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Summary 

 

Seismic attributes are powerful tools that allow interpreters 

to make a more comprehensive and precise seismic 

interpretation. In this paper, we apply an unsupervised multi-
attribute technique called Independent Component Analysis 

to reduce dimensionality and extract the most valuable 

information of multiple spectral magnitude components in 

order to make an unsupervised seismic facies classification 
of channel complexes located in the Moki A Formation, 

Taranaki Basin, New Zealand. 

 

Introduction 

 

Depending on the seismic attribute that we choose, different 

information can be extracted (Infante-Paez and Marfurt, 

2017) from the seismic volume, thus, relying on only one 
attribute information lead to an incomplete seismic 

interpretation. For this reason, multi-attribute techniques 

such as Principal Component Analysis (PCA), Self-

organizing Maps (SOM) are commonly used.  

 

Based on higher order statistics, Independent Component 

Analysis separates a multivariate signal into subcomponents 

which are independent of each other (Hyvärinen and Oja, 
2000), thus extracting more valuable information than 

techniques such as Principal Component Analysis (PCA) 

which tends to mix geology. 

 
In this research, we use the Tui3D seismic survey located on 

the Taranaki Basin, New Zealand. The zone of interest is the 

Moki A Formation which is characterized by base of slope 

turbidites and channel complexes (Engbers, 2002) trending 
NW-SE (Yagci, 2016).  

 

Spectral decomposition techniques are commonly used to 

study the stratigraphy and depositional architecture of a 
target area (Marfurt and Kirlin, 2001). Thus, using spectral 

magnitude components as input to Independent Component 

Analysis and co-rendering independent components that 

provide the most geological insight, we develop an 

unsupervised seismic facies classification workflow to better 

analyze the internal architecture of the channel complexes in 

the Moki A Formation. 

 
Independent Component Analysis (ICA) 

 

Independent Component Analysis (ICA) separates a 

multivariate signal into independent subcomponents, finding 

a linear representation of non-Gaussian data (Hyvärinen and 

Oja, 2000).  

The popular cocktail-party problem is commonly used to 
illustrate ICA. If two people are speaking simultaneously in 

a room where two microphones are recording their voices 

(Figure 1), the recorded signals X={X1,X2} are a weighted 

combination of the individual signals spoken by the two 
people P={P1,P2}, which can be written as: 

 

X=AP,                                                                              (1) 

 
where A is an unknown mixing matrix whose parameters 

depend on the distances between the people and the 

microphones.  

                                                                                                                                               
Although the goal is to estimate the original individual 

signals P1 and P2 using the recorded signals X1 and X2, this 

cannot be accomplished because the mixing matrix A is 

unknown. Nevertheless, Hyvärinen and Oja (2000) stated 
that under the assumption in which the individual signals are 

statistically independent, it is possible to compute the 

inverse of the mixing matrix A and obtain the independent 

components P1 and P2.  
 

P=WX,                                                                             (2)    

 

where W is called the unmixing matrix and is the inverse of 
the mixing matrix A. 

 

 

 
 

 

 

 
 

 

 

  
 

 

Figure 1. Illustration of ICA using the cocktail-party 

problem. The objective is to recover the individual signals 

P1 and P2 from the mixed measurements signal components 

X1 and X2.                                                                                                                             

 

We modify Hyvärinen and Oja (2000) ICA algorithm for use 
with volumetric attributes. In our algorithm (Figure 2), first 

we select the seismic attributes that highlight the geologic 

feature of interest and compute their means 𝛍 and covariance 

matrix 𝐂 which are used to Z-score normalize the different 
units of the seismic attributes. We also calculate the 

eigenvectors and eigenvalues of the covariance matrix 𝐂. 
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To decrease the computational cost of processing several 

seismic attributes, we decimate the data to construct a 

smaller training data volume from which the unmixing 
matrix W is computed. The Z-normalized data are whitened 

and filtered using Principal Component Analysis (Stanford, 

2018). The filtering procedure helps to reduce noise, 

whereby the variance retained exceeding 90% is considered 
to be signal, while the remaining variability to be noise.   

