water channels can be divided into axis, off-axis and 20 

margin. In general, the axis of the channel represents the thickest part and is associated with 21 

deposition of thick-bedded amalgamated sandstone facies. Off-axis to marginal deposition is 22 
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characterized by interbedded sandstone and mudstone facies (heterolytic facies), implying a 1 

lower concentration of net sand. Picture after McHargue et al. (2010) and Hubbard et al. (2014). 2 

Figure 23. Geological interpretation of seismic facies using ICA RGB blending and principles of 3 

geomorphology of architectural elements in deep water channel complexes. (a) Vertical section 4 

AA’ intersecting the straight tabular-shape channel characterized by a more variable internal 5 

architecture with predominantly purple seismic facies mixed with some green and blue facies. 6 

We interpret that this tabular shape channel was developed as a deep cut related to high energy 7 

turbiditic flows during a waning cycle. Also, weakly unconfined channels migrated inside the 8 

channel conduit. These weakly unconfined channels are characterized by a tabular shape and 9 

similar architecture to braided channels with predominant sand-rich facies. The oxbow 3, with a 10 

predominant green seismic facies associated with low amplitude reflectors encloses purple 11 

seismic facies related to high amplitude, continuous reflectors. (b) Vertical section BB’ through 12 

the meandering leveed channel 1. The sinusoidal channel is characterized by an asymmetrical 13 

configuration, which is associated with cut-and-fill architecture. We interpret two different 14 

waxing and waning cycles in which sand-prone facies, characterized by high amplitude 15 

reflectors, are deposited in the axis of the channel, while mud-prone facies, associated with low 16 

amplitude reflectors, are related to off-axis to marginal deposition. Also, upward and lateral 17 

migration of channel facies is seen (red arrow). Sheet sands are associated with a mixture of 18 

bright blue with yellow, red and purple seismic facies related to high amplitude with great lateral 19 

extension parallel reflectors. 20 

Figure 24. Geological interpretation of seismic facies using ICA RGB blending and principles of 21 

geomorphology of architectural elements in deep water channel complexes. (a) Vertical section 22 

CC’ intercepting the meandering leveed channel 1, with the outer bend of the channel facing to 23 
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the opposite direction compared to BB’. Cut-and-fill architectures, associated with lateral and 1 

upward migration of facies (red arrow), are interpreted. Similar to vertical section BB’, we 2 

interpret sand-prone facies are deposited in the axis of the channel and are characterized by 3 

purple seismic facies associated with high amplitude continuous reflectors. Mud-prone facies 4 

deposit in off-axis to marginal deposition are related to green purple facies characterized by low 5 

amplitude reflectors. Finally, sheet sands are associated with bright blue seismic facies, mixed 6 

with yellow, red and purple seismic facies. (b)  Vertical section DD’ through the meandering 7 

leveed channel 2. Cut-and-fill architectures associated with waxing-waning cycles are 8 

interpreted. We hypothesize that during channel deposition related with a second waning-waxing 9 

cycle, axial deposits from the previous waning-waxing cycle were eroded. Purple seismic facies 10 

represent high amplitude continuous reflectors, which based on geomorphology concepts, we 11 

believe are associated with sand-prone deposits along the axis of the channel. Green seismic 12 

facies are related to low amplitude reflectors and represent mud-prone facies associated with off-13 

axis to marginal deposition. 14 

Figure 25. Geological interpretation of seismic facies using ICA RGB blending and principles of 15 

geomorphology of architectural elements in deep water channel complexes. Vertical section EE’ 16 

through meandering channel 3 at Horizon A + 248 ms. There is a lateral change in the amplitude 17 

thickness which is related to differential compaction (Chopra and Marfurt, 2012). Differential 18 

compaction is associated with lateral changes in lithologies. In this case, we interpret the positive 19 

relief as a channel filled with sand-prone sediments related to purple seismic facies, that do not 20 

experience as much compaction as the mud-prone facies of the Moki B shale Formation, 21 

associated with green seismic facies, outside it. 22 

Page 44 of 71

https://mc.manuscriptcentral.com/interpretation

Interpretation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

45 

 

Figure 26. Validation of the interpretation, based on principles of geomorphology, of the seismic 1 

facies in the Moki A sands Formation using the Gamma Ray log from the Tui SW-2 well. High 2 

gamma ray values associated with bathyal claystones of the Moki B shale Formation are 3 

associated with the green seismic facies (yellow arrow) which in our interpretation, we 4 

hypothesized were associated with mud-prone seismic facies. Small low gamma ray values (blue 5 

arrow) associated with calcareous sandstones are not seen in the seismic because they are under 6 

resolution. Intercalation of high and low gramma ray values associated with interbedded 7 

calcareous sandstone and claystones related to base of slope turbidites of the Moki A sands 8 

Formation are associated with red and blue seismic facies (green arrows), this correlate with our 9 

interpretation of sheet sands characterized by a mixture of blue, red and yellow seismic facies. 10 

The low gamma ray calcareous sandstone of thickness approximate to 30 m bracketed by high 11 

gamma ray values associated with bathyal claystones are related with mixed purple and green 12 

seismic facies (orange arrow). 13 
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Figure 22. 
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Figure 23. 
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Figure 24. 
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Figure 25. 
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Figure 26. 
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