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A dvances in deep learning and artificial intelligence promise to not only drive our cars but 
also taste our beer. Specifically, recent advances in the architecture of deep-learning 

convolutional neural networks have brought the field of image classification and computer vision 
to a new level. Very deep convolutional neural networks emerged in 2014 and have achieved new 
levels of accuracy in several artificial intelligence classification problems. Current CNN models 
are able to differentiate the image of a leopard from that of a scooter, but moreover can 
differentiate images of leopards from their biological cousins – cheetahs and snow leopards. 
Deep convolutional neural network architecture achieved a 3.5-percent top-5 error (how frequent 
the model fails to predict the correct class as one of the top 5 guesses) and 17.3-percent top-1 
error in a visual recognition challenge in 2015. The current benchmark in object category 
classification and detection consists of hundreds of mixed-object categories and millions of 
images.



Figure 1: Figure showing how we augmented 
and standardized the amount of data by 
splitting the core in squared cropped images 
using a sliding window. This approach helps 
the CNN to access more training data and, 
used with care, will not force the CNN to 
overfit the data. The blue rectangle shows 
images that were never used during training 
(test data). The green arrow indicates the 
image presented in figure 3. Separation of 
testing data was the same for the other three 
lithofacies used in this project. 

Although machine learning has been significantly used in geoscience fields, the application of 
this technique in core-based lithofacies identification, a key component to better understand oil 
and gas reservoirs, remains limited. Machine-learning techniques have been intensely used to aid 
seismic-facies classification, lithofacies classification from well logs, and even for seismicity 
studies. Cored wells are important as they provide the only ground-truthing for subsurface 
reservoirs, including data on lithofacies variations. The goals of core-based rock-type 
descriptions are to identify key lithofacies and facies associations, evaluate facies stacking and 
identify stratigraphic surfaces, interpret depositional environments, evaluate relationships 
between rock properties and lithofacies, and help operators identify optimal zones for designing 
completions. Traditional core-based lithofacies identification is costly, time consuming and 
subjective (e.g. different geologists describe the same core with different results).

To address some of these challenges, we evaluate whether a CNN can help a specialist on an 
image-recognition task.

CNN results are directly related to the amount of 
labeled data used during training. As more and more 
examples are provided to the CNN, higher accuracy 
rates are generated, thereby developing improved 
rules. Imagine how a child can understand complex 
and difficult-to-grasp entities based on examples, such 
as “what is a cube?” The first example of a cube can 
be a six-faced die. In this example, the child may 
observe that each side of the die exhibits a different 
number of dots, the object has a color, a size, and so 
forth. Given this single example, the child may struggle 
creating a mental model of a cube. Does a cube have 
something to do with a particular size, or perhaps with 
different numbers of dots on each side? The same 
child then learns that a cardboard box might be termed 
a cube; later, that the shape of the ice in their drink is also a cube. After a sufficient number of 
examples are provided, the child builds a mental model of a cube even in the absence of a formal 
definition. Moving forward, the child approaches the world with a set of attributes in mind 
whenever a new object requires shape classification. Other classes of objects might have 
completely different characteristics (what is a tree?) or shared characteristics (what is a 
parallelogram?) and can be added the child’s knowledge.

Just like the child who draws upon examples to learn 
object classification, the CNN needs examples to 



Figure 2: A Bedded skeletal peloidal 
packstone-grainstone sample image from the 
core not used in the CNN training

Figure 3: A chert breccia in greenish shale 
matrix sample image from the core not used 
in the CNN training

understand the characteristics of each “class” it tries 
to differentiate. Our work focuses on transferring the 
learning of a complex CNN trained on more than one 
million random images to correctly classify a 
lithofacies on well core images. The great advantage 
of “transfer learning” is that layers that have been 
previously trained with a significant amount of labeled 
data can be reused to address different objectives without any alteration. Our job then is to use 
an already trained model (a CNN model that has several rules for several different images) and 
add an additional lithofacies identification layer.

Preliminary Results

One of the most important factors contributing to the 
robustness of CNN models is the amount of labeled 
data that can be used for training. We used well core 
images captured through modern photographic 
equipment to generate the set of data to feed our CNN. 
The particular section used for this project consisted 
of approximately 50 feet of core from the 
Mississippian limestone and chert reservoirs in the Anadarko Shelf, Grant County, Oklahoma. The 
set of core images show four different lithofacies: bedded skeletal peloidal packstone-
grainstone, chert breccia in greenish shale matrix, spiculitic mudstone-wackestone and splotchy 
packstone-grainstone. To ensure images supplied to the CNN are consistent, the first stage of 
the process consists of careful cropping and selection of the images to be used as input for the 
training. We used a sliding window technique to extract consistent squared, cropped sections 
from the original core image (figure 1). This cropping process further augmented the number of 
samples of our initially small collection, which helps the CNN. We exclude part of the cropped 
pictures from the training set to be used as testing data (figure 1) after the CNN is trained. After 
the cropping process the bedded skeletal peloidal packstone-grainstone, chert breccia in 
greenish shale matrix, spiculitic mudstone-wackestone and splotchy packstone-grainstone 
lithofacies had, respectively, 285, 165, 605 and 285 images that were used for training.

The validation accuracy during training achieved 96 
percent. After the training process, we can use the 
CNN model to predict the lithofacies of a suite of 
images (extracted from the same core) never used in 
the training. The CNN classification results are shown 



Figure 4: A spiculitic mudstone-wackestone 
sample image from the core not used in the 
CNN training

Figure 5: A splotchy packstone-grainstone 
sample image from the core not used in the 
CNN training 

in figures 2, 3, 4, to 5, where the probability of each 
lithofacies is shown in the accompanying table.

Future Work

Although our CNN classification test was created with 
very few images and their variations, the preliminary 
results are quite promising. Overall, the CNN model 
selected the correct lithofacies with a significantly 
higher probability when compared to the other options. 
Use of images of similar sizes and qualities facilitates 
the lithofacies identification, as sedimentary features 
will maintain proportion – the CNN will not mistakenly classify conglomerates as sandstone, as 
size is preserved. Improved training requires incorporation of a larger number of examples to 
enable generation of a model sufficiently robust to overcome complications such as variances in 
color, core quality and textures. The move toward digitization of oil and gas data will provide the 
big-data enrichment to enable evaluation of the CNN methodology for examples from around the 
world. Changes in sedimentation characteristics, texture, core size and colors will complicate the 
picture, but hopefully lead to deeper learning.

Explorer Geophysical Corner (Click to View Column Archives )

The Geophysical Corner is a regular column in the EXPLORER that features geophysical case 
studies, techniques and application to the petroleum industry. R. Randy Ray, consulting 
geophysicist/geologist in Lakewood, Colo., served as editor of Geophysical Corner from 
January 2001 until January 2006. Bob A. Hardage, senior research scientist at the Bureau 
of Economic Geology, the University of Texas at Austin was editor of Geophysical Corner 
from January 2006 until 2012. Satinder Chopra, award-winning chief geophysicist 
(reservoir) at Arcis Seismic Solutions, Calgary, Canada, and a past AAPG-SEG Joint 
Distinguished Lecturer began serving as the editor of the Geophysical Corner column in 
2012.
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