 

We use a decorrelated version of the covariance matrix C as 

initial guess for the unmixing matrix W guaranteeing exact 
repeatability of the process. Finally, the unmixing matrix W 

is computed by maximizing the non-Guassian behavior of 

the data measured by an approximation of negentropy 

(Hyv𝐚̈rinen and Oja, 2000). When convergence is reached, 
the Z-normalized and whitened data are projected onto the 

final unmixing matrix W in order to obtain the independent 

components.  

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 2. Proposed workflow to apply ICA based on the 

FastICA algorithm developed by Hyvärinen and Oja (2000) 

but with modifications in order to implement it using seismic 

attributes.  
                                                                                                                       

Geologic setting 

 

The Taranaki Basin is a sedimentary basin located on the 
western side of the North Island, New Zealand (Palmer, 

1985) (Figure 3) and can be separated into two main 

structural elements: the eastern Taranaki Graben Complex 

and the Western Platform (Pilaar and Wakefield, 1984). 
 

The Early to Middle Miocene was characterized by 

deposition of submarine fans, associated with a major 

regression. These submarine fans are represented by the Mt 
Messenger Formation and Moki Formation (De Bock, 

1994). 

 

According to Engbers (2002) the Moki Formation can be 
subdivided from lower to upper units into the Moki B Sands, 

Moki B Shale and Moki A Sands.  The Moki A Sands is the 

objective of this study and it is represented by base of slope 

turbidites and major meandering submarine channel 

complexes (Engbers, 2002) with NW-SE trend (Yagci, 
2016).  

 

 
 

Figure 3. The Tui3D seismic survey (blue star) is situated 

offshore Taranaki Basin, New Zealand. Following Pilaar and 

Wakefield, 1984, the Taranaki Basin can be divided in the 

Taranaki Graben Complex and the Western Platform. After 
King et. al. (1993), King and Thrasher (1996), Thrasher et. 

al. (2002) and Hansen and Kamp (2006).  

 

Data description  

 

The Tui3D seismic survey is located offshore Taranaki 

Basin on the southwest coast of the North Island, New 

Zealand (Figure 3). For this study, the seismic volume was 
cropped consisting of 821 inlines and 2001 crosslines with 

bin size of 12.5 by 12.5 m. The Tui3D seismic volume is 

contaminated by acquisition footprint. 

 
To study the internal facies architecture and highlight the 

channel complexes present in the Moki A Formation, we use 

a total of  twelve spectral magnitude components ranging 

from 25 to 80 Hz at 5 Hz interval computed using a 
Continuous Wavelet Transform (CWT) Spectral 

Decomposition technique (Sinha et. al., 2005; Chopra and 

Marfurt, 2016). CWT spectral decomposition provides good 

vertical resolution allowing us to study changes in bed-
thickness and the stratigraphy and depositional system of the 

Moki A Formation. 

38o00 

39o00 
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Figure 4. Analysis interval between Horizon A and Horizon B enclosing the Moki Formation. A strong continuous reflector 
associated with the Tikorangi Limestone was picked and phantom horizons were created bracketing the Moki Formation. The 

analysis interval has a width of 300 ms. 

 

To design our analysis interval, we picked a horizon along a 
strong continuous reflector associated with the Tikorangi 

Limestone and created phantom horizons on top and base of 

the Moki Formation (Figure 4). Even though the ideal 

analysis interval to make a unsupervised facies analysis 
consist on enclosing only one target formation, in our case 

in order to completely enclose the channel complexes, our 

analysis interval brackets the Moki A Formation, the Moki 

B Shale and part Moki B Sands Formation.  
 

Unsupervised facies analysis using ICA 

 

We use twelve spectral magnitude components ranging from 
25 to 80 Hz as input in the Independent Component Analysis 

algorithm. The independent components extract the most 

important information, thus reducing dimensionality and 

noise. Based on the retained variability criteria (Stanford, 
2018), our algorithm automatically outputs four independent 

components because they represent 94.04% of the variability 

of the data. 

 
In Figure 5 we show the four independent components 

extracted along a phantom Horizon A + 208 ms. In addition, 

the independent components are sorted by visual inspection 

because during their computation the order of the 

independent component is undefined  (Hyvärinen and Oja, 

2000).   

 

Analyzing independent component 1 (IC1) at Horizon 
A+208 ms in Figure 5a, we note the presence of two 

meandering channels with moderate sinuosity and a tubular 

shape channel with an architecture similar to a braided 

channel (green arrows). Even though there is acquisition 
footprint (red rectangle), the picture looks smoother, 

exhibiting both large scale and small scale geological 

features such as an abandoned channel (blue arrow) and 

oxbows (orange arrows). In Figure 5b, we display 
independent component 2 (IC2) at Horizon A + 208 which 

also exhibits the large and small scale geological features. 

Although there is a slight increase in the acquisition footprint 
(red rectangle) compare to IC1, the image still has good 

lateral resolution and provides geological insight. 

 

From Figure 5c, we observe that the independent component 
3 (IC3) is characterized by an increase in the acquisition 

footprint (red rectangle) and random noise. The large scale 

channel complexes (green arrows) and the oxbows (orange 

arrows) are still resolved, but the small abandoned channel 
(blue arrow) is no longer seen using IC3. Finally, the 

independent component 4 (IC4) (Figure 5d) is associated 

with strong acquisition footprint (red rectangle) and random 

noise. Large and small scale geological features are difficult 
to interpret, thus we consider that IC4 does not provide 

valuable geological insight.  

 

Because the spectral magnitude components are reduced to 
a 4D space represented by the independent components, in 

which the data is whitened and then projected onto the 

unmixing matrix W, if we plot the independent components 

against an RGB color scheme, voxels that project to similar 
colors can be associated with similar seismic facies. 

 

In Figure 6, we show a RGB blending using the IC1, IC2 and 

IC3 at Horizon A + 208 ms. We observe that the large scale 
features such as the meandering channels and the tabular 

shape channel (green arrows) and the small scale geological 

features such as oxbows (orange arrows) and the small 

abandoned channel (blue arrow) are well preserved. We also 
note a strong contrast of seismic facies between the axis and 

the flank of the meandering channels, i.e., the former are 

associated with a purple seismic facies, while the latter are 

characterized by a green seismic facies. On contrast, the 
tabular shape with braided architecture channel is 

characterized by a predominant purple seismic facies with 

some intercalations of green and blue seismic facies. The 
small abandoned channel is also associated with purple 

seismic facies. The oxbows infill vary from purple to green 

and blue seismic facies. 
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Figure 5. (a) Independent Component 1 showing two meandering channels and a tabular shape channel (green arrows) together 

with oxbows (orange arrows) and a small abandoned channel (blue arrow). Footprint is seen (red rectangle) but geologic features 
are well resolved. (b) Independent component 2. Large scale (green arrows) and small scale (blue and orange arrows) features are 

well delineated. Acquisition footprint (red rectangle) increases compared to IC1. (c) Independent component 3 characterized by an 

increase in random noise and acquisition footprint (red rectangle). Geological features (green and orange arrows) except the small 

abandoned channel (blue arrow) are interpretable. (d) Independent component 4 characterized by strong footprint (red rectangle) 
and random noise with little geological insight. All independent components are extracted along a phantom Horizon A + 208 ms.       

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

Figure 6. Voxels projected to similar colors, represent 

similar seismic facies. The axis of the meandering channels 

is represented by purple seismic facies, while their flanks are 
characterized by green seismic facies. The tabular shape 

channel is associated with purple seismic facies with some 

green and blue facies. Finally the small abandoned channel 
(blue arrow) is characterized by purple seismic facies and the 

oxbow (orange arrows) infill vary from purple to blue and 

green seismic facies. 

Conclusions and future work 

 
Independent Components Analysis (ICA) proved to be a 

powerful technique to reduce dimensionality, reduce noise 

and extract valuable information from multiple seismic 

attributes. Also, projecting the independent components 
against a RGB color scheme it is possible to make an 

unsupervised seismic facies classification. For future work, 

we will relate the seismic facies with axial and off-axis 

deposition in deepwater channels and compare the results 
obtained using ICA to the results using Principal Component 

Analysis (PCA). 
